
Teknik Informatika – Universitas Komputer Indonesia

UML Diagramming and

Notation

UML Diagramming and

Notation
2

List of Material

• Introduction of UML

• Use Case Modelling

• Activity Diagram Modelling

• Sequence Diagram Modelling

• Class and Object Diagram Modelling

• State Diagram Modelling

• Deployment Diagram Modelling

• Package Diagram Modelling

UML Diagramming and

Notation
3

Introduction of UML

UML Diagramming and

Notation
4

1. OO languages muncul pada pertengahan tahun 70 sampai 80.

2. Antara tahun 89 sampai 94, metode OO meningkat dari 10% sampai

50%.

3. Dicetuskan oleh Three Amigos:

a. Grady Booch - Fusion

b. James Rumbaugh – Object Modeling Technique (OMT)

c. Ivar Jacobson – Object-oriented Software Engineering: A Use Case

Approach (Objectory)

d. (And David Harel - StateChart)

UML History (1)

UML Diagramming and

Notation
5

Unification of ideas began in mid 90’s.
Rumbaugh joins Booch at Rational ’94
v0.8 draft Unified Method ’95
Jacobson joins Rational ’95
UML v0.9 in June ’96

UML 1.0 offered to OMG in January ’97
UML 1.1 offered to OMG in July ’97
Maintenance through OMG RTF
UML 1.2 in June ’98
UML 1.3 in fall ’99
UML 1.5 http://www.omg.org/technology/documents/formal/uml.htm

UML 2.0 underway http://www.uml.org/

UML History

http://www.omg.org/technology/documents/formal/uml.htm
http://www.uml.org/

UML Diagramming and

Notation
6

• An effort by IBM (Rational) – OMG to standardize OOA&D notation

• Combine the best of the best from

 Data Modeling (Entity Relationship Diagrams);

 Business Modeling (work flow); Object Modeling

 Component Modeling (development and reuse - middleware,

COTS/GOTS/OSS/…:)

• Offers vocabulary and rules for communication

• Not a process but a language

UML (Unified Modelling Language)

UML Diagramming and

Notation
7

UML for Visual Modelling

Business Process

Places Order

Item

Ships the Item

via

Fulfill Order

Customer

Sales

Representative

A picture is worth a thousand words!

UML Diagramming and

Notation
8

1. Things - important modelling concepts

2. Relationships – tying individual things

3. Diagram – grouping interrelated collections

of things and relationships

Building Blocks of UML

UML Diagramming and

Notation
9

Structural Thing in UML

IGrade

Manage Course

Registration

Register

for Courses

Event Mgr

thread

time

Start

suspend()

stop()

 Course.cpp

Collaboration
Use Case

UnivWebServer <<interface>>

IGrade

setGrade()

getGrade()

(chain of responsibility

shared by a web of interacting objects,

structural and behavioral)

(a system service

-sequence of

Interactions w. actor)

UML Diagramming and

Notation
10

Behavioral Thing in UML

Two primary kinds of behavioral things:

 Verbs.
 Dynamic parts of UML models: “behavior over time”
 Usually connected to structural things.

 Interaction
a set of objects exchanging messages, to accomplish a specific purpose.

 State Machine
specifies the sequence of states an object or an interaction goes through during its

lifetime in response to events.

inParty inStudy
received-an-A/

buy-beer

sober/turn-on-PC

ask-for-an-A harry: Student

name = “Harry Kid”

katie: Professor

 name = “Katie Holmes”

UML Diagramming and

Notation
11

Group Thing in UML
• For organizing elements (structural/behavioral) into groups.

• Purely conceptual; only exists at development time.

• Can be nested.

• Variations of packages are: Frameworks, models, & subsystems.

Course Manager

Annotational Things in UML: Note

- Explanatory/Comment parts of UML models - usually called adornments

- Expressed in informal or formal text.

flexible

 drop-out dates

Course Manager
Student Admission

-Student

+Department

operation()

{for all g in children

 g.operation()

}

UML Diagramming and

Notation
12

Relationship in UML
1. Associations

Structural relationship that describes a set of links, a link being a connection

between objects. variants: aggregation & composition

4. Dependency

a change to one thing (independent) may affect the semantics of the other thing

(dependent).

2. Generalization

a specialized element (the child) is more specific the generalized element.

3. Realization

one element guarantees to carry out what is expected by the other element.

