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What is a requirement? 

• It may range from a high-level abstract statement of a service or of a 

system constraint to a detailed mathematical functional specification. 

• This is inevitable as requirements may serve a dual function 

 May be the basis for a bid for a contract - therefore must be open 

to interpretation; 

 May be the basis for the contract itself - therefore must be defined 

in detail; 

 Both these statements may be called requirements. 
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Requirements engineering 

• The process of establishing the services that the 

customer requires from a system and the constraints 

under which it operates and is developed. 

• The requirements themselves are the descriptions of 

the system services and constraints that are 

generated during the requirements engineering 

process. 
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Requirements engineering processes 

• The processes used for RE vary widely depending on the 

application domain, the people involved and the organisation 

developing the requirements. 

• However, there are a number of generic activities common to all 

processes 

 Requirements elicitation; 

 Requirements analysis; 

 Requirements validation; 

 Requirements management. 
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The requirements engineering process 
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Feasibility studies 

• A feasibility study decides whether or not the proposed system is 

worthwhile. 

• A short focused study that checks 

 If the system contributes to organisational objectives; 

 If the system can be engineered using current technology 

and within budget; 

 If the system can be integrated with other systems that are 

used. 
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Feasibility study implementation 

• Based on information assessment (what is required), information 

collection and report writing. 

• Questions for people in the organisation 

 What if the system wasn‟t implemented? 

 What are current process problems? 

 How will the proposed system help? 

 What will be the integration problems? 

 Is new technology needed? What skills? 

 What facilities must be supported by the proposed system? 
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Elicitation and analysis 

• Sometimes called requirements elicitation or requirements 

discovery. 

• Involves technical staff working with customers to find out about 

the application domain, the services that the system should 

provide and the system‟s operational constraints. 

• May involve end-users, managers, engineers involved in 

maintenance, domain experts, trade unions, etc. These are 

called stakeholders. 
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Problems of requirements analysis 

• Stakeholders don‟t know what they really want. 

• Stakeholders express requirements in their own terms. 

• Different stakeholders may have conflicting requirements. 

• Organisational and political factors may influence the system 

requirements. 

• The requirements change during the analysis process. New 

stakeholders may emerge and the business environment 

change. 
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Process activities 

• Requirements discovery 
 Interacting with stakeholders to discover their requirements. 

Domain requirements are also discovered at this stage. 

• Requirements classification and organisation 
 Groups related requirements and organises them into 

coherent clusters. 

• Prioritisation and negotiation 
 Prioritising requirements and resolving requirements 

conflicts. 

• Requirements documentation 
 Requirements are documented and input into the next round 

of the spiral. 
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Requirements discovery 

• The process of gathering information about the 

proposed and existing systems and distilling the user 

and system requirements from this information. 

• Sources of information include documentation, 

system stakeholders and the specifications of similar 

systems. 
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Requirements abstraction (Davis) 

“If a company wishes to let a cont ract for a large software development project, it

must define its needs in a sufficien tly abstract way that a solution is not pre-defined.

The requirements must be written so that several contractors can b id for the con tract,

offering, perhaps, different ways of meeting the client organi sation’s needs. Once a

contract has been awarded, the contractor must write a system definition for the client

in more detail so that the client und erstands and can validate what the software will

do. Both of these documents may be called the requirements document for the

system.”
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Types of requirement 

• User requirements 

 Statements in natural language plus diagrams of the services the system 

provides and its operational constraints. Written for customers 

• System requirements 

 A structured document setting out detailed descriptions of the system 

services. Written as a contract between client and contractor 

• Software specification 

 A detailed software description which can serve as a basis for a design or 

implementation. Written for developers 
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Definitions and specifications 

1. The software must provide a means of representing and

1. accessing external files created by other tools.

1.1 The user should be provided with facilities to define the type of
1.2 external files.
1.2 Each external file type may have an associated tool which may be
1.2 applied to the file.
1.3 Each external file type may be represented as a specific icon on
1.2 the user’s display.
1.4 Facilities should be provided for the icon representing an
1.2 external file type to be defined by the user.
1.5 When a user selects an icon representing an external file, the
1.2 effect of that selection is to apply the tool associated with the type of

1.2 the external file to the file represented by the selected icon.

