.BusiNESs PROCESS TRENDS

WHITEPAPER

September 2003

David S. Frankel
David Frankel Consulting
Paul Harmon
Business Process Trends
Jishnu Mukeriji
Hewlett Packard
James Odell
James Odell Associates
Martin Owen
Popkin Software
Pete Rivitt
Adaptive, Inc.

Mike Rosen
M2VP
Richard Mark Soley
Object Management Group

Contents:

Introduction

The Zachman Framework

The Model Driven Architecture
Model Standardization
MDA and Software

Development

Mapping MDA to the Zachman

Framework

Summary

Footnotes

The Zachman Framework
and the OMG's
Model Driven Architecture

Introduction

As organizations, products, customers and technologies continue to change at an
increasingly rapid rate, managers have sought overviews that will allow them to
understand how everything within their organization fits together. The currently popular
term for such an overview is an architecture. Some architectures —a data architecture,
for example — provide overviews of a specific part of the overall organization.
Increasingly, the term enterprise architecture refers to a set of architectures, which,
taken together, provide a complete view of an organization.

The Zachman Framework is one popular way of conceptualizing how all of the more
specific architectures that an organization might create can be integrated into a
comprehensive picture. The Zachman Framework is an analytic model or classification
scheme that organizes descriptive representations. It does not describe an
implementation process and is independent of specific methodologies.

The Object Management Group’s Model Driven Architecture (MDA) is an approach
to creating models, refining models, and generating code from models. The MDA
approach also includes technology to facilitate the transport of models and code
from one implementation to another, and may, in the future, include the ability to
reverse engineering code into models. It is important to note that MDA does not
define a specific development methodology. Instead, it is a generic approach that
can be used with existing methodologies.

This paper describes how the OMG’s Model Driven Architecture can be mapped to
the Zachman Framework. The aim is to illustrate what aspects of the Zachman
Framework can be supported by architects, analysts and developers who use MDA.

The Zachman Framework

In 1987 John A. Zachman, an IBM researcher, proposed what is now popularly called
the Zachman Framework, a way of conceptualizing what is involved in any information
system architecture.[1] Zachman borrowed the term architecture from the building
trades and discussed the various types of drawings and blueprints a building architect
typically developed in order to create a house. He then suggested parallels in software
development. He stressed that an organization does not have a single architecture,
but has, instead, a whole range of diagrams and documents representing different
aspects or viewpoints and different stages.

© 2003 Business Process Trends

= |

Perspectives (Rows)

In the years since he wrote his original article, Zachman has worked to refine and
elaborate his framework.[2] Figure 1 provides an overview of the current Zachman

Framework.
< Abstractions (Columns) >
The Zachman DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION
Framework What How Where Who When Why
(Things) (Process) (Location) (People) (Time) (Motivation)
List of things List of processes the List of Locations in List of Organizations List of Events List of Business
important to the business performs which the business Important to the Significant to the Goals/Strategies
SCOPE business operates Business Business
(Contextual) Ends/Means = Major
Planner Entity = Class of Function = Class of Note = Major business People = Major Time = Major business bus. goal/Critical

business thing

business process

location

organizations

event

success factor

BUSINESS MODEL
(Conceptual)
Owner

Semantic Model

Ent = Business entity
Rein = Business
relationship

Business Process
Model

Proc = Business
process
I/O = Business
resources

Business Logistics
System

Node = Business
location
Link = Business
linkage

Work Flow Model

People = Organization
unit
Work = Work product

Master Schedule

Time = Business
event
Cycle = Business
cycle

Business Plan

End = Business
objective
Means = Business
strategy

SYSTEM MODEL

Logical Data Model

Application
Architecture

Distributed System
Architecture

Human Interface
Architecture

Processing Structure

Business Rule Model

End = Structural

(Logical) Ent = Data entity _ . Node = I/S function Time = System event "
Des ,-g ner Rein = Data Proc f:l :;;’_Zl:atlon [Processor, Storage, etc., People = Role Cycle = Processing Mezsze:tf;ion
relationship 1/O = User views Link = Line Work = Deliverable cycle assertion
characteristics
System Design Technology
ysical Data Mode rchitecture resentation ontrol Structure .
TECHNOLOGY Physical Data Model 4 9 Architect Presentati Control Struct Rule Desian
MODEL Proc = Computer Architecture 9
A Ent = Segment/Table, 5 P! Node = Hardware/ Time = Execute _ ..
(ph smal) function _ _ End = Condition
Yy etc. /O = Data elements/ System software People = User Cycle = Component Means = Action
Builder Rein = Pointer/Key sofs Link = Line Work = Screen format cycle
specifications
DETAILED Program