(e.g, interfaces and classes/components; use cases and collaborations)

UML Diagramming and

Notation
13 13

UML 1.x VS UML 2.0

Behavioral Diagrams

Represent the dynamic aspects.

 Use case

 Sequence;

 Collaboration

 Statechart

 Activity

Structural Diagrams

Represent the static aspects of a

system.

 Class;

 Object

 Component

 Deployment

Behavioral Diagrams

 Use case

 Statechart

 Activity

Structural Diagrams

 Class;

 Object

 Component

 Deployment

 Composite Structure

 Package

Interaction Diagrams

 Sequence;

 Communication

 Interaction

Overview

 Timing

UML 2.0: 12 diagram types UML 1.x: 9 diagram types.

UML Diagramming and

Notation
14

• Structural diagrams

 Used to describe the relation between classes

• Behavior diagrams

 Used to describe the interaction between people (actors)

and a use case (how the actors use the system)

UML Diagram

UML Diagramming and

Notation
15

1. Class diagram

2. Object diagram

3. Component diagram

4. Deployment diagrams

Structural Diagram

UML Diagramming and

Notation
16

1. Use case diagrams

2. Sequence diagrams

3. Collaboration diagrams

4. Statechart diagrams

5. Activity diagrams

Behavioral Diagram

UML Diagramming and

Notation
17

• Use case diagram

 Describing how the system is used

 The starting point for UML modeling

• Use case scenario

 A verbal articulation of exceptions to the main behavior

described by the primary use case

• Activity diagram

 Illustrates the overall flow of activities

Commonly Used Diagram (1)

UML Diagramming and

Notation
18

• Sequence diagrams

 Show the sequence of activities and class relationships

• Class diagrams

 Show classes and relationships

• Statechart diagrams

 Show the state transitions

Commonly Used Diagram (2)

Overview of UML

Diagram

UML Diagramming and

Notation
19

UML Diagramming and

Notation
20

Use Case Modelling

UML Diagramming and

Notation
21

• Describes what a user expects the system to do

 functional requirements

• May describe only the functionalities that are visible to

the user

 requirements view

• May include additional functionalities to elaborate those

in the previous step

 design view

• Consists of use case diagrams and textual descriptions

Use Case Model

UML Diagramming and

Notation
22

actor

Use case Use case

Use case Use case

generalization

dependency

dependency

Subject

Element of Use Case Diagram

UML Diagramming and

Notation
23

Use Case Symbol

SYMBOL NAME OF SYMBOL EXPLANATION

Actor Accessing use case

Use Case Show what the system do

Association Relate the actor with use case

System Boundary

Show boundary between system

and its environment

System

UML Diagramming and

Notation
24

• Subject

 A black box that describes the system or subsystem that is modeled

 Example: ATM system, login subsystem

 Represented optionally as a rectangle in the use case diagram, but

generally not shown

• Actor

 A role played by an external entity that interacts with the subject

 One object may play multiple roles in a context in which case there will

be multiple actors

example: bank manager playing the role of a teller or that of a customer

Use Case Definition (1)

UML Diagramming and

Notation
25

• Primary actor

 An actor who initiates the major, main or important use cases in the

system

 Example : a customer in a banking system

• Secondary actor

 An actor who is involved with one or more use cases but does not

initiate any use case

 Example : database

• There is no syntactic difference between a primary actor and a

secondary actor

Use Case Definition (2)

UML Diagramming and

Notation
26

• Generalization between actors

 One actor can be a specialization of another actor

 Based on the same concept as the specialization relationship between

classes

 Example : preferred customer in a bank is a specialization of a customer

• Use case

 An important functionality to be implemented and is visible to the actors

 An interacting behavior between an actor and the subject

• Must yield an observable result to the actor

 Example: “deposit” in a banking system

Use Case Definition (3)

UML Diagramming and

Notation
27

• Association

 An interaction between an actor and a use case

 Unidirectional associations must be represented by

arrows

 Direction of arrow indicates information flow

 Bi-directional associations can be represented by

double-sided arrows or straight lines

Use Case Definition (4)

UML Diagramming and

Notation
28

• “include” dependency

 One use case may include another use case

 If use case A includes use case B, B must be implemented in order

to implement A

 Represented as a dashed arrow from A to B with a label

“<<include>>”

 Example : use case “withdraw” includes use case “update account”

Use Case Definition (5)

B
<<include>>

A

UML Diagramming and

Notation
29

• “extend” dependency

 One use case may be extended by another use case

 If use case A is extended by use case B, then both A and B

can be independently implemented and used

• A will occasionally use B depending on some

constraints

Use Case Definition (6)

UML Diagramming and

Notation
30

• “extend” dependency (continued)

 Represented as a dashed arrow from B to A with a label

“<<extend>>”

 Notice that the arrow is reversed

 Example :

 Use case “withdraw” is extended by use case “compute penalty” when

the user withdraws an amount more than the balance in the account; the

use case “compute penalty” is therefore occasionally used by “withdraw”.

