
 !etrics o" per"or#ance

`Time is a great teacher, but unfortunately it kills all its pupils.'

 ector !er"io#

 $% &'at is a per"or#ance #etric(

 efore we can begin to understand any aspect of a computer system's perfor-

mance, we must determine what things are interesting and useful to measure. The

basic characteristics of a computer system that we typically need to measure are!

. a count of how many times an event occurs,

. the $uration of some time interval, and

. the si#e of some parameter.

"or instance, we may need to count how many times a processor initiates an

input#output request. $e may also be interested in how long each of these

requests takes. "inally, it is probably also useful to determine the number of

bits transmitted and stored.

"rom these types of measured values, we can derive the actual value that we

wish to use to describe the performance of the system. This value is called a

performance metric.

%f we are interested speci&cally in the time, count, or size value measured, we

can use that value directly as our performance metric. (ften, however, we are

interested in normalizing event counts to a common time basis to provide a speed

metric such as operations executed per second. This type of metric is called a rate

metric or t%roug%put and is calculated by dividing the count of the number of

events that occur in a given interval by the time interval over which the events

occur.)ince a rate metric is normalized to a common time basis, such as seconds,

it is useful for comparing different measurements made over different time

intervals.

*hoosing an appropriate performance metric depends on the goals for

the speci&c situation and the cost of gathering the necessary information. "or

example, suppose that you need to choose between two different computer sys-

tems to use for a short period of time for one speci&c task, such as choosing

between two systems to do some word processing for an afternoon.)ince the

penalty for being wrong in this case, that is, choosing the slower of the two

machines, is very small, you may decide to use the processors' clock frequencies

as the performance metric. Then you simply choose the system with the fastest

clock. However, since the clock frequency is not a reliable performance metric

+see)ection /.0.12, you would want to choose a better metric if you are trying to

decide which system to buy when you expect to purchase hundreds of systems for

your company.)ince the consequences of being wrong are much larger in this

case +you could lose your 3ob, for instance42, you should take the time to perform

a rigorous comparison using a better performance metric. This situation then

begs the question of what constitutes a good performance metric.

 $)'aracteristics o" a good per"or#ance #etric

There are many different metrics that have been used to describe a computer

system's performance.)ome of these metrics are commonly used throughout the

&eld, such as 5%6) and 5"7(6) +which are de&ned later in this chapter2,

whereas others are invented for new situations as they are needed. 8xperience

has shown that not all of these metrics are `good' in the sense that sometimes

using a particular metric can lead to erroneous or misleading conclusions.

*onsequently, it is useful to understand the characteristics of a `good' perfor-

mance metric. This understanding will help when deciding which of the existing

performance metrics to use for a particular situation, and when developing a new

performance metric.

A performance metric that satis&es all of the following requirements is gen-

erally useful to a performance analyst in allowing accurate and detailed compar-

isons of different measurements. These criteria have been developed by observing

the results of numerous performance analyses over many years. $hile they

should not be considered absolute requirements of a performance metric, it

has been observed that using a metric that does not satisfy these requirements

can often lead the analyst to make erroneous conclusions.

 . !inearity.)ince humans intuitively tend to think in linear terms, the value of

the metric should be linearly proportional to the actual performance of the

machine. That is, if the value of the metric changes by a certain ratio, the

actual performance of the machine should change by the same ratio. This

proportionality characteristic makes the metric intuitively appealing to most

people. "or example, suppose that you are upgrading your system to a system

Metrics of performance!"

whose speed metric +i.e. execution-rate metric2 is twice as large as the same

metric on your current system. 9ou then would expect the new system to be

able to run your application programs in half the time taken by your old

system.)imilarly, if the metric for the new system were three times larger than

that of your current system, you would expect to see the execution times

reduced to one-third of the original values.

:ot all types of metrics satisfy this proportionally requirement. 7ogarithmic

metrics, such as the d scale used to describe the intensity of sound, for

example, are nonlinear metrics in which an increase of one in the value of

the metric corresponds to a factor of ten increase in the magnitude of the

observed phenomenon. There is nothing inherently wrong with these types of

nonlinear metrics, it is 3ust that linear metrics tend to be more intuitively

appealing when interpreting the performance of computer systems.

