Principles of Computer Architecture

Miles Murdocca and Vincent Heuring

Chapter 2: Data Representation

Principles of Computer Architecture by M. Murdocca and V. Heuring

2-1

Chapter Contents

2.1 Introduction

- **2.2 Fixed Point Numbers**
- **2.3 Floating Point Numbers**
- 2.4 Case Study: Patriot Missile Defense Failure Caused by Loss of Precision
- **2.5 Character Codes**

Fixed Point Numbers

- Using only two digits of precision for signed base 10 numbers, the *range* (interval between lowest and highest numbers) is [-99, +99] and the *precision* (distance between successive numbers) is 1.
- The maximum *error*, which is the difference between the value of a real number and the closest representable number, is 1/2 the precision. For this case, the error is $1/2 \times 1 = 0.5$.

If we choose a = 70, b = 40, and c = -30, then a + (b + c) = 80 (which is correct) but (a + b) + c = -30 which is incorrect. The problem is that (a + b) is +110 for this example, which exceeds the range of +99, and so only the rightmost two digits (+10) are retained in the intermediate result. This is a problem that we need to keep in mind when representing real numbers in a finite representation.

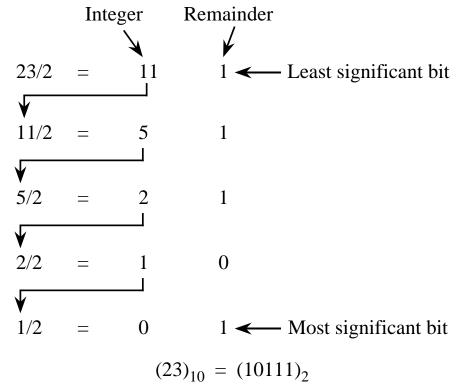
Principles of Computer Architecture by M. Murdocca and V. Heuring

Weighted Position Code

- The base, or radix of a number system defines the range of possible values that a digit may have: 0 – 9 for decimal; 0,1 for binary.
- The general form for determining the decimal value of a number is given by:

$$Value = \sum_{i=-m}^{n-1} b_i \cdot k^i$$

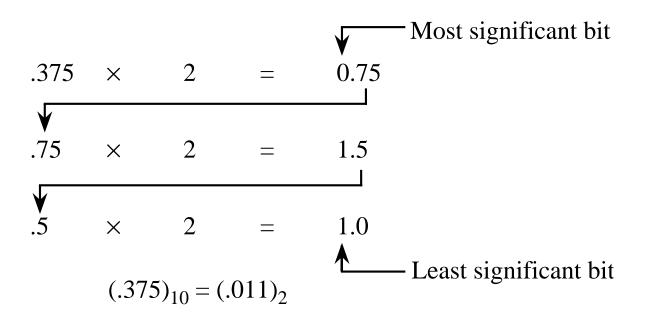
Example:


- $541.25_{10} = 5 \times 10^2 + 4 \times 10^1 + 1 \times 10^0 + 2 \times 10^{-1} + 5 \times 10^{-2}$
 - $= (500)_{10} + (40)_{10} + (1)_{10} + (2/10)_{10} + (5/100)_{10}$
 - = (541.25)₁₀

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

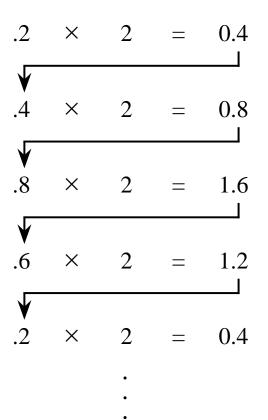
Base Conversion with the Remainder Method


<u>Example</u>: Convert 23.375₁₀ to base 2. Start by converting the integer portion:

Principles of Computer Architecture by M. Murdocca and V. Heuring

Base Conversion with the Multiplication Method

• Now, convert the fraction:



• Putting it all together, $23.375_{10} = 10111.011_2$.