Use Case Definition (6)

B
<<extend>>

A

UML Diagramming and

Notation
31

• ““generalization” dependency

 Actor and Use Case can be generalized

 Generalization is used to make actors or use case that

more spesific than another actor and use case

Use Case Definition (7)

A

B C

a

b c

UML Diagramming and

Notation
32

Example of Generalization, Extension, and

Inclusion

UML Diagramming and

Notation
33

• Every use case must be connected to an actor or

be included in another use case or extends

another use case

• Every use case connected to an actor must return

an observable result to the actor

 The result may be data, confirmation or termination of an action

Constraints in Use Case Model

UML Diagramming and

Notation
34

• Every requirement is a use case

• Every functionality that supports the implementation of a requirement

is a use case

 Design issue

 Found when the first (abstract) use case model is refined to

express a design

• Do not confuse a “use case” with a “method” in implementation

 Generally, there is a one-to-many relationship between a use

case and a method

How To Find Use Case?

UML Diagramming and

Notation
35

• Extracted from the application domain

• Must be justifiable from the application domain or from

the designer‟s choice

• Examples

 Use case “withdraw” includes use case “update account” is

justifiable from application domain

 Use case “withdraw” is extended by “compute penalty” is a

designer‟s choice

• Designer can decide to implement two different versions of

withdrawals or just only one with no extension

How To Find Use Case Relationship?

UML Diagramming and

Notation
36

• Important for design and implementation of use

cases

• Different types

 Textual (informal) descriptions

 Algorithmic descriptions

 Diagrammatic descriptions (activity diagram)

Use Case Narrative/Scenario

UML Diagramming and

Notation
37

A. Name: Give a short, descriptive name to the use case

B. Actors: List the actors who can perform this use case

C. Goals: Explain what the actor or actors are trying to achieve

D. Preconditions: State of the system before the use case

E. Summary: Give a short informal description

F. Related use cases

G. Steps: Describe each step using a 2-column format

H. Postconditions: State of the system in following completion

A and G are the most important

Describe An Use Case

UML Diagramming and

Notation
38

Example of Use Case Narrative/Scenario

UML Diagramming and

Notation
39

Case Study for Use Case

Modelling

UML Diagramming and

Notation
40

• Model only the transactions

• Customer accounts assumed to exist

 Opening and closing of accounts are handled by

another portion of the system

• Include operations “deposit”, withdraw”, “check

balance”, “transfer”

• If balance is zero or less than the amount to be

withdrawn, then withdrawal should fail

Case Study - ATM

UML Diagramming and

Notation
41

Case Study - ATM

Deposit

Withdraw

Check balance

Transfer
Database

customer

Login

Logout

UML Diagramming and

Notation
42

Case Study – ATM (Revised)

Deposit

Withdraw

Check balance

Transfer
Database

Logout

Validate

account

Update

account

All dependency relationships are of type

<<include>>

Use case diagram for ATM – revised to show design issues

Login

UML Diagramming and

Notation
43

Activity Diagram Modelling

UML Diagramming and

Notation
44

• Represents a sequence of activities

• An activity is a group of atomic actions

• An action is indivisible (atomic) task

 Example: change the value of a variable/field

• An activity may consist of sub-activities or actions or both

• In general, activities may be decomposable but actions

are not.

 Activities can be interrupted by events, but actions are not.