Requirements definition

Requirements specification
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Requirements 

readers 
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Another classification of requirements 

• Functional requirements 

• Non-functional requirements 

• Domain requirements 
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Functional requirements (1) 

• Describe functionality or system services, how the system should 

react to particular inputs and how the system should behave in 

particular situations. 

• Depend on the type of software, expected users and the type of 

system where the software is used 

• Functional user requirements may be high-level statements of what 

the system should do but functional system requirements should 

describe the system services in detail 
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Functional requirements (2) 

• Examples: 

 The user shall be able to search either all of the initial set of 

databases or select a subset from it. 

 The system shall provide appropriate viewers for the user to read 

documents in the document store.  

 Every order shall be allocated a unique identifier (ORDER_ID) 

which the user shall be able to copy to the account‟s permanent 

storage area. 
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Functional requirements (3) 

• Problems arise when requirements are not precisely stated 

• Ambiguous requirements may be interpreted in different ways by 

developers and users 

• Consider the term „appropriate viewers‟ in the previous example 

 User intention - special purpose viewer for each different 

document type 

 Developer interpretation - Provide a text viewer that shows the 

contents of the document 
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Functional requirements (4) 

• Requirements should be complete and consistent 

• Complete 

 They should include descriptions of all facilities required 

• Consistent 

 There should be no conflicts or contradictions in the descriptions 

of the system facilities 

• In practice, it is impossible to produce a complete and consistent 

requirements document 
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Non-functional requirements 

• Define system properties and constraints e.g. reliability, 

response time and storage requirements. Constraints are 

I/O device capability, system representations, etc. 

• Can be constraints on the process too 

– Use a particular CASE system, programming language 

or development method 

• System maybe unusable if non-functional requirements 

are not satisfied (Critical) 
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Non-functional classifications 

• Product requirements 

 Requirements which specify that the delivered product must behave in a 

particular way e.g. execution speed, reliability, etc. 

• Organisational requirements 

 Requirements which are a consequence of organisational policies and 

procedures e.g. process standards used, implementation requirements, 

etc. 

• External requirements 

 Requirements which arise from factors which are external to the system 

and its development process e.g. interoperability requirements, legislative 

requirements, etc. 
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Non-functional requirements 

examples 
• Product requirement 

 4.C.8 It shall be possible for all necessary communication between the APSE 

and the user to be expressed in the standard Ada character set 

• Organisational requirement 

 9.3.2  The system development process and deliverable documents shall 

conform to the process and deliverables defined in XYZCo-SP-STAN-95 

• External requirement 

 7.6.5  The system shall not disclose any personal information about 

customers apart from their name and reference number to the operators of 

the system 
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Goals and requirements 

• Non-functional requirements may be very difficult to state precisely 

and imprecise requirements may be difficult to verify.  

• Goal 

 A general intention of the user such as ease of use 

• Verifiable non-functional requirement 

 A statement using some measure that can be objectively tested 

• Goals are helpful to developers as they convey the intentions of the 

system users 
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System Goal VS Non Functional 

• A system goal 

 The system should be easy to use by experienced controllers and 

should be organised in such a way that user errors are minimised. 

• A verifiable non-functional requirement 

 Experienced controllers shall be able to use all the system 

functions after a total of two hours training. After this training, the 

average number of errors made by experienced users shall not 

exceed two per day. 
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List of Non Functional Req. 
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Requirement Measures 

Property Measure

Speed Processed transactions/second
User/Event response time
Screen refresh time

Size K Bytes
Number of RAM chips

Ease of use Training time
Number of help frames

Reliability Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Robustness Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Portability Percentage of target dependent statements
Number of target systems
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Domain requirements 

• Derived from the application domain and describe system 

characterisics and features that reflect the domain 

• May be new functional requirements, constraints on 

existing requirements or define specific computations 

• If domain requirements are not satisfied, the system may 

be unworkable 
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Domain requirements (examples) 

• Library system 

– There shall be a standard user interface to all databases which 
shall be based on the Z39.50 standard. 

– Because of copyright restrictions, some documents must be 
deleted immediately on arrival. Depending on the user’s 
requirements, these documents will either be printed locally on the 
system server for manually forwarding to the user or routed to a 
network printer. 