Principles of Computer Architecture by M. Murdocca and V. Heuring

Nonterminating Base 2 Fraction

• We can't always convert a terminating base 10 fraction into an equivalent terminating base 2 fraction:

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Base 2, 8, 10, 16 Number Systems

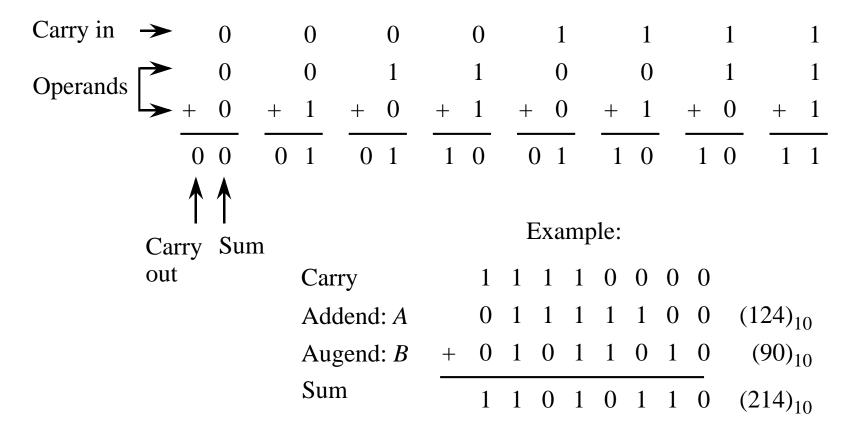
Binary (base 2)	Octal (base 8)	Decimal (base 10)	Hexadecimal (base 16)
0	0	0	0
1	1	1	1
10	2	2	2
11	3	3	3
100	4	4	4
101	5	5	5
110	6	6	6
111	7	7	7
1000	10	8	8
1001	11	9	9
1010	12	10	А
1011	13	11	В
1100	14	12	С
1101	15	13	D
1110	16	14	Е
1111	17	15	F

• <u>Example</u>: Show a column for ternary (base 3). As an extension of that, convert 14_{10} to base 3, using 3 as the divisor for the remainder method (instead of 2). Result is 112_3

More on Base Conversions

• Converting among power-of-2 bases is particularly simple: $1011_2 = (10_2)(11_2) = 23_4$

```
23_4 = (2_4)(3_4) = (10_2)(11_2) = 1011_2
```


```
101010_2 = (101_2)(010_2) = 52_8
```

```
01101101_2 = (0110_2)(1101_2) = 6D_{16}
```

How many bits should be used for each base 4, 8, *etc.*, digit? For base 2, in which 2 = 2¹, the exponent is 1 and so one bit is used for each base 2 digit. For base 4, in which 4 = 2², the exponent is 2, so so two bits are used for each base 4 digit. Likewise, for base 8 and base 16, 8 = 2³ and 16 = 2⁴, and so 3 bits and 4 bits are used for base 8 and base 16 digits, respectively.

Binary Addition

• This simple binary addition example provides background for the signed number representations to follow.

Principles of Computer Architecture by M. Murdocca and V. Heuring

Signed Fixed Point Numbers

- For an 8-bit number, there are 2⁸ = 256 possible bit patterns. These bit patterns can represent negative numbers if we choose to assign bit patterns to numbers in this way. We can assign half of the bit patterns to negative numbers and half of the bit patterns to positive numbers.
- Four signed representations we will cover are:

Signed Magnitude

One's Complement

Two's Complement

Excess (Biased)

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Signed Magnitude

 Also know as "sign and magnitude," the leftmost bit is the sign (0 = positive, 1 = negative) and the remaining bits are the magnitude.

• Example:

 $+25_{10} = 00011001_2$ $-25_{10} = 10011001_2$

- Two representations for zero: $+0 = 00000000_2$, $-0 = 10000000_2$.
- Largest number is +127, smallest number is -127₁₀, using an 8-bit representation.

One's Complement

- The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a number is obtained by subtracting each bit from 2 (essentially, *complementing* each bit from 0 to 1 or from 1 to 0). This goes both ways: converting positive numbers to negative numbers, and converting negative numbers to positive numbers.
- Example:

 $+25_{10} = 00011001_2$ $-25_{10} = 11100110_2$

- Two representations for zero: $+0 = 0000000_2$, $-0 = 1111111_2$.
- Largest number is +127₁₀, smallest number is -127₁₀, using an 8bit representation.