Activity Diagram

UML Diagramming and

Notation
45

Activity Diagram

initial

branch

subactivity

action

merge

final

C

~C

C – Boolean expression

action

UML Diagramming and

Notation
46

• An activity diagram consists of a collection of action states,

sub-activities and transitions

• Every activity diagram must have only one initial state and one

or more final states

 The initial state represents the beginning of the activity and a final

state represents the termination of an activity

• Actions are represented by action states (rounded rectangles)

• A sub-activity is also represented by a rounded rectangle but

with an icon inside the rectangle

Semantic of Activity Diagram (1)

UML Diagramming and

Notation
47

• When expanded, each sub-activity is diagrammatically

substituted with the incoming and outgoing transitions

matched

• Sequence of actions is represented by transitions between

actions

 Transitions are simple straight arrows with no labels or parameters

 Transitions may have guards/conditions, send-clause and actions

(very similar to those in state transition diagrams)

 Transitions are augmented with conditions at branching

Semantic of Activity Diagram (2)

UML Diagramming and

Notation
48

• A branch is represented by a diamond

 Has one incoming transition to enter the branch

 Two or more outgoing transitions augmented with mutually

exclusive conditions

• A merger is also represented by a diamond

 Two or more incoming transitions and one outgoing

transition

 The outgoing transition will be fired only when all the

incoming transitions are fired

Semantic of Activity Diagram (3)

UML Diagramming and

Notation
49

• An activity diagram can be used to

 describe a use case

 describe a method in a sequence or communication diagram

 describe an action associated with a transition in a state diagram,

or the entry action or the exit action of a state diagram

• Caution: the word “action” in state diagram represents a

higher level task while the same word in an activity diagram

represents an atomic non-divisible computation

When to Use Activity Diagram

UML Diagramming and

Notation
50

More Syntax in Activity Diagram

action

action action

Fork node

Join node

action : Class

Object

Obj.action

(params)

UML Diagramming and

Notation
51

Example of Activity Diagram

UML Diagramming and

Notation
52

• An activity partition represents a group of actions

 Actions grouped based on who performs the actions

 Actions grouped based on the functionality achieved by the

actions

 Actions grouped based on timing events

• Previous versions of UML call this as “swim lane”.

Activity Partition

UML Diagramming and

Notation
53

More Syntax in Activity Diagram

Display Bar
Update status

of Bar

Initialize Bar

DisplayWindow Installer

:Progress Bar

UML Diagramming and

Notation
54

Sub Activity

An action state in an activity diagram can be

represented by a sub activity as shown below

A sub activity represents a simplification of

another activity diagram

It reduces the space for an activity diagram

Subactivity

UML Diagramming and

Notation
55

• A subactivity is a representation of another activity

diagram

• The incoming arrow to a subactivity matches with the

initial state of the activity diagram represented by the

subactivity

• The outgoing arrow from a subactivity matches with the

final state of the activity diagram represented by the

subactivity

Sub Activity Semantics

UML Diagramming and

Notation
56

Customer Sales Stockroom

Request

service

Take Order

Pay
Fill Order

Deliver

order Collect

order

UML Diagramming and

Notation
57

• Objects passed as parameters between action states can be

represented in the activity diagram (and in swimlane diagram)

using the same syntax for objects

• The transition between an object parameters and an action

state is represented with a dashed line, instead of a solid line

Object as Parameters

UML Diagramming and

Notation
58

Customer Sales Stockroom

Request

service

Take Order

Pay
Fill Order

Deliver

order
Collect

order

: Order

[placed]

:Order

[entered]

: Order

[filled]

:Order

[delivered

]

UML Diagramming and

Notation
59

Sequence Diagram Modelling

UML Diagramming and

Notation
60

Sequence diagram

• A two-dimensional chart that describes collaborations

• Each sequence diagram describes a particular scenario

 E.g., a sequence diagram can describe successful

withdrawal operation

 Another sequence diagram can describe failure of

withdrawal operation due to insufficient funds

 It is also possible to describe both scenarios in one

sequence diagram

UML Diagramming and

Notation
61

Sequence diagram: basic syntax

Obj1 : ClassA : ClassB Obj2 : ClassC

method-in-B()

return

stimulus

message to

self

return

[condition] method(parameters)

concurrent method() concurrent method()

lifeline

return

message

UML Diagramming and

Notation
62

Sequence diagram – semantics (1)

• Rectangular boxes on the top indicate objects

• The dotted vertical line indicates the life line of the

corresponding object

• Rectangular boxes on the dotted vertical line indicate the

duration in which the corresponding object is active; the object is

idle otherwise

• A solid arrow with solid arrowhead indicates a message

• A solid arrow with thin arrowhead indicates a stimulus

• A dashed arrow indicates return of control

UML Diagramming and

Notation
63

Sequence diagram – semantics (2)

