

Chap 3a. Propagation Characteristic

Dr. Yeffry Handoko Putra, M.T

Computer Engineering Department Universitas Komputer Indonesia

Contents

- Radiation from Antenna
- Propagation Model (Channel Models)
 Free Space Loss
- Plan Earth Propagation Model
- Practical Models
- Summary

Antenna - <mark>Ideal</mark>

Isotropics antenna: In free space radiates power equally in all direction. Not realizable physically

Antenna - Real

- Not isotropic radiators, but always have directive effects (vertically and/or horizontally)
- A well defined radiation pattern measured around an antenna
- Patterns are visualised by drawing the set of constant-intensity surfaces

Antenna – Real - Simple Dipoles

• Not isotropic radiators, e.g., dipoles with lengths $\lambda/4$ on car roofs or $\lambda/2$ as Hertzian dipole

Antenna – Real - Sdirected and Sectorized

 Used for microwave or base stations for mobile phones (e.g., radio coverage of a valley)

Antenna - Ideal - contd.

 The power density of an ideal loss-less antenna at a distance d away from the transmitting antenna:

$$P_a = \frac{P_t G_t}{4\pi d^2}$$
 W/m² Note: the

Note: the area is for a sphere.

- G_t is the transmitting antenna gain
- The product P_tG_t : Equivalent Isotropic Radiation Power (EIRP)

which is the power fed to a perfect isotropic antenna to get the same output power of the practical antenna in hand.

Antenna - Ideal - contd.

 The strength of the signal is often defined in terms of its Electric Field Intensity *E*, because it is easier to measure.

 $P_a = E^2/R_m$ where R_m is the impedance of the medium. For free space $R_m = 377$ Ohms.

$$E^{2} = \frac{P_{t}R_{m}}{4\pi d^{2}} \quad and \quad E = \sqrt{\frac{P_{t}R_{m}}{4\pi d^{2}}} \quad V/m$$
Computer Engineering
Universitas Komputer Indonesia

Antenna - Ideal - contd.

- The receiving antenna is characterized by its effective aperture A_e, which describes how well an antenna can pick up power from an incoming electromagnetic wave
- The effective aperture A_e is related to the gain G_r as follows:

 $A_e = P_r / P_a \Longrightarrow A_e = G_r \lambda^2 / 4\pi$

which is the equivalent power absorbing area of the antenna.

 G_r is the receiving antenna gain and $\lambda = c/f$

Signal Propagation (Channel Models)

Channel Models

- High degree of variability (in time, space etc.)
- Large signal attenuation
- Non-stationary, unpredictable and random

 \bigcirc

- Unlike wired channels it is highly dependent on the environment, time space etc.
- Modelling is done in a statistical fashion
- The location of the base station antenna has a significant effect on channel modelling
- Models are only an approximation of the actual signal propagation in the medium.
- Are used for:
 - performance analysis
 - simulations of mobile systems
 - measurements in a controlled environment, to guarantee repeatability and to avoid the expensive measurements in the field.

Channel Models - Classifications

- System Model Deterministic
- Propagation Model- Deterministic
 - Predicts the received signal strength at a distance from the transmitter
 - Derived using a combination of theoretical and empirical method.
- Stochastic Model Rayleigh channel
- Semi-empirical (Practical +Theoretical) Models

Channel Models – Multipath Link

• The mathematical model of the multipath can be presented using the method of the impulse response used for studying linear systems.

Channel Models – Multipath Link

Time variable multi-path channel impulse response

$$h_b(t,\tau) = \sum_{i=0}^{N-1} a_i(t,\tau) \exp[j(2\pi f_c \tau_i(t) + \phi_i(t,\tau))] \delta(\tau - \tau_i(t))$$

Where $a(t-\tau)$ = attenuated signal

- Time invariant multi-path channel impulse response
 - Each impulse response is the same or has the same statistics, then

$$h(\tau) = \sum_{i=0}^{N-1} a_i e^{-j\theta_i} \delta(\tau - \tau_i)$$

- Where $a_j e^{(.)}$ = complex amplitude (i.e., magnitude and phase) of the generic received pulse.
 - τ = propagation delay generic *i*th impulse
 - *N* = number signal arriving from *N* path

 $\delta(.)$ = impulse signal

Channel Models – Multipath Link

Channel transfer function

1

$$H(f) = \int_{-\infty}^{\infty} h(t) e^{-j2\pi ft} dt$$
$$= \sum_{i=0}^{N-1} a_i e^{-j\theta_i} e^{-i2\pi f\tau_i}$$

$$\left(\left(f \right) \right)^{*}$$

- **Multipath Time**
 - Mostly used to denote the severity of multipath conditions.
 - Defined as the time delay between the 1st and the last received impulses.