". #eliability. A performance metric is considered to be re"ia&"e if system A

always outperforms system when the corresponding values of the metric for

both systems indicate that system A should outperform system . "or exam-

ple, suppose that we have developed a new performance metric called $%6)

that we have designed to compare the performance of computer systems when

running the class of word-processing application programs. $e measure sys-

tem A and &nd that it has a $%6) rating of 1/;, while system has a $%6)

rating of <=. $e then can say that $%6) is a reliable performance metric for

word-processing application programs if system A always outperforms system

 when executing these types of applications.

$hile this requirement would seem to be so obvious as to be unnecessary to

state explicitly, several commonly used performance metrics do not in fact

satisfy this requirement. The 5%6) metric, for instance, which is described

further in)ection /.0./, is notoriously unreliable.)peci&cally, it is not unusual

for one processor to have a higher 5%6) rating than another processor while

the second processor actually executes a speci&c program in less time than

does the processor with the higher value of the metric.)uch a metric is

essentially useless for summarizing performance, and we say that it is unreli-

able.

$. #epeatability. A performance metric is repeata&"e if the same value of the

metric is measured each time the same experiment is performed. :ote that this

also implies that a good metric is deterministic.

%. Easiness of measurement. %f a metric is not easy to measure, it is unlikely that

anyone will actually use it. "urthermore, the more dif&cult a metric is to

measure directly, or to derive from other measured values, the more likely

#$# %&aracteristics of a goo' performance metric!!

it is that the metric will be determined incorrectly. The only thing worse than a

bad metric is a metric whose value is measured incorrectly.

&. Consistency. A consistent performance metric is one for which the units of the

metric and its precise de&nition are the same across different systems and

different con&gurations of the same system. %f the units of a metric are not

consistent, it is impossible to use the metric to compare the performances of

the different systems. $hile the necessity for this characteristic would also

seem obvious, it is not satis&ed by many popular metrics, such as 5%6)

+)ection /.0./2 and 5"7(6) +)ection /.0.02.

'. Independence. 5any purchasers of computer systems decide which system to

buy by comparing the values of some commonly used performance metric. As

a result, there is a great deal of pressure on manufacturers to design their

machines to optimize the value obtained for that particular metric, and to

in>uence the composition of the metric to their bene&t. To prevent corruption

of its meaning, a good metric should be in$epen$ent of such outside in>uences.

 $* +rocessor and s,ste# per"or#ance #etrics

A wide variety of performance metrics has been proposed and used in the com-

puter &eld. ?nfortunately, many of these metrics are not good in the sense

de&ned above, or they are often used and interpreted incorrectly. The following

subsections describe many of these common metrics and evaluate them against

the above characteristics of a good performance metric.

 $*$% -'e c.oc/ rate

%n many advertisements for computer systems, the most prominent indication of

performance is often the frequency of the processor's central clock. The implica-

tion to the buyer is that a /@B 5Hz system must always be faster at solving the

user's problem than a /BB 5Hz system, for instance. However, this performance

metric completely ignores how much computation is actually accomplished in

each clock cycle, it ignores the complex interactions of the processor with the

memory subsystem and the input#output subsystem, and it ignores the not at all

unlikely fact that the processor may not be the performance bottleneck.

8valuating the clock rate against the characteristics for a good performance

metric, we &nd that it is very repeatable +characteristic 02 since it is a constant for

a given system, it is easy to measure +characteristic C2 since it is most likely

stamped on the box, the value of 5Hz is precisely de&ned across all systems

so that it is consistent +characteristic @2, and it is independent of any sort of

Metrics of performance!#

manufacturers' games +characteristic D2. However, the unavoidable shortcomings

of using this value as a performance metric are that it is nonlinear +characteristic

12, and unreliable +characteristic /2. As many owners of personal computer

systems can attest, buying a system with a faster clock in no way assures that

their programs will run correspondingly faster. Thus, we conclude that the pro-

cessor's clock rate is not a good metric of performance.