• Messages/stimuli may be augmented with conditions

• Messages/stimuli can be concurrent

 start from one object and send messages or

signals to more than one object at the same time

• The vertical dimension indicates time axis

 A message „Y‟ placed below a message „X‟ in a

sequence diagram indicates that message „X‟ is

sent before message „Y‟

UML Diagramming and

Notation
64

Sequence diagram – semantics (3)

• Objects with dashed vertical line for the entire diagram have lifeline for the

entire scenario

 These objects are assumed to be already created before this scenario

starts and assumed to exist even after the scenario ends

• Objects with short life span within a scenario can be shown differently (see

the next diagram)

• There is no ordering required among the placement of objects on the

horizontal line

 A designer may choose the ordering for the convenience of drawing the

diagram

UML Diagramming and

Notation
65

Sequence diagram – extended syntax

: ClassB

 : ClassC

constructor of B ()

constructor of C ()

message to

self

[condition] method(parameters)

return

 : ClassA

UML Diagramming and

Notation
66

Sequence diagram – semantics (4)

• The creation of an object is shown by the vertical

displacement of the object from the top of the diagram.

The object is placed at the point of creation

– See the creation of objects from class A and from

class B

• The termination of an object can be shown by placing an

“X” at the bottom of its life line

– See the destruction of the object from class C

UML Diagramming and

Notation
67

Sequence diagram – Specifying Loops
: User : Accounts DB

: Account

Deposit (act[], amount)

Validate Account (act[i])

Create (act[i], bal)

Deposit(amount)

return

Loop

(1..act.length)

Depositing the same amount into several accounts

Reserved

word

Delete()

UML Diagramming and

Notation
68

Concurrent messages / stimuli - semantics

• an object can send two messages / stimuli to two different objects at the

same time

 concurrent execution

 there may be a condition on each of these messages / stimuli but they

can be totally different

 the tail end of these two messages / stimuli coincide at the originating

object

 the arrow heads may physically be on different horizontal levels but

logically they are at the same time line (horizontal level)

 see “Op4() and Op5()” in the diagram (next page)

UML Diagramming and

Notation
69

Time-based messages / stimuli- semantics

• a message can be split into two, leading to two destination objects with

mutually exclusive conditions

 see “Op1(x)” in the diagram

• a lifeline can be split into a side track for a specific duration to indicate

mutually exclusive situations

 see “Obj4” in the diagram

• iterations can be specified using a condition at the beginning of a

message / stimulus

 see “Op2(y)” in the diagram

• timing constraints can be added onto the messages / stimuli or on the

vertical time axis

UML Diagramming and

Notation
70

Concurrent and time-based messages and stimuli

X

Obj1 : C1 Obj2 : C2

Obj3 : C3

Obj4 : C4

[x > 0] Op1(x)

[x <= 0] Op1(x)
[for each y] Op2(y)

[y >= 0]

Op3(y)

return

return

return

[t = 0]

[t <= 30]
Op4()

Op5()

UML Diagramming and

Notation
71

Example – Course registration system

• Scenario

 A student object checks the availability of seats in a course. If

available, it sends a message to register. The course object

checks for the prerequisites first. Upon acceptance, the course

object returns the message back to the student object and at the

same time informs the account object to bill the student. The

account object then communicates with the student to get the

payment for the course.

 The following diagram shows a successful course registration

process

UML Diagramming and

Notation
72

:Account :Student :Course
check seat availability()

return

register (id, prereqs)

return initiate payment (id, course number)

request payment (course number, amount)

payment (id, course number, amount)

check prerequisites(prereqs)

update student record

(id, course number,

amount)

return

update enrollment (id)

UML Diagramming and

Notation
73

Class and Object Diagram

Modelling

UML Diagramming and

Notation
74

Class name

Methods

Class name

Attributes

Methods

Class name

Class name

Attributes

Association

name

aggregation

specialization

This is a

subclass

comments

Aggregate

Component This is a

superclass

Class diagram – basic syntax

UML Diagramming and

Notation
75

Class Diagram: semantics (1)

• A class icon must have a class name. Optionally, it can have

attributes and/or methods.

• Attributes and methods are strings and will not be validated by

the modeling tools.

• Attributes can be specified by their names or by <name : type>

pairs.

• Methods can be specified by their names or with partial

signatures or with complete signatures.