REPRESENTATIONS
(Out-of-Context)
Sub-Contractor

Data Definition

Ent = Filed
Rein = Address

Proc = Language
statement
/0 = Control block

Network Architecture

Node = Addresses
Link = Protocols

Security Architecture

People = Identity
Work = Job

Timing Definition

Time = Interrupt
Cycle = Machine cycle

Rule Specification

End = Sub-condition
Means = Step

FUNCTIONING
ENTERPRISE

Actual Business Data

Actual Application
Code

Actual Physical
Networks

Actual Business
Organization

Acutal Business
Schedule

Actual Business
Strategy

Figure 1. The Zachman Enterprise Architecture Framework.

Zachman states that “The Framework for Enterprise Architecture is a two dimensional
classification scheme for descriptive representations of an Enterprise.”[3]

The vertical dimension (the rows) describes the perspectives of those who use the
models or descriptions contained in the cells. The top row represents the most
generic perspective of an organization, while lower rows are successively more
concrete. The bottom row represents a description of the actual data, code and

people that make up the enterprise.

The perspectives, starting from the top of Figure 1, are:

SCOPE: (Contextual) The Planner’s Perspective. This describes the models,
architectures and representations that provide the boundaries for the organization,

September 2003

and describe what senior executives must consider when they think about the
organization and how it interacts with the world.

BUSINESS MODEL: (Conceptual) The Owner’s Perspective. This describes
the models, architectures and descriptions used by the individuals who are the owners
of the business process. They focus on the usage characteristics of the products.

SYSTEM MODEL: (Logical) The Designer’s Perspective. This describes the
models, architectures and descriptions used by engineers, architects and those
who mediate between what is desirable and what is technically possible.

TECHNOLOGY MODEL: (Physical) The Builder’s Perspective. This describes
the models, architectures and descriptions used by technicians, engineers and
contractors who design and create the actual product. The emphasis here is on
constraints and what will actually be constructed.

DETAILED REPRESENTATIONS: (Out-of-Context Perspective) A Sub-
Contractor’s Perspective. This describes the actual elements or parts that are
included in, or make up, the final product (e.g. software components). Using the
construction metaphor, Zachman refers to it as a sub-contractor’s perspective, and
this makes sense to software developers when the design is implemented with modules
or components acquired from others.

THE FUNCTIONING ENTERPRISE. The bottom row represents the actual deployed
or running elements, data, and people of the organization. Itisn’t a perspective, as
such, but the “real world,” in all its complexity, that underlies all of the more or less
abstract perspectives above it. (To simplify subsequent figures, we will drop the
Function Enterprise row from other Zachman diagrams.)

The horizontal dimension of the framework (the columns) describes the types of
abstractions that define each perspective. These abstractions are based on the
widely used questions that people have historically asked when they sought
understanding. The six questions or types of abstractions are as follows:

DATA: What is it made of? This focuses on the material composition of the
product. Inthe case of software systems, it focuses on data. Zachman has proposed
a simple, illustrative model for each of the columns. In this case, the model is:
Thing—Relationship—Thing

FUNCTION: How does it work? This focuses on the functions or transformations
of the product. The modelis: Process—Input/Output—Process

NETWORK: Where are the elements located relative to one another? This
focuses on the geometry or connectivity of the product. The model is: Node—
Line—Node

PEOPLE: Who does what work? This focuses on the people and the manuals

and the operating instructions or models they use to perform their tasks. The model
is: People—Work—People

September 2003

WHITEPAPER

The Model Driven
Architecture

TIME: When do things happen? This focuses on the life cycles, timing and
schedules used to control activities. The model is: Event—Cycle—Event

MOTIVATION: Why do things happen? This focuses on goals, plans and rules
that prescribe policies and ends that guide the organization. The model is: End—
Means—End

Each cell describes an architecture, model, representation or description that an
organization might document. Each of the cells in the framework is primitive and
thus, each can be described or modeled independently. (Zachman refers to it as
“normalized” with one fact in one place.) All of the cells on a given row make up a
given perspective. All of the cells in a column are related to each other since they
focus on the same type of elements.

