


Effective Methods 
for Software Testing

Third Edition





William E. Perry

Effective Methods 
for Software Testing

Third Edition



Effective Methods for Software Testing, Third Edition
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2006 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN-13: 978-0-7645-9837-1
ISBN-10: 0-7645-9837-6

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

3MA/QV/QU/QW/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or
online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no repre-
sentations or warranties with respect to the accuracy or completeness of the contents of this
work and specifically disclaim all warranties, including without limitation warranties of fit-
ness for a particular purpose. No warranty may be created or extended by sales or promo-
tional materials. The advice and strategies contained herein may not be suitable for every
situation. This work is sold with the understanding that the publisher is not engaged in ren-
dering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an orga-
nization or Website is referred to in this work as a citation and/or a potential source of fur-
ther information does not mean that the author or the publisher endorses the information
the organization or Website may provide or recommendations it may make. Further, read-
ers should be aware that Internet Websites listed in this work may have changed or disap-
peared between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (800) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Library of Congress Control Number: 2005036216

Trademarks: Wiley and related trade dress are registered trademarks of Wiley Publishing,
Inc., in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. Wiley Publishing,
Inc., is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

www.wiley.com


This book is dedicated to my wife Cynthia, who for many years has been
“testing” my ability to live in accordance with our marriage vows. She
taught me that testing is a lifelong process, that testing is necessary to

ensure that you are meeting your objectives, and that testing can be fun
if it is performed correctly. Thank you, Cynthia. What you have taught me

is incorporated into many of the concepts in this book.



William E. Perry holds degrees from Clarkson University, University of Rochester, and
Rochester Institute of Technology. Bill also holds the following professional certifica-
tions: CPA (Certified Public Accountant), CIA (Certified Internal Auditor), CISA (Cer-
tified Information Services Auditor), CSQA (Certified Software Quality Analyst), and
CSTE (Certified Software Tester). He has been an examiner for the Malcolm Baldrige
National Quality Award, and served on standards committees for NIST (National
Institute of Standards and Technology), IEEE (Institute of Electrical and Electronics
Engineers), AICPA (American Institute of Certified Public Accountants) and ISACA
(Information Systems Audit and Control Association).

In 1980, Bill founded the Quality Assurance Institute (QAI), a professional associa-
tion for testers. QAI offers professional certification for Quality Assurance, Software
Testing, Software Project Leaders and Business Analyst Professional. More than 27,000
individuals have been certified since the inception of the program.

Bill has authored more than 50 books, many published by John Wiley & Sons. He
recently founded the Internal Control Institute (ICI). ICI and St. Petersburg College
recently formed the Internal Control Center of Excellence to share best internal control
practices, hold conferences on emerging internal control practices, and to offer e-learning
courses and a professional certification in internal control.

About the Author

vi



Credits

vii

Executive Editor

Robert Elliott

Production Editor

Felicia Robinson

Editorial Manager

Mary Beth Wakefield 

Production Manager

Tim Tate

Vice President and Executive Group

Publisher

Richard Swadley

Vice President and Executive Publisher

Joseph B. Wikert

Project Coordinator

Michael Kruzil

Graphics and Production Specialists

Carrie Foster
Mary J. Gillot
Lauren Goddard
Denny Hager
Joyce Haughyey
Stephanie D. Jumper
Rashell Smith

Quality Control Technicians

John Greenough
Brian H. Walls

Proofreading and Indexing

Techbooks





Introduction xxv

Part I Assessing Testing Capabilities and Competencies 1

Chapter 1 Assessing Capabilities, Staff Competency, and User 
Satisfaction 3
The Three-Step Process to Becoming a World-Class Testing 

Organization 3
Step 1: Define a World-Class Software Testing Model 5

Customizing the World-Class Model for Your Organization 7
Step 2: Develop Baselines for Your Organization 8

Assessment 1: Assessing the Test Environment 8
Implementation Procedures 9
Verifying the Assessment 13

Assessment 2: Assessing the Capabilities of Your Existing 
Test Processes 13

Assessment 3: Assessing the Competency of Your Testers 14
Implementation Procedures 14
Verifying the Assessment 16

Step 3: Develop an Improvement Plan 16
Summary 18

Part II Building a Software Testing Environment 35

Chapter 2 Creating an Environment Supportive of Software Testing 37
Minimizing Risks 38

Risk Appetite for Software Quality 38
Risks Associated with Implementing Specifications 39

Faulty Software Design 39
Data Problems 39

Contents

ix



Risks Associated with Not Meeting Customer Needs 40
Developing a Role for Software Testers 43

Writing a Policy for Software Testing 45
Criteria for a Testing Policy 45
Methods for Establishing a Testing Policy 46

Economics of Testing 47
Testing—An Organizational Issue 50
Management Support for Software Testing 50
Building a Structured Approach to Software Testing 51

Requirements 54
Design 54
Program 55
Test 55
Installation 55
Maintenance 55

Developing a Test Strategy 56
Use Work Paper 2-1 58
Use Work Paper 2-2 58

Summary 60

Chapter 3 Building the Software Testing Process 63
Software Testing Guidelines 63

Guideline #1: Testing Should Reduce Software Development 
Risk 64

Guideline #2: Testing Should Be Performed Effectively 65
Guideline #3: Testing Should Uncover Defects 65

Defects Versus Failures 65
Why Are Defects Hard to Find? 66

Guideline #4: Testing Should Be Performed Using Business 
Logic 67

Guideline #5: Testing Should Occur Throughout the 
Development Life Cycle 68

Guideline #6: Testing Should Test Both Function and Structure 69
Why Use Both Testing Methods? 69
Structural and Functional Tests Using Verification and 

