
Teknik Informatika – Universitas Komputer Indonesia

Requirement and Analysis

Using UML

Requirement and Analysis

Using UML
2

List of Material

• Requirement Engineering Process

• Requirement Elicitation

• Identifying Use Case

• CRC Card

• Class and Its Relation

• Statechart Diagram

Requirement and Analysis

Using UML
3

Requirement Engineering

Process

Requirement and Analysis

Using UML
4

What is a requirement?

• It may range from a high-level abstract statement of a service or of a

system constraint to a detailed mathematical functional specification.

• This is inevitable as requirements may serve a dual function

 May be the basis for a bid for a contract - therefore must be open

to interpretation;

 May be the basis for the contract itself - therefore must be defined

in detail;

 Both these statements may be called requirements.

Requirement and Analysis

Using UML
5

Requirements engineering

• The process of establishing the services that the

customer requires from a system and the constraints

under which it operates and is developed.

• The requirements themselves are the descriptions of

the system services and constraints that are

generated during the requirements engineering

process.

Requirement and Analysis

Using UML
6

Requirements engineering processes

• The processes used for RE vary widely depending on the

application domain, the people involved and the organisation

developing the requirements.

• However, there are a number of generic activities common to all

processes

 Requirements elicitation;

 Requirements analysis;

 Requirements validation;

 Requirements management.

Requirement and Analysis

Using UML
7

The requirements engineering process

Requirement and Analysis

Using UML
8

Requirements engineering

Requirements

specification

Requirements

validation

Requirements
elicitation

System requirements

specification and
modeling

Sy stem

requirements
elicitation

User requirements
specification

User
requirements

elicitation

Business requirements
specification

Prototyping

Feasibility

study

Reviews

Syst em requirements

document

Requirement and Analysis

Using UML
9

Feasibility studies

• A feasibility study decides whether or not the proposed system is

worthwhile.

• A short focused study that checks

 If the system contributes to organisational objectives;

 If the system can be engineered using current technology

and within budget;

 If the system can be integrated with other systems that are

used.

Requirement and Analysis

Using UML
10

Feasibility study implementation

• Based on information assessment (what is required), information

collection and report writing.

• Questions for people in the organisation

 What if the system wasn‟t implemented?

 What are current process problems?

 How will the proposed system help?

 What will be the integration problems?

 Is new technology needed? What skills?

 What facilities must be supported by the proposed system?

Requirement and Analysis

Using UML
11

Elicitation and analysis

• Sometimes called requirements elicitation or requirements

discovery.

• Involves technical staff working with customers to find out about

the application domain, the services that the system should

provide and the system‟s operational constraints.

• May involve end-users, managers, engineers involved in

maintenance, domain experts, trade unions, etc. These are

called stakeholders.

Requirement and Analysis

Using UML
12

Problems of requirements analysis

• Stakeholders don‟t know what they really want.

• Stakeholders express requirements in their own terms.

• Different stakeholders may have conflicting requirements.

• Organisational and political factors may influence the system

requirements.

• The requirements change during the analysis process. New

stakeholders may emerge and the business environment

change.

Requirement and Analysis

Using UML
13

The requirements spiral

Requirements
classification and

organisation

Requirements
prioritization and

negotiation

Requirements

documentation

Requirements

discovery

Requirement and Analysis

Using UML
14

Process activities

• Requirements discovery
 Interacting with stakeholders to discover their requirements.

Domain requirements are also discovered at this stage.

• Requirements classification and organisation
 Groups related requirements and organises them into

coherent clusters.

• Prioritisation and negotiation
 Prioritising requirements and resolving requirements

conflicts.

• Requirements documentation
 Requirements are documented and input into the next round

of the spiral.

Requirement and Analysis

Using UML
15

Requirements discovery

• The process of gathering information about the

proposed and existing systems and distilling the user

and system requirements from this information.

• Sources of information include documentation,

system stakeholders and the specifications of similar

systems.