Organizations may not keep all of the models described by the Enterprise Architecture
Framework in one location. Some organizations do not formally define some of the
cells, but, since all of the cells are logically necessary for a complete description of
an organization, if they aren’t formally described, they are implicit in assumptions
made by people in the organization.

The Object Management Group (OMG) was founded in 1989. lItis a consortium of
organizations that originally joined together to create standards and to encourage
the use of object technology. Throughout the Nineties, the member companies that
make up the OMG labored to create a set of standards, collectively known as the
Object Management Architecture (OMA). The centerpiece of the OMAwas CORBA
(Common Object Request Broker Architecture), a middleware standard which defined
how messages from diverse languages could be defined via a common intermediary
language, the OMG’s Interface Definition Language (IDL), moved from client to target
platforms via platform-independent protocols (e.g. IOP), and then retranslated into
the language of the target object or component. In another effort, the OMG formalized
the Unified Modeling Language (UML), a modeling system that could be used to
represent software designs.

For the past several years, the OMG has been moving beyond its roots in object
standards. lts members, some 700 companies from throughout the world, are
concerned with integrating and organizing all their software assets. Once they
accepted that multiple middleware standards had established themselves in the
market and that CORBA would always need to be combined with other middleware
standards to create a complete solution at any large company, they began to think
about more generic solutions to the integration problems they all faced. The Model
Driven Architecture (MDA) represents a major effort to create the standards necessary
to facilitate a comprehensive new approach to the creation, integration, and
maintenance of software assets.

The goal of MDA is to create an enterprise architecture modeling capability that
analysts and developers can use to describe a company’s business and software
assets. By creating the architecture with software tools, companies are in a position
to generate specific applications to implement the architecture and to modify those
applications as the organization’s needs change. In other words, MDA represents a

© 2003 Business Process Trends

September 2003 4

major step in the direction of a real-time enterprise in which managers can make
changes in architectures that are subsequently represented in code.[4]

MDA is concerned with models and talks about them in two different ways. Firstitis
concerned with techniques that assure that all models used in software development
can be aligned with all others. This focus emphasizes the use of MOF and
metamodels. MDA is also concerned with organizing models used in the software
development process so that developers can move from abstract models to more
concrete models. This focus emphasizes the use of Platform Independent Models
(PIMs), Platform Specific Models (PSM), and so forth. We’ll consider, first, how
MOF provides common modeling standards, and then how models can be organized
to facilitate efficient and flexible software development.

Model Standardization

The Model Driven Architecture is supported by a number of models and standards.
All MDA models are related because they are all based on a very abstract metamodel
— the Meta Object Facility, or MOF. Every other model used in MDA is defined in
terms of MOF constructs. In other words, every MDA model is MOF-compliant.
This guarantees that all models used in the MDA system can communicate with
every other MOF-compliant model. All of the different data representations in the
OMG’s Common Warehouse Model (CWM) are MOF-compliant. Similarly, all of the
diagrams supported by the Unified Modeling Language (UML) are MOF-compliant.
(See Figure 2.)

UML supports extensions which are termed profiles. Profiles are MOF-compliant as
a result of being extensions of UML. Profiles, in UML 2.0, are used to describe
various functional uses of UML. Profiles are extensions to UML and are, themselves,
MOF metamodels.[5]

Some MDA metamodels have been formally defined by the OMG. Some are still
being developed by OMG task forces. In some cases, outside groups or vendors
have developed MOF compliant metamodels. These non-OMG metamodels are
MOF-compliant and can be used in MDA development, but they are not, as yet,
official OMG standards.