Validation Techniques 69
Workbench Concept 71

Testing That Parallels the Software Development Process 72
Customizing the Software-Testing Process 74

Determining the Test Strategy Objectives 74
Determining the Type of Development Project 75
Determining the Type of Software System 76
Determining the Project Scope 77
Identifying the Software Risks 77
Determining When Testing Should Occur 79
Defining the System Test Plan Standard 79

x Contents



Defining the Unit Test Plan Standard 83
Converting Testing Strategy to Testing Tactics 83

Process Preparation Checklist 86
Summary 86

Chapter 4 Selecting and Installing Software Testing Tools 103
Integrating Tools into the Tester’s Work Processes 103
Tools Available for Testing Software 104
Selecting and Using Test Tools 108

Matching the Tool to Its Use 109
Selecting a Tool Appropriate to Its Life Cycle Phase 109
Matching the Tool to the Tester’s Skill Level 111
Selecting an Affordable Tool 114

Training Testers in Tool Usage 116
Appointing Tool Managers 117

Prerequisites to Creating a Tool Manager Position 118
Selecting a Tool Manager 118
Assigning the Tool Manager Duties 119
Limiting the Tool Manager’s Tenure 120

Summary 120

Chapter 5 Building Software Tester Competency 125
What Is a Common Body of Knowledge? 125
Who Is Responsible for the Software Tester’s Competency? 126
How Is Personal Competency Used in Job Performance? 126

Using the 2006 CSTE CBOK 127
Developing a Training Curriculum 128

Using the CBOK to Build an Effective Testing Team 129
Summary 131

Part III The Seven-Step Testing Process 151

Chapter 6 Overview of the Software Testing Process 153
Advantages of Following a Process 153
The Cost of Computer Testing 154

Quantifying the Cost of Removing Defects 155
Reducing the Cost of Testing 156

The Seven-Step Software Testing Process 156
Objectives of the Seven-Step Process 159
Customizing the Seven-Step Process 160
Managing the Seven-Step Process 161
Using the Tester’s Workbench with the Seven-Step Process 162

Workbench Skills 163
Summary 164

Chapter 7 Step 1: Organizing for Testing 165
Objective 165
Workbench 166
Input 167

Contents xi



Do Procedures 167
Task 1: Appoint the Test Manager 167
Task 2: Define the Scope of Testing 168
Task 3: Appoint the Test Team 168

Internal Team Approach 169
External Team Approach 170
Non-IT Team Approach 170
Combination Team Approach 170

Task 4: Verify the Development Documentation 171
Development Phases 171
Measuring Project Documentation Needs 174
Determining What Documents Must Be Produced 175
Determining the Completeness of Individual Documents 179
Determining Documentation Timeliness 180

Task 5: Validate the Test Estimate and Project Status 
Reporting Process 181

Validating the Test Estimate 182
Testing the Validity of the Software Cost Estimate 185
Calculating the Project Status Using a Point System 189

Check Procedures 200
Output 200
Summary 200

Chapter 8 Step 2: Developing the Test Plan 209
Overview 209
Objective 210
Concerns 210
Workbench 211
Input 212
Do Procedures 212

Task 1: Profile the Software Project 212
Conducting a Walkthrough of the Customer/User Area 212
Developing a Profile of the Software Project 213

Task 2: Understand the Project Risks 215
Task 3: Select a Testing Technique 222

Structural System Testing Techniques 223
Functional System Testing Techniques 229

Task 4: Plan Unit Testing and Analysis 235
Functional Testing and Analysis 236
Structural Testing and Analysis 238
Error-Oriented Testing and Analysis 240
Managerial Aspects of Unit Testing and Analysis 243

Task 5: Build the Test Plan 244
Setting Test Objectives 245
Developing a Test Matrix 245
Defining Test Administration 250
Writing the Test Plan 251

xii Contents



Task 6: Inspect the Test Plan 254
Inspection Concerns 255
Products/Deliverables to Inspect 256
Formal Inspection Roles 256
Formal Inspection Defect Classification 258
Inspection Procedures 259

Check Procedures 262
Output 262
Guidelines 262
Summary 263

Chapter 9 Step 3: Verification Testing 291
Overview 292
Objective 293
Concerns 294
Workbench 294
Input 296

The Requirements Phase 296
The Design Phase 296
The Programming Phase 297

Do Procedures 298
Task 1: Test During the Requirements Phase 298

Requirements Phase Test Factors 299
Preparing a Risk Matrix 302
Performing a Test Factor Analysis 310
Conducting a Requirements Walkthrough 312
Performing Requirements Tracing 314
Ensuring Requirements Are Testable 315

Task 2: Test During the Design Phase 316
Scoring Success Factors 316
Analyzing Test Factors 318
Conducting a Design Review 320
Inspecting Design Deliverables 322

Task 3: Test During the Programming Phase 323
Desk Debugging the Program 325
Performing Programming Phase Test Factor Analysis 326
Conducting a Peer Review 328

Check Procedures 330
Output 331
Guidelines 331
Summary 332

Chapter 10 Step 4: Validation Testing 409
Overview 409
Objective 410
Concerns 410
Workbench 410
Input 411

Contents xiii



Do Procedures 412
Task 1: Build the Test Data 412

Sources of Test Data/Test Scripts 412
Testing File Design 413
Defining Design Goals 414
Entering Test Data 414
Applying Test Files Against Programs That Update 