 $*$!0+1

A t%roug%put or e'ecution(rate performance metric is a measure of the amount of

computation performed per unit time.)ince rate metrics are normalized to a

common basis, such as seconds, they are very useful for comparing relative

speeds. "or instance, a vehicle that travels at @B m sÿ1 will obviously traverse

more ground in a &xed time interval than will a vehicle traveling at 0@ m sÿ1.

The 5%6) metric is an attempt to develop a rate metric for computer systems

that allows a direct comparison of their speeds. $hile in the physical world speed

is measured as the distance traveled per unit time, 5%6) de&nes the computer

system's unit of `distance' as the execution of an instruction. Thus, 5%6), which

is an acronym for mi""ions of instructions e'ecute$ per secon$, is de&ned to be

 !"# �
n

$e 1B
D

�/:1�

where $e is the time required to execute n total instructions.

Ee&ning the unit of `distance' in this way makes 5%6) easy to measure +char-

acteristic C2, repeatable +characteristic 02, and independent +characteristic D2.

?nfortunately, it does not satisfy any of the other characteristics of a good

performance metric. %t is not linear since, like the clock rate, a doubling of the

5%6) rate does not necessarily cause a doubling of the resulting performance. %t

also is neither reliable nor consistent since it really does not correlate well to

performance at all.

The problem with 5%6) as a performance metric is that different processors

can do substantially different amounts of computation with a single instruction.

"or instance, one processor may have a branch instruction that branches after

checking the state of a speci&ed condition code bit. Another processor, on the

other hand, may have a branch instruction that &rst decrements a speci&ed count

register, and then branches after comparing the resulting value in the register

with zero. %n the &rst case, a single instruction does one simple operation,

whereas in the second case, one instruction actually performs several operations.

The failing of the 5%6) metric is that each instruction corresponds to one unit of

`distance,' even though in this example the second instruction actually performs

more real computation. These differences in the amount of computation per-

#$()rocessor an' s*stem performance metrics!(

formed by an instruction are at the heart of the differences between F%)* and

%) processors and render 5%6) essentially useless as a performance metric.

Another derisive explanation of the 5%6) acronym is meaning"ess in$icator of

performance since it is really no better a measure of overall performance than is

the processor's clock frequency.

 $*$* !234+1

The 5"7(6) performance metric tries to correct the primary shortcoming of

the 5%6) metric by more precisely de&ning the unit of `distance' traveled by a

computer system when executing a program. 5"7(6), which is an acronym for

mi""ions of)oating(point operations e'ecute$ per secon$, de&nes an arithmetic

operation on two >oating-point +i.e. fractional2 quantities to be the basic unit

of `distance.' 5"7(6) is thus calculated as

 %&'"# �
(

$e 1B
D

�/:/�

where (is the number of >oating-point operations executed in $e seconds. The

5"7(6) metric is a de&nite improvement over the 5%6) metric since the results

of a >oating-point computation are more clearly comparable across computer

systems than is the execution of a single instruction. An important problem with

this metric, however, is that the 5"7(6) rating for a system executing a pro-

gram that performs no >oating-point calculations is exactly zero. This program

may actually be performing very useful operations, though, such as searching a

database or sorting a large set of records.

A more subtle problem with 5"7(6) is agreeing on exactly how to count the

number of >oating-point operations in a program. "or instance, many of the

*ray vector computer systems performed a >oating-point division operation

using successive approximations involving the reciprocal of the denominator

and several multiplications.)imilarly, some processors can calculate transcen-

dental functions, such as sin, cos, and log, in a single instruction, while others

require several multiplications, additions, and table look-ups.)hould these

operations be counted as a single >oating-point operation or multiple >oating-

point operationsG The &rst method would intuitively seem to make the most

sense. The second method, however, would increase the value of (in the

above calculation of the 5"7(6) rating, thereby arti&cially in>ating its

value. This >exibility in counting the total number of >oating-point operations

causes 5"7(6) to violate characteristic D of a good performance metric. %t is

also unreliable +characteristic /2 and inconsistent +characteristic @2.

