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Fixed Point Numbers
• Using only two digits of precision for signed base 10 numbers,

the range (interval between lowest and highest numbers) is
[-99, +99] and the precision (distance between successive num-
bers) is 1.

• The maximum error , which is the difference between the value of a
real number and the closest representable number, is 1/2 the pre-
cision. For this case, the error is 1/2 × 1 = 0.5.

• If we choose a = 70, b = 40, and c = -30, then a + (b + c) = 80 (which
is correct) but (a + b) + c = -30 which is incorrect.  The problem is
that (a + b) is +110 for this example, which exceeds the range of
+99, and so only the rightmost two digits (+10) are retained in the
intermediate result.  This is a problem that we need to keep in
mind when representing real numbers in a finite representation.
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Weighted Position Code
• The base, or radix of a number system defines the range of pos-

sible values that a digit may have: 0 – 9 for decimal; 0,1 for binary.

• The general form for determining the decimal value of a number is
given by:

Example:

541.2510 = 5 × 102 + 4 × 101 + 1 × 100 + 2 × 10-1 + 5 × 10-2

= (500)10 + (40)10 + (1)10 + (2/10)10 + (5/100)10

=  (541.25)10
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Base Conversion with the Remainder
Method

• Example: Convert 23.375 10 to base 2. Start by converting the inte-
ger portion:

23/2	 =	 11	 R 1

11/2	 =	 5	 R 1

5/2	 =	 2	 R 1

2/2	 =	 1	 R 0

1/2	 =	 0	 R 1

Integer Remainder

Least significant bit

Most significant bit

(23)10  =  (10111)2
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Base Conversion with the Multiplica-
tion Method

• Now, convert the fraction:

.375	 ×	 2	 =	 0.75

.75	 ×	 2	 =	 1.50

.5	 ×	 2	 =	 1.00

Least significant bit

Most significant bit

(.375)10 = (.011)2

• Putting it all together, 23.375 10 = 10111.0112.
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Nonterminating Base 2 Fraction
• We can’t always convert a terminating base 10 fraction into an

equivalent terminating base 2 fraction:
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Base 2, 8, 10, 16 Number Systems

• Example: Show a column for ternary (base 3).  As an extension of
that, convert 14 10 to base 3, using 3 as the divisor for the remain-
der method (instead of 2). Result is 112 3

Binary
(base 2)

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

Octal
(base 8)

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17

Decimal
(base 10)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Hexadecimal
(base 16)

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
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More on Base Conversions
• Converting among power-of-2 bases is particularly simple:

10112 = (102)(112) = 234

234 = (24)(34) = (102)(112) = 10112

1010102 = (1012)(0102) = 528

011011012 = (01102)(11012) = 6D16

• How many bits should be used for each base 4, 8, etc. , digit? For
base 2, in which 2 = 2 1, the exponent is 1 and so one bit is used
for each base 2 digit. For base 4, in which 4 = 2 2, the exponent is
2, so so two bits are used for each base 4 digit. Likewise, for base
8 and base 16, 8 = 2 3 and 16 = 24, and so 3 bits and 4 bits are used
for base 8 and base 16 digits, respectively.
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Binary Addition
• This simple binary addition example provides background for the

signed number representations to follow.

Operands
0

0+

00

SumCarry 
out

Carry in 0

0

1+

10

0

1

0+

10

0

1

1+

01

0

Example:

Carry

Addend: A

Augend: B

Sum

0   1   1   1   1   1   0   0

0   1   0   1   1   0   1   0

1   1   1   1   0   0   0   0

1   1   0   1   0   1   1   0

+

(124)10

(90)10

(214)10

0

0+

10

1

0

1+

01

1

1

0+

01

1

1

1+

11

1
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Signed Fixed Point Numbers
• For an 8-bit number, there are 2 8 = 256 possible bit patterns.

These bit patterns can represent negative numbers if we choose
to assign bit patterns to numbers in this way. We can assign half
of the bit patterns to negative numbers and half of the bit patterns
to positive numbers.

• Four signed representations we will cover are:

Signed Magnitude

One’s Complement

Two’ s Complement

Excess (Biased)
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Signed Magnitude
• Also know as “sign and magnitude,” the leftmost bit is the sign (0

= positive, 1 = negative) and the remaining bits are the magnitude.