The MDA models and profiles shown in Figure 2 are defined as follows, starting at
the left of the second row:

The Common Warehouse Metamodel (CWM). The OMG’s formal model of
metadata is used to manage data warehouses. Using CWM, developers can generate
a number of more specific data models or formats, including relational tables, records
or structures, OLAP, XML, multidimensional database designs, and so forth. This
includes aspects which also have value outside the data warehousing environment
such as data models, transformations, software deployment, and business
nomenclature.

The UML Metamodel. Early versions of UML were not completely MOF compliant,
but the latest release of UML, version 2.0 is MOF-compliant. UML defines a set of
core modeling concepts which can be combined into various diagrams, including, for
example: Class Diagrams, Sequence Diagrams, State Diagrams, Activity Diagrams,

September 2003

WHITEPAPER

XML
MOF Meta i
Metamodel
(Language) XM
generation
Metamodels are \ rules ***
MOF-compliant models
(or languages) l
XMl files
CEITER Web ! Business Process | ! Business Rules |
e ol Services i Metamodel 1 i Metamodel 1
Metamodel Metamodel . 1 x : 1 o :
(CWM) : Pl i
Profiles are UML compliant,
and thus, also MOE-e6mpliant
metamodels (ef languages)
. .NET
CORBA EJB EAI EDOC Scheduling Profile
Profile Profile Profile Profile Profile .

* Web Services and the .NET Profile are examples of metamodels (or UML profiles) that have been
developed by outside groups. They conform to MOF but are not, as yet official OMG standards.

** The Business Process Metamodel and the Business Rules Metamodel are examples of standards
that are still being developed by OMG committees.

*** The OMG has created an MOF-XML mapping that makes it possible for any MOF compliant model
to pass information to other MOF models by converting the information into the XML Metadata
Interchange language (XMI) and placing the information in an XML file. In effect, an XMI document is
a MOF XML document.

Figure 2. An overview of some of the elements in the Model Driven Architecture.

Component Diagrams, and Package Diagrams. In addition, the UML specification
includes a facility that allows developers to establish constraints on various UML
elements.

Web Services. Web Services is an example of a non-OMG metamodel developed
to facilitate the development of MOF-compliant Web Service models.

The Business Process Definition Metamodel. This is an example of a metamodel
that s still in the development phase. The OMG has called for proposals for a MOF-
compliant metamodel for business processes. Such a metamodel would be
independent of specific process definition languages and would allow MOF models
to interface with languages like WSBPEL and notations like BPMN.

Business Semantics for Business Rules. Another example of a metamodel in
development is an RFP for a MOF Metamodel for capturing business rules in business
terms, and the definition and semantics of those terms in business vocabularies. In
fact, there will be two specifications: a more generic standard for business rules, and
a more specific one for production rules that are actually used by rule engines.

© 2003 Business Process Trends

September 2003 6

CORBA Profile. This metamodel defines how to use UML to create CORBA-specific
models. The CORBA specification includes the definition of a CORBA component
model that can be modeled in UML and used in application development.

EJB Profile. This metamodel defines how to use UML to create J2EE or EJB-
specific models. Developed by the Java Community Process.

EAI Profile. (The UML Profile and Interchange Model for Enterprise Application
Integration.) This metamodel defines how to use UML to model event-driven EAI
solutions.

EDOC Profile. (The UML Profile for Enterprise Distributed Object Computing.) This
metamodel defines how to use UML to model distributed enterprise systems and the
aspects of the business that they support (business processes, entities, events,
etc.). The EDOC standard includes a Java metamodel that defines how to create
Java-specific models.

Scheduling Profile. (The UML Profile for Scheduling, Performance and Time.) This
metamodel defines how to use UML to model temporal aspects of (primarily real-
time) computer systems.

.NET Profile. Another example of a profile created by developers independent of the
OMG. A .NET profile defines how to use UML to create .NET-specific models.

There are other MOF compliant metamodels and UML profiles in existence and in
development. We have only focused on those that can best illustrate how MDA can
be mapped to the Zachman Framework. MDA is a work in progress, and the OMG
will continue to develop new MOF metamodels as new technologies, languages or
modeling elements need to be defined so that they can be integrated with MDA.