Principles of Computer Architecture by M. Murdocca and V. Heuring

Two's Complement

- The leftmost bit is the sign (0 = positive, 1 = negative). Negative of a number is obtained by adding 1 to the one's complement negative. This goes both ways, converting between positive and negative numbers.
- Example (recall that -25_{10} in one's complement is 11100110_2): + $25_{10} = 00011001_2$ - $25_{10} = 11100111_2$
- One representation for zero: $+0 = 0000000_2$, $-0 = 0000000_2$.
- Largest number is +127₁₀, smallest number is -128₁₀, using an 8bit representation.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Excess (Biased)

- The leftmost bit is the sign (usually 1 = positive, 0 = negative). Positive and negative representations of a number are obtained by adding a bias to the two's complement representation. This goes both ways, converting between positive and negative numbers. The effect is that numerically smaller numbers have smaller bit patterns, simplifying comparisons for floating point exponents.
- <u>Example</u> (excess 128 "adds" 128 to the two's complement version, ignoring any carry out of the most significant bit) :

- $-12_{10} = 01110100_2$
- One representation for zero: $+0 = 1000000_2$, $-0 = 1000000_2$.
- Largest number is +127₁₀, smallest number is -128₁₀, using an 8bit representation.

Principles of Computer Architecture by M. Murdocca and V. Heuring

BCD Representations in Nine's and Ten's Complement

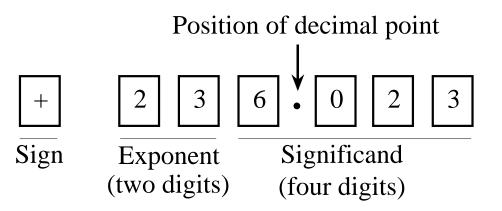
• Each binary coded decimal digit is composed of 4 bits.

(a)
$$\frac{0000}{(0)_{10}}$$
 $\frac{0011}{(3)_{10}}$ $\frac{0000}{(0)_{10}}$ $\frac{0001}{(1)_{10}}$ (+301)₁₀ Nine's and ten's complement
(b) $\frac{1001}{(9)_{10}}$ $\frac{0110}{(6)_{10}}$ $\frac{1001}{(9)_{10}}$ $\frac{1000}{(8)_{10}}$ (-301)₁₀ Nine's complement
(c) $\frac{1001}{(9)_{10}}$ $\frac{0110}{(6)_{10}}$ $\frac{1001}{(9)_{10}}$ $\frac{1001}{(9)_{10}}$ (-301)₁₀ Ten's complement

- Example: Represent +079₁₀ in BCD: 0000 0111 1001
- Example: Represent -079_{10} in BCD: 1001 0010 0001. This is obtained by first subtracting each digit of 079 from 9 to obtain the nine's complement, so 999 079 = 920. Adding 1 produces the ten's complement: 920 + 1 = 921. Converting each base 10 digit of 921 to BCD produces 1001 0010 0001.

Chapter 2: Data Representation

3-Bit Signed Integer Representations


Decimal	<u>Unsigned</u>	<u>Sign-Mag.</u>	<u>1's Comp.</u>	2's Comp.	Excess 4
7	111	_	_	_	-
6	110	_	_	_	-
5	101	_	_	_	-
4	100	_	_	_	-
3	011	011	011	011	111
2	010	010	010	010	110
1	001	001	001	001	101
+0	000	000	000	000	100
-0	_	100	111	000	100
-1	_	101	110	111	011
-2	_	110	101	110	010
-3	_	111	100	101	001
-4	_	-	_	100	000

Principles of Computer Architecture by M. Murdocca and V. Heuring

2-17

Base 10 Floating Point Numbers

- Floating point numbers allow very large and very small numbers to be represented using only a few digits, at the expense of precision. The precision is primarily determined by the number of digits in the fraction (or *significand*, which has integer and fractional parts), and the range is primarily determined by the number of digits in the exponent.
- Example (+6.023 \times 10 $^{23}):$

Normalization

• The base 10 number 254 can be represented in floating point form as 254×10^{0} , or equivalently as:

```
25.4 \times 10<sup>1</sup>, or
2.54 \times 10<sup>2</sup>, or
.254 \times 10<sup>3</sup>, or
```

 $.0254 \times 10^4$, or

infinitely many other ways, which creates problems when making comparisons, with so many representations of the same number.

- Floating point numbers are usually *normalized*, in which the radix point is located in only one possible position for a given number.
- Usually, but not always, the normalized representation places the radix point immediately to the left of the leftmost, nonzero digit in the fraction, as in: .254 \times 10³.

Chapter 2: Data Representation

Floating Point Example

- Represent .254 \times 10³ in a normalized base 8 floating point format with a sign bit, followed by a 3-bit excess 4 exponent, followed by four base 8 digits.
- Step #1: Convert to the target base.