$$T_{MP} = \tau_{N-1} - \tau_0$$

Coherence bandwidth - on average the distance between two notches

$$B_c \sim 1/T_{MP}$$

Computer Engineering \bigcirc Universitas Komputer Indonesia

Propagation Path Loss

The propagation path loss is

$$L_{PE} = L_a L_{lf} L_{sf}$$

where

 L_a is average path loss (attenuation): (1-10

km),

 L_{lf} - long term fading (shadowing): 100 m

ignoring variations over few wavelengths,

- L_{sf} short term fading (multipath): over fraction of wavelength to few wavelength.
- Metrics (dBm, mW) [P(dBm) = 10 * log[P(mW)]

Propagation Path Loss – Free Space

Power received at the receiving antenna

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2$$

Thus the free space propagation path **loss** is defined as:

$$L_{f} = -10 \log_{10} \frac{P_{r}}{P_{t}} = -10 Log_{10} \left[\frac{G_{t}G_{r}\lambda^{2}}{(4\pi d)^{2}} \right]$$

 Isotropic antenna has unity gain (G = 1) for both transmitter and receiver.

Computer Engineering Universitas Komputer Indonesia

Propagation - Free Space—contd.

The difference between two received signal powers in free space is:

$$\Delta P = 10\log_{10}\left(\frac{P_{r1}}{P_{r2}}\right) = 20\log_{10}\left(\frac{d1}{d2}\right) \quad dB$$

If $d_2 = 2d_1$, the $\Delta P = -6 \text{ dB}$ i.e 6 dB/octave or 20 dB/decade

 \bigcirc

Propagation - Non-Line-of-Sight

• Generally the received power can be expressed as:

 $P_r \propto d^{-\nu}$

- For line of sight v = 2, and the received power $P_r \propto d^{-2}$
- For non-line of sight with no shadowing, received power at any distance d can be expressed as:

$$P_{r}(d) = P_{r}(1m) - 20\log_{10}(d_{ref}) - 20\nu\log_{10}\left(\frac{d}{d_{ref}}\right)$$

100 m< *d*_{ref} < 1000 m

Computer Engineering Universitas Komputer Indonesia

Propagation - Non-Line-of-Sight

Log-normal Shadowing

0

$$P_r(d) = P_r(1 \ m) - 10 \log_{10}(d_{ref}) - 20v \log_{10}\left(\frac{d}{d_{ref}}\right) - X_{\sigma}$$

Where X_{σ} : N(0, σ) Gaussian distributed random variable

Propagation Model- Free Space

In terms of frequency *f* and the free space velocity of electromagnetic wave $c = 3 \times 10^8$ m/s it is:

$$L_f = -20\log_{10}\left(\frac{c/f}{4\pi d}\right) \quad \mathrm{dB}$$

Expressing frequency in MHz and distance *d* in km:

 $L_f = -20\log_{10}(c/4\pi) + 20\log_{10}(f) + 20\log_{10}(d)$ = -20 log₁₀(0.3/4\pi) + 20log₁₀(f) + 20log₁₀(d) dB

$$L_f = 32.44 + 20\log_{10}(f) + 20\log_{10}(d)$$
 dB

Computer Engineering Universitas Komputer Indonesia

Propagation Model- Free Space (non-ideal, path loss)

 Non-isotropic antenna gain ≠ unity, and there are additional losses L_{ad}, thus the power received is:

$$P_r = G_t G_r \frac{P_t \lambda^2}{\left(4\pi d\right)^2} \cdot \frac{1}{L_{ad}}$$

d > 0 and $L \ge 0$

Thus for Non-isotropic antenna the path loss is:

$$L_{f-ni} = -10\log_{10}(G_t) - 10\log_{10}(G_r) - 20\log_{10}(c/4\pi)$$

 $+20\log_{10}(f)+20\log_{10}(d)+10\log_{10}(L_{ad})$ dB

Note: Interference margin can also be added

Computer Engineering Universitas Komputer Indonesia

Universitas Komputer Indonesia

0

()

Propagation Model - Mechanisms

Channel Model- Plan Earth Path Loss - 2 Ray Reflection

In mobile radio systems the height of both antennas (Tx. and Rx.)
 << d (distance of separation)

Channel Model- Plan Earth Path Loss -

contd.