Master Records 414
Creating and Using Test Data 415
Payroll Application Example 416
Creating Test Data for Stress/Load Testing 430
Creating Test Scripts 430

Task 2: Execute Tests 434
Task 3: Record Test Results 436

Documenting the Deviation 437
Documenting the Effect 438
Documenting the Cause 438

Check Procedures 439
Output 439
Guidelines 439
Summary 440

Chapter 11 Step 5: Analyzing and Reporting Test Results 459
Overview 459
Concerns 460
Workbench 460
Input 461

Test Plan and Project Plan 461
Expected Processing Results 461
Data Collected during Testing 461

Test Results Data 462
Test Transactions, Test Suites, and Test Events 462
Defects 462
Efficiency 463

Storing Data Collected During Testing 463
Do Procedures 463

Task 1: Report Software Status 464
Establishing a Measurement Team 465
Creating an Inventory of Existing Project Measurements 465
Developing a Consistent Set of Project Metrics 466
Defining Process Requirements 466
Developing and Implementing the Process 466
Monitoring the Process 466

Task 2: Report Interim Test Results 470
Function/Test Matrix 470
Functional Testing Status Report 471
Functions Working Timeline Report 472
Expected Versus Actual Defects Uncovered Timeline Report 472

xiv Contents



Defects Uncovered Versus Corrected Gap Timeline Report 473
Average Age of Uncorrected Defects by Type Report 475
Defect Distribution Report 475
Normalized Defect Distribution Report 476
Testing Action Report 477
Interim Test Report 478

Task 3: Report Final Test Results 478
Individual Project Test Report 480
Integration Test Report 480
System Test Report 480
Acceptance Test Report 482

Check Procedures 482
Output 482
Guidelines 482
Summary 483

Chapter 12 Step 6: Acceptance and Operational Testing 491
Overview 491
Objective 492
Concerns 493
Workbench 494
Input Procedures 495

Task 1: Acceptance Testing 496
Defining the Acceptance Criteria 497
Developing an Acceptance Plan 498
Executing the Acceptance Plan 499
Developing Test Cases (Use Cases) Based on How 

Software Will Be Used 500
Task 2: Pre-Operational Testing 503

Testing New Software Installation 509
Testing the Changed Software Version 509
Monitoring Production 512
Documenting Problems 513

Task 3: Post-Operational Testing 513
Developing and Updating the Test Plan 514
Developing and Updating the Test Data 515
Testing the Control Change Process 517
Conducting Testing 518
Developing and Updating Training Material 518

Check Procedures 522
Output 522

Is the Automated Application Acceptable? 522
Automated Application Segment Failure Notification 523
Is the Manual Segment Acceptable? 523
Training Failure Notification Form 524

Guidelines 524
Summary 525

Contents xv



Chapter 13 Step 7: Post-Implementation Analysis 571
Overview 571
Concerns 572
Workbench 572
Input 574
Do Procedures 574

Task 1: Establish Assessment Objectives 574
Task 2: Identify What to Measure 575
Task 3: Assign Measurement Responsibility 575
Task 4: Select Evaluation Approach 575
Task 5: Identify Needed Facts 576
Task 6: Collect Evaluation Data 577
Task 7: Assess the Effectiveness of Testing 577

Using Testing Metrics 577
Check Procedures 580
Output 580
Guidelines 581
Summary 581

Part IV Incorporating Specialized Testing Responsibilities 583

Chapter 14 Software Development Methodologies 585
How Much Testing Is Enough? 585

Software Development Methodologies 586
Overview 586
Methodology Types 587
Software Development Life Cycle 588

Defining Requirements 592
Categories 592
Attributes 593

Methodology Maturity 596
Competencies Required 598
Staff Experience 600
Configuration-Management Controls 600

Basic CM Requirements 600
Planning 602
Data Distribution and Access 602
CM Administration 602

Configuration Identification 603
Configuration Control 605

Measuring the Impact of the Software Development Process 605
Summary 606

Chapter 15 Testing Client/Server Systems 611
Overview 611
Concerns 612
Workbench 613
Input 614

xvi Contents



Do Procedures 614
Task 1: Assess Readiness 614

Software Development Process Maturity Levels 615
Conducting the Client/Server Readiness Assessment 621
Preparing a Client/Server Readiness Footprint Chart 621

Task 2: Assess Key Components 622
Task 3: Assess Client Needs 622

Check Procedures 624
Output 624
Guidelines 624
Summary 624

Chapter 16 Rapid Application Development Testing 633
Overview 633
Objective 634
Concerns 634

Testing Iterations 634
Testing Components 635
Testing Performance 635
Recording Test Information 635

Workbench 635
Input 636
Do Procedures 636

Testing Within Iterative RAD 636
Spiral Testing 638
Task 1: Determine Appropriateness of RAD 639
Task 2: Test Planning Iterations 640
Task 3: Test Subsequent Planning Iterations 640
Task 4: Test the Final Planning Iteration 642

Check Procedures 642
Output 643
Guidelines 643
Summary 643

Chapter 17 Testing Internal Controls 655
Overview 655
Internal Controls 657

Control Objectives 657
Preventive Controls 658

Source-Data Authorization 658
Data Input 659
Source-Data Preparation 659
Turnaround Documents 659
Prenumbered Forms 659
Input Validation 659
File Auto-Updating 661
Processing Controls 661