• Train Protection system 

– The deceleration of the train shall be computed as: 

  Dtrain = Dcontrol + Dgradient  

 where Dgradient is 9.81ms2 * compensated gradient/alpha and where 
the values of 9.81ms2 /alpha are known for different types of train 
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User requirements 

• Should describe functional and non-functional 

requirements so that they are understandable by system 

users who don‟t have detailed technical knowledge 

• User requirements are defined using natural language, 

tables and diagrams 
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Problems with natural language 

• Lack of clarity  

 Precision is difficult without making the document 

difficult to read 

• Requirements confusion 

  Functional and non-functional requirements tend to be 

mixed-up 

• Requirements amalgamation 

  Several different requirements may be expressed 

together 
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Identifying Use Case 

Diagrams 
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Developing Use Case Diagrams 

• Review the business specifications and identify the actors 

involved 

• Identify the high-level events and develop the primary use 

cases that describe those events and how the actors initiate 

them 

• Review each primary use case to determine the possible 

variations of flow through the use case 

• The context-level data flow diagram could act as a starting 

point for creating a use case 
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Define use cases 

Use cases - narrative descriptions of domain processes in a structured 

prose format 

 

• Use case : Play a game 

• Actors     : Player 

 

• Description:  This use case begins when the player picks 

up and rolls the die….   
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Define domain model 

• OO Analysis concerns 

 specification of the problem domain 

 identification of concepts (objects) 

 Decomposition of the problem domain includes 

 identification of objects, attributes, associations 

• Outcome of analysis expressed as a domain model. 
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Developing the Use Case 

Scenarios 

• The description of the use case 

• Three main areas 

 Use case identifiers and initiators 

 Steps performed 

 Conditions, assumptions, and questions 
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High level vs. Low Level Use cases (1) 

• Consider the following use cases: 

 Log out 

 Handle payment 

 Negotiate contract with a supplier 

• These use cases are at different levels. Are they all valid? 

To check, use the EBP definition. 
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High level vs. Low Level Use cases (2) 

• Log out: a secondary goal; it is necessary to do something 

but not useful in itself.  

• Handle payment: A necessary EBP. Hence a primary goal. 

• Negotiate contract: Most likely this is too high a level. It is 

composed of several EBPs and hence must be broken 

down further. 
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More On Use Case 

• Narrate use cases independent of implementation 

 State success scenarios (how do you determine the success of a use 
case). 

 A use case corresponds to one or more scenarios. 

 Agree on a format for use case description 

 Name a use case starting with a verb in order to emphasize that it is 
a process (Buy Items, Enter an order, Reduce inventory) 
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Why Use Case Diagrams Are Helpful 

• Identify all the actors in the problem domain 

• Actions that need to be completed are also clearly 

shown on the use case diagram 

• The use case scenario is also worthwhile 

• Simplicity and lack of technical detail 
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The Main Reason for Writing Use Case 



Requirement and Analysis 

Using UML 
46 

CRC Card 



Requirement and Analysis 

Using UML 
47 

CRC Cards and Object Think 

• CRC 

 Class  

 Responsibilities 

 Collaborators  

• CRC cards are used to represent the responsibilities of 

classes and the interaction between the classes 
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Interacting during a CRC Session 

• Identify all the classes you can 

• Creating scenarios  

• Identify and refine responsibilities 
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CRC Layout 
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Student CRC Card 
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CRC Model 
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How to Create CRC Diagram 

• Find classes. 

• Find responsibilities. 

• Define collaborators. 

• Move the cards around. To improve everyone‟s 

understanding of the system, the cards should be 

placed on the table in an intelligent manner. 
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Class and Its Relation 
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Class Diagrams (1) 

• Show the static features of the system and do not 

represent any particular processing 

• Shows the nature of the relationships between classes 

• Shows data storage requirements as well as 

processing requirements 
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Class Diagrams (2) 

• Classes 

• Attributes 

 Private 

 Public 

 Protected 

• Methods 

 Standard 

 Custom 
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Example of Class Diagrams 
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Method Overloading 

• Including the same method (or operation) several 

times in a class 

• The same method may be defined more than once in 

a given class, as long as the parameters sent as part 

of the message are different 
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Types of Classes 