Requirement and Analysis

Using UML
16

Requirements abstraction (Davis)

“If a company wishes to let a cont ract for a large software development project, it

must define its needs in a sufficien tly abstract way that a solution is not pre-defined.

The requirements must be written so that several contractors can b id for the con tract,

offering, perhaps, different ways of meeting the client organi sation’s needs. Once a

contract has been awarded, the contractor must write a system definition for the client

in more detail so that the client und erstands and can validate what the software will

do. Both of these documents may be called the requirements document for the

system.”

Requirement and Analysis

Using UML
17

Types of requirement

• User requirements

 Statements in natural language plus diagrams of the services the system

provides and its operational constraints. Written for customers

• System requirements

 A structured document setting out detailed descriptions of the system

services. Written as a contract between client and contractor

• Software specification

 A detailed software description which can serve as a basis for a design or

implementation. Written for developers

Requirement and Analysis

Using UML
18

Definitions and specifications

1. The software must provide a means of representing and

1. accessing external files created by other tools.

1.1 The user should be provided with facilities to define the type of
1.2 external files.
1.2 Each external file type may have an associated tool which may be
1.2 applied to the file.
1.3 Each external file type may be represented as a specific icon on
1.2 the user’s display.
1.4 Facilities should be provided for the icon representing an
1.2 external file type to be defined by the user.
1.5 When a user selects an icon representing an external file, the
1.2 effect of that selection is to apply the tool associated with the type of

1.2 the external file to the file represented by the selected icon.

Requirements definition

Requirements specification

Requirement and Analysis

Using UML
19

Requirements

readers

Requirement and Analysis

Using UML
20

Another classification of requirements

• Functional requirements

• Non-functional requirements

• Domain requirements

Requirement and Analysis

Using UML
21

Functional requirements (1)

• Describe functionality or system services, how the system should

react to particular inputs and how the system should behave in

particular situations.

• Depend on the type of software, expected users and the type of

system where the software is used

• Functional user requirements may be high-level statements of what

the system should do but functional system requirements should

describe the system services in detail

Requirement and Analysis

Using UML
22

Functional requirements (2)

• Examples:

 The user shall be able to search either all of the initial set of

databases or select a subset from it.

 The system shall provide appropriate viewers for the user to read

documents in the document store.

 Every order shall be allocated a unique identifier (ORDER_ID)

which the user shall be able to copy to the account‟s permanent

storage area.

Requirement and Analysis

Using UML
23

Functional requirements (3)

• Problems arise when requirements are not precisely stated

• Ambiguous requirements may be interpreted in different ways by

developers and users

• Consider the term „appropriate viewers‟ in the previous example

 User intention - special purpose viewer for each different

document type

 Developer interpretation - Provide a text viewer that shows the

contents of the document

Requirement and Analysis

Using UML
24

Functional requirements (4)

• Requirements should be complete and consistent

• Complete

 They should include descriptions of all facilities required

• Consistent

 There should be no conflicts or contradictions in the descriptions

of the system facilities

• In practice, it is impossible to produce a complete and consistent

requirements document

Requirement and Analysis

Using UML
25

Non-functional requirements

• Define system properties and constraints e.g. reliability,

response time and storage requirements. Constraints are

I/O device capability, system representations, etc.

• Can be constraints on the process too

– Use a particular CASE system, programming language

or development method

• System maybe unusable if non-functional requirements

are not satisfied (Critical)

Requirement and Analysis

Using UML
26

Non-functional classifications

• Product requirements

 Requirements which specify that the delivered product must behave in a

particular way e.g. execution speed, reliability, etc.

• Organisational requirements

 Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements,

etc.

• External requirements

 Requirements which arise from factors which are external to the system

and its development process e.g. interoperability requirements, legislative

requirements, etc.