Metrics of performance!+

 $*$5 1+6)

To standardize the de&nition of the actual result produced by a computer system

in `typical' usage, several computer manufacturers banded together to form the

)ystem 6erformance 8valuation *ooperative +)68*2. This group identi&ed a set

of integer and >oating-point benchmark programs that was intended to re>ect

the way most workstation-class computer systems were actually used.

Additionally, and, perhaps, most importantly, they also standardized the meth-

odology for measuring and reporting the performance obtained when executing

these programs.

The methodology de&ned consists of the following key steps.

1. 5easure the time required to execute each program in the set on the system

being tested.

/. Eivide the time measured for each program in the &rst step by the time

required to execute each program on a standard basis machine to normalize

the execution times.

0. Average together all of these normalized values using the geometric mean +see

)ection 0.0.C2 to produce a single-number performance metric.

$hile the)68* methodology is certainly more rigorous than is using 5%6) or

5"7(6) as a measure of performance, it still produces a problematic perfor-

mance metric. (ne shortcoming is that averaging together the individual normal-

ized results with the geometric mean produces a metric that is not linearly related

to a program's actual execution time. Thus, the)68* metric is not intuitive

+characteristic 12. "urthermore, and more importantly, it has been shown to be

an unreliable metric +characteristic /2 in that a given program may execute faster

on a system that has a lower)68* rating than it does on a competing system

with a higher rating.

"inally, although the de&ned methodology appears to make the metric inde-

pendent of outside in>uences +characteristic D2, it is actually sub3ect to a wide

range of tinkering. "or example, many compiler developers have used these

benchmarks as practice programs, thereby tuning their optimizations to the char-

acteristics of this collection of applications. As a result, the execution times of the

collection of programs in the)68* suite can be quite sensitive to the particular

selection of optimization >ags chosen when the program is compiled. Also, the

selection of speci&c programs that comprise the)68* suite is determined by a

committee of representatives from the manufacturers within the cooperative. This

committee is sub3ect to numerous outside pressures since each manufacturer has a

strong interest in advocating application programs that will perform well on their

machines. Thus, while)68* is a signi&cant step in the right direction towards

de&ning a good performance metric, it still falls short of the goal.

#$()rocessor an' s*stem performance metrics!,

 $*$7 890+1

The I?%6) metric, which was developed in con3unction with the H%:T bench-

mark program, is a fundamentally different type of performance metric. +The

details of the H%:T benchmark and the precise de&nition of I?%6) are given in

)ection =./.02. %nstead of de&ning the effort expended to reach a certain result as

the measure of what is accomplished, the I?%6) metric de&nes the *ua"it+ of t%e

so"ution as a more meaningful indication of a user's &nal goal. The quality is

rigorously de&ned on the basis of mathematical characteristics of the problem

being solved. Eividing this measure of solution quality by the time required to

achieve that level of quality produces I?%6), or *ua"it+ impro,ements per sec(

on$.

This new performance metric has several of the characteristics of a good

performance metric. The mathematically precise de&nition of `quality' for the

de&ned problem makes this metric insensitive to outside in>uences +characteristic

D2 and makes it entirely self-consistent when it is ported to different machines

+characteristic @2. %t is also easily repeatable +characteristic 02 and it is linear

+characteristic 12 since, for the particular problem chosen for the H%:T bench-

mark, the resulting measure of quality is linearly related to the time required to

obtain the solution.

Jiven the positive aspects of this metric, it still does present a few potential

dif&culties when used as a general-purpose performance metric. The primary

potential dif&culty is that it need not always be a reliable metric +characteristic

/2 due to its narrow focus on >oating-point and memory system performance. %t

is generally a very good metric for predicting how a computer system will per-

form when executing numerical programs. However, it does not exercise some

aspects of a system that are important when executing other types of application

programs, such as the input#output subsystem, the instruction cache, and the

operating system's ability to multiprogram, for instance. "urthermore, while the

developers have done an excellent 3ob of making the H%:T benchmark easy to

measure +characteristic C2 and portable to other machines, it is dif&cult to change

the quality de&nition. A new problem must be developed to focus on other

aspects of a system's performance since the de&nition of quality is tightly coupled

to the problem being solved. Eeveloping a new problem to more broadly exercise

the system could be a dif&cult task since it must maintain all of the characteristics

described above.

