Grafika Komputer

OpenGL 4
Viewing

Hendri Karisma

Teknik Informatika

Universitas Komputer Indonesia
2013



Materi

* Overview: The Camera Analogy

* Viewing and Modeling Transformations
* Projection Transformations

* Viewport Transformation
 Manipulating the Matrix Stacks



Overview: The Camera Analogy

» Set up your tripod and point the camera at the
scene (viewing Transformation).

* Arrange the scene to be photographed into the
desired composition (modeling transformation).

 Choose a camera lens or adjust the zoom
(projection transformation).

* Determine how large you want the final
photograph to be—for example, you might want it
enlarged (viewport transformation).



WViewing

Positioning the
viewing volume
in the waoarld

Modeling

Positioning the
mdels in the

S

Dretemining
the shape of
the viewing

Viewport




Object
coordinates

Eye
coordinates
Clip

coordinates

Normalized
devica
coordinates
Window

coordinates

Figure 3-2 Stages of Vertex Transformation



Viewing Transformation

* Recall that the viewing transformation is
analogous to positioning and aiming a camera.
In this code example, before the viewing
transformation Viewing can be specified, the
current matrix is set to the identity matrix with

glLoadldentity().



The Viewport Transformation

* Together, the projection transformation and the
viewport transformation determine how a
scene is mapped onto the computer screen.



General-Purpose Transformation
Commands

 glMatrixMode()

Specifies whether the modelview, projection, or texture matrix will be
modified, using the argument GL_ MODELVIEW, GL_PROJECTION, or
GL TEXTURE for mode.

« GlLoadldentity()

To clear the currently modifiable matrix for future transformation
commands, as these commands modify the current matrix.

» GlLoadMatrix*(const m)

To specify explicitly a particular matrix to be loaded as the current matrix,
use glLoadMatrix*() or glLoadTransposeMatrix*().

* glLoadTransposeMatrix*()
 glMultMatrix*(),



Viewing and Modeling
Transformations

* Viewing and modeling transformations are
inextricably related in OpenGL and are, in fact,
combined into a single modelview matrix.



Using the gluLookAt() Utility Routine

void gluLookAt{GLdouble gyex, GLdouble eyey, GLdouble epez,
GLdouble centerx, GLdouble centery, GLdouble centerz,

GLdouble upx, GLdouble upy, GLdouble upz);

Defines a viewing matrix and multiplies it to the right of the current
matrix. The desired viewpoint is specified by eyex, eyey, and eyez. The
centerx, centery, and centerz arguments specify any point along the desired
line of sight, but typically they specify some point in the center of the
scene being looked at. The upx, upy, and upz arguments indicate which
direction is up (that is, the direction from the bottom to the top of the

viewing volume).



 gluLookAt(4.0, 2.0, 1.0, 2.0, 4.0, -3.0, 2.0, 2.0,
-1.0);




gluFrustum

void glFrustum(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Creates a matrix for a perspective-view frustum and multiplies the current
matrix by it. The frustum’s viewing volume is defined by the parameters:
(left, bottom, -near) and (right, top, -near) specify the (x, y, z) coordinates of
the lower left and upper right corners, respectively, of the near clipping
plane; near and far give the distances from the viewpoint to the near and
far clipping planes. They should always be positive.



gluFrustum







gluPerspective

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);

Creates a matrix for a symmetric perspective-view frustum and multiplies
the current matrix by it. fovy is the angle of the field of view in the
yz-plane; its value must be in the range [0.0, 180.0]. aspect is the aspect

ratio of the frustum, its width divided by its height. near and far values are
the distances between the viewpoint and the clipping planes, along the

negative z-axis. They should always be positive.



gluOrtho

void glOrtho(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top,
GLdouble near, GLdouble far);

Creates a matrix for an orthographic parallel viewing volume and multi-
plies the current matrix by it. (left, bottom, -near) and (right, top, —near) are
points on the near clipping plane that are mapped to the lower left and
upper right corners of the viewport window, respectively. (left, bottom,
—far) and (right, top, —far) are points on the far clipping plane that are
mapped to the same respective corners of the viewport. Both near and
far may be positive, negative, or even set to zero. However, near and far
should not be the same value.






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