• Entity classes 

• Interface classes 

• Abstract classes 

• Control classes 
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Entity Classes 

• Represent real-world items 

• The entities represented on an entity-

relationship diagram 
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Interface or Boundary Classes 

• Provide a means for users to work with the system 

• Human interfaces may be a display, window, Web 

form, dialogue box, touch-tone telephone, or other 

way for users to interact with the system 

• System interfaces involve sending data to or 

receiving data from other 
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Abstract Classes 

• Linked to concrete classes in a 

generalization/specialization relationship 

• Cannot be directly instantiated 
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Control Classes 

• Used to control the flow of activities 

• Many small control classes can be used to achieve 

classes that are reusable 
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Defining Messages and Methods 

• Each message may be defined using a 

notation similar to that described for the data 

dictionary 

• The methods may have logic defined using 

structured English, a decision table, or a 

decision tree 
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Relationships 

• The connections between classes 

 Associations 

 Whole/part  
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Associative Class Between Student and 

Course 
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Associations 

• The simplest type of relationship 

• Association classes are those that are used to break up 

a many-to-many association between classes 

• An object in a class may have a relationship to other 

objects in the same class, called a reflexive association 
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Whole/Part Relationships 

• When one class represents the whole object, and other 

classes represent parts 

• Categories 

 Aggregation 

 Collection 

 Composition 
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Aggregation 

• A “has a” relationship 

• Provides a means of showing that the whole object is 

composed of the sum of its parts 
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Collection 

• Consists of a whole and its members 

• Members may change, but the whole retains its 

identity 

• A weak association 
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Composition 

• The whole has a responsibility for the parts, and is a 

stronger relationship 

• If the whole is deleted, all parts are deleted 
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Composition 

VS 

Aggregation 
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Generalization/Specialization Diagrams 

• Generalization 

• Inheritance 

• Polymorphism 

• Abstract classes 

• Messages 
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Generalization 

• Describes a relationship between a general kind of thing 

and a more specific kind of thing 

• Described as an “is a” relationship 

• Used for modeling class inheritance and specialization 

• General class is a parent, base, or superclass 

• Specialized class is a child, derived, or subclass 
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Inheritance 

• Helps to foster reuse 

• Helps to maintain existing program code 
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Polymorphism 

• The capability of an object-oriented program to have 

several versions of the same method with the same 

name within a superclass/subclass relationship 

• The subclass method overrides the superclass method 

• When attributes or methods are defined more than 

once, the most specific one is used 
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Abstract Classes 

• Abstract classes are general classes 

• No direct objects or class instances, and is only used in 

conjunction with specialized classes 

• Usually have attributes and may have a few methods 
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Gen/Spec 

Diagram 
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Finding Classes 

• During interviewing or JAD sessions 

• During facilitated team sessions 

• During brainstorming sessions 

• Analyzing documents and memos 

• Examining use cases, looking for nouns 
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Determining Class Methods 

• Standard methods 

• Examine a CRUD matrix 
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Messages 

• Used to send information by an object in one class to an 

object in another class  

• Acts as a command, telling the receiving class to do 

something 

• Consists of the name of the method in the receiving class, as 

well as the attributes that are passed with the method name 

• May be thought of as an output or an input 
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Statechart Diagram 
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Statechart Diagrams (1) 

• Used to examine the different states that an object may have 

• Created for a single class 

 Objects are created, go through changes, and are deleted or removed 

• Objects 

• States 

• Events 

 Signals or asynchronous messages 

 Synchronous 

 Temporal events 
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Statechart Diagrams (2) 

• Created when 

 A class has a complex life cycle 

 An instance of a class may update its attributes in a number of 

ways through the life cycle 

 A class has an operational life cycle 

 Two classes depend on each other 

 The object‟s current behavior depends on what happened 

previously 
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Example of 

Statechart 

Diagrams 
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Putting UML to Work 

  The steps used in UML are: 

 Define the use case model 

 Continue UML diagramming to model the system during the 

systems analysis phase 

 Develop the class diagrams 

 Draw statechart diagrams 

 Begin systems design by refining the UML diagrams 

 Document your system design in detail 
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