XMI. The OMG’s XMI (XML Metadata Interchange) standard assures that any MOF-
compliant model can be represented as an XML document and stored in a MOF-
compliant database. Thus, in effect, an XMI document is a MOF XML document.
The latest version of UML includes the ability to specify the behavior of models so
that they can be converted directly to code. At the moment, there is no standard
way to transform any MOF model to any other, but an OMG committee is working on
standardizing transformations.

MDA and Software Development

MOF assures that all compliant metamodels share a common set of core assumptions
and definitions. MDA, however, is primarily focused on organizing the development
and maintenance of software resources. Thus, MDA also describes how models are
used in the software development process.

Figure 3 suggests how an IT group can derive models from either business process
descriptions or software descriptions and use them, in turn, to convert the abstract
models into executable implementations. Note that the models used in this process
would refer to a specific organization’s data and processes. These models would be
derived from metamodels like UML, but would refer to specific processes within the

organization. Thus, in effect, a specific model of a company’s business classes

September 2003

WHITEPAPER

could be classified two ways. It would be a model that complied with the UML
metamodel, and if it was platform independent, it would be a PIM model. The former
tells what modeling conventions are being used (UML) and the latter tells how the
model functions in the development process.

1
Computation-
Independent Model
(CIM) CIM >>PIM
.~ Mapping
Created by Business
Analysts to Describe ‘
Busi 5
usiness 7 Platform-
__\ —»{ Independent Model
\(§-‘ (PIM) PIM >> PSM
A\ .~ Mapping
Created by Architect/ i
Designer to Describe]
Archtiecture o
Platform-Specific
Model —
(PSM) PSM >> Code
" Mapping
Created by Developer or Tester
to Implement Solution —» Code

Figure 3. Levels or types of MDA models.

Figure 3 highlights the three different types of MDA models one uses in developing a
system, and who is involved in using each. In this case we see that business
analysts develop Computation Independent Models (CIM) that describes the business.
Architects and designers subsequently create Platform Independent Models (PIM)
to illustrate the organization’s architecture, without reference to any specific
implementation. Later, developers and testers will use tools to generate specific
software designs from the PIM architecture and then use their Platform-Specific
Models (or designs) to generate code.

We won’t describe the MDA development process in any detail in this paper. Our
goal here is simply to understand how MDA can be used to capture and use the
types of information defined by the Zachman Framework.

The Zachman Framework wasn’t created with any implementation technology in
mind. Similarly, the OMG’s MDA wasn’t created with the Zachman Framework in
mind. In fact, however, if the Zachman Framework describes all of the architectures,
models, descriptions and representations that managers and developers need to

© 2003 Business Process Trends

September 2003 8

WHITEPAPER

keep track of, and the MDA approach is designed to support the creation and
management of an enterprise architecture, then they ought to be closely related.

Mapping MDA to the
Zachman Framework

As is suggested in Figure 2 the OMG’s Model Driven Architecture uses a number of
MOF-compliant metamodels (e.g. UML, CWM) and UML profiles to represent

information about systems.

In Figure 3 we saw how any of the metamodels or

profiles could be used to create models that might be used in a software development
process. When a model is used in development, we can classify it in terms of its
function, as a Computation Independent Model (CIM), a Platform Independent Model
(PIM), or a Platform Specific Model (PSM).

Figure 4 suggests how MDA models used in software development might map to the
rows of the Zachman Framework.

Perspectives (Rows)

A

Abstractions (Columns)

v

The Zachman DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION
Framework What How Where Who When Why
(Things) (Process) (Location) (People) (Time) (Motivation)
List of things List of processes the List of Locations in List of Organizations List of Events List of Business
important to the business performs which the business Important to the Significant to the Goals/Strategies
SCOPE business operates Business Business
(Contextual)
Planner