Eespite these dif&culties, I?%6) is an important new type of metric that

rigorously de&nes interesting aspects of performance while providing enough

>exibility to allow new and unusual system architectures to demonstrate their

capabilities. $hile it is not a completely general-purpose metric, it should prove

to be very useful in measuring a system's numerical processing capabilities.

Metrics of performance!-

%t also should be a strong stimulus for greater rigor in de&ning future perfor-

mance metrics.

 $*$: 6;ecution ti#e

)ince we are ultimately interested in how quickly a given program is executed,

the fundamental performance metric of any computer system is the time required

to execute a given application program. Iuite simply, the system that produces

the smallest total execution time for a given application program has the highest

performance. $e can compare times directly, or use them to derive appropriate

rates. However, without a precise and accurate measure of time, it is impossible

to analyze or compare most any system performance characteristics.

*onsequently, it is important to know how to measure the execution time of a

program, or a portion of a program, and to understand the limitations of the

measuring tool.

The basic technique for measuring time in a computer system is analogous to

using a stopwatch to measure the time required to perform some event. ?nlike a

stopwatch that begins measuring time from B, however, a computer system

typically has an internal counter that simply counts the number of clock ticks

that have occurred since the system was &rst turned on. +)ee also)ection D./.2 A

time interval then is measured by reading the value of the counter at the start of

the event to be timed and again at the end of the event. The elapsed time is the

difference between the two count values multiplied by the period of the clock

ticks.

As an example, consider the program example shown in "igure /.1. %n this

example, the init timer() function initializes the data structures used to access

the system's timer. This timer is a simple counter that is incremented continu-

ously by a clock with a period de&ned in the variable clock cycle. Feading the

address pointed to by the variable read count returns the current count value of

the timer.

To begin timing a portion of a program, the current value in the timer is read

and stored in start count. At the end of the portion of the program being

timed, the timer value is again read and stored in end count. The difference

between these two values is the total number of clock ticks that occurred during

the execution of the event being measured. The total time required to execute this

event is this number of clock ticks multiplied by the period of each tick, which is

stored in the constant clock cycle.

This technique for measuring the elapsed execution time of any selected por-

tion of a program is often referred to as the -a"" c"oc. time since it measures the

total time that a user would have to wait to obtain the results produced by the

program. That is, the measurement includes the time spent waiting for input#

#$()rocessor an' s*stem performance metrics!.

output operations to complete, memory paging, and other system operations

performed on behalf of this application, all of which are integral components

of the program's execution. However, when the system being measured is time-

shared so that it is not dedicated to the execution of this one application pro-

gram, this elapsed execution time also includes the time the application spends

waiting while other users' applications execute.

5any researchers have argued that including this time-sharing overhead in the

program's total execution time is unfair. %nstead, they advocate measuring per-

formance using the total time the processor actually spends executing the pro-

gram, called the total /01 time. This time does not include the time the program

is context switched-out while another application runs. ?nfortunately, using

only this *6? time as the performance metric ignores the waiting time that is

inherent to the application as well as the time spent waiting on other programs.

A better solution is to report both the *6? time and the total execution time so

the reader can determine the signi&cance of the time-sharing interference. The

point is to be explicit about what information you are actually reporting to allow

the reader to decide for themselves how believable your results are.

Metrics of performance

main()

{

int i;

¯oat a;

init_timer();

/* Read the starting time. */

start_count = read_count;

/* Stuff to be measured */

for (i=0;i< 1000;i++){

a = i * a / 10;

}

/* Read the ending time. */

end_count = read_count;

elapsed_time = (end_count - start_count) * clock_cycle;

}

"igure /.1. An example program showing how to measure the execution time of a portion

of a program.