• Example:

+2510 = 000110012

-2510 = 100110012

• Two representations for zero: +0 = 00000000 2, -0 = 100000002.

• Largest number is +127, smallest number is -127 10, using an 8-bit
representation.
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One’s Complement
• The leftmost bit is the sign (0 = positive, 1 = negative). Negative of

a number is obtained by subtracting each bit from 2 (essentially,
complementing each bit from 0 to 1 or from 1 to 0). This goes both
ways: converting positive numbers to negative numbers, and con-
verting negative numbers to positive numbers.

• Example:

+2510 = 000110012

-2510 = 111001102

• Two representations for zero: +0 = 00000000 2, -0 = 111111112.

• Largest number is +127 10, smallest number is -127 10, using an 8-
bit representation.
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Two’s Complement
• The leftmost bit is the sign (0 = positive, 1 = negative). Negative of

a number is obtained by adding 1 to the one’s complement nega-
tive. This goes both ways, converting between positive and nega-
tive numbers.

• Example (recall that -25 10 in one’s complement is 11100110 2):

+2510 = 000110012

-2510 = 111001112

• One representation for zero: +0 = 00000000 2, -0 = 000000002.

• Largest number is +127 10, smallest number is -128 10, using an 8-
bit representation.
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Excess (Biased)
• The leftmost bit is the sign (usually 1 = positive, 0 = negative).

Positive and negative representations of a number are obtained
by adding a bias to the two’s complement representation. This
goes both ways, converting between positive and negative num-
bers.  The effect is that numerically smaller numbers have smaller
bit patterns, simplifying comparisons for floating point exponents.

• Example (excess 128 “adds” 128 to the two’s complement ver-
sion, ignoring any carry out of the most significant bit) :

+1210 = 100011002

-1210 = 011101002

• One representation for zero: +0 = 10000000 2, -0 = 100000002.

• Largest number is +127 10, smallest number is -128 10, using an 8-
bit representation.
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BCD Representations in Nine’s and
Ten’s Complement

• Each binary coded decimal digit is composed of 4 bits.
0 0 0 0

(0)10

0 0 1 1

(3)10

0 0 0 0

(0)10

0 0 0 1

(1)10

(+301)10

1 0 0 1

(9)10

0 1 1 0

(6)10

1 0 0 1

(9)10

1 0 0 0

(8)10

(–301)10

1 0 0 1

(9)10

0 1 1 0

(6)10

1 0 0 1

(9)10

1 0 0 1

(9)10

(–301)10

Nine’s complement

Ten’s complement

Nine’s and ten’s 
complement

(a)

(b)

(c)

• Example: Represent +079 10 in BCD: 0000 0111 1001

• Example: Represent -079 10 in BCD: 1001 0010 0001.  This is ob-
tained by first subtracting each digit of 079 from 9 to obtain the
nine’s complement, so 999 - 079 = 920.  Adding 1 produces the
ten’s complement: 920 + 1 = 921.  Converting each base 10 digit of
921 to BCD produces 1001 0010 0001.
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3-Bit Signed Integer Representations
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Base 10 Floating Point Numbers
• Floating point numbers allow very large and very small numbers

to be represented using only a few digits, at the expense of preci-
sion. The precision is primarily determined by the number of dig-
its in the fraction (or significand , which has integer and fractional
parts), and the range is primarily determined by the number of
digits in the exponent.

• Example (+6.023 × 1023):

+

Sign

2 3 6 0 2

Exponent
(two digits)

Significand
(four digits)

Position of decimal point

3.
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Normalization
• The base 10 number 254 can be represented in floating point form

as 254 × 100, or equivalently as:

25.4 × 101, or

2.54 × 102, or

.254 × 103, or

.0254 × 104, or

infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number.

• Floating point numbers are usually normalized , in which the radix
point is located in only one possible position for a given number.

• Usually, but not always, the normalized representation places the
radix point immediately to the left of the leftmost, nonzero digit in
the fraction, as in: .254 × 103.
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Floating Point Example
• Represent .254 × 103 in a normalized base 8 floating point format

with a sign bit, followed by a 3-bit excess 4 exponent, followed by
four base 8 digits.

• Step #1: Convert to the target base.

.254 × 103 = 25410. Using the remainder method, we find that 254 10
= 376 × 80:

254/8 = 31 R 6

31/8 = 3 R 7

3/8 = 0 R 3

• Step #2: Normalize: 376 × 80 = .376 × 83.

• Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an
exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:

0  111  .  011  111  110  000
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Error, Range, and Precision
• In the previous example, we have the base b = 8, the number of

significant digits (not bits!) in the fraction s = 4, the largest expo-
nent value (not bit pattern) M = 3, and the smallest exponent value
m = -4.

• In the previous example, there is no explicit representation of 0,
but there needs to be a special bit pattern reserved for 0 other-
wise there would be no way to represent 0 without violating the
normalization rule.  We will assume a bit pattern of
0 000 000 000 000 000 represents 0.

• Using b, s, M, and m, we would like to characterize this floating
point representation in terms of the largest positive representable
number, the smallest (nonzero) positive representable number,
the smallest gap between two successive numbers, the largest
gap between two successive numbers, and the total number of
numbers that can be represented.
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Error, Range, and Precision (cont’)

• Largest representable number:  bM × (1 - b-s) = 83 × (1 - 8-4)

• Smallest representable number:  bm × b-1 = 8-4 - 1 = 8-5

• Largest gap:  bM × b-s = 83 - 4 = 8-1

• Smallest gap:  bm × b-s = 8-4 - 4= 8-8
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Error, Range, and Precision (cont’)

• Number of representable numbers: There are 5 components: (A)
sign bit; for each number except 0 for this case, there is both a
positive and negative version; (B) ( M - m) + 1 exponents; (C) b - 1
values for the first digit (0 is disallowed for the first normalized
digit); (D) bs-1 values for each of the s-1 remaining digits, plus (E)
a special representation for 0. For this example, the 5 components
result in: 2 × ((3 - 4) + 1) × (8 - 1) × 84-1 + 1 numbers that can be
represented. Notice this number must be no greater than the num-
ber of possible bit patterns that can be generated, which is 2 16.

2    ×   ((M - m) + 1)   ×   (b - 1)      ×      bs-1     +

Sign bit
First digit 
of fraction

Remaining 
digits of 
fraction

The number 
of exponents Zero

A EB C D

1
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Example Floating Point Format

• Smallest number is 1/8

• Largest number is 7/4

• Smallest gap is 1/32

• Largest gap is 1/4

• Number of representable numbers is 33.

–3 –1 –1 0 1 1 3
– 1

4
1
4

–1
8

1
8

22 2 2

b  =  2	 	 M  =  +1
s  =  3	 	 m  =  –2
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Gap Size Follows Exponent Size
• The relative error is approximately the same for all numbers.

• If we take the ratio of a large gap to a large number, and compare
that to the ratio of a small gap to a small number, then the ratios
are the same:

bM × (1 – b–s)

bM–s

1 – b–s

b–s

= =
bs–1A large number

A large gap 1

bm × (1 – b–s)

bm–s

1 – b–s

b–s

= =
bs–1A small number

A small gap 1
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Conversion Example
• Example:  Convert (9.375 × 10-2)10 to base 2 scientific notation

• Start by converting from base 10 floating point to base 10 fixed
point by moving the decimal point two positions to the left, which
corresponds to the -2 exponent: .09375.

• Next, convert from base 10 fixed point to base 2 fixed point:

.09375 × 2 = 0.1875

.1875 × 2 = 0.375

.375 × 2 = 0.75

.75 × 2 = 1.5

.5 × 2 = 1.0

• Thus, (.09375) 10 = (.00011)2.

• Finally, convert to normalized base 2 floating point:

.00011 = .00011 × 20 = 1.1 × 2-4
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IEEE-754 Floating Point Formats

Single 
precision

Sign 
(1 bit)

Exponent Fraction

8 bits 23 bits

Double 
precision

Exponent Fraction

11 bits 52 bits

32 bits

64 bits



Chapter 2: Data Representation2-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

IEEE-754 Examples

(a) +1.101 × 25

Value

0

Sign Exponent Fraction

Bit Pattern

1000 0100 101 0000 0000 0000 0000 0000

(b) −1.01011 × 2−126 1 0000 0001 010 1100 0000 0000 0000 0000

(c) +1.0 × 2127 0 1111 1110 000 0000 0000 0000 0000 0000

(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000

(e) −0 1 0000 0000 000 0000 0000 0000 0000 0000

(f) +∞ 0 1111 1111 000 0000 0000 0000 0000 0000

(g) +2−128 0 0000 0000 010 0000 0000 0000 0000 0000

(h) +NaN 0 1111 1111 011 0111 0000 0000 0000 0000

(i) +2−128 0 011 0111 1111 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
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IEEE-754 Conversion Example
• Represent -12.625 10 in single precision IEEE-754 format.

