MODEL MATEMATIS

 RANGKAIAN ELEKTRIK
PENDAHULUAN

- Mengubah fungsi dari sistem fisis (domain waktu) ke fungsi variabel kompleks (domain s)
- Menyederhanakan persamaan matematis yang mengandung operasi turunan/differensial atau integral menjadi persamaan yang berisi perkalian atau pembagian biasa
- Dapat mengubah fungsi umum (fungsi sinusoida, sinusoida teredam, fungsi eksponensial) menjadi fungsi-fungsi aljabar variabel kompleks
- Persamaan diferensial yang berada dalam kawasan waktu (t), ditransformasikan ke kawasan frekuensi (s) dengan transformasi Laplace.
- Untuk mempermudah proses transformasi dapat digunakan tabel transformasi laplace.
- Persamaan yang diperoleh dalam kawasan s tersebut adalah persamaan aljabar dari variabel s yang merupakan operator Laplace.
- Penyelesaian yang diperoleh kemudian ditransformasi-balikkan ke dalam kawasan waktu.
- Hasil transformasi balik ini menghasilkan penyelesaian persamaan dalam kawasan waktu.

HUKUM-HUKUM TERKIIT

1. Hukum Kirchhoff 1 ; Arus total yang masuk melalui suatu titik percabangan dalam suatu rangkaian listrik sama dengan arus total yang keluar dari percabangan tersebut
2. Hukum Kirchhoff 2 ; Total tegangan (beda potensial) pada suatu rangakaian tertutup adalah nol
3. Hukum Newton l; Jika resultan gaya yang bekerja pada benda yang sama dengan nol, maka benda yang mula-mula diam akan tetap diam. Benda yang mula-mula bergerak lurus beraturan akan tetap lurus beraturan dengan kecepatan tetap
4. Hukum Newton 2; Percepatan (perubahan dari kecepatan) dari suatu benda akan sebanding dengan resultan gaya (jumlah gaya) yang bekerja pada benda tersebut dan berbanding terbalik dengan massa benda
5. Hukum Newton 3; Setiap aksi akan menimbulkan reaksi, jika suatu benda memberikan gaya pada benda yang lain maka benda yang terkena gaya akan memberikan gaya yang besarnya sama dengan gaya yang diterima dari benda pertama, tetapi arahnya berlawanan

RANGIAIAN ELLKTRIK (1)

Transformasi Laplace :

$$
L \frac{d i}{d t}+R i+\frac{1}{c} \int i d t=e_{i}
$$

$$
\begin{aligned}
& s L I(s)+R I(s)+\frac{1}{C s} I(s)=E_{i}(s) \\
& \frac{1}{s C} I(s)=E_{o}(s) \rightarrow \frac{I(s)}{C}=s E_{o}(s) \\
& s^{2} L I(s)+R s I(s)+\frac{I(s)}{c}=s E_{i}(s)
\end{aligned}
$$

$$
\frac{1}{c} \int i d t=e_{o}
$$

Fungsi Alih :

$$
\frac{E_{o}(s)}{E_{i}(s)}=\frac{\frac{I(s)}{C}}{\left(s^{2} L+R s+\frac{1}{C}\right) I(s)}=\frac{1}{L C s^{2}+R C s+1}
$$

RANGIAIAN ELEIKTRIK (2)

$$
\begin{aligned}
& \frac{1}{C_{1}} \int\left(i_{1}-i_{2}\right) d t+R_{1} i_{1}=e_{i} \\
& \frac{1}{C_{1}} \int\left(i_{2}-i_{1}\right) d t+R_{2} i_{2}+\frac{1}{C_{2}} \int i_{2} d t=0 \\
& \frac{1}{C_{2}} \int i_{2} d t=e_{o}
\end{aligned}
$$

$$
\frac{1}{C_{1} s}\left[I_{1}(s)-I_{2}(s)\right]+R_{1} I_{1}(s)=E_{i}(s)
$$

$$
\frac{1}{C_{1} s}\left[I_{2}(s)-I_{1}(s)\right]+R_{2} I_{2}(s)+\frac{1}{C_{2} s} I_{2}(s)=0
$$

$$
\frac{1}{C_{2} s} I_{2}(s)=E_{o}(s)
$$

Fungsi Alih :

$$
\begin{aligned}
\frac{E_{o}(s)}{E_{i}(s)} & =\frac{1}{\left(R_{1} C_{1} s+1\right)\left(R_{2} C_{2} s+1\right)+R_{1} C_{2} s} \\
& =\frac{1}{R_{1} C_{1} R_{2} C_{2} s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{1} C_{2}\right) s+1}
\end{aligned}
$$

RANGIAIAN ELLKTRIK (3)

$$
\begin{aligned}
\frac{e_{i}-e^{\prime}}{R_{1}} & =C \frac{d\left(e^{\prime}-e_{o}\right)}{d t}+\frac{e^{\prime}-e_{o}}{R_{2}} \\
\frac{e_{i}}{R_{1}} & =-C \frac{d e_{o}}{d t}-\frac{e_{o}}{R_{2}} \\
\frac{E_{i}(s)}{R_{1}} & =-\frac{R_{2} C s+1}{R_{2}} E_{o}(s)
\end{aligned}
$$

Fungsi Alih :

$$
i_{1}=\frac{e_{i}-e^{\prime}}{R_{1}}, \quad i_{2}=C \frac{d\left(e^{\prime}-e_{o}\right)}{d t}, \quad i_{3}=\frac{e^{\prime}-e_{o}}{R_{2}}
$$

$$
\frac{E_{o}(s)}{E_{i}(s)}=-\frac{R_{2}}{R_{1}} \frac{1}{R_{2} C s+1}
$$

RANGKAIAN ELLKTRIK (4)

- Pendekatan dengan diagram blok

$$
\begin{aligned}
& \text { Fungsi Alih : } \\
& \frac{E_{o}(s)}{E_{i}(s)}=\frac{\frac{1}{C s}}{L s+R+\frac{1}{C s}}=\frac{1}{L C s^{2}+R C s+1}
\end{aligned}
$$

RANGIAIAN ELLKTRIK (5)

- Pendekatan dengan diagram blok

$$
\begin{aligned}
& Z_{1}(s)=R_{1} \quad Z_{2}(s)=\frac{1}{C s+\frac{1}{R_{2}}}=\frac{R_{2}}{R_{2} C s+1} \\
& \frac{E_{i}(s)-E^{\prime}(s)}{Z_{1}}=\frac{E^{\prime}(s)-E_{o}(s)}{Z_{2}}
\end{aligned}
$$

$$
\frac{E_{o}(s)}{E_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}=-\frac{R_{2}}{R_{1}} \frac{1}{R_{2} C s+1}
$$

TUGAS

- Tentukan Transfer Function dari rangkaian elektrik berikut ini :

Dengan pendekatan diagram blok