UML Diagramming and

Notation
76

Class Diagram: semantics (2)

• Comments can be included in any diagram with a rectangle folded at

right top corner

 The dotted line from the comment is important to indicate which

portion of the diagram is explained by the comment

• Suggestion

 For validation purposes, when showing aggregation relationship,

the aggregate (the one near the diamond edge) must include an

attribute whose type is the component class

UML Diagramming and

Notation
77

Class

UML Diagramming and

Notation
78

Details of a class icon

Account

- Account number : Integer

- Balance : Real

- Overdraft : Boolean = true

+ GetAccountNumber () : Integer

UpdateBalance (sign :Sign, amt : Integer)

~ ReturnBalance () : Real

- ChangeOverdraft ()

+ public

- private

protected

~ visible within

the package

Initial value

UML Diagramming and

Notation
79

An abstract class

Polygon

{abstract, author = Kasi, last

modified = Oct 2002}

<<constructor>>

+ Polygon(List of Vertex vertices)

<<query>>

#area () : Real

UML Diagramming and

Notation
80

Multiplicity

Multiplicity Explanation

0..1 0 or 1

1 Mandatory 1

0..* 0 or Many

1..* 1 or Many

* Many

UML Diagramming and

Notation
81

Object Diagram

act : Account

Account # = 1256

UserID = 120

Balance = 0

act : Account

Various representations of an account object

: Account

UML Diagramming and

Notation
82

Association –syntax

User
Account

-Account number

-Balance

-Overdraft

+Get accountID ()

+Update balance()

+Return balance()

uses

1
n

Association label
Direction of association

cardinality

Manager

customer

Unary association

Role names

Corporate Account

1

n

{xor}

UML Diagramming and

Notation
83

Association – Semantics (1)

• Every association is expected to be labeled

 UML does not require a name for an association

• Direction of an association, cardinality, role name are all

optional

 For unary associations, it is better to include role names

• Representations of cardinality

 0, 1, * (zero or more), n..m (values in the range between n

and m both inclusive)

UML Diagramming and

Notation
84

Association – Semantics (2)

• A constraint may be [optionally] placed between two associations

 See the example in the previous slide that asserts an

Exclusive OR relationship between the associations

• When a subclass specializes a superclass, it also inherits all

associations between the superclass and other classes

• In the previous example, the association “uses” between “User”

and “Account” is also inherited by the pair “User” and “Corporate

Account”

UML Diagramming and

Notation
85

Association with qualifiers

User
Account

-Account number

-Balance

-Overdraft

+Get accountID ()

+Update balance()

+Return balance()

uses

1 n

Corporate Account

A
cco

u
n
t n

u
m

b
er

Qualifier

Qualifier attribute

UML Diagramming and

Notation
86

Association - Qualifiers

• Qualifiers can be attached to a “one-to-many” association

 It is rectangle attached to the “many” end of the

association

• A qualifier is a collection of variables whose values

uniquely identify an instance at the “many” end of the

association

 In the example, an account number uniquely identifies

an account in a collection of accounts

• Qualifier is part of the association

UML Diagramming and

Notation
87

Association Class

User Account

Transaction

Employee Job

Salary

UML Diagramming and

Notation
88

Association Class - semantics

• A piece of information that belongs to both classes in an association

is put into a separate class called “association class”

– Association class is a dependent class that depends on the other

two classes in the association

– An association class cannot exist independently

– An object of an association class must refer to objects of the

other two classes in the association

• Example: A “Transaction” object depends on a “User” object

and on an “Account” object.

UML Diagramming and

Notation
89

Shared Aggregation

An aggregation relationship in which the component can be

shared by classes/objects outside the aggregation

Team Person Family

Person object is shared by both Team and Family objects

Shared aggregation is indicated by a hallow diamond

Caution: Changes made to a component object will

affect all the aggregates that include the component.

UML Diagramming and

Notation
90

Composite Aggregation

An aggregation relationship in which the component is an

exclusive part of the aggregate; hence, not shared.

Air Plane

Wing

Engine

1
2

1 2

Composite aggregation is indicated by a filled diamond

UML Diagramming and

Notation
91

Composition VS Aggregation

Bila Universitas ditutup maka Fakultas dan Jurusan akan hilang akan tetapi Dosen

tetap akan ada. Begitupun relasi antar Fakultas dengan Jurusan

Jurusan Dosen

1 1..*

Fakultas Universitas

1

1..*

1..* 1

UML Diagramming and

Notation
92

Association VS Composition VS Aggregation

UML Diagramming and

Notation
93

Advanced Specialization

Person

Boy Girl Swimmer Runner

Gender

{complete, disjoint}

Sports activity

{incomplete, overlapping}

These optional domain words make the relationships easier to understand.

