MATAKULIAH SISTEM DIGITAL PERTEMUAN I SISTEM BILANGAN

OLEH: HIDAYAT

JURUSAN TEKNIK KOMPUTER
UNIKOM
2011

Secara umum, setiap bilangan D dari

$$d_{p-1}d_{p-2}\cdots d_1d_0$$
 , $d_{-1}d_{-2}\cdots d_{-n}$

memiliki nilai sebagai berikut:

$$D = d_{p-1} * r^{p-1} + d_{p-2} * r^{p-2} + \dots + d_1 * r^1 + d_0 * r^0 + d_{-1} * r^{-1} + d_{-2} * r^{-2} + \dots + d_{-n} * r^{-n}$$

contoh:

$$(2 \times 10^{+3}) + (7 \times 10^{+2}) + (4 \times 10^{1}) + (5 \times 10^{0}) + (2 \times 10^{-1}) + (1 \times 10^{-2}) + (4 \times 10^{-3})$$

Sederhananya:

$$D = \sum_{i=-n}^{p-1} d_i * r^i$$

Diketahui:

p = jumlah digit sebelah kiri setelah tanda koma

n = jumlah digit sebelah kanan setelah tanda koma

r = radiks atau basis bilangan

i = posisi digit

Sistem Bilangan

- Sistem bilangan yang sering digunakan dalam sistem digital:
 - Bilangan basis sepuluh (desimal)
 - Bilangan basis dua (Biner)
 - Bilangan basis delapan (Oktal)
 - Bilangan basis enam belas (Heksadesimal)

Sistem Bil. Desimal (SBD)

- memiliki sepuluh buah simbol, yaitu:
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, dan 9. sehingga sistem bil. ini dinamai sistem bilangan basis 10 (sepuluh).
- Bobot pada SBD adalah sbb:

10 ^{p-1}	10 ^{p-2}	 10 ²	10¹	10°	10-1	10-2	 10 ⁻ⁿ
		Ψ.	Ψ	Ψ.	Ψ.	Ψ.	
		100	10	1	0,1	0,01	

Contoh:

$$D = 678,617_{10}$$
 atau $678,617_{D}$

$$\begin{array}{l} D = d_{p-1} * r^{p-1} + d_{p-2} * r^{p-2} + \cdots + d_1 * r^1 + d_0 * r^0 + d_{-1} * r^{-1} + d_{-2} * r^{-2} + \cdots + d_{-n} * r^{-n} \\ D = 6 * 10^2 + 7 * 10^1 + 8 * 10^0 + 6 * 10^{-1} + 1 * 10^{-2} + 7 * 10^{-3} \\ D = 6 * 100 + 7 * 10 + 8 * 1 + 6 * 0,1 + 1 * 0,01 + 7 * 0,001 \\ D = 600 + 70 + 8 + 0,6 + 0,01 + 0,007 \\ D = 678,617 \end{array}$$

Sistem Bil. Biner (SBB)

- memiliki dua buah simbol, yaitu:
 'o' dan 'ı'.
 sehingga sistem bil. ini dinamai sistem bilangan basis 2 (dua).
- Bobot pada SBB adalah sbb:

2 _{p-1}	2 _{p-2}	 2 ²	2 ¹	20	2-1	2-2	 2-n	
		Ψ.	Ψ.	Ψ.	Ψ.	Ψ		
		4	2	1	0,5	0,25		

Contoh:

11001,101₂ atau 11001,101_B

Nilai bilangan diatas dapat dibaca "satu satu nol nol satu koma satu nol satu biner".

Sistem Bil. Oktal (SBO)

memiliki delapan buah simbol, yaitu:
 0, 1, 2, 3, 4, 5, 6, dan 7.
 sehingga sistem bil. ini dinamai sistem bilangan basis 8 (delapan).