Requirement and Analysis

Using UML
27

Non-functional requirements

examples
• Product requirement

 4.C.8 It shall be possible for all necessary communication between the APSE

and the user to be expressed in the standard Ada character set

• Organisational requirement

 9.3.2 The system development process and deliverable documents shall

conform to the process and deliverables defined in XYZCo-SP-STAN-95

• External requirement

 7.6.5 The system shall not disclose any personal information about

customers apart from their name and reference number to the operators of

the system

Requirement and Analysis

Using UML
28

Goals and requirements

• Non-functional requirements may be very difficult to state precisely

and imprecise requirements may be difficult to verify.

• Goal

 A general intention of the user such as ease of use

• Verifiable non-functional requirement

 A statement using some measure that can be objectively tested

• Goals are helpful to developers as they convey the intentions of the

system users

Requirement and Analysis

Using UML
29

System Goal VS Non Functional

• A system goal

 The system should be easy to use by experienced controllers and

should be organised in such a way that user errors are minimised.

• A verifiable non-functional requirement

 Experienced controllers shall be able to use all the system

functions after a total of two hours training. After this training, the

average number of errors made by experienced users shall not

exceed two per day.

Requirement and Analysis

Using UML
30

List of Non Functional Req.

Requirement and Analysis

Using UML
31

Requirement Measures

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems

Requirement and Analysis

Using UML
32

Domain requirements

• Derived from the application domain and describe system

characterisics and features that reflect the domain

• May be new functional requirements, constraints on

existing requirements or define specific computations

• If domain requirements are not satisfied, the system may

be unworkable

Requirement and Analysis

Using UML
33

Domain requirements (examples)

• Library system

– There shall be a standard user interface to all databases which
shall be based on the Z39.50 standard.

– Because of copyright restrictions, some documents must be
deleted immediately on arrival. Depending on the user’s
requirements, these documents will either be printed locally on the
system server for manually forwarding to the user or routed to a
network printer.

• Train Protection system

– The deceleration of the train shall be computed as:

 Dtrain = Dcontrol + Dgradient

 where Dgradient is 9.81ms2 * compensated gradient/alpha and where
the values of 9.81ms2 /alpha are known for different types of train

Requirement and Analysis

Using UML
34

User requirements

• Should describe functional and non-functional

requirements so that they are understandable by system

users who don‟t have detailed technical knowledge

• User requirements are defined using natural language,

tables and diagrams

Requirement and Analysis

Using UML
35

Problems with natural language

• Lack of clarity

 Precision is difficult without making the document

difficult to read

• Requirements confusion

 Functional and non-functional requirements tend to be

mixed-up

• Requirements amalgamation

 Several different requirements may be expressed

together

Requirement and Analysis

Using UML
36

Identifying Use Case

Diagrams

Requirement and Analysis

Using UML
37

Developing Use Case Diagrams

• Review the business specifications and identify the actors

involved

• Identify the high-level events and develop the primary use

cases that describe those events and how the actors initiate

them

• Review each primary use case to determine the possible

variations of flow through the use case

• The context-level data flow diagram could act as a starting

point for creating a use case

Requirement and Analysis

Using UML
38

Define use cases

Use cases - narrative descriptions of domain processes in a structured

prose format

• Use case : Play a game

• Actors : Player

• Description: This use case begins when the player picks

up and rolls the die….

Requirement and Analysis

Using UML
39

Define domain model

• OO Analysis concerns

 specification of the problem domain

 identification of concepts (objects)

 Decomposition of the problem domain includes

 identification of objects, attributes, associations

• Outcome of analysis expressed as a domain model.

Requirement and Analysis

Using UML
40

Developing the Use Case

Scenarios

• The description of the use case

• Three main areas

 Use case identifiers and initiators

 Steps performed

 Conditions, assumptions, and questions

Requirement and Analysis

Using UML
41

High level vs. Low Level Use cases (1)

• Consider the following use cases:

 Log out

 Handle payment

 Negotiate contract with a supplier

• These use cases are at different levels. Are they all valid?

To check, use the EBP definition.

Requirement and Analysis

Using UML
42

High level vs. Low Level Use cases (2)

• Log out: a secondary goal; it is necessary to do something

but not useful in itself.