.254 \times 10³ = 254₁₀. Using the remainder method, we find that 254₁₀ = 376 \times 8⁰:

```
254/8 = 31 R 6
```

```
31/8 = 3 R 7
```

```
3/8 = 0 R 3
```

- Step #2: Normalize: $376 \times 8^0 = .376 \times 8^3$.
- Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:

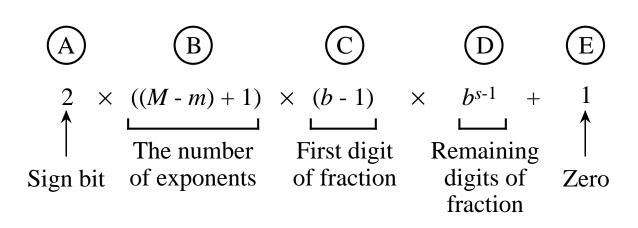
0 111 . 011 111 110 000

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Error, Range, and Precision

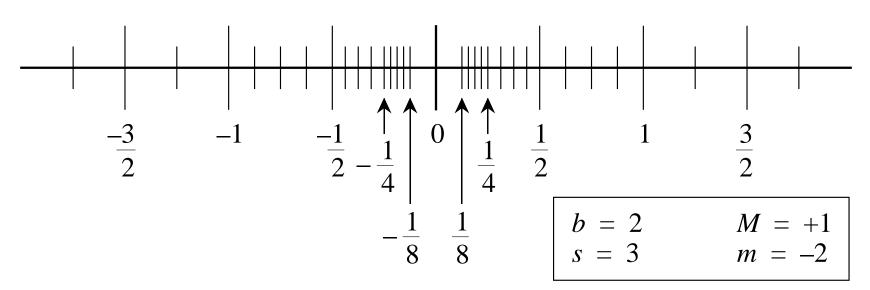
- In the previous example, we have the base b = 8, the number of significant digits (not bits!) in the fraction s = 4, the largest exponent value (not bit pattern) M = 3, and the smallest exponent value m = -4.
- In the previous example, there is no explicit representation of 0, but there needs to be a special bit pattern reserved for 0 otherwise there would be no way to represent 0 without violating the normalization rule. We will assume a bit pattern of 0 000 000 000 000 000 represents 0.
- Using *b*, *s*, *M*, and *m*, we would like to characterize this floating point representation in terms of the largest positive representable number, the smallest (nonzero) positive representable number, the smallest gap between two successive numbers, the largest gap between two successive numbers, and the total number of numbers that can be represented.


Error, Range, and Precision (cont')

- Largest representable number: $b^M \times (1 b^{-s}) = 8^3 \times (1 8^{-4})$
- Smallest representable number: $b^m \times b^{-1} = 8^{-4} 1 = 8^{-5}$

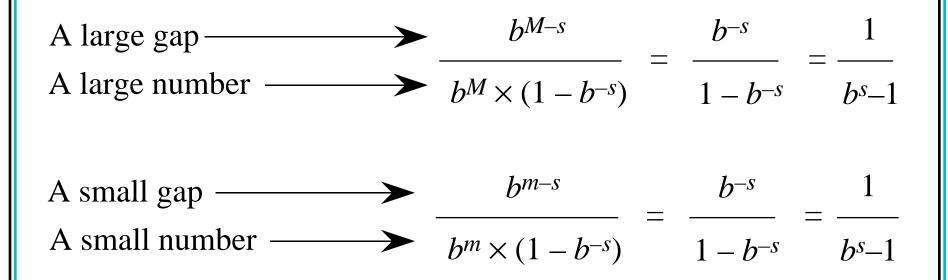
• Largest gap:
$$b^{M} \times b^{-s} = 8^{3-4} = 8^{-1}$$

• Smallest gap:
$$b^m \times b^{-s} = 8^{-4} - 4 = 8^{-8}$$


Error, Range, and Precision (cont')

Number of representable numbers: There are 5 components: (A) sign bit; for each number except 0 for this case, there is both a positive and negative version; (B) (*M* - *m*) + 1 exponents; (C) b - 1 values for the first digit (0 is disallowed for the first normalized digit); (D) b^{s-1} values for each of the *s*-1 remaining digits, plus (E) a special representation for 0. For this example, the 5 components result in: 2 × ((3 - 4) + 1) × (8 - 1) × 8⁴⁻¹ + 1 numbers that can be represented. Notice this number must be no greater than the number of possible bit patterns that can be generated, which is 2¹⁶.

Principles of Computer Architecture by M. Murdocca and V. Heuring


Example Floating Point Format

- Smallest number is 1/8
- Largest number is 7/4
- Smallest gap is 1/32
- Largest gap is 1/4
- Number of representable numbers is 33.

