Wireless Communications

Dr. Yeffry Handoko Putra

Department of Computer Engineering UNIVERSITAS KOMPUTER INDONESIA (UNIKOM)

Radio Spectrum: from 30 KHz to 3 GHz

- AM radio: 540KHz 1800 KHz
- FM radio: 88 MHz 108 MHz
- Cellular (e.g. AMPS): 824 849, 869 894 MHz
- Cellular (e.g. GSM): 890 915, 935 960 MHz
- PCS frequencies: 1800 2200 MHz
- Microwaves: from 3 GHz to 300 GHz
- Infrared Spectrum: from 300 GHz to 300 THz

Issue: Spectrum is a scarce resource!

Possible Solutions:

- Frequency reuse (cells)
- Multiplexing

How wireless frequencies are allocated

- Garage door openers, alarm systems, etc. 40MHz
- Cordless phones: 40-50MHz, 900MHz, 2.4GHz, 5.8GHz
- Baby monitors: 49MHz
- Radio controlled toys: 27-75MHz
- Wildlife tracking collars: 215-220MHz
- MIR space station: 145-437MHz
- Cell phones: 824-849MHz, 869-894MHz, 1850-1990MHz
- Public safety (fire, police, ambulance): 849-869MHz
- Air traffic control radar: 960MHz-1.215GHz
- Global Positioning System: 1.227-1.575MHz
- Satellite radio: 2.3GHz
- WiFi/802.11b/g and Bluetooth: 2.4GHz
- Zigbee/802.15.4: 868MHz, 915MHz, 2.4GHz
- Microwave ovens: 2.4Ghz
- TV: 54-216 (VHF 2-13), 470-806MHz (UHF 14-69)
- Ultra-wide-band: 3.1-10.6GHz
- ISM (industrial, scientific, medical): 900MHz, 1.8GHz, 2.4GHz, 5.8GHz

Considerations in choosing a carrier frequency

- Carrier frequency
 - Signal that is modulated to carry data
 - Frequency is not equal to bandwidth
- Ability to carry data (modulation rate)
- Availability of devices to transmit and receive signals
- Interference from other devices in same band
 - ISM bands limit power output
- Interactions of radiation with environment
 - absorption by water, metal, building materials, foliage
- Reflection and multi-path properties
 - constructive/destructive interference patterns (e.g., nulls)

Radio Protocols for Wireless Networks

- UHF (300-1000MHz)
 - Mote radio
- WiFi (2.4GHz)
 - Wireless LAN
- Bluetooth (2.4GHz)

- Zigbee (850-930MHz)
 - Next generation radio for sensor networks and consumer devices

Wireless Network Evolution

- Point-to-point
 - Simple wire replacement (Virtual Wire, Bluetooth)
- Star pattern (single base-station)
 - Centralized routing and control point (WiFi, GSM)
- Multi-hop/Mesh (wireless sensor networks)
 - Multiple paths for data
 - Self-configuring

Figure 2-1. Photo of the XM2110—IRIS with standard antenna

8

Comparison of Major Protocol

Feature(s)	IEEE 802.11b	Bluetooth	ZigBee
Power Profile	Hours	Days	Years
Complexity	Very Complex	Complex	Simple
Nodes/Master	32	7	64000
Latency	Enumeration upto 3 seconds	Enumeration upto 10 seconds	Enumeration 30ms
Range	100 m	10m	70m-300m
Extendability	Roaming possible	No	YES
Data Rate	11Mbps	1Mbps	250Kbps
Security	Authentication Service Set ID (SSID)	64 bit, 128 bit	128 bit AES and Application Layer user defined

Computer Engineering-UNIKOM

9

The Wireless Market

LOW < ACTUAL THROUGHPUT > HIGH

Computer Engineering-UNIKOM

Wireless Network Configurations

Cellular system

Conventional ad Hoc System

Scatternet

Computer Engineering-UNIKOM

11

Radio Specification

- Classes of transmitters
 - Class 1: Outputs 100 mW for maximum range
 - Power control mandatory
 - Provides greatest distance
 - Class 2: Outputs 2.4 mW at maximum
 - Power control optional
 - Class 3: Nominal output is 1 mW
 - Lowest power