!/

%n addition to system-overhead effects, the measured execution time of an

application program can vary signi&cantly from one run to another since the

program must contend with random events, such as the execution of background

operating system tasks, different virtual-to-physical page mappings and cache

mappings from explicitly random replacement policies, variable system load in a

time-shared system, and so forth. As a result, a program's execution time is

nondeterministic. %t is important, then, to measure a program's total elapsed

execution time several times and report at least the mean and variance of the

times. 8rrors in measurements, along with appropriate statistical techniques to

quantify them, are discussed in more detail in *hapter C.

$hen it is measured as described above, the elapsed +wall clock2 time mea-

surement produces a performance metric that is intuitive, reliable, repeatable,

easy to measure, consistent across systems, and independent of outside in>u-

ences. Thus, since it satis&es all of the characteristics of a good performance

metric, program execution time is one of the best metrics to use when analyzing

computer system performance.

 $5 4t'er t,pes o" per"or#ance #etrics

%n addition to the processor-centric metrics described above, there are many

other metrics that are commonly used in performance analysis. "or instance,

the system response time is the amount of time that elapses from when a user

submits a request until the result is returned from the system. This metric is often

used in analyzing the performance of online transaction-processing systems, for

example.)ystem t%roug%put is a measure of the number of 3obs or operations

that are completed per unit time. The performance of a real-time video-proces-

sing system, for instance, may be measured in terms of the number of video

frames that can be processed per second. The &an$-i$t% of a communication

network is a throughput measure that quanti&es the number of bits that can be

transmitted across the network per second. 5any other a$ %oc performance

metrics are de&ned by performance analysts to suit the speci&c needs of the

problem or system being studied.

 $7 1peedup and re.ati<e c'ange

2pee$up and re"ati,e c%ange are useful metrics for comparing systems since they

normalize performance to a common basis. Although these metrics are de&ned in

terms of throughput or speed metrics, they are often calculated directly from

execution times, as described below.

#$, 0pee'up an' re1ati2e c&ange!

Speedup. The spee$up of system / with respect to system 1 is de&ned to be a

value #/ 1 such that)/ � #/ 1)1, where)1 and)/ are the `speed' metrics being

compared. Thus, we can say that system / is #/ 1 times faster than system 1.)ince

a speed metric is really a rate metric +i.e. throughput2,)1 � *1!+1, where *1 is

analogous to the `distance traveled' in time +1 by the application program when

executing on system 1.)imilarly,)/ � */!+/. Assuming that the `distance tra-

veled' by each system is the same, *1 � */ � *, giving the following de&nition

for speedup!

#,--./, 0(121$-m / 3:4:$: 121$-m 1 � #/ 1 �
)/

)1
�
*!+/

*!+1
�
+1

+/
: �/:0�

%f system / is faster than system 1, then +/ " +1 and the speedup ratio will be

larger than 1. %f system / is slower than system 1, however, the speedup ratio will

be less than 1. This situation is often referred to as a s"o-$o-n instead of a

speedup.

#elative change. Another technique for normalizing performance is to express

the performance of a system as a percent change re"ati,e to the performance of

another system. $e again use the throughput metrics)1 and)/ as measures of

the speeds of systems 1 and /, respectively. The relative change of system / with

respect to system 1, denoted / 1, +that is, using system 1 as the basis2 is then

de&ned to be

)-56$78- 9:6n;- 0(121$-m / 3:4:$: 121$-m 1 � / 1 �
)/ ÿ)1

)1
: �/:C�

Again assuming that the execution time of each system is measured when

executing the same program, the `distance traveled' by each system is the same

so that)1 � *!+1 and)/ � *!+/. Thus,

 / 1 �
)/ ÿ)1

)1
�
!+/ ÿ!+1

*!+1
�
+1 ÿ +/

+/
� #/ 1 ÿ 1: �/:@�

Typically, the value of / 1 is multiplied by 1BB to express the relative change

as a percentage with respect to a given basis system. This de&nition of relative

change will produce a positive value if system / is faster than system 1, whereas a

negative value indicates that the basis system is faster.