Contents xvii



Detective Controls 662
Data Transmission 663
Control Register 663
Control Totals 664
Documenting and Testing 664
Output Checks 664

Corrective Controls 665
Error Detection and Resubmission 665
Audit Trails 665

Cost/Benefit Analysis 666
Assessing Internal Controls 666

Task 1: Understand the System Being Tested 666
Task 2: Identify Risks 668
Task 3: Review Application Controls 668
Task 4: Test Application Controls 668

Testing Without Computer Processing 669
Testing with Computer Processing 669
Transaction Flow Testing 672
Objectives of Internal Accounting Controls 673
Results of Testing 677

Task 5: Document Control Strengths and Weaknesses 677
Quality Control Checklist 678
Summary 678

Chapter 18 Testing COTS and Contracted Software 685
Overview 686
COTS Software Advantages, Disadvantages, and Risks 686

COTS Versus Contracted Software 686
COTS Advantages 687
COTS Disadvantages 687
Implementation Risks 688
Testing COTS Software 689
Testing Contracted Software 690

Objective 691
Concerns 691
Workbench 692
Input 693
Do Procedures 693

Task 1: Test Business Fit 693
Step 1: Testing Needs Specification 693
Step 2: Testing CSFs 695

Task 2: Test Operational Fit 696
Step 1: Test Compatibility 697
Step 2: Integrate the Software into Existing Work Flows 698
Step 3: Demonstrate the Software in Action 700

Task 3: Test People Fit 701

xviii Contents



Task 4: Acceptance-Test the Software Process 702
Step 1: Create Functional Test Conditions 702
Step 2: Create Structural Test Conditions 703

Modifying the Testing Process for Contracted Software 704
Check Procedures 705
Output 705
Guidelines 706
Summary 706

Chapter 19 Testing in a Multiplatform Environment 717
Overview 717
Objective 718
Concerns 718
Background on Testing in a Multiplatform Environment 718
Workbench 719
Input 720
Do Procedures 721

Task 1: Define Platform Configuration Concerns 721
Task 2: List Needed Platform Configurations 723
Task 3: Assess Test Room Configurations 723
Task 4: List Structural Components Affected by the Platform(s) 723
Task 5: List Interfaces the Platform Affects 725
Task 6: Execute the Tests 726

Check Procedures 726
Output 726
Guidelines 726
Summary 727

Chapter 20 Testing Software System Security 733
Overview 733
Objective 734
Concerns 734
Workbench 734
Input 735
Where Vulnerabilities Occur 735

Functional Vulnerabilities 736
Vulnerable Areas 737
Accidental Versus Intentional Losses 738

Do Procedures 739
Task 1: Establish a Security Baseline 739

Why Baselines Are Necessary 740
Creating Baselines 740
Using Baselines 749

Task 2: Build a Penetration-Point Matrix 751
Controlling People by Controlling Activities 751
Selecting Security Activities 752
Controlling Business Transactions 755

Contents xix



Characteristics of Security Penetration 756
Building a Penetration-Point Matrix 757

Task 3: Analyze the Results of Security Testing 760
Evaluating the Adequacy of Security 761
Check Procedures 762
Output 762
Guidelines 762
Summary 762

Chapter 21 Testing a Data Warehouse 765
Overview 765
Concerns 765
Workbench 766
Input 767
Do Procedures 768

Task 1: Measure the Magnitude of Data Warehouse Concerns 768
Task 2: Identify Data Warehouse Activity Processes to Test 769

Organizational Process 769
Data Documentation Process 769
System Development Process 770
Access Control Process 771
Data Integrity Process 771
Operations Process 772
Backup/Recovery Process 773
Performing Task 2 774

Task 3: Test the Adequacy of Data Warehouse Activity 
Processes 774

Check Procedures 780
Output 780
Guidelines 780
Summary 780

Chapter 22 Testing Web-Based Systems 799
Overview 799
Concerns 800
Workbench 800
Input 801
Do Procedures 802

Task 1: Select Web-Based Risks to Include in the Test Plan 802
Security Concerns 803
Performance Concerns 803
Correctness Concerns 804
Compatibility Concerns 804
Reliability Concerns 806
Data Integrity Concerns 806
Usability Concerns 806
Recoverability Concerns 807

xx Contents



Task 2: Select Web-Based Tests 807
Unit or Component 807
Integration 807
System 807
User Acceptance 808
Performance 808
Load/Stress 808
Regression 808
Usability 808
Compatibility 808

Task 3: Select Web-Based Test Tools 809
Task 4: Test Web-Based Systems 809

Check Procedures 809
Output 810
Guidelines 810
Summary 811

Part V Building Agility into the Testing Process 817

Chapter 23 Using Agile Methods to Improve Software Testing 819
The Importance of Agility 819
Building an Agile Testing Process 820
Agility Inhibitors 821
Is Improvement Necessary? 822
Compressing Time 823

Challenges 824
Solutions 825
Measuring Readiness 826
The Seven-Step Process 826

Summary 827

Chapter 24 Building Agility into the Testing Process 831
Step 1: Measure Software Process Variability 831

Timelines 832
Process Steps 833

Workbenches 833
Time-Compression Workbenches 834
Reducing Variability 835
Developing Timelines 836

Improvement Shopping List 841
Quality Control Checklist 841
Conclusion 842

Step 2: Maximize Best Practices 842
Tester Agility 842

Software Testing Relationships 843
Tradeoffs 845
Capability Chart 847
Measuring Effectiveness and Efficiency 848