• Step #1: Convert to target base. -12.625 10 = -1100.1012

• Step #2: Normalize. -1100.101 2 = -1.1001012 × 23

• Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Expo-
nent is in excess 127 (not excess 128!), so exponent is repre-
sented as the unsigned integer 3 + 127 = 130.  Leading 1 of
significand is hidden, so final bit pattern is:

1  1000 0010 . 1001 0100 0000 0000 0000 000
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Effect of Loss of Precision
• According to

the General Ac-
counting Office
of the U.S. Gov-
ernment, a loss
of precision in
converting 24-
bit integers into
24-bit floating
point numbers
was responsible
for the failure of
a Patriot anti-
missile battery.

Range 
Gate 
Area

Missile

Search action 
locates missile 
somewhere 
within beam

Validation 
action

Missile 
outside of 
range gate

Patriot 
Radar 
System
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ASCII Character Code
• ASCII is a 7-bit code, com-

monly stored in 8-bit
bytes.

• “A” is at 41 16. To convert
upper case letters to
lower case letters, add
2016. Thus “a” is at 41 16 +
2016 = 6116.

• The character “5” at posi-
tion 35 16 is different than
the number 5. To convert
character-numbers into
number-numbers, sub-
tract 30 16: 3516 - 3016 = 5.

00 NUL
01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
0D CR
0E SO
0F SI

10 DLE
11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
1B ESC
1C FS
1D GS
1E RS
1F US

20 SP
21 !
22 "
23 #
24 $
25 %
26 &
27 '
28 (
29 )
2A *
2B +
2C ´
2D -
2E .
2F /

30 0
31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O

50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D ]
5E ^
5F _

60 `
61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o

70 p
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F DEL

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell

BS
HT
LF
VT

Backspace
Horizontal tab
Line feed
Vertical tab

FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block

CAN
EM
SUB
ESC
FS
GS
RS
US
SP
DEL

Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Delete
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EBCDIC
Character

Code
• EBCDIC is an 8-bit

code.

STX Start of text RS Reader Stop DC1 Device Control 1 BEL Bell
DLE Data Link Escape PF Punch Off DC2 Device Control 2 SP Space
BS Backspace DS Digit Select DC4 Device Control 4 IL Idle
ACK Acknowledge PN Punch On CU1 Customer Use 1 NUL Null
SOH Start of Heading SM Set Mode CU2 Customer Use 2
ENQ Enquiry LC Lower Case CU3 Customer Use 3
ESC Escape CC Cursor Control SYN Synchronous Idle
BYP Bypass CR Carriage Return IFS Interchange File Separator
CAN Cancel EM End of Medium EOT End of Transmission
RES Restore FF Form Feed ETB End of Transmission Block
SI Shift In TM Tape Mark NAK Negative Acknowledge
SO Shift Out UC Upper Case SMM Start of Manual Message
DEL Delete FS Field Separator SOS Start of Significance
SUB Substitute HT Horizontal Tab IGS Interchange Group Separator
NL New Line VT Vertical Tab IRS Interchange Record Separator
LF Line Feed UC Upper Case IUS Interchange Unit Separator