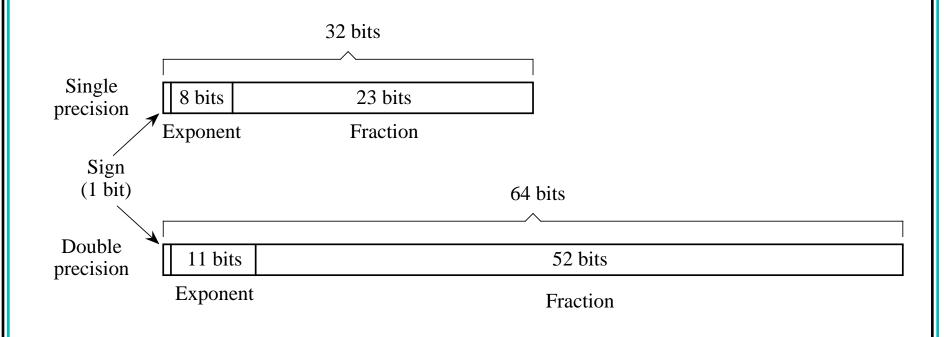
Gap Size Follows Exponent Size

- The relative error is approximately the same for all numbers.
- If we take the ratio of a large gap to a large number, and compare that to the ratio of a small gap to a small number, then the ratios are the same:

Conversion Example

- Example: Convert $(9.375 \times 10^{-2})_{10}$ to base 2 scientific notation
- Start by converting from base 10 floating point to base 10 fixed point by moving the decimal point two positions to the left, which corresponds to the -2 exponent: .09375.
- Next, convert from base 10 fixed point to base 2 fixed point:

.09375	X	2	=	0.1875
.1875	X	2	=	0.375
.375	X	2	=	0.75
.75	X	2	=	1.5
.5	X	2	=	1.0


- Thus, $(.09375)_{10} = (.00011)_2$.
- Finally, convert to normalized base 2 floating point:

.00011 = .00011
$$imes$$
 2⁰ = 1.1 $imes$ 2⁻⁴

Principles of Computer Architecture by M. Murdocca and V. Heuring

Chapter 2: Data Representation

IEEE-754 Floating Point Formats

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

IEEE-754 Examples

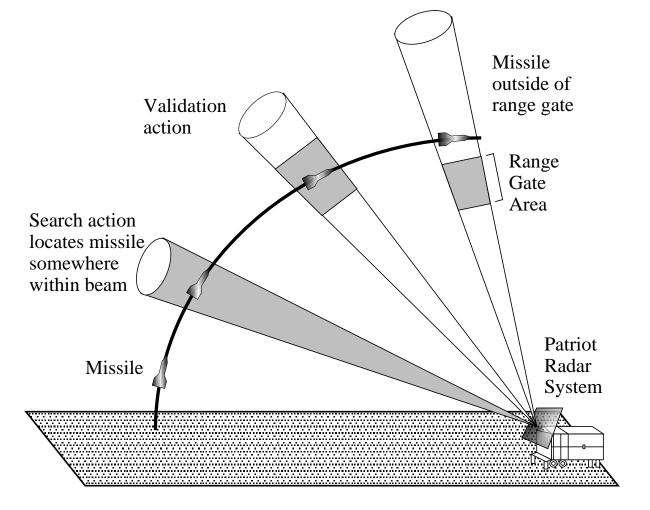
Value

Bit Pattern

		Sign	Exponent	Fraction
(a)	$+1.101 \times 2^{5}$	0	1000 0100	101 0000 0000 0000 0000 0000
(b) -	-1.01011×2^{-126}	1	0000 0001	010 1100 0000 0000 0000 0000
(c)	$+1.0 \times 2^{127}$	0	1111 1110	000 0000 0000 0000 0000 0000
(d)	+0	0	0000 0000	000 0000 0000 0000 0000 0000
(e)	-0	1	0000 0000	000 0000 0000 0000 0000 0000
(f)	$+\infty$	0	1111 1111	000 0000 0000 0000 0000 0000
(g)	$+2^{-128}$	0	0000 0000	010 0000 0000 0000 0000 0000
(h)	+NaN	0	1111 1111	011 0111 0000 0000 0000 0000
(i)	$+2^{-128}$	0	011 0111 1111	0000 0000 0000 0000 0000 0000
				0000 0000 0000 0000 0000 0000 0000