WIRELESS COMMUNICATIONS

- Wireless telephony
- Wireless LANs
- Location-based services

Cellular Phone Networks

15

Cellular Phone Networks

Example of frequency reuse factor or pattern 1/4

http://en.wikipedia.org/wiki/Cellular_network Computer Engineering-UNIKOM

Problem: Reuse not good eno

- Radio waves attenuate at a rate proportional to the square of distance (1/r²)
- This means that faraway cells are irrelevant but we still can have interference from adjacent cells
- Therefore, a cell cannot reuse the same channels as its 6 immediate neighbors
- This means that each cell can only use 1/7th of the spectrum allocation...
- Example: AMPS system
 - Each operator was given 416 2-way channels but could only use about 416/7 ~ 60 channels at any given cell

19

Multiple Access Technologic

- FDMA: Frequency Division Multiple Access
 - Each call occupies a different frequency and has an exclusive use of that frequency during the call
- TDMA: Time Division Multiple Access
 - Several calls can share the same frequency by alternating in time

CDMA: Code Division Multiple Access

 Multiple calls mixed together; each call spread over the entire available spectrum; calls can be reconstructed by using call-specific keys. **TDMA: Time Division Multiple Acc**

TDMA - Time Division Multiple Access

- Dual-Mode Capability
- 3x the capacity of analog networks
- 30 kHz Channel Spacing
- 832 Channels
- 8 kbps (Full Rate Mobiles)

30 kHz Channel

- 6 time slots per channel
- 2 time slots per mobile
- uplink Tx
- downlink Rx
- 3 calls per channel

Varian CDMA

- W-CDMA
- TD-CDMA
- TD-SCDMA
- DS-CDMA
- FH-CDMA
- MC-CDMA

25

Frequency Hopping Spread Spectrum

- Short duration hops between radio frequencies
- Sender and receiver know sequence

 Simplest approach is to use the following recurrence sequence:

x o = given,

 $x_{n+1} = P_1 x_n + P_2 \pmod{N}$ n = 0,1,2,...

For example:

P₁ = 16807, P₂ = 0, and N= 2³¹ -1 = 2147483647

Basic property:

- If P1, P2 known, then different choices of the initial seed x0 result in completely distinct sequences
- Therefore, the seed x0 can act as the code, to be exchanged between sender and receiver

Computer Engineering-UNIKOM

27

History of CDMA

- Co-invented by actress Hedy Lamarr during World War II as a technique against interference of submarine communications
- She was inspired by the musical notes encoded on the scrolls of a player piano

Advantages of CDMA

- Spread Spectrum Analysis
- 1.23 MHz channel vs. 30 kHz
- Each call is distinguished by a unique digital code different from others users transmitting at the same frequency band
- >= 10 times the capacity of analog networks
- Lower Power Terminals/Longer Battery Life

Computer Engineering-UNIKOM

- 1G
- 2G
- 2.5G
- **3**G

History

- First Generation: Analog
 - AMPS (USA)
 - NMT (Europe)
- Second Generation: Digital
 - GSM (1st Europe, then world-wide)
 - Digital AMPS (IS-54)
- 2.5: PCS
 - DCS-1800 (world-wide except USA)
 - DCS-1900 (USA)
 - CDMA (IS-95, USA)
- Third Generation: Personal Communication Systems
 - UMTS

Computer Engineering-UNIKOM

Migration of Digital Cellular Systems Circuit-Switched Voice Packet-Switched Circuit-Switched Packet-Switched Data GSM Circuit-Switched Voice GPRS Packet Data EDGE Packet Voice & Data IS-136 Circuit-Switched Voice over EDGE IS-136+ EDGE GPRS: General Packet Radio Service UMTS Packet Voice & Data (17.6 kbps x 8) EDGE: Enhanced Data for GSM over UMTS (WCDMA) CDMA2000 Evolution (59.2 kbps x 8) UMTS: Universal Mobile Telecomm Systems

General Packet Radio Service

- Extension to GSM to support packet transmission
- Transmission rates: 57.6 and 115.2Kbps initial rates will be lower: 20-30 Kbps
- Good integration with the TCP/IP protocol