Example. As an example of how to apply these two different normalization

techniques, the speedup and relative change of the systems shown in Table /.1

are found using system 1 as the basis. "rom the raw execution times, we can

easily see that system C is the fastest, followed by systems /, 1, and 0, in that

order. However, the speedup values give us a more precise indication of exactly

how much faster one system is than the others. "or instance, system / has a

Metrics of performance#"

speedup of 1.00 compared with system 1 or, equivalently, it is 00K faster.)ystem

C has a speedup ratio of /./< compared with system 1 +or it is 1/<K faster2. $e

also see that system 0 is actually 11K slower than system 1, giving it a slowdown

factor of B.;<. ^

 $: !eans <ersus ends #etrics

(ne of the most important characteristics of a performance metric is that it be

reliable +characteristic /2. (ne of the problems with many of the metrics dis-

cussed above that makes them unreliable is that they measure what was done

-%et%er or not it -as usefu". $hat makes a performance metric reliable, however,

is that it accurately and consistently measures progress to-ar$s a goa". 5etrics

that measure what was done, useful or not, have been called means(&ase$ metrics

whereas en$s(&ase$ metrics measure what is actually accomplished.

To obtain a feel for the difference between these two types of metrics, consider

the vector dot-product routine shown in "igure /./. This program executes <

>oating-point addition and multiplication operations for a total of /< >oating-

point operations. %f the time required to execute one addition is $� cycles and one

multiplication requires $! cycles, the total time required to execute this program

is $1 � <�$� � $!� cycles. The resulting execution rate then is

#$- Means 2ersus en's metrics

3a41e #$!$ n e!ample of calculating speedup and relative c"ange using system # as

t"e $asis

)ystem

'

8xecution time

T= +s2

)peedup

#= 1

Felative change

 = 1 +K2

1 C;B 1 B

/ 0DB 1.00 L00

0 @CB B.;< M 11

C /1B /./< L1/<

s = 0;

for (i = 1; i < N; i++)

s = s + x[i] * y[i];

"igure /./. A vector dot-product example program.

#!

)1 �
/<

<�$� � $!�
�

/

$� � $!
"7(6)!cycle: �/:D�

)ince there is no need to perform the addition or multiplication operations for

elements whose value is zero, it may be possible to reduce the total execution

time if many elements of the two vectors are zero. "igure /.0 shows the example

from "igure /./ modi&ed to perform the >oating-point operations only for those

nonzero elements. %f the conditional if statement requires $if cycles to execute,

the total time required to execute this program is $/ � <"$if � (�$� � $!�# cycles,

where (is the fraction of < for which both x[i] and y[i] are nonzero.)ince the

total number of additions and multiplications executed in this case is /<(, the

execution rate for this program is

)/ �
/<(

<"$if � (�$� � $!�#
�

/(

$if � (�$� � $!�
"7(6)!cycle: �/:=�

%f $if is four cycles, $� is &ve cycles, $! is ten cycles, (is 1BK, and the proces-

sor's clock rate is /@B 5Hz +i.e. one cycle is C ns2, then $1 � DB< ns and

$/ � <"C� B:1�@� 1B�# C ns N //< ns. The speedup of program / relative

to program 1 then is found to be #/ 1 � DB<!//< � /:=0.

*alculating the execution rates realized by each program with these assump-

tions produces)1 � /!�DB ns� � 00 5"7(6) and)/ � /�B:1�!�// ns� �

<:B< 5"7(6). Thus, even though we have reduced the total execution time

from $1 � DB< ns to $/ � //< ns, the means-based metric +5"7(6)2 shows

that program / is =/K slower than program 1. The ends-based metric +execution

time2, however, shows that program / is actually 1=0K faster than program 1.

$e reach completely different conclusions when using these two different types

of metrics because the means-based metric unfairly gives program 1 credit for all

of the useless operations of multiplying and adding zero. This example highlights

the danger of using the wrong metric to reach a conclusion about computer-

system performance.