BUSINESS MODEL

Semantic Model

Business Process
Model

Business Logistics
System

Work Flow Model

Master Schedule

Business Plan

(Conceptual) .
Owner Computation-Independent Mod¢l (CIM)
Logical Data Model Application Distributed System Human Interface Processing Structure Business Rule Model
SYSTEM MODEL Architecture Architecture Architecture
(Logical) |
Designer Platform-Independent Model {PIM)
TECHNOLOGY Physical Data Model System Design Z:gmt‘:(l: ‘:332 ::Zi?tgtcatﬁ:: Control Structure Rule Design
MODEL
(Physical) _ all
Buikler Platform-Specific Model (PSNI)
DETAILED Data Definition Program Network Architecture | Security Architecture Timing Definition Rule Specification
REPRESENTATIONS
(Out-of-Context) CODE

Sub-Contractor

Figure 4. How the MDA models used in software development map to the Zachman Framework.

Notice that we extended the MDA Computation-Independent Model up into the Scope
or Contextual row of the Zachman Framework, but did not suggest that the entire
Contextual row could be mapped to MDA CIM models. There is some difference on

© 2003 Business Process Trends

September 2003

9

this, depending on exactly what is included in the Contextual Row. In some cases,
Zachman suggests they are lists or goals and these discrete items would not actually
be included in MDA diagrams.

Next, we map the MDA metamodels and profiles to the Zachman Framework. There
are several different, specific MDA standards and we didn’'t want to make the resulting
diagram too confusing so we have mapped the MOF-compliant metamodels in two
separate figures. We'll start by simply mapping UML to the Zachman Framework.

The OMG’s Unified Modeling Language is a set of core modeling elements that can
be combined in different ways. Most developers think of UML in terms of diagrams
that they use to represent models of different aspects, or states, of a software
development process. There is no single way to use UML diagrams. Thus, some
developers capture business requirements with use case diagrams and others
represent business processes using UML activity diagrams. Class and sequence
diagrams are often used for software analysis and design, and package and component
diagrams are used to show specific designs and to indicate deployment plans.

In fact, each of these diagrams can be more or less complex depending on the
elements the analyst uses. For example, one can create an activity diagram that
shows activities and transitions between the activities. By the same token, one can
create rows or swimlanes and label them with department names to show which
department is responsible for what activity. In other words, a single activity diagram
can incorporate elements that are described within different cells on the Zachman
Framework. For example, the top left cell of the Zachman Framework (Scope/Data)
focuses on lists of things important to the business. These could be represented by
a very general class diagram where each class indicated a concept important to the
business, or by a very general entity relationship diagram that suggested entities
important to the business. As more details were added the diagram could serve as
a business model or even a logical design. Similarly, one could create a very high-
level activity diagram and simply label the swimlanes with departments to capture
the list of organizations important to the business, or the business managers
responsible for key parts of a major business process (Scope/People). An architect
or analyst using UML would probably capture information from different Zachman
cells using simpler UML diagrams and then add details to turn the initial diagram
into a more complex diagram for some more specific purpose. This is similar to
what a building contractor might do, creating one diagram to show the basic rooms
in the house, and then using that diagram as the basis for a more complex diagram
that would show electrical outlets, or the placement of furniture.

Figure 5 suggests how the core UML metamodel, with its various software analysis
and design diagrams, might map to the Zachman Framework. The Framework could
easily be addressed more fully by UML 2.0. For example, partitions of diagrams
(e.g. swimlanes) could be used to represent any of the where, who, when, or why
aspects of the Framework. OCL might be used to express the rule aspects in the
Motivation column. Similarly, use case diagrams could be used to represent certain
elements located in the People column. UML could also cover a good bit of the
Time column in the guise of the new UML Scheduling Profile.

Rather than stretch to cover everything we could, in Figure 6 we tried to show where
most business analysts or software designers would use UML diagrams today. We

u
HE
September 2003

Perspectives (Rows)

Abstractions (Columns)

. A .
Y »
The Zachman DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION
Framework What How Where Who When Why
(Things) (Process) (Location) (People) (Time) (Motivation)
List of things List of processes the List of Locations in List of Organizations List of Events List of Business
important to the business performs which the business Important to the Significant to the Goals/Strategies
SCOPE business operates Business Business
(Contextual) Package and Class Activity Diagrams
Planner Diagrams
Use Casel Diagrams