UML Diagramming and

Notation
94

How to find classes? (1)

• Nouns in requirements document or use case descriptions

may provide a good starting point, but often are

inadequate

• Each class should contain a distinct set of operations

relevant to the system under consideration

 Think of a class as an ADT

• Remove vague classes

 Classes that do not adequately describe themselves

• A class that represents the internet

UML Diagramming and

Notation
95

How to find classes? (2)

• Try not to include implementation-oriented classes in the

analysis model

 May be introduced later during design and/or

implementation

 Examples: array, tree, list

 These classes will not only occupy so much space in

the diagram but also tend to divert the focus of

analysis

UML Diagramming and

Notation
96

How to identify associations? (1)

• An association corresponds to a semantic

dependency between classes

 Class A uses a service from class B (client-server)

 Class A has a structural component whose type is

class B (aggregation)

 Class A sends data to or receives data from class

B (communication)

UML Diagramming and

Notation
97

How to identify associations? (2)

• Include only those associations that are relevant to the current model

 Constrained by assumptions, simplifications, system boundary (what

is expected to be provided by the system)

 Three different associations between “Faculty member” and “Course”

• “Faculty member” teaches “Course” in a course registration

system

• “Faculty member” creates “Course” in a curriculum development

system

• “Faculty member” evaluates “Course” in a course

evaluation/inspection system

UML Diagramming and

Notation
98

How to identify associations? (3)

• Eliminate redundant associations

 “Faculty member” teaches “Course”

 “Course” is taught between “Time” to “Time”

 Therefore, “Faculty member” teaches between “Time” to

“Time”

• use transitivity between associations

• Remember that subclasses inherit the associations of a

superclass

UML Diagramming and

Notation
99

How to identify aggregations?

• Aggregations are also associations

• Identify as Association if it is not clear whether it is Association or

Aggregation

 “Mail” has “Address” (aggregation)

 “Mail” uses “Address” for delivery (association)

 “Customer” has “Address” (aggregation)

 “Customer” resides at “Address” (association)

 “TV” includes “Screen” (aggregation)

 “TV” sends information to “Screen” (association)

UML Diagramming and

Notation
100

How to identify specialization?

• Generally, specialization relationships are noticeable in

the application domain

• Top-down approach

 “Student”, “Full-time Student”, “Part-time Student”

 “TV”, “Plasma TV”, “Flat Panel TV”

 “Customer”, “Bank manager”, “Teller”

UML Diagramming and

Notation
101

How to identify specialization (2)

• Some of them are discovered during analysis

• Bottom-up approach

 “Part-time Instructor” derived from “Instructor” and “Student”

while modeling a department

 “User” derived from “Customer”, “Bank Manager” and “Teller”

while modeling an ATM system

 “Material” derived from “Book”, “Journal” and “Magazine” while

modeling a library catalog system

UML Diagramming and

Notation
102

Statechart Diagram Modelling

UML Diagramming and

Notation
103

State diagram – basic syntax

initial

final

State name

Unnamed states

entry/ …

exit/ …

do/

event (EventParams)

[guard] /

action (ActionParams)

actions

actions

event (Eparams) /

action (Aparams)

UML Diagramming and

Notation
104

State Diagram

• A transition between states is represented by the event that triggers the

transition

• Transitions may have guards or conditions under which the transitions fire

• A state may optionally have a label

• Every state may have

 An entry action – executed as soon as the state is entered

 An exit action – executed just before leaving the state

 A “do” action – executed while the object is in this state; it may be

ongoing action until the object leaves the state

UML Diagramming and

Notation
105

State Formal Definition (1)

• A state is a condition in the life of an object during which the object

performs an action or waits for some event

• A state is represented by the collection of attributes and their

corresponding values

• An object after being created must be in at one particular state at

any instant

– Unless otherwise mentioned, an object remains in a state for a

finite time

– UML allows modeling of transient states (states that exist only for

a very short and insignificant duration)

UML Diagramming and

Notation
106

State Formal Definition (2)

• A state (directly or indirectly) includes links (instances of

associations) connected with the object at that instant

• A state may be decomposed into concurrent sub-states

(AND relationship)

• A state may be composed using mutually exclusive

disjoint sub-states (OR relationship)