Contents xxi



Improvement Shopping List 856
Quality Control Checklist 856
Conclusion 857

Step 3: Build on Strength, Minimize Weakness 857
Effective Testing Processes 857
Poor Testing Processes 860
Improvement Shopping List 860
Quality Control Checklist 860
Conclusion 861

Step 4: Identify and Address Improvement Barriers 861
The Stakeholder Perspective 861

Stakeholder Involvement 863
Performing Stakeholder Analysis 863

Red-Flag/Hot-Button Barriers 864
Staff-Competency Barriers 865
Administrative/Organizational Barriers 865
Determining the Root Cause of Barriers/Obstacles 866
Addressing the Root Cause of Barriers/Obstacles 867
Quality Control Checklist 869
Conclusion 869

Step 5: Identify and Address Cultural and Communication 
Barriers 869

Management Cultures 870
Culture 1: Manage People 871
Culture 2: Manage by Process 873
Culture 3: Manage Competencies 874
Culture 4: Manage by Fact 876
Culture 5: Manage Business Innovation 878

Cultural Barriers 879
Identifying the Current Management Culture 879
Identifying the Barriers Posed by the Culture 879
Determining What Can Be Done in the Current Culture 879
Determining the Desired Culture for Time Compression 879
Determining How to Address Culture Barriers 880

Open and Effective Communication 880
Lines of Communication 881
Information/Communication Barriers 882
Effective Communication 882

Quality Control Checklist 884
Conclusion 885

Step 6: Identify Implementable Improvements 885
What Is an Implementable? 885
Identifying Implementables via Time Compression 886
Prioritizing Implementables 888
Documenting Approaches 890
Quality Control Checklist 890
Conclusion 890

xxii Contents



Step 7: Develop and Execute an Implementation Plan 891
Planning 891
Implementing Ideas 891
Requisite Resources 893

Quality Control Checklist 894
Conclusion 894

Summary 895

Index 929

Contents xxiii





Most books about software testing explain “what” to do. This book, on the other hand,
takes more of a “how-to” approach. It provides the procedures, templates, checklists,
and assessment questionnaires necessary to conduct effective and efficient software
testing.

The book is divided into five parts, as follows:

■■ Part One: Assessing Testing Capabilities and Competencies. It is difficult to
make any significant change until you know where you are. A baseline tells not
only where you are, but lets you measure your progress as your testing strate-
gies and techniques improve. Part One provides three baseline assessments: the
capabilities of your software testing group, the competencies of your individ-
ual testers, and the effectiveness of your test processes.

■■ Part Two: Building a Software Testing Environment. Software testers are 
most effective when they work in an environment that encourages and supports
well-established testing policies and procedures. The environment includes the
procedures and tools for testing, as well as the support and encouragement of
management. Part Two begins by describing how to build an environment con-
ducive to testing, and then expands the discussion by describing how to develop
a testing process, select testing tools, and build the competency of your testers.

■■ Part Three: The Seven-Step Testing Process. Part Three comprises the core
material in the book. It defines a world-class software testing process, from its
initiation through testing changes made to operational software systems. This
material can be used two ways. First, it contains sufficient procedures and tem-
plates so that an organization can use the process as their own. Of course, most
organizations inevitably will make some changes to accommodate local vocab-
ulary, specific needs, and customs. This customization process, the seven-step
process in this book becomes “owned” by the software testers.

Introduction

xxv



■■ Part Four: Incorporating Specialized Testing Responsibilities. The seven-step
testing process is a generic process that almost all software testing organiza-
tions can use. However, the mission of software testers may incorporate spe-
cialized activities, such as testing security. Rather than incorporating these
specialized testing activities directly into the seven-step process, they are pre-
sented as individual, specialized activities. As appropriate, they can be incor-
porated into the seven-step process.

■■ Part Five: Building Agility into the Testing Process. Part Five, which draws 
on what you’ve learned earlier in the book, is designed to help you identify the
strengths and weaknesses of your current software testing process, and then
modify it to become more usable or agile.

Getting the Most Out of This Book

This book is not designed to be read like a novel, from beginning to end, nor is it filled
with human interest stories about testers. The book focuses on how to conduct software
testing. It is designed to help you improve your testing competencies and processes. The
self-assessments in Part One will help you identify which parts of the book you need to
read first.

The following guidelines will help you maximize the benefit from this book:

■■ Establish a baseline of current performance. Part One of this book (and Chap-
ter 5) contains four self-assessments for establishing baselines. You need to
know where you are so that you can develop a good plan for moving forward.

■■ Define the software testing organization you would like to have. It has been
said that if you do not know where you’re going, all roads lead there. Too many
software testing groups just add new testing programs, processes, and tools
without knowing if they will integrate effectively.

■■ Develop a plan for moving from your baseline to your goal. Few organiza-
tions can quickly and effectively install an entirely new software testing
process. Gradual change is normally much better than radical change. There-
fore, identify the gaps between where you are and where you want to be.
Determine which of those gaps if closed would provide the greatest benefit to
your organization. That becomes the part of the plan you implement first. Over
time you will move the entire testing process from your current baseline to
your desired goal.

For additional information on software testing conferences and training programs,
visit www.taiworldwide.org. For information on software testing certifications,
visit www.softwarecertifications.org.

What’s New in the Third Edition

The core of this book is the step-by-step process for testing software. This edition has
simplified that process from 11 steps to 7 steps.

xxvi Introduction



A major addition to this edition is the self-assessment in Chapter 5, which testers can
use to identify their strengths and weaknesses and then build a personal improvement
plan. The self-assessment is based on the Common Body of Knowledge (CBOK) for the
Certified Software Tester (CSTE).