Semantic Model

Business Process

Business Logistics

Work Flow Model

Master Schedule

Business Plan

BUSINESS MODEL miece System
(Conceptual) Class and Composite Activity. State, and
Owner Structure Diagrams | |nteraction Diagrams
Logical Data Model Application Distributed System Human Interface Processing Structure Business Rule Model

SYSTEM MODEL

Architecture

Architecture

Architecture

(Logical) Class, Package .
A ’ . Activity. State, and Deployment
Designer an%g;rz) rgzent Interaction Diagrams Diagram
q g Presentation Control Structure Rule Design
Technol
TECHNOLOGY Physical Data Model System Design A:ghirt':cggye Architecture
MODEL
. Class, Package, .
(Phy'S|06|) and Component I/:Ct’w?./‘ Stg,te’ and Deployment
Builder Diagrams Interaction Diagrams Diagram
DETAILED Data Definition Program Network Architecture | Security Architecture Timing Definition Rule Specification
REPRESENTATIONS
(Out-of-Context)

Sub-Contractor

Figure 5. One way UML Diagrams could map to the Zachman Framework.

have indicated diagrams that might be used. In some cases, only simple versions of
the diagrams might be created, while in others, more complex versions of the same
diagram might be required. Different architects or analysts prefer different diagrams
and might handle any given problem with still other diagrams that we have not shown,
so the diagram names on Figure 6 are only suggestive.

Figure 6 suggests how several other metamodels and UML profiles can be used to
capture information from the various cells on the Zachman Enterprise Architecture
Framework. The dashed line suggests the area in which UML diagrams might be
used, as reflected in Figure 5. In Figure 6, we show two types of MDA standards.
Standards that have already been adapted are shown in color while those that are
currently being developed are illustrated with shades of gray.

Figure 6 illustrates how the various metamodels could be used to represent information
described by the Zachman Framework. As you can see, most data aspects can be
represented by models derived from the CWM metamodel. Data, Function and
Network Systems integration issues can be modeled with the EAI profile. EDOC
provides an efficient way to model some System, and most Technology, issues

September 2003

< Abstractions (Columns) >
The Zachman DATA FUNCTION NETWORK PEOPLE TIME MOTIVATION
Framework What How Where Who When Why
(Things) (Process) (Location) (People) (Time) (Motivation)
A List of things List of processes the List of Locations in List of Organizations List of Events List of Business
important to the business performs which the business Important to the Significant to the Goals/Strategies
SCOPE | business | __ | & operates | __ Business | __ Business __ | _____________|
(Contextual) r f
Planner [
UML |
Semantic Model E Business Process Business Logistics Work Flow Model Master Schedule Business Plan
BUSINESS MODEL | Mece Systom s ;
(Conceptual) Common | Business Prog¢ess Definition Business
m Owner Warehouse E (Planned) Rules
] Metamodel Plann
2 etamode EDOC (Planned)
5 Logical Data Model Appl_ication Distribuged System) Human_ Interface Processing Structure : Business Rule Model
8 SYSTEM MODEL Architecture Architecture : Architecture :
S (Logical) UML W Scheduling |
2 3 eb f
- Designer EDOC EAl Profile § v . '
S v) Profile Profile
7] :
. q] Presentation Control Structure | Rule Design
E TECHNOLOGY Physical Data Model System Design E::::irt‘::l:‘t)gli 1 Architecture :
MODEL <) :
(Physical) (CWMm) < m) H
Builder NET EJB (0] NET EJB DO:] :
g e J I
DETAILED Data Definition Network Architeeglre Network Architecture | Security Architecture Timing Definition E- Rule Specification
REPRESENTATIONS
(Out-of-Context)
Sub-Contractor
\

Figure 6. The Zachman Framework with MDA standards inserted to suggest how an MDA user would document the
information in the various Enterprise Architecture cells.

associated with Functions and with human Interface issues. Some analysts will
prefer a non-standard UML Web Profile for interface modeling. The new UML
Scheduling Profile will probably prove popular with those seeking to model System,
Technology, and some Detailed Representation of Time.