• Handle payment: A necessary EBP. Hence a primary goal.

• Negotiate contract: Most likely this is too high a level. It is

composed of several EBPs and hence must be broken

down further.

Requirement and Analysis

Using UML
43

More On Use Case

• Narrate use cases independent of implementation

 State success scenarios (how do you determine the success of a use
case).

 A use case corresponds to one or more scenarios.

 Agree on a format for use case description

 Name a use case starting with a verb in order to emphasize that it is
a process (Buy Items, Enter an order, Reduce inventory)

Requirement and Analysis

Using UML
44

Why Use Case Diagrams Are Helpful

• Identify all the actors in the problem domain

• Actions that need to be completed are also clearly

shown on the use case diagram

• The use case scenario is also worthwhile

• Simplicity and lack of technical detail

Requirement and Analysis

Using UML
45

The Main Reason for Writing Use Case

Requirement and Analysis

Using UML
46

CRC Card

Requirement and Analysis

Using UML
47

CRC Cards and Object Think

• CRC

 Class

 Responsibilities

 Collaborators

• CRC cards are used to represent the responsibilities of

classes and the interaction between the classes

Requirement and Analysis

Using UML
48

Interacting during a CRC Session

• Identify all the classes you can

• Creating scenarios

• Identify and refine responsibilities

Requirement and Analysis

Using UML
49

CRC Layout

Requirement and Analysis

Using UML
50

Student CRC Card

Requirement and Analysis

Using UML
51

CRC Model

Requirement and Analysis

Using UML
52

How to Create CRC Diagram

• Find classes.

• Find responsibilities.

• Define collaborators.

• Move the cards around. To improve everyone‟s

understanding of the system, the cards should be

placed on the table in an intelligent manner.

Requirement and Analysis

Using UML
53

Class and Its Relation

Requirement and Analysis

Using UML
54

Class Diagrams (1)

• Show the static features of the system and do not

represent any particular processing

• Shows the nature of the relationships between classes

• Shows data storage requirements as well as

processing requirements

Requirement and Analysis

Using UML
55

Class Diagrams (2)