Using the binomial expansion Note $d >> h_b$ or h_m . $d_d \cong d \begin{cases} 1+0.5 \\ 1+0.5 \end{cases}$

$$\left\{1+0.5\left(\frac{h_b-h_m}{d}\right)^2\right\}$$

Similarly
$$d_r \cong d \left\{ 1 + 0.5 \left(\frac{h_b + h_m}{d} \right)^2 \right\}$$

The path difference

$$\Delta d = d_r - d_d = 2(h_b h_m)/d$$

The phase difference $\Delta \phi = \frac{2\pi}{\lambda} \times \frac{2h_b h_m}{d} = \frac{4\pi h_b h_m}{\lambda d}$

Channel Model- Plan Earth Path Loss-

contd.

Total received power

$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 \times \left|1 + \rho e^{j\Delta\phi}\right|^2$$

Where ρ is the reflection coefficient. For ρ = -1 (low angle of incident) and $% \rho$.

$$1 - e^{-j\Delta\phi} = 1 - \cos\Delta\phi + j\sin\Delta\phi$$

$$Hence \left|1 - e^{-j\Delta\phi}\right|^{2} = (1 - \cos\Delta\phi)^{2} + \sin^{2}\Delta\phi = 2(1 - \cos\Delta\phi)$$

$$= 4\sin^{2}(\Delta\phi/2)$$
Computer Engineering
Universitas Komputer Indonesia

Channel Model- Plan Earth Path Loss-

contd.

Therefore:
$$P_r = P_t G_t G_r \left(\frac{\lambda}{4\pi d}\right)^2 \times 4\sin^2 \left(\frac{2\pi h_b h_m}{\lambda d}\right)$$

Assuming that d >>
$$h_m$$
 or h_b , then $\left(\frac{2\pi h_b h_m}{\lambda d}\right) << 1$
sin $x = x$ for small x

Thus

Computer Engineering Universitas Komputer Indonesia

 $P_r = P_t G_t G_r \left(\frac{h_b h_m}{d^2}\right)$

which is 4th power law

Channel Model- Plan Earth Path Loss- contd.

Propagation path loss (mean loss) $L_{PE} = -10 \log \left(\frac{P_r}{P_t} \right) = 10 \log \left[G_t G_r \left(\frac{h_b h_m}{d^2} \right)^2 \right]$

Compared with the free space = $P_r = 1/d^2$

In a more general form (*no fading due to multipath*), path attenuation is

$$L_{PE} = -10\log_{10} G_t - 10\log_{10} G_r - 20\log_{10} h_b$$
$$-20\log_{10} h_m + 40\log_{10} d \quad dB$$
•
$$L_{PE} \text{ increases by 40 dB each time } d \text{ increases by 10}$$
$$Computer Engineering$$
Universitas Komputer Indonesia

Channel Model- Plan Earth Path Loss- contd.

• Including impedance mismatch, misalignment of antennas, pointing and polarization, and absorption The power ration is:

$$\frac{P_r}{P_t} = G_t(\theta_t, \phi_t)G_r(\theta_r, \phi_r) \left(\frac{\lambda}{4\pi d}\right)^2 \left(1 + \left|\Gamma_t\right|^2\right) \left(1 - \left|\Gamma_r\right|^2\right) \overline{a_t} \cdot \overline{a_r^*} \Big|^2 e^{-\alpha d}$$

where

 $G_t(\theta_t, \phi_t)$ = gain of the transmit antenna in the direction (θ_t, ϕ_t) of receive antenna. $G_r(\theta_r, \phi_r)$ = gain of the receive antenna in the direction (θ_r, ϕ_r) of transmit antenna.

 Γ_t and Γ_r = reflection coefficients of the transmit and receive antennas \mathbf{a}_t and \mathbf{a}_r = polarization vectors of the transmit and receive antennas α is the absorption coefficient of the intervening medium.

LOS Channel Model - Problems

- Simple theoretical models do not take into account many practical factors:
 - Rough terrain
 - Buildings
 - Refection
 - Moving vehicle
 - Shadowing

Thus resulting in bad accuracy

Solution: Semi- empirical Model

0

Computer Engineering Universitas Komputer Indonesia

Semi-empirical Model

Practical models are based on combination of measurement and theory. Correction factors are introduced to account for:

- Terrain profile
- Antenna heights
- Building profiles
- Road shape/orientation
- Lakes, etc.
- Okumura model
- Hata model
- Saleh model
- SIRCIM model

Y. Okumura, et al, *Rev. Elec. Commun. Lab.*, 16(9), 1968. M. Hata, *IEEE Trans. Veh. Technol.*, 29, pp. 317-325, 1980.

Outdoor

Indoor

Okumura Model

- Widely used empirical model (no analytical basis!) in macrocellular environment
- Predicts average (median) path loss
- "Accurate" within 10-14 dB in urban and suburban areas
- Frequency range: 150-1500 MHz
- Distance: > 1 km
- BS antenna height: > 30 m.
- MU antenna height: up to 3m.
- Correction factors are then added.