Bobot pada SBO adalah sbb:

8 n	 8 3	8 ²	8 ¹	80
Ψ	Ψ	Ψ	Ψ	•
8 n	 512	64	8	1

Contoh:

7640₈ atau 7640₀ dapat dibaca "tujuh enam empat nol oktal".

Sistem Bil. Oktal (SBO) (Lanjutan)

Tabel ekivalen SBO thd SBB

Biner	Oktal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7
001 000	10
001 001	11
001 010	12

Sistem Bil. Heksadesimal (SBH)

- memiliki enam belas buah simbol, yaitu:
 o, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, dan F.
 sehingga sistem bil. ini dinamai sistem bilangan basis 16 (enam belas).
- Urutan bobot pada SBH adalah:

16 ^{p-1}	16 ^{p-2}	 16 ²	16¹	16º	16 ⁻¹	16 ⁻²	 16⁻⊓	
		Ψ.	Ψ.	•	•	•		
		256	16	1	0,0625	0,00390625		

Contoh:

78A9₁₆ atau 78A9_H dapat dibaca "tujuh delapan A sembilan heksadesimal".

Konversi Bilangan

- Konversi SBB ke SBD & sebaliknya
- Konversi SBH ke SBD & sebaliknya
- Konversi SBB ke SBH & sebaliknya

Konversi SBB ke SBD

dilakukan dgn menjumlahkan bobot bil. biner yang bernilai 'ı'.

contoh 1 : konversikan nilai biner 11011_B .

contoh 2 : konversikan nilai biner 10110101_B .

Konversi SBD ke SBB

dilakukan dengan cara kebalikan pada konversi dari SBB ke SBD, yaitu mengisi nilai 'i' atau 'o' pada posisi biner sesuai bobotnya dimulai dengan mengisi bobot tertinggi yang mungkin dan mengurangkannya pada nilai SBD untuk menentukan nilai biner pada bobot berikutnya.

contoh:

$$45_{10} = 32 + 8 + 4 + 1 = 2^5 + 0 + 2^3 + 2^2 + 0 + 2^0$$

= 1 0 1 1 0 1₂

$$76_{10} = 64 + 8 + 4 = 2^6 + 0 + 0 + 2^3 + 2^2 + 0 + 0$$

= 1 0 0 1 1 0 0₂

Konversi SBD ke SBB lanj.

dilakukan dengan cara membagi dua bil. desimal secara berulang-ulang hingga hasil pembagian bernilai o (nol). Selanjutnya kita tuliskan sisa setiap pembagian yang telah dilakukan. (Sisa pembagian paling awal disimpan dipaling kanan)

contoh 1: konversi nilai desimal 14.

14	:	2	= 7	sisa	0	^	1110 _B
						^	dituliskan dari
7	:	2	= 3	sisa	1	^	bawah ke atas
						^	
3	:	2	= 1	sisa	1	^	
						^	
1	:	2	= 0	sisa	1	^	

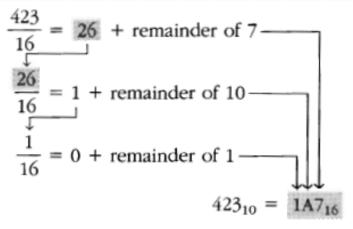
Konversi SBD ke SBB (Lanjutan)

contoh 2 : konversi nilai desimal 29.

29	:	2	= 14	sisa	1	^	11101 _B
						^	dituliskan dari
14	:	2	= 7	sisa	0	^	bawah ke atas
						^	
7	:	2	= 3	sisa	1	^	
						^	
3	:	2	= 1	sisa	1	^	
						^	
1	:	2	= 0	sisa	1	↑	

Konversi SBH ke SBD

dilakukan dengan menjumlahkan hasil kali digit heksadesimal dengan bobot bilangannya.


contoh:

$$356_{16} = 3 \times 16^{2} + 5 \times 16^{1} + 6 \times 16^{0}$$

 $= 768 + 80 + 6$
 $= 854_{10}$
 $2AF_{16} = 2 \times 16^{2} + 10 \times 16^{1} + 15 \times 16^{0}$
 $= 512 + 160 + 15$
 $= 687_{10}$

Konversi SBD ke SBH

dilakukan dengan cara membagi 16 bil. desimal secara berulang-ulang hingga hasil pembagian bernilai o (nol). Selanjutnya kita tuliskan hasil bagi dan sisa setiap pembagian yang telah dilakukan.

contoh : konversi nilai desimal 423.

