Computer Graphics

3D Transformations

World Window to Viewport Transformation

Outline

- World window to viewport transformation
- 3D transformations
- Coordinate system transformation

The Window-to-Viewport Transformation

- Problem: Screen windows cannot display the whole world (window management)
- How to transform and clip: Objects to Windows to Screen

Window-to-Viewport Transformation

- Given a window and a viewport, what is the transformation from WCS to VPCS?

Window in world coordinates

Window translated to origin

Three steps:

- Translate
- Scale
- Translate

Transforming World Coordinates to Viewports

- 3 steps

1. Translate
2. Scale
3. Translate

Overall Transformation:

$$
M_{W V}=T\left(u_{\min }, v_{\min }\right) \cdot S\left(\frac{u_{\max }-u_{\min }}{\left.x_{\max }-x_{\min }, \frac{v_{\max }-v_{\min }}{y_{\max }-y_{\min }}\right) \cdot T\left(-x_{\min },-y_{\min }\right)}\right.
$$

Clipping to the Viewport

- Viewport size may not be big enough for everything
- Display only the pixels inside the viewport
- Transform lines in world
- Then clip in world
-Transform to image
- Then draw
- Do not transform pixels

Another Example

- Scan-converted
- Lines
- Polygons
- Text
- Fill regions
- Clip

(b)
regions for display

3D Transformations

Representation of 3D Transformations

- Z axis represents depth
- Right Handed System
- When looking "down" at the origin, positive rotation is CCW

- Left Handed System
- When looking "down", positive rotation is in CW
- More natural interpretation for displays, big z means "far"

3D Homogenous Coordinates

- Homogenous
coordinates for 2D space requires 3D vectors \& matrices

$$
S\left(s_{x}, s_{y}, s_{z}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Homogenous coordinates for 3D space requires 4D vectors \& matrices
- $[x, y, z, w]$

$$
T\left(d_{x}, d_{y}, d_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Transformations: Scale \& Translate

- Scale
- Parameters for each axis direction $S\left(s_{x}, s_{y}, s_{z}\right)=$

$$
\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Translation

$$
T\left(d_{x}, d_{y}, d_{z}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

3D Transformations: Rotation

- One rotation for each world coordinate axis

$$
\begin{aligned}
& R_{x}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& R_{z}(\theta)=\left[\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotation Around an Arbitrary Axis

- Rotate a point P around axis $\boldsymbol{n}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ by angle θ

$$
R=\left[\begin{array}{cccc}
t x^{2}+c & t x y+s z & t x z-s y & 0 \\
t x y-s z & t y^{2}+c & t y z+s x & 0 \\
t x z+s y & t y z-s x & t z^{2}+c & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- $\mathbf{c}=\cos (\theta)$
- $\mathrm{s}=\sin (\theta)$

3D Transformations: Reflect \& Shear

- Reflection:
about $x-y$ plane

$$
F_{z}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

- Shear:
(function of z)

$$
H_{x y}(\boldsymbol{\theta})=\left(\begin{array}{cccc}
1 & 0 & s h_{x} & 0 \\
0 & 1 & s h_{y} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

Example

Example: Composition of 3D Transformations

- Goal: Transform $P_{1} P_{2}$ and $P_{1} P_{3}$

(a) Initial position

(b) Final position

Example (Cont.)

- Process

1. Translate P_{I} to $(0,0,0)$
2. Rotate about y
3. Rotate about x
4. Rotate about z

Final Result

- What we've really done is transform the local coordinate system R_{x}, R_{y}, R_{z} to align with the origin x, y, z

Example 2: Composition of 3D Transformations

- Airplane defined in x, y, z
- Problem: want to point it in Dir of Flight (DOF) centered at point P
- Note: DOF is a vector
- Process:
- Rotate plane
- Move to P

Example 2 (cont.)

- Z_{p} axis to be DOF
- X_{p} axis to be a horizontal vector perpendicular to DOF
- $y \times D O F$
- Y_{p}, vector perpendicular to both Z_{p} and $X_{p}\left(\right.$ i.e. $\left.Z_{p} \times X_{p}\right)$
$R=\left[\begin{array}{cccc}|y \times D O F| & |D O F \times(y \times D O F)| & |D O F| & 0 \\ 0 & & 0 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Transformations to Change Coordinate Systems

- Issue: the world has many different relative frames of reference
- How do we transform among them?
- Example: CAD Assemblies \& Animation Models

Transformations to Change Coordinate Systems

- 4 coordinate systems

1 point P

$$
\begin{aligned}
& M_{1 \leftarrow 2}=T(4,2) \\
& M_{2 \leftarrow 3}=T(2,3) \cdot S(0.5,0.5) \\
& M_{3 \leftarrow 4}=T(6.7,1.8) \cdot R\left(45^{\circ}\right)
\end{aligned}
$$

$$
M_{i \leftarrow k}=M_{i \leftarrow j} \cdot M_{j \leftarrow k} \underset{23}{ }
$$

Coordinate System Example (1)

- Translate the House to the origin

The matrix M_{ij} that maps points from coordinate system j to i is the inverse of the matrix M_{ji} that maps points from coordinate system j to coordinate system i.

Coordinate System Example (2)

- Transformation

Composition:

$$
M_{5 \leftarrow 1}=M_{5 \leftarrow-4} \cdot M_{4 \leftarrow 3} \cdot M_{3 \leftarrow-2} \cdot M_{2 \leftarrow-1}
$$

Original house

Translate P_{1} to origin

Scale

(b)

World Coordinates and Local Coordinates

- To move the tricycle, we need to know how yo all of its parts relate to the WCS
- Example: front wheel rotates on the ground wrt the front wheel's z
axis: $\quad P^{(w o)}=T(\alpha r, 0,0) \cdot R_{z}(\alpha) \cdot P^{(w h)}$
Coordinates of P in
wheel coordinate

$$
\text { system: } \quad P^{(w h)}=R_{z}(\alpha) \cdot P^{(w h)}
$$