Computer Engineering 0 Universitas Komputer Indonesia

Hata Model

- Consolidate Okumura's model in standard formulas for macrocells in urban, suburban and open rural areas.
- Empirically derived correction factors are incorporated into the standard formula to account for:
 - Terrain profile
 - Antenna heights
 - Building profiles
 - Street shape/orientation
 - Lakes
 - Etc.

Hata Model – contd.

- The loss is given in terms of effective heights.
- The starting point is an urban area. The BS antennae is mounted on tall buildings. The effective height is then estimated at 3 - 15 km from the base of the antennae.

Hata Model - Limits

- Frequency range: 150 1500 MHz
- Distance: 1 20 km
- BS antenna height: 30- 200 m
- MU antenna height: 1 10 m

Hata Model – Standard Formula for Average Path Loss for Urban Areas

$$L_{pl-u} = 69.55 + 26.16 \log_{10}(f) + (44.9 - 6.55 \log_{10} h_b) \log_{10} d$$

-13.82 \log_{10} h_b - a(h_{mu}) (dB)

Correction Factors are:

• Large cities

$$a(h_{mu}) = 8.3[\log_{10}(1.5h_{mu})]^2 - 1.1 \quad (f \le 200 \text{MHz}) \text{ dB}$$
$$a(h_{mu}) = 3.2[\log_{10}(11.75h_{mu})]^2 - 4.97 \quad (f \ge 400 \text{MHz}) \text{ dB}$$
Average and small cities

$$a(h_{mu}) = [1.1\log_{10}(f) - 0.7]h_{mu} - [1.56\log_{10}(f) - 0.8] \quad dB$$

Computer Engineering Universitas Komputer Indonesia

Hata Model – Average Path Loss for Urban Areas *contd.*

Hata Model – Average Path Loss for Suburban and **Open Areas**

Suburban Areas

$$L_{pl-su} = L_{pl-u} - 2\left[\text{Log}_{10}\left(\frac{f}{28}\right)\right]^2 - 5.4$$

Open Areas

$$L_{pl-o} = L_{pl-u} - 4.78(\text{Log}_{10} f)^2 - 18.33 \text{Log} f - 40.94$$

Computer Engineering Universitas Komputer Indonesia

 \bigcirc

Hata Model - Average Path Loss

Introduction to Mobile Communications

Improved Model

- Hata-Okumura model are not suitable for lower BS antenna heights (2 m), and hilly or moderate-to-heavy wooded terrain.
- To correct for these limitations the following model is used [1]:
- For a given close-in distance d_{ref} the average path loss is:

 $L_{pl} = A + 10 v \log 10 (d / d_{ref}) + s$ for $d > d_{ref'}$ (dB)

where

A = 20 log10(4 π d_{ref} / λ) v is the path-loss exponent = (a – b hb + c / hb) hb is the height of the BS: between 10 m and 80 m d_{ref} = 100m and

a, b, c are constants dependent on the terrain category

s is representing the shadowing effect

Computer Engineering Universitas Komputer Indonesia (1] V. Erceg et. al, *IEEE JSAC*, 17 (7), July 1999, pp. 1205-1211.

Improved Model

Model parameter	Туре А	Terrains Type B	Туре С
а	4.6	4	3.6
b	0.0075	0.0065	0.005
С	12.6	17.1	20

The typical value of the standard deviation for **s** is between 8.2 And 10.6 dB, depending on the terrain/tree density type

- Terrain A: The maximum path loss category is hilly terrain with moderate-toheavy tree densities .
- Terrain B: Intermediate path loss condition
- Terrain B: The minimum path loss category which is mostly flat terrain with light tree densities

Summary

- Attenuation is a result of reflection, scattering, diffraction and reflection of the signal by natural and human-made structures
- The received power is inversely proportional to (distance)^{*v*}, where *v* is the loss parameter.
- Studied channel models and their limitations

Computer Engineering Universitas Komputer Indonesia