Konversi SBH ke SBB

setiap digit SBH sama dgn 4 bit pada SBB. Sehingga kita dapat melakukan konversi tiap digit.

contoh: konversi nilai heksadesimal 9765_H.

9	7	6	5	gabungkan dari kiri ke
Ψ	Ψ	V	•	kanan
1001	0111	0110	0101	→ 1001 0111 0110 0101

Konversi SBB ke SBH

dpt dilakukan dgn cara mengelompokkan per 4 bit mulai dari sebelah kanan ke kiri. Jika jumlah bit paling kiri tidak mencapai 4 bit setelah pengelompokkan, maka tambahkan angka 'o' pada bagian sebelah kiri bit tersebut hingga diperoleh 4 bit.

Konversi SBB ke SBH (Lanjutan)

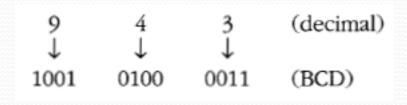
Contoh:

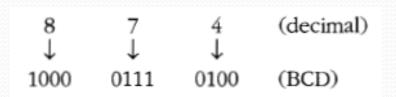
1. konversi biner 1110 0111 0010 1011_B ke bil. heksadesimal.

1110	0111	0010	1011		gabungkan dari kiri ke
Ψ	Ψ	V	•		kanan
E	7	2	В	→	E72B _H

2. konversi biner 0010 0001 0100 1101_B ke bil. heksadesimal.

0010	0001	0100	1101		gabungkan dari kiri ke
Ψ	Ψ	•	•		kanan
2	1	4	D	→	214D _H


Binary Coded Decimal (BCD)


Bil. BCD adalah bil. desimal yang masing-masing digitnya direpresentasikan dalam biner.

Representasi desimal: o .. 9

Representasi desimal dlm biner : 4 bit

Contoh:

Beda biner dan BCD

```
137_{10} = 10001001_2 (binary)

137_{10} = 0001 \ 0011 \ 0111 (BCD)
```

Decimal	Binary	Octal	Hexadecimal	BCD
0	0	0	0	0000
1	1	1	1	0001
2	10	2	2	0010
3	11	3	3	0011
4	100	4	4	0100
5	101	5	5	0101
6	110	6	6	0110
7	111	7	7	0111
8	1000	10	8	1000
9	1001	11	9	1001
10	1010	12	A	0001 0000
11	1011	13	В	0001 0001
12	1100	14	C	0001 0010
13	1101	15	D	0001 0011
14	1110	16	E	0001 0100
15	1111	17	F	0001 0101

Satuan biner dari IEC

	Nama	Simbol	Basis 2	Basis 10
kibi	(kilobinary)	Ki	210	1,024
mebi	(megabinary)	Mi	220	1,048,576
gibi	(gigabinary)	Gi	230	1,073,741,824
tebi	(terabinary)	Ti	240	1,099,511,627,776
pebi	(petabinary)	Pi	250	1,125,899,906,842,624
exbi	(exabinary)	Ei	260	1,152,921,504,606,846,976
zebi	(zettabinary)	Zi	270	1,180,591,620,717,411,303,424
yobi	(yottabinary)	Yi	280	1,208,925,819,614,629,174,706,176

Sumber: http://en.wikipedia.org/wiki/Binary_prefix#IEC_standard_prefixes

Semua Wadah akan menyempit (penuh) jika diisi di dalamnya, kecuali wadah ilmu. Sesungguhnya ia (justru) akan semakin luas.