Other significant additions include

■■ A new chapter on testing internal control

■■ An expanded chapter on testing security

■■ A new chapter on adapting testing to the developmental methodology used to
build the software

■■ Two new chapters on how to incorporate agile methods into the testing process

What’s on the CD

This book includes a CD that contains the work papers and quality control checklists
to help you implement the software testing process.

To use the CD, first you need to select a software testing activity that you want to
implement in your organization—for example, test planning. Then, from the chapter
on test planning, identify those work papers and checklists that you believe would be
beneficial to your organization. You can extract those work papers and checklists from
the CD and begin a customization process. For example, you can include the name of
your organization, add or delete portions of the work papers, and change the termi-
nology to be consistent with your organization.

After you have used the work papers for conducting a software test, you should
bundle the work papers into a case study for new testers. If they use the book to learn
the basics of software testing and then can cross reference what they have learned to
examples of how the work papers are actually used in software testing, learning
should be accelerated.

Introduction xxvii





Effective Methods 
for Software Testing

Third Edition





PA R T

One

Assessing Testing
Capabilities and

Competencies





3

It has been said, “If you do not know where you are going, all roads lead there.” Tra-
ditionally, many IT organizations annually develop a list of improvements to incorpo-
rate into their operations without establishing a goal. Using this approach, the IT
organization can declare “victory” any time it wants.

This chapter will help you understand the importance of following a well-defined
process for becoming a world-class software testing organization. This chapter will
help you define your strengths and deficiencies, your staff competencies and deficien-
cies, and areas of user dissatisfaction.

The objective of this chapter is threefold: to define a world-class software testing
model, to provide a self-assessment process for your software testing organization to
measure yourself against the world-class model, and to provide some planning con-
siderations for moving to a world-class level.

The Three-Step Process to Becoming a 
World-Class Testing Organization

The roadmap to become a world-class software testing organization is a simple three-
step process, as follows:

1. Define or adopt a world-class software testing model.

2. Determine your organization’s current level of software testing capabilities,
competencies, and user satisfaction.

Assessing Capabilities, Staff
Competency, and User

Satisfaction

C H A P T E R

1



3. Develop and implement a plan to upgrade from your current capabilities, com-
petencies, and user satisfaction to those in the world-class software testing
model.

This three-step process requires you to compare your current capabilities, compe-
tencies, and user satisfaction against those of the world-class software testing model.
This assessment will enable you to develop a baseline of your organization’s perfor-
mance. The plan that you develop will, over time, move that baseline from its current
level of performance to a world-class level. Understanding the model for a world-class
software testing organization and then comparing your organization will provide you
with a plan for using the remainder of the material in this book.

Software testing is an integral part of the software-development process, which
comprises the following four components (see Figure 1-1):

1. Plan (P): Devise a plan. Define your objective and determine the strategy and
supporting methods to achieve it. You should base the plan on an assessment
of your current situation, and the strategy should clearly focus on the strategic
initiatives/key units that will drive your improvement plan.

2. Do (D): Execute the plan. Create the conditions and perform the necessary
training to execute the plan. Make sure everyone thoroughly understands the
objectives and the plan. Teach workers the procedures and skills they need to
fulfill the plan and thoroughly understand the job. Then perform the work
according to these procedures.

3. Check (C): Check the results. Check to determine whether work is progressing
according to the plan and whether the expected results are being obtained.
Check for performance of the set procedures, changes in conditions, or abnor-
malities that may appear. As often as possible, compare the results of the work
with the objectives.

4. Act (A): Take the necessary action. If your checkup reveals that the work is not
being performed according to the plan or that results are not what you antici-
pated, devise measures to take appropriate actions.

Figure 1-1 The four components of the software-development process.

PLAN

CHECK

DOACT

4 Chapter 1



Testing involves only the “check” component of the plan-do-check-act (PDCA)
cycle. The software development team is responsible for the three remaining compo-
nents. The development team plans the project and builds the software (the “do” com-
ponent); the testers check to determine that the software meets the needs of the
customers and users. If it does not, the testers report defects to the development team.
It is the development team that makes the determination as to whether the uncovered
defects are to be corrected.

The role of testing is to fulfill the check responsibilities assigned to the testers; it is
not to determine whether software can be placed into production. That is the responsi-
bility of the customers, users, and development team.

Step 1: Define a World-Class 
Software Testing Model

There is no generally accepted model for a world-class software testing organization.
However, analyzing the best testing organizations among the more than 1,000 IT orga-
nizations affiliated with the Quality Assurance Institute (QAI) enabled QAI to identify
the attributes of the best software testing organizations (see Figure 1-2). Organizations
that follow this model report more effective and efficient testing than those that do not.

Figure 1-2 Model of a world-class software testing organization.

Stakeholders
Satisfaction

Test
Processes

Test
Process

Improvement

Test Environment

• Mission
• Goals
• Strategy

Enabling

Competencies

Management
of TestingTesting Strategic

Dashboard
Testing Tactical

Dashboard

Assessing Capabilities, Staff Competency, and User Satisfaction 5



The world-class software testing model includes

■■ Test environment. The conditions that management has put into place that
both enable and constrain how testing is performed. The test environment
includes management support, resources, work processes, tools, motivation,
and so forth.

■■ Process to test a single software project. The standards and procedures testers
use to test.