Metrics of performance

s = 0;

for (i = 1; i < N; i++)

if (x[i] != 0 && y[i] != 0)

s = s + x[i] * y[i];

"igure /.0. The vector dot-product example program of "igure /./ modi&ed to calculate

only nonzero elements.

##

 $= 1u##ar,

"undamental to measuring computer-systems performance is de&ning an appro-

priate metric. This chapter identi&ed several characteristics or criteria that are

important for a `good' metric of performance.)everal common performance

metrics were then introduced and analyzed in the context of these criteria. The

de&nitions of speedup and relative change were also introduced. "inally, the

concepts of ends-based versus means-based metrics were presented to clarify

what actually causes a metric to be useful in capturing the actual performance

of a computer system.

 $> 2or "urt'er reading

. The following paper argues strongly for total execution time as the best mea-

sure of performance!

Oames 8.)mith, `*haracterizing *omputer 6erformance with a)ingle

:umber,' /ommunications of t%e 3/M, (ctober 1<;;, pp. 1/B/M1/BD.

. The I?%6) metric is described in detail in the following paper, which also

introduced the idea of means-based versus ends-based metrics!

O. 7. Justafson and I. (.)nell, `H%:T! A :ew $ay to 5easure *omputer

6erformance,' a-aii 4nternationa" /onference on 2+stem 2ciences5 1<<@,

pp. %%!0</MCB1.

.)ome of the characteristics of the)68* metric are discussed in the following

papers!

Fan Jiladi and :iv Ahituv, `)68* as a 6erformance 8valuation 5easure,'

4666 /omputer5 Pol. /;, :o. ;, August 1<<@, pp. 00MC/.

:ikki 5irghafori, 5argret Oacoby, and Eavid 6atterson, `Truth in)68*

 enchmarks,' 3/M /omputer 3rc%itecture 7e-s5 Pol. /0, :o. @,

Eecember 1<<@, pp. 0CMC/.

. 6arallel computing systems are becoming more common. They present some

interesting performance measurement problems, though, as discussed in

7awrence A. *rowl, `How to 5easure, 6resent, and *ompare 6arallel

6erformance,' 4666 0ara""e" an$ 8istri&ute$ 9ec%no"og+5)pring 1<<C,

pp. <M/@.

#$/ 5or furt&er rea'ing#(

 $? 6;ercises

1. +a2 $rite a simple benchmark program to estimate the maximum effective

5%6) rating of a computer system. ?se your program to rank the per-

formance of three different, but roughly comparable, computer systems.

+b2 Fepeat part +a2 using the maximum effective 5"7(6) rating as the

metric of performance.

+c2 *ompare the rankings obtained in parts +a2 and +b2 with the ranking

obtained by comparing the clock frequencies of the different systems.

+d2 "inally, compare your rankings with those published by authors using

some standard benchmark programs, such as those available on the

)68* website.

/. $hat makes a performance metric `reliableG'

0. *lassify each of the following metrics as being either means-based or ends-

basedQ 5%6), 5"7(6), execution time, bytes of available memory, quality

of a &nal answer, arithmetic precision, system cost, speedup, and reliability of

an answer.

C. Eevise an experiment to determine the following performance metrics for a

computer system.

+a2 The effective memory bandwidth between the processor and the data

cache if all memory references are cache hits.

+b2 The effective memory bandwidth if all memory references are cache

misses.

@. $hat are the key differences between `wall clock time' and `*6? timeG'

?nder what conditions should each one be usedG %s it possible for these

two different times to be the sameG

D. The execution time required to read the current time from an interval counter

is a minimum of at least one memory-read operation to obtain the current

time value and one memory-write operation to store the value for later use. %n

some cases, it may additionally include a subroutine call and return operation.

How does this timer `overhead' affect the time measured when using such an

interval timer to determine the duration of some event, such as the total

execution time of a programG

=. *alculate the speedup and relative change of the four systems shown in Table

/.1 when using)ystem C as the basis. How do your newly calculated values

affect the relative rankings of the four systemsG

Metrics of performance#+