00 NUL 20 DS 40 SP 60 – 80    A0    C0 { E0  \
01 SOH 21 SOS 41    61 / 81 a A1 ~ C1 A E1    
02 STX 22 FS 42    62    82 b A2 s C2 B E2 S
03 ETX 23    43    63    83 c A3 t C3 C E3 T
04 PF 24 BYP 44    64    84 d A4 u C4 D E4 U
05 HT 25 LF 45    65    85 e A5 v C5 E E5 V
06 LC 26 ETB 46    66    86 f A6 w C6 F E6 W
07 DEL 27 ESC 47    67    87 g A7 x C7 G E7 X
08 28    48    68    88 h A8 y C8 H E8 Y
09 29    49    69    89 i A9 z C9 I E9 Z
0A SMM 2A SM 4A ¢ 6A ‘ 8A    AA    CA    EA    
0B VT 2B CU2 4B 6B , 8B    AB    CB    EB    
0C FF 2C    4C < 6C % 8C    AC    CC    EC    
0D CR 2D ENQ 4D ( 6D _ 8D    AD    CD    ED    
0E SO 2E ACK 4E + 6E > 8E    AE    CE    EE    
0F SI 2F BEL 4F | 6F ? 8F    AF    CF    EF    
10 DLE 30    50 & 70    90    B0    D0 } F0 0
11 DC1 31    51    71    91 j B1    D1 J F1 1
12 DC2 32 SYN 52    72    92 k B2    D2 K F2 2
13 TM 33    53    73    93 l B3    D3 L F3 3
14 RES 34 PN 54    74    94 m B4    D4 M F4 4
15 NL 35 RS 55    75    95 n B5    D5 N F5 5
16 BS 36 UC 56    76    96 o B6    D6 O F6 6
17 IL 37 EOT 57    77    97 p B7    D7 P F7 7
18 CAN 38    58    78    98 q B8    D8 Q F8 8
19 EM 39    59    79 99 r B9    D9 R F9 9
1A CC 3A    5A ! 7A : 9A    BA    DA    FA | 
1B CU1 3B CU3 5B $ 7B # 9B    BB    DB    FB    
1C IFS 3C DC4 5C . 7C @ 9C    BC    DC    FC    
1D IGS 3D NAK 5D ) 7D ' 9D    BD    DD    FD    
1E IRS 3E    5E ; 7E = 9E    BE    DE    FE    
1F IUS 3F SUB 5F ¬ 7F " 9F    BF    DF    FF
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Unicode
Character

Code

• Unicode is a 16-
bit code.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F

NUL
STX
ETX

Start of text
End of text

ENQ
ACK
BEL

Enquiry
Acknowledge
Bell

BS
HT
LF

Backspace
Horizontal tab
Line feed VT Vertical tab

SOH Start of heading
EOT End of transmission

DLE Data link escape

DC1
DC2
DC3
DC4
NAK
NBS
ETB

Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Non-breaking space
End of transmission block

EM
SUB
ESC
FS
GS
RS
US

End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Null CAN Cancel

NUL 0020
SOH 0021
STX 0022
ETX 0023
EOT 0024
ENQ 0025
ACK 0026
BEL 0027

0028
0029

LF 002A
VT 002B
FF 002C
CR 002D
SO 002E
SI 002F
DLE 0030
DC1 0031
DC2 0032
DC3 0033
DC4 0034
NAK 0035
SYN 0036
ETB 0037
CAN 0038
EM 0039
SUB 003A
ESC 003B
FS 003C
GS 003D
RS 003E
US 003F

BS
HT

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004C
004D
004E
004F
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005A
005B
005C
005D
005E
005F

SP
!
"
#
$
%
&
'
(
)
*
+
´
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
006B
006C
006D
006E
006F
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
007A
007B
007C
007D
007E
007F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
008A
008B
008C
008D
008E
008F
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
009A
009B
009C
009D
009E
009F

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

00A0
00A1
00A2
00A3
00A4
00A5
00A6
00A7
00A8
00A9
00AA
00AB
00AC
00AD
00AE
00AF
00B0
00B1
00B2
00B3
00B4
00B5
00B6
00B7
00B8
00B9
00BA
00BB
00BC
00BD
00BE
00BF

Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl

00C0
00C1
00C2
00C3
00C4
00C5
00C6
00C7
00C8
00C9
00CA
00CB
00CC
00CD
00CE
00CF
00D0
00D1
00D2
00D3
00D4
00D5
00D6
00D7
00D8
00D9
00DA
00DB
00DC
00DD
00DE
00DF

NBS
¡
¢
£
¤
¥

§
¨
©
a

«
¬
–
®
–

˚
±
2

3

´
µ
¶
˙

1

o

»
1/4
1/2
3/4
¿

Ç



00E0
00E1
00E2
00E3
00E4
00E5
00E6
00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0
00F1
00F2
00F3
00F4
00F5
00F6
00F7
00F8
00F9
00FA
00FB
00FC
00FD
00FE
00FF

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Y
y

D

´
´

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï

ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü

ÿ

¶

P
P

pp

CR Carriage return
SO Shift out
SI Shift in

FF Form feed

SP
DEL

Space
Delete

Ctrl Control

SYN Synchronous idle

§


