

Pertemuan 5

INTERPRETASI REAKSI PELETAKAN DAN GAYA DALAM

Beberapa ketentuan yang dapat digunakan untuk interpretasi reaksi peletakan dan gaya dalam adalah sebagai berikut:

- Interpretasi reaksi peletakan sesuai dengan koordinat lokal. (Lihat materi modul Pertemuan 1).
- Momen yang mengelilingi sumbu lokal 3 disebut Momen 3-3
- Momen yang mengelilingi sumbu lokal 2 dan disebut Momen 2-2
- Gaya geser yang terletak sebidang dengan sumbu lokal 1 dan 2 disebut Shear 2-2.
- Gaya geser yang terletak sebidang dengan sumbu lokal 1 dan 3 disebut Shear 3-3.
- Gaya yang bekerja searah atau berlawanan arah sumbu lokal 1 disebut Axial Force.

Hasil analisis untuk mengetahui besarnya reaksi peletakan dan gaya dalam dapat dilihat dengan cara : pilih menu Display \rightarrow Show Forces / Stresses \rightarrow Joint or Frames.

Joint Reaction Forces	Member Force Diagram for Frames
Case/Combo Case/Combo Name DEAD	Case/Combo
Multivalued Options C Envelope (Range) C Step	Multivalued Options C Envelope (Range) C Step
Type Reactions C Spring Forces	Component C Axial Force C Torsion C Shear 2-2 C Moment 2-2 C Shear 3-3 C Moment 3-3
	Scaling C Auto C Scale Factor
OK Cancel	Options ☐ Fill Diagram ☐ Show Values on Diagram Cancel

Gambar 5.1 Menampilkan reaksi peletakan

Gambar 5.2 Menampilkan gaya dalam

Analisislah model struktur pada gambar 5.3 di bawah ini untuk menentukan besarnya reaksi peletakan di tumpuan A, B, dan sendi gerber S, serta gaya dalam di titik C dan D. Bentuk penampang balok ASB bebas dan berat sendiri balok tidak diperhitungkan.

Gambar 5.3 Model Struktur Balok Gerber

Perhatian:

- S adalah sendi gerber, dimana pada join tersebut tidak bekerja momen.
- Berat sendiri balok diabaikan.
- Tumpuan A adalah jepit dengan lokal axes dibuat 90 derajat.

Jika input data benar maka akan diperoleh hasil analisis sebagai berikut:

1. Setelah dilakukan pilih menu Display → Show Forces / Stresses → Joint, kemudian

klik kanan pada joint 1 (tumpuan A) maka diperoleh hasil:

klik kanan pada joint 3 (tumpuan B) maka diperoleh hasil:

📕 Joint Re	actions		X				
Joint ID 1 Force Moment	1 -19.600 0.000	2 0.000 -37.200	3 0.000 0.000				

Gambar	5.4
Reaksi Peletakan	Tumpuan A

- Interpretasi hasil analisis:
- Gaya vertikal ke atas joint 1 atau U1 atau VA = 19,6 kg. (aktifkan Local Axes Joint untuk mengetahui alasannya kenapa bernilai negatif).
- Momen yang mengelilingi sumbu join lokal 2 atau
 MA = 37,2 kg.m berlawanan arah jarum jam.
- 2. Setelah dilakukan pilih menu Display \rightarrow Show Forces / Stresses \rightarrow Joint, kemudian

 Joint Reactions
 Image: Constraint of the second secon

Gaya vertikal ke atas joint 3 atau U1 atau VB = 13,4 kg.

Reaksi Peletakan Tumpuan B

3. Setelah dilakukan pilih menu Display → Show Forces / Stresses → Frame → moment 3-3, kemudian klik kanan pada frame 1 (balok AS), lalu ketikkan nilai 0.5 pada box 'location' (menunjukkan lokasi titik D) maka diperoleh hasil seperti gambar 5.6 berikut:

Diagrams for Frame Object 1 (BALOK)	
Case DEAD Items Major (V2 and M3) Single valued Items Items Major (V2 and M3) Items Items Items Major (V2 and M3) Items Items Items I	n) Display Options Scroll for Values Show Max Location 0.5 m Dist Load (2-dir) 0.00 Kgf/m at 0.50000 m Positive in -2 direction
Resultant Shear	Shear V2 -19.60 Kgf at 0.50000 m
	Moment M3 -27.40 Kgf-m at 0.50000 m
C Absolute C Relative to Beam Minimum © Relative to Beam Ends	Deflection (2-dir) -3.125E-09 m at 0.50000 m Positive in -2 direction
Reset to Initial Units	Units Kgf, m, C 💌

Gambar 5.6 Gaya Dalam Balok AB

Interpretasi hasil:

- Besar VS = 17,6 kg
- Pada titik D terjadi gaya gaya dalam sebagai berikut:
- $M_D = -27,4$ kg.m dan $V_D = -19,6$ kg dan besarnya defleksi searah sumbu lokal 2 = 0

4. Setelah dilakukan pilih menu Display \rightarrow Show Forces / Stresses \rightarrow Frame \rightarrow moment 3-

3, kemudian klik kanan pada frame 2 (balok SB), lalu ketikkan nilai 4 pada box 'location' (menunjukkan lokasi titik C) maka diperoleh hasil seperti gambar 5.7 berikut:

Diagrams for Frame Object 2 (BALOK)		
Case DEAD Items Major (V2 and M3) Single valued	End Length Offset (Location) Display Options I-End: Jt: 2 0.000000 m 0.000000 m C Show Max J-End: Jt: 3 Location 0.000000 m Location Location J.End: Jt: 3 Location 0.000000 m 4.00000 m	
Equivalent Loads - Free Body Diagram (Concentrated Fo	orces in Kgf, Concentrated Moments in Kgf-m) Dist Load (2-dir) 2.00 Kgf/m at 4.00000 m Positive in -2 direction	
Resultant Shear	Shear V2 11.40 Kgf at 4.00000 m	
Resultant Moment	Moment M3 12.40 Kgf-m at 4.00000 m	
C Absolute C Relative to Beam Minimum	Deflection (2-dir) 1.485E-08 m at 4.00000 m Positive in -2 direction Relative to Beam Ends	
Reset to Initial Units	une Units Kgf, m, C 💌]

Gambar 5.7 Gaya Dalam Balok BS

Interpretasi hasil:

- Pada titik C terjadi gaya gaya dalam sebagai berikut:
- $M_C = 12,4$ kg.m dan $V_C = 11,4$ kg dan besarnya defleksi searah sumbu lokal 2 = 0

5.2 Interpretasi Reaksi Peletakan dan Gaya Dalam Truss

Gambar 5.8: Contoh Model Rangka Batang 2 Dimensi

Langkah-langkah:

a. Menentukan Konfigurasi Struktur (Draw)

Buatlah konfigurasi struktur seperti gambar 5.8

b. Mendefinisikan Load Case (Define)

Kasus Pembebanan untuk contoh analisis model struktur di atas terdiri dari dua yaitu beban mati (DEAD) dan beban angin (WIND) dengan berat sendiri tidak diperhitungkan. Langkah-langkah untuk menentukan *Load Case* adalah sebagai berikut:

 Pilih menu *Define / Load Cases...*, maka akan ditampilkan dialog box 'Define Load '. Secara default SAP2000 menampilkan load adalah LOAD1 dengan tipe beban DEAD dan pengali berat sendiri (self-weight multiplier) sama dengan 0.

 Rubahlah LOAD1 menjadi MATI, tipe beban dan pengali berat sendiri tetap, kemudian klik pada Modify Load. Lakukan dengan cara yang sama untuk beban angin

c. Mendefinisikan Analysis Case (Define)

Langkah-langkah untuk menentukan Analysis Case adalah sebagai berikut:

- Pilih menu Define / Analysis Case, maka akan ditampilkan dialog box 'Analysis Case'.
- Hapus case name *Modal*, dan rubah case name Dead dengan mati.

ases	Cara Tura	Click to:
Jase Maille	Case Type	Add New Case
nau angin	Linear Static	Add Copy of Case
		Modify/Show Case
		Delete Case
		•

Gambar 5.10: Analysis Case

d. Mendefinisikan Combinations (Define)

Langkah-langkah untuk menentukan Combinations adalah sebagai berikut:

- Pilih menu Define / Combinations, maka akan ditampilkan dialog box 'Define Response Combinations'.
- Selanjutnya klik pada modify..., dan akan ditampilkan *Response Combination* Data.

	Response Comb	ination Data		
	Response	e Combination Name	COMB1	
Gambar 5.11: Respons Combination Data	Combinatio Define Combina Case Name angin angin mati	n Type tion of Case Results Case Type ✓ Linear Static Linear Static Linear Static	Scale Factor 1. 1. 1.	Add Add Modify
		[Cancel	Delete

e. Menentukan beban Joint (Assign)

Beban mati bekerja pada joint dan arah beban bekerja sesuai dengan gambar. Berikut cara menginput beban mati:

- 1. Pastikan unit satuan dalam kg-m.
- Pilih joint E (bekerja beban P₂). Kemudian pilih menu Assign/Joint Loads/Forces..., akan muncul dialog box Joint Force.
- Pilih Load Case Name pada drop-down box menjadi mati. Isilah nilai pada force global Z = - 100 (tanda minus artinya arah gaya ke bawah).
- 4. Klik OK, maka pada gambar model struktur akan muncul panah yang arahnya ke bawah.
- 5. Lakukan dengan cara yang sama untuk joint D (bekerja beban P₁)