Principles of Computer Architecture by M. Murdocca and V. Heuring

IEEE-754 Conversion Example


- Represent -12.625₁₀ in single precision IEEE-754 format.
- Step #1: Convert to target base. -12.625₁₀ = -1100.101₂
- Step #2: Normalize. -1100.101₂ = -1.100101₂ \times 2³
- Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Exponent is in excess 127 (not excess 128!), so exponent is represented as the unsigned integer 3 + 127 = 130. Leading 1 of significand is hidden, so final bit pattern is:

Chapter 2: Data Representation

Effect of Loss of Precision

 According to the General Accounting Office of the U.S. Government, a loss of precision in converting 24bit integers into 24-bit floating point numbers was responsible for the failure of a Patriot antimissile battery.

© 1999 M. Murdocca and V. Heuring

ASCII Character Code

- ASCII is a 7-bit code, commonly stored in 8-bit bytes.
- "A" is at 41_{16} . To convert upper case letters to lower case letters, add 20_{16} . Thus "a" is at 41_{16} + 20_{16} = 61_{16} .
- The character "5" at position 35_{16} is different than the number 5. To convert character-numbers into number-numbers, subtract 30_{16} : 35_{16} 30_{16} = 5.

00 N	IUL	10	DLE	20	SP	30	0	40	@	50	Р	60	`	70	р	
01 S	OH	11	DC1	21	!	31	1	41	А	51	Q	61	а	71	q	
02 S	TX	12	DC2	22	"	32	2	42	В	52	R	62	b	72	r	
03 E	TX	13	DC3	23	#	33	3	43	С	53	S	63	с	73	S	
04 E	OT	14	DC4	24	\$	34	4	44	D	54	Т	64	d	74	t	
05 E	NQ	15	NAK	25	%	35	5	45	E	55	U	65	e	75	u	
06 A	CK	16	SYN	26	&	36	6	46	F	56	V	66	f	76	v	
07 B	EL	17	ETB	27	'	37	7	47	G	57	W	67	g	77	W	
08 B	BS	18	CAN	28	(38	8	48	Η	58	Х	68	h	78	Х	
09 H	IT	19	EM	29)	39	9	49	Ι	59	Y	69	i	79	у	
OA L	F	1A	SUB	2A	*	3A	:	4A	J	5A	Ζ	6A	j	7A	Z	
0B V	T/T	1B	ESC	2B	+	3B	;	4B	Κ	5B	[6B	k	7B	{	
OC F	F	1C	FS	2C	,	3C	<	4C	L	5C	\	6C	1	7C		
0D C		1D	GS	2D	-	3D	=	4D	Μ	5D]	6D	m	7D	}	
OE S	0	1E	RS	2E		3E	>	4E	Ν	5E	^	6E	n	7E	~	
OF S	I	1F	US	2F	/	3F	?	4F	0	5F	_	6F	0	7F	DEL	
NUL	Null	l			FF	Fo	orm fe	ed	CAN Cancel							
SOH	Star	t of i	heading	g	CR	Ca	rriage	e retur		EM End of medium						
STX	Star	t of	text		SO	Sh	ift ou	t				SUB Substitute				
ETX	End	of t	ext		SI	Sh	ift in					ESC	Escap	e		
EOT	End	of t	ransmi	ssion	DL	E Da	ata lin	k esca	ape			FS	File se		or	
ENQ	Enq	uiry			DC	1 De	evice	contro	ol 1			GS	Group			
ACK					DC	2 De	evice	contro	012			RS	Recor			
BEL	Bell		e		DC.	3 De	evice	contro	013			US	Unit s			
BS	Bacl	kspa	ce		DC	4 De	evice	contro	ol 4			SP	Space			
HT			tal tab		NA	K Ne	egativ	e acki	nowle	dge		DEL	Delet			
HTHorizontal tabNAKNegative acknowledgeDELDeleteLFLine feedSYNSynchronous idleDELDelete																
VT Vertical tab ETB End of transmission block																