UML Diagramming and

Notation
107

Event Formal Definition

• A noteworthy occurrence

 UML manual version 1.5

• Something that happens within the system or interacting
with the system at an instant

• Something that has a significant impact on the system

• Examples

 sending a signal or data

 receiving a signal or data

 making a request for execution

 a Boolean condition becoming true

 a timeout condition becoming true

UML Diagramming and

Notation
108

Four types of events in UML

• Signal event
 occurs when an object sends a signal to another

object

• Call event
 occurs when a method or operation in an object is

invoked

• Change event
 occurs when a Boolean condition is changed

• Time event
 occurs when a time limit has reached

UML Diagramming and

Notation
109

Transition (1)

• Represents the change of states of an object

 switch from “Empty balance” to “Positive balance”

• A transition is an abstraction of an operation

 The above transition is an abstraction of deposit

operation

• A transition has finite and significant duration

 Observable time taken to complete deposit operation

UML Diagramming and

Notation
110

Transition (2)

• A transition may have parameters

 A transition corresponding to the deposit operation will have

the “amount” as a parameter

• A transition is triggered/invoked/fired by the occurrence of an

event

 The transition corresponding to deposit will occur by the event

“request for deposit”

 The transition from “Positive balance” to “Empty balance”

occurs by the completion of the operation “withdrawal”

UML Diagramming and

Notation
111

Transition (3)

• A transition may have a guard/condition

 The transition corresponding to the withdrawal operation will occur only

if the balance is greater than or equal to the amount to be withdrawn

 The condition associated with a transition is always the precondition

for the transition and hence must be checked before the transition

occurs

• An event may cause several transitions to fire

 The event that triggers the transition to move to “Empty balance” state

after withdrawal may also cause a message to be sent to the account

holder and at the same time may also cause a note to be recorded in

the account log

UML Diagramming and

Notation
112

Example of State Diagram: Student Class

Initial continuing

completed

register[#courses <

minRequired] /

updateCourses()

register [#courses <

minRequired] /

updateCourses()

register [#courses >=

minRequired] /

updateCourses() graduated

entry/ initializeCourses()

[complete

Graduation

Requirements]

UML Diagramming and

Notation
113

Deployment Diagram

Modelling

UML Diagramming and

Notation
114

Deployment Diagram

• Deployment diagrams show a system's physical layout,

revealing which pieces of software run an what pieces of

hardware.

• embedded system:

 Device, node, and hardware

 Client/server System

 Pure Distributed System

 Re-engineering Application

UML Diagramming and

Notation
115

Example Deployment Diagram

UML Diagramming and

Notation
116

Example Deployment Diagram: Embedded System

UML Diagramming and

Notation
117

Example Deployment Diagram: Client/Server

System

UML Diagramming and

Notation
118

Example Deployment Diagram: Distributed System

UML Diagramming and

Notation
119

Example Deployment Diagram: Distributed System

UML Diagramming and

Notation
120

When to Use Deployment Diagram?

Don't let the brevity of this part make you think that

deployment diagrams shouldn't be used . They are very

handy in showing what is deployed where, so any nontrivial

deployment can make good use of them.

UML Diagramming and

Notation
121

Package Diagram Modelling

UML Diagramming and

Notation
122

Package Diagram

• A UML package diagram depicts two or more packages and

the dependencies between them.

• A package is a UML construct that enables you to organize

model elements, such as use cases or classes, into groups

• Packages are depicted as file folders and can be applied on

any UML diagram, although any diagram that depicts only

packages (and their interdependencies) is considered a

package diagram

UML Diagramming and

Notation
123

When to Used Package Diagram?

• depict a high-level overview of your requirements,

• depict a high-level overview of your design,

• logically modularize a complex diagram,

• organize source code,

• model a framework (Evitts 2000).

UML Diagramming and

Notation
124

Example of

Package

Diagram

UML Diagramming and

Notation
125

Example of Use Case Package Diagram

UML Diagramming and

Notation
126

References

1. Roger S. Presmann, Software Engineering, 6th edition.

2. Kendall, System Analysis and Design, 7th edition.

3. Ian Sommerville, Software Engineering, 8th Edition

4. PPT of Roger S. Pressman (chung and zheng)

5. PPT of Kendall

6. Saiful Akbar, Handouts PPL – ITB, 2011

7. Scott W. Embler, Elements of UML Style 2.0

8. Martin Fowler, UML Distilled 3, Third Edition