■■ Tester competency. The skill sets needed to test software in a test environment.
The three self-assessments that follow are for the above three attributes of a
world-class software testing organization.

NOTE The three self-assessments in this chapter correspond to the preceding

three attributes of a world-class software testing organization.

The world-class model of a software testing organization focuses on stakeholder sat-
isfaction. This assumes a greater role for a world-class software testing organization
than just testing against documented software requirements. Chapter 2 defines the
many roles that software testing can adopt; however, those roles include much more
than testing documented software requirements. They include testing for quality fac-
tors such as ease of use, meeting testing schedules and budgets, and minimizing the
risks involved with any software project.

According to the world-class model, the following parties have a vested interest in
software testing:

■■ Software customer. The party or department that contracts for the software to
be developed.

■■ Software user. The individual or group that will use the software once it is
placed into production. (Note: This may be the customer or it may be parties
other than the customer.)

■■ Software developer. The individual or group that receives the requirements
from the software user or assists in writing them, designing, building, and
maintaining the software, as needed.

■■ Development tester. The individual or group that performs the test function
within the software development group. 

■■ IT management. The individual or group with responsibility for fulfilling the
information technology mission. Testing supports fulfilling that mission.

■■ Senior management. The CEO of the organization and other senior executives
who are responsible for fulfilling the organization mission. Information tech-
nology is an activity that supports fulfilling that mission.

■■ Auditor. The individual or group responsible for evaluating the effectiveness,
efficiency, and adequacy of controls in the information technology area. Testing
is considered a control by the audit function.

6 Chapter 1



■■ Project manager. The individual responsible for managing the building, main-
taining, and/or implementing of software.

The test mission, strategy, and environment must be focused on stakeholder satis-
faction. The mission defines the testing objectives; the strategy defines how the mission
will be accomplished; and the environment provides the culture, processes, and tools
that are conducive to effective and efficient software testing.

The test processes are those step-by-step procedures that the testers will follow to
accomplish their assigned tasks. Test processes executed by trained and competent
testers enable those testers to accomplish the defined test mission. 

The test processes need to be improved continually for two reasons: to make them
more effective and efficient to use, and to incorporate updated approaches into testing
new technologies and software development methodologies.

The responsibility for ensuring that the execution of the test processes meets the
defined test mission lies with management. Management must ensure that testers are
following and can accomplish the test plan, and that the plan will, in fact, accomplish
the test objectives. If not, management should modify the plan to meet those objectives.

Management and testers need tools to enable them to fulfill their responsibilities.
Two very important tools are the testing strategic dashboard and the testing tactical
dashboard. The testing strategic dashboard includes key indicators such as user satisfac-
tion, staff competency, and the percent of tests completed. The testing tactical dashboard

includes test indicators such as the number of requirements tested and percent correct,
defects uncovered, defects corrected and uncorrected, and the schedule and budget
status. 

Management must ensure that if you meet the testing tactical key indicators, you
will, in fact, meet the objectives defined by the strategic key indicators. 

Customizing the World-Class Model for Your
Organization

You can customize the world-class model for software testing by defining the attrib-
utes of each of its components (refer to Figure 1-2). The material in this book explains
the attributes of all the components: stakeholder satisfaction, test mission, test man-
agement and enabling competencies are discussed in Part 2. The test processes are
explained in Parts 3 and 4. Test process improvement is described in Part 5 of this book. 

As you read those parts of the book, you can customize those attributes based on the
mission of your organization. For example, in describing a tester’s competency, skill sets
for testing COTS software and outsourced software will be listed. However, if your orga-
nization does not use COTS software or does not outsource the development of software,
you would not need those skills in your testing staff. Likewise, if your testers are not
responsible for testing security, you would not need a test processes for testing security. 

The three self-assessments included in this chapter are based on the model in Figure
1-2. However, it is recognized that few testing organizations need all these testing
capabilities and competencies. Therefore, you need to develop the model that is suited
to your test mission.

Assessing Capabilities, Staff Competency, and User Satisfaction 7



Step 2: Develop Baselines for Your Organization

This section presents the following three self-assessment categories to enable you to
compare your testing organization against the world-class model:

1. Assessing the test environment. This includes user satisfaction, management
support, environment, planning, tools, test processes, measurement, quality
control, and training.

2. Assessing the process for testing individual software projects. This category
of assessment will assess your testing process against the seven-step process for
testing individual software projects presented in Part 3 of this book. 

3. Assessing the competencies of software testers. This self-assessment will be
based on the 2006 Common Body of Knowledge (CBOK) developed by the 
Certification Board of the Software Certifications Organization. Each of the 
recommended ten competencies for software tester will be assessed. A more
detailed assessment to be used in individuals to compare their specific test
competencies against the 2006 CBOK is provided in Chapter 5.

Assessment 1: Assessing the Test Environment

During the past 25 years, the Quality Assurance Institute (QAI) has been studying
what makes software testing organizations successful. As a result, QAI has identified
the following eight criteria:

Test environment planning

Management support

Use of test processes

Test tools

Quality control

Test measurement

User satisfaction

Test training

When these eight criteria are in place and working, the result is normally a world-
class testing organization.

The assessment process developed by QAI has five items to address within each of
the eight criteria. The more of those items that are in place and working, the more
likely that criteria will contribute to world-class testing. Figure 1-3 shows a cause-effect
diagram indicating the areas to address, called drivers, which results in a world-class
testing organization.

8 Chapter 1



Figure 1-3 Overview of the testing environment.