Chapter 2: Data Representation

	00 NUL	20 DS	40 SI	P	60	_	80		A0		C0	{	E0	
	01 SOH	21 SOS	41		61	/	81	а	A1	~	C1	À	E1	,
EBCDIC	02 STX	22 FS	42		62		82	b	A2	S	C2	В	E2	S
	03 ETX	23	43		63		83	c	A3	t	C3	С	E3	Т
Character	04 PF	24 BYP	44		64		84	d	A4	u	C4	D	E4	U
Character	05 HT	25 LF	45		65		85	e	A5	v	C5	E	E5	V
	06 LC	26 ETB	46		66		86	f	A6	W	C6	F	E6	W
Codo	07 DEL	27 ESC	47		67		87	g	A7	х	C7	G	E7	X
Code	08	28	48		68		88	h	A8	у	C8	Η	E8	Y
	09	29	49		69		89	i	A9	Ζ	C9	Ι	E9	Z
	OA SMM		4A ¢		6A	6	8A		AA		CA		EA	
 EBCDIC is an 8-bit 	0B VT	2B CU2	4B		6B	,	8B		AB		CB		EB	
	0C FF	2C	4C <		6C	%	8C		AC		CC		EC	
code.	0D CR	2D ENQ	4D (6D	_	8D		AD		CD		ED	
	OE SO	2E ACK	4E +		6E	>	8E		AE		CE		EE	
	OF SI	2F BEL	4F		6F	?	8F		AF		CF		EF	
	10 DLE	30	50 &	5	70		90		BO		D0	}	FO	0
	11 DC1	31	51		71		91	J	B1		D1	J	F1	1
	12 DC2	32 SYN	52		72		92	k	B2		D2	K	F2	$\frac{2}{2}$
	13 TM	33	53		73		93	1	B3		D3	L	F3	3
STX Start of text RS Reader Stop DO	14 RES	34 PN	54		74		94	m	B4		D4	M	F4	4
DLE Data Link Escape PF Punch Off DC BS Backspace DS Digit Select DC	15 NL	35 RS	55		75		95	n	B5		D5	N	F5	5
ACK Acknowledge PN Punch On CU	10 00	36 UC 37 EOT	56		76		96	0	B6		D6	0	F6	6
SOH Start of Heading SM Set Mode CU ENQ Enquiry LC Lower Case CU	17 IL 18 CAN	37 EOT 38	57 58		77 78		97	p ĩ	B7 B8		D7 D8	P	F7 F8	7 8
ESC Escape CC Cursor Control SY		38 39	58		78		98 99	q	В8 В9		D8 D9	Q R	го F9	8
BYP Bypass CR Carriage Return IF CAN Cancel EM End of Medium EQ	19 EM 1A CC	39 3A	59 5A !		79 7A		99 9A	r	BA		D9 DA	ĸ	F9 FA	9
RES Restore FF Form Feed ET		3A 3B CU3	5A ! 5B \$		7A 7B	: #	9A 9B		BB		DA		FB	
SO Shift Out UC Upper Case SM	1C IFS	3D CO3 3C DC4	5C ·		7D 7C	# @	9D 9C		BC		DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD		FD FC	
DEL Delete FS Field Separator SC SUB Substitute HT Horizontal Tab IG	1C IFS 1D IGS	3C DC4 3D NAK	5D)		7D	w '	9C 9D		BD		DD		FD	
NL New Line VT Vertical Tab IR	1D IOS 1E IRS	3E	5E ;		7E	=	9E		BE		DD DE		FE	
LF Line Feed UC Upper Case IU	1F IUS	3F SUB	5E , 5F ¬	1	7F	"	9F		BF		DE		FF	

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Chapter 2: Data Penrecontation