Profiles for .NET, EJB and CORBA can be used to represent the components used
in Technology models and the relationships used in Networks. In some cases the
Technology models can actually be used in Representational situations. Any of the
profiles could be supplemented with UML diagrams, as needed.

Once the metamodel for Business Process Definition is established, a wide variety
of process modeling notations and various proprietary workflow or process modeling
metamodels will probably be mapped to the OMG Business Process Definition.
That, in turn, will allow developers to prepare workflow or process diagrams and link
them to other MDA models. Similarly, the upcoming Business Rules Metamodel
will make it possible for a wide variety of proprietary business rule vendors to map
their models to the OMG metamodel and thus achieve integration with MDA.

September 2003

WHITEPAPER

Summary

Footnotes

Figure 6 and the discussion above suggests how MDA-related standards can be
used to support an Enterprise Architecture, as defined by John Zachman'’s Framework.
It suggests that those who have already spent time defining models according to the
Zachman Framework categories should find it easy to apply MDA. There are, of
course, many different ways to implement the Zachman Framework. None, however,
offer the breadth and consistency of the MDA approach, which allows managers,
architects and developers, from the Business Model perspective to the Detailed
Representation perspective, to model and represent information and decisions in a
consistent way, and then use the resulting framework, represented on an MDA tool
or repository, to generate code and to subsequently maintain that architecture over
the course of years.

[11 J.A.Zachman. “A Framework for Information Systems Architecture,” IBM Systems
Journal, Vol. 26, No. 3, 1987. (The same article was reprinted in 1999 in a special double
issue of the IBM Systems Journal that is easier to locate: Vol. 38, Nos 2&3, 1999.)

[2] Information on Zachman’s current work can be obtained from The Zachman Institute
for Framework Advancement (ZIFA) www.zifa.com

[3] Zachman has recently prepared an electronic book, The Zachman Framework: A
Primer for Enterprise Engineering and Manufacturing, which is available at
www.zachmaninternational.com

[4] For a detailed description of the elements of the MDA approach, see the OMG’s MDA
Guide. (www.omg.org) Also see:

David S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing (Wiley, 2003).

Anneke Kleppe, Jos Warmer and Wim Bast. MDA Explained: The Model Driven
Architecture: Practice and Promise. (Addison-Wesley, 2003)

Michael Rosen. Understanding and Evaluating Modeling and MDA Tools. (Cutter
Consortium Enterprise Architecture Report, Vol. 6, No. 5, 2003.)

Martin Owen. UML and the Enterprise. Paper presented at a conference and
reproduced on the Popkin website: www.popkin.com.

[5] Information on the latest version of UML, version 2.0, is available on the OMG’s web
site: www.omg.org.

Specifications for all other OMG metamodels or profiles described in this paper are
documented on the OMG website: www.omg.org

The Zachman Framework for Enterprise Architecture™ is a trademark of John A. Zachman
and Zachman International.

MDA®, Model Driven Architecture®, the MDA Logo, CORBA®, XMI® and IIOP® are
registered trademarks of the Object Management Group. OMG™, Object Management
Group™, the CORBAlogo™, OMG Interface Definition Language (IDL)™, UML™,

© 2003 Business Process Trends

September 2003 13

WHITEPAPER

Authors

Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™ and IIOP™
are trademarks of the Object Management Group.

David S. Frankel is the CEO of David Frankel Consulting
(df@DavidFrankelConsulting.com)

Paul Harmon is the Executive Editor of Business Process Trends
(pharmon@bptrends.com)

Jishnu Mukeriji is Senior Systems Architect, Strategy & Technology Office, Hewlett-
Packard (jishnu@hp.com)

James Odell is the CEO of James Odell Associates and co-chair of the OMG’s UML
task force (email@jamesodell.com)

Martin Owen is Consultancy Services Manager, European Headquarters, Popkin
Software and Systems (Martin.Owen@Popkin.co.uk)

Pete Rivett is Consulting Architect at Adaptive, Inc. (pete.rivett@adaptive.com)

Michael Rosen is the CTO of M?VP (Mrosen@m2vp.com)

Dr. Richard Mark Soley is the CEO of the OMG (soley@omg.org)

© 2003 Business Process Trends

September 2003 14