 Pilih Load Case Name pada drop-down box menjadi ANGIN. Isilah nilai pada force global X = 20, lalu OK.

f. Menentukan Joint Restraint (Assign)

- Pilihlah joint A, kemudian pilih menu Assign / Joint / Restraints...., maka akan muncul dialog box Joint Restraints. Klik pada icon bergambar 'Sendi', lalu klik OK.
- 2. Pilihlah joint B, kemudian pilih menu Assign / Joint / Restraints...., maka akan muncul dialog box Joint Restraints. Klik pada icon bergambar 'Rol', lalu klik OK.

g. End Release

Pada model struktur *plane truss* diasumsikan tidak terjadi momen di setiap titik joint. Oleh sebab itu SAP2000 diminta untuk tidak memperhitungkan terjadinya momen di joint, dengan cara sebagai berikut;

- 1. Pilih seluruh frame pada model struktur *plane truss* tersebut.
- 2. Pilih menu Assign → Frame/Cable

→ Releases/Partial Fixity, maka akan muncul dialog box Frame Releases. Berilah tanda $\sqrt{}$ pada check box Start dan End di Moment 22 (Minor) dan Moment 33 (Mayor). Klik OK.

ssign Frame Releases	;			
Frame Heleases	Bele	ase	Erame Partia	l Fixitu Springs
	Start	End	Start	End
Axial Load		Γ		
Shear Force 2 (Major)	Г	Г		
Shear Force 3 (Minor)	Γ	Γ		
Torsion	Γ	Γ		
Moment 22 (Minor)	$\overline{\mathbf{v}}$		0.	0.
Moment 33 (Major)	◄	◄	0.	0.
No Releases			OK	Cancel

Gambar 5.12: Assign Frame Release

h. Analisis Model

Untuk analisis model dapat dilakukan sebagai berikut:

- Pilih menu Analyze / Set Options..., maka akan ditampilkan dialog box 'Analysis Options'. Dari dialog box ini pilih pada Fast DOF's dengan Plane Frame, lalu klik OK.
- 2. Pilih menu Analyze / Run Analysis, maka akan ditampilkan dialog box 'Save Model File As'. Pada dialog box ini simpanlah model dengan file "TRUSS" tanpa menambahkan ekstension file.SDB, karena secara otomatis program akan menambahkan sendiri. Selanjutnya klik pada Save, kemudian akan muncul window dengan beberapa variasi analisis.

3. Apabila analisis telah lengkap dan tidak ada pesan kesalahan (*error*) atau peringatan (*warning*) klik OK.

Case Mame	Tuno	Chabus	Action	Llick to:
mati angin	Linear Static Linear Static	Not Run Not Run	Run Run	Run/Do Not Run Case Show Case Delete Results for Case
				Run/Do Not Run All Delete All Results

Gambar 5.13: Set Analysis Cases to Run

Interpretasi Hasil Analisis

Output analisis dapat ditampilkan secara tabel (MS Excel) melalui menu Display → Show

Analysis Results Tables \rightarrow cheklist pada *reactions* dan *frame forces*.

Hasil Reaksi Peletakan adalah sebagai berikut :

 $V_A = 29.17 \text{ kg}, H_A = -20 \text{ kg}, \text{ dan } V_B = 70,83 \text{ kg}$

TABL	E: Joint React	ions						
loint	OutputCasa	CasaTypa	U1	U2	U3	R1	R2	R3
Joint	OutputCase	Caserype	Kgf	Kgf	Kgf	Kgf-m	Kgf-m	Kgf-m
1	COMB1	Combination	-20	0	29.17	0	0	0
2	COMB1	Combination	0	0	70.83	0	0	0

Gambar 5.14: Set Analysis Cases to Run

<u>Hasil Gaya I</u>	Batang ada	lah seperti ga	mbar 5.14	dan disaj	jikan da	lam tabel	l sebagai	berikut :
TABLE: E	ement For	ces - Frames						

Framo	OutputCaso	CasaTypa	Р	V2	V3	Т	M2	M3
Frame	OutputCase	Caserype	Kgf	Kgf	Kgf	Kgf-m	Kgf-m	Kgf-m
1	COMB1	Combination	66.67	0	0	0	0	0
2	COMB1	Combination	56.67	0	0	0	0	0
3	COMB1	Combination	-55.03	0	0	0	0	0
4	COMB1	Combination	-66.82	0	0	0	0	0
5	COMB1	Combination	-90.71	0	0	0	0	0
6	COMB1	Combination	-11.79	0	0	0	0	0
7	COMB1	Combination	6.25	0	0	0	0	0