Unicode
Character
Code

2-33									Chapter	2: Data F	lepreser	ntation
	0000 NUL	0020	SP	0040	@	0060	`	0080 Ctrl	00A0 NBS	00C0 À	00E0 à	
	0001 SOH	0021	!	0041	А	0061	а	0081 Ctrl	00A1 ;	00C1 Á	00E1 á	
	0002 STX	0022	"	0042	В	0062	b	0082 Ctrl	00A2 ¢	00C2 Â	00E2 â	
Ilniaada	0003 ETX	0023	#	0043	С	0063	с	0083 Ctrl	00A3 £	00C3 Ã	00E3 ã	
Unicode	0004 EOT	0024	\$	0044	D	0064	d	0084 Ctrl	00A4 ¤	00C4 Ä	00E4 ä	
	0005 ENQ	0025	%	0045	E	0065	e	0085 Ctrl	00A5 ¥	00C5 Å	00E5 å	
	0006 ACK	0026	&	0046	F	0066	f	0086 Ctrl	00A6	00C6 Æ	00E6 æ	
Character	0007 BEL	0027		0047	G	0067	g L	0087 Ctrl	00A7 §	00C7 Ç	00E7 ç	
Unaracier	0008 BS 0009 HT	0028 0029	(0048	H I	0068	h i	0088 Ctrl 0089 Ctrl	00A8 " 00A9 ©	00C8 È 00C9 É	00E8 è 00E9 é	
	0009 H1 000A LF	0029 002A) *	0049 004A	I J	0069 006A	i i	0089 Ctrl	00A9 © 00AA ª	00C9 E 00CA Ê	00E9 e 00EA ê	
	000A LI 000B VT	002A 002B	+		у К	000A	J k	008A Ctrl	$00AA = 00AB \ll$	00CA E 00CB Ë	00EA e 00EB ë	
Code	000C FF	002D	-	004D	L	006D	1	000D Ctrl	00AC ¬	00CC Ì	00ED 0	
	000D CR	002C	-	004D			m	008D Ctrl	00AD -	00CD Í	00EC 1	
	000E SO	002E		004E	N	006E	n	008E Ctrl	00AE ®	00CE Î	00EE î	
	000F SI	002F	/	004F	0	006F	0	008F Ctrl	00AF -	00CF Ï	00EF ï	
	0010 DLE	0030	0	0050	Р	0070	р	0090 Ctrl	00B0 °	00D0 Đ	00F0 🛉	
	0011 DC1	0031	1	0051	Q	0071	q	0091 Ctrl	$00B1 \pm$	00D1 Ñ	00F1 ñ	
	0012 DC2	0032	2	0052	R	0072	r	0092 Ctrl	00B2 ²	00D2 Ò	00F2 ò	
	0013 DC3	0033	3	0053	S	0073	S	0093 Ctrl	00B3 ³	00D3 Ó	00F3 ó	
	0014 DC4	0034	4	0054	Т	0074	t	0094 Ctrl	00B4 ´	00D4 Ö	00F4 ô	
 Unicode is a 16- 	0015 NAK	0035	5	0055	U	0075	u	0095 Ctrl	00B5 μ	00D5 Õ	00F5 õ	
	0016 SYN	0036	6	0056	V	0076	v	0096 Ctrl	00B6 ¶	00D6 Ö	00F6 ö	
bit code.	0017 ETB	0037	7 8	0057	W X	0077	W	0097 Ctrl	00B7 ·	$00D7 \times 00D8 $	00F7 ÷	
DIL COUE.	0018 CAN 0019 EM	0038	8 9	0058	л Y	0078	X	0098 Ctrl	00B8 00B9 ¹	00D8 Ø 00D9 Ù	00F8 ø 00F9 ù	
	0019 EM 001A SUB	0039 003A	9	0059 005A	-	0079 007A	y z	0099 Ctrl	00B9 [⊥] 00BA <u></u>	00D9 U 00DA Ú	00F9 ú 00FA ú	
	001B ESC	003A	:	005A	ב <i>ב</i> ר	007A	۲ ۲	009A Cul 009B Ctrl	00BA ±	$00DA \hat{U}$ $00DB \hat{U}$	$00FB \hat{u}$	
	001C FS	003C	, <	005D	\	007C	1	009C Ctrl	00BC 1/4	00DC Ü	00FC ü	
	001D GS	003D	=	005D	ì	007D)	009D Ctrl	00BD 1/2	00DD Ý	00FD Þ	
	001E RS	003E	>	005E	^	007E	~	009E Ctrl	00BE 3/4	00DE ý	00FE þ	
	001F US	003F	?	005F	_	007F	DEL	009F Ctrl	00BF ்	00DF §	00FF ÿ	
	NUL Null		SC	OH Sta	art of l	neading		CAN	Cancel	SP S	pace	
	STX Start	of text				ansmiss	ion		End of mediun		elete	
	ETX End o	of text	DO	C1 De	vice c	ontrol 1		SUB 3	Substitute	Ctrl C	ontrol	
	ENQ Enqui			C2 De	vice c	ontrol 2			Escape		orm feed	
	ACK Ackn	owledge				ontrol 3			File separator		arriage retu	rn
	BEL Bell		DO			ontrol 4			Group separate		hift out	
	BS Backs	-				acknow			Record separat		hift in	
		ontal tal				aking sp			Unit separator		ata link esc	ape
Principles of Computer Architecture by M. Mur	LF Line t			TB En	a of tr	ansmiss	ion bl	ock SYN S	Synchronous io	dle VT V 9 M. Murdo	ertical tab	Heuring
		TEUIII	a						© 199			riculing