• Classes

• Attributes

 Private

 Public

 Protected

• Methods

 Standard

 Custom

Requirement and Analysis

Using UML
56

Example of Class Diagrams

Requirement and Analysis

Using UML
57

Method Overloading

• Including the same method (or operation) several

times in a class

• The same method may be defined more than once in

a given class, as long as the parameters sent as part

of the message are different

Requirement and Analysis

Using UML
58

Types of Classes

• Entity classes

• Interface classes

• Abstract classes

• Control classes

Requirement and Analysis

Using UML
59

Entity Classes

• Represent real-world items

• The entities represented on an entity-

relationship diagram

Requirement and Analysis

Using UML
60

Interface or Boundary Classes

• Provide a means for users to work with the system

• Human interfaces may be a display, window, Web

form, dialogue box, touch-tone telephone, or other

way for users to interact with the system

• System interfaces involve sending data to or

receiving data from other

Requirement and Analysis

Using UML
61

Abstract Classes

• Linked to concrete classes in a

generalization/specialization relationship

• Cannot be directly instantiated

Requirement and Analysis

Using UML
62

Control Classes

• Used to control the flow of activities

• Many small control classes can be used to achieve

classes that are reusable

Requirement and Analysis

Using UML
63

Defining Messages and Methods

• Each message may be defined using a

notation similar to that described for the data

dictionary

• The methods may have logic defined using

structured English, a decision table, or a

decision tree

Requirement and Analysis

Using UML
64

Requirement and Analysis

Using UML
65

Relationships

• The connections between classes

 Associations

 Whole/part

Requirement and Analysis

Using UML
66

Associative Class Between Student and

Course

Requirement and Analysis

Using UML
67

Associations

• The simplest type of relationship

• Association classes are those that are used to break up

a many-to-many association between classes

• An object in a class may have a relationship to other

objects in the same class, called a reflexive association

Requirement and Analysis

Using UML
68

Whole/Part Relationships

• When one class represents the whole object, and other

classes represent parts

• Categories

 Aggregation

 Collection

 Composition

Requirement and Analysis

Using UML
69

Aggregation

• A “has a” relationship

• Provides a means of showing that the whole object is

composed of the sum of its parts

Requirement and Analysis

Using UML
70

Collection

• Consists of a whole and its members

• Members may change, but the whole retains its

identity

• A weak association

Requirement and Analysis

Using UML
71

Composition

• The whole has a responsibility for the parts, and is a

stronger relationship

• If the whole is deleted, all parts are deleted

Requirement and Analysis

Using UML
72

Composition

VS

Aggregation

Requirement and Analysis

Using UML
73

Generalization/Specialization Diagrams

• Generalization

• Inheritance

• Polymorphism

• Abstract classes

• Messages

Requirement and Analysis

Using UML
74

Generalization

• Describes a relationship between a general kind of thing

and a more specific kind of thing

• Described as an “is a” relationship

• Used for modeling class inheritance and specialization

• General class is a parent, base, or superclass

• Specialized class is a child, derived, or subclass

Requirement and Analysis

Using UML
75

Inheritance

• Helps to foster reuse

• Helps to maintain existing program code

Requirement and Analysis

Using UML
76

Polymorphism

• The capability of an object-oriented program to have

several versions of the same method with the same

name within a superclass/subclass relationship

• The subclass method overrides the superclass method

• When attributes or methods are defined more than

once, the most specific one is used

Requirement and Analysis

Using UML
77

Abstract Classes

• Abstract classes are general classes

• No direct objects or class instances, and is only used in

conjunction with specialized classes

• Usually have attributes and may have a few methods

Requirement and Analysis

Using UML
78

Gen/Spec

Diagram

Requirement and Analysis

Using UML
79

Finding Classes

• During interviewing or JAD sessions

• During facilitated team sessions

• During brainstorming sessions

• Analyzing documents and memos

• Examining use cases, looking for nouns

Requirement and Analysis

Using UML
80

Determining Class Methods

• Standard methods

• Examine a CRUD matrix

Requirement and Analysis

Using UML
81

Messages

• Used to send information by an object in one class to an

object in another class

• Acts as a command, telling the receiving class to do

something

• Consists of the name of the method in the receiving class, as

well as the attributes that are passed with the method name

• May be thought of as an output or an input

Requirement and Analysis

Using UML
82

Statechart Diagram

Requirement and Analysis

Using UML
83

Statechart Diagrams (1)

• Used to examine the different states that an object may have

• Created for a single class

 Objects are created, go through changes, and are deleted or removed

• Objects

• States

• Events

 Signals or asynchronous messages

 Synchronous

 Temporal events

Requirement and Analysis

Using UML
84

Statechart Diagrams (2)

• Created when

 A class has a complex life cycle

 An instance of a class may update its attributes in a number of

ways through the life cycle

 A class has an operational life cycle

 Two classes depend on each other

 The object‟s current behavior depends on what happened

previously

Requirement and Analysis

Using UML
85

Example of

Statechart

Diagrams

Requirement and Analysis

Using UML
86

Putting UML to Work

 The steps used in UML are:

 Define the use case model

 Continue UML diagramming to model the system during the

systems analysis phase

 Develop the class diagrams

 Draw statechart diagrams

 Begin systems design by refining the UML diagrams

 Document your system design in detail

Requirement and Analysis

Using UML
87

References

1. Roger S. Presmann, Software Engineering, 6th edition.

2. Kendall, System Analysis and Design, 7th edition.

3. Ian Sommerville, Software Engineering, 8th Edition

4. PPT of Roger S. Pressman (chung and zheng)

5. PPT of Kendall

6. Saiful Akbar, Handouts PPL – ITB, 2011

7. Scott W. Embler, Elements of UML Style 2.0

8. Martin Fowler, UML Distilled 3, Third Edition