Software testing organizations can use the results of this assessment in any one of
the following three ways:

1. To determine their current testing environmental status versus the environment
of a world-class testing organization. The responses to the items address will
indicate an organization’s strengths and weaknesses compared to the environ-
ment of a world-class testing organization.

2. To develop the goal/objectives to accomplish becoming a world-class testing
organization. QAI’s world-class criteria indicate a profile of the environment of
a world-class testing organization. Achieving those objectives can lead you to
become a more effective software testing organization.

3. To develop an improvement plan.

By doing the assessment, you will develop a Footprint Chart that shows where
improvement is needed. Those criteria in which you are deficient become the means
for improving the environment of your software testing organization.

Implementation Procedures

This practice involves the following four tasks:

■■ Build the assessment team.

■■ Complete the assessment questionnaires.

■■ Build the footprint chart.

■■ Assess the results.

DRIVERS OF WORLD-CLASS TESTING DESIRED RESULTS

Test Tools

U
se of Test Processes

M
anagem

ent Support

Test Environm
ent

Planning

Te
st
 T

ra
in

in
g

U
se

r S
at

isf
ac

tio
n

Te
st
 M

ea
su

re
m

en
t

Q
ua

lit
y 
Con

tro
l

 World-Class

Testing

Assessing Capabilities, Staff Competency, and User Satisfaction 9



Building the Assessment Team

The assessment team should combine people who in totality possess the knowledge of
how your organization manages software testing. Before the team is established, the
areas to address should be reviewed to determine the makeup of the team. It is recom-
mended that a matrix be prepared with the seven assessment criteria on one dimension
and the recommended assessment team on the other. The matrix should indicate which
assessment team member is knowledgeable about each of the seven assessment criteria.

Once all seven criteria have been associated with an assessment team member, it can
be concluded that the team is adequate to perform the assessment.

Completing the Assessment Questionnaire

The assessment questionnaire in Work Paper 1-1 consists of eight categories, with five
items to address for each category. A Yes or No response should be made, as follows:

■■ A Yes response means all of the following:

■■ Criteria items are documented and in place.

■■ Criteria items are understood by testers.

■■ Criteria items are widely used, where applicable.

■■ Criteria items have produced some possible results.

■■ A No response means any of the following:

■■ No formal item in place.

■■ Criteria items are applied differently for different test situations.

■■ No consistency as to when used or used very seldom.

■■ No tangible results were produced.

The assessment team should read aloud each item and then discuss how that item is
addressed in their testing environment. The results should be recorded on Work Paper
1-1. The assessment team may also wish to record comments that clarify the response
and/or to provide insight in how that area may be improved.

Building the Footprint Chart

For this task, you should transcribe the results of Work Paper 1-1 onto Work Paper 1-2.
To do so, total the number of Yes responses for each criterion. Then place a dot on Work
Paper 1-2 on the line representing the number of Yes responses. For example, if you have
three Yes responses for test training, you should place a dot on the test training line at the
intersection of the line representing three Yes responses. A dot should be marked on the
line representing all seven criteria for the number of Yes responses. Then connect the dots
with a line, resulting in what is called a “footprint” of the status of your testing environ-
ment versus the environment of a world-class testing organization.

10 Chapter 1



Assessing the Results

You should make the following two assessments regarding the footprint developed on
the Work Paper 1-2:

1. Assess the status of each criteria versus what that criteria should be in the

world-class testing environment. To do this, you need to look at the number of
Yes responses you have recorded for each criterion versus a world-class organi-
zation, which would have five Yes responses. For example, three Yes responses
for test training would indicate that improvements could be made in your test
training process. The two items that received No responses are indications of
where improvements are needed to move your test training activities to a
world-class level.

2. Interpret your testing environment footprint chart. The footprint in your
Work Paper 1-2 provides an overview of your testing environment. Given the
footprint, your assessment team should attempt to draw some conclusions
about your testing environment. Three examples are given to help in drawing
these conclusions, as shown in Figures 1-4, 1-5, and 1-6.

Figure 1-4 Example of a software testing organization using a test as a part of

development.

Test Environment Planning

Test Training

Use of Test Processes

User Satisfaction

with Test

Test ToolsTest Quality

Control

Management Support for Test

Test Measurement

5

4

3

2

1

Assessing Capabilities, Staff Competency, and User Satisfaction 11



Figure 1-5 Example of a testing organization using, but not enforcing, the test process.

Figure 1-6 Example of a testing organization practicing testing as an art.

Test Environment Planning

Test Training

Use of Test Processes

User Satisfaction

with Test

Test ToolsTest Quality

Control

Management Support for Test

Test Measurement

5

4

3

2

1

Test Environment Planning

Test Training

Use of Test Processes

User Satisfaction

with Test

Test ToolsTest Quality

Control

Management Support for Test

Test Measurement

5

4

3

2

1

12 Chapter 1



Verifying the Assessment

The following list of questions, if responded to positively, would indicate that the
assessment has been performed correctly:

1. Does the assessment team comprise the knowledge needed to answer all of the
items to address within the seven criteria?

2. Are the individual assessors free from any bias that would cause them not to
provide proper responses to the items to address?

3. Was there general consensus among the assessment team to the response for
each item to address?

4. Are the items to address appropriate for your testing organization?

5. Have the items to address been properly totaled and posted to the Footprint
Chart Work Paper?

6. Does the assessment team believe the Footprint Chart is representative of your
testing environment?

7. Does your assessment team believe that if they improve the items to address,
which have No responses, the testing organization will become more effective?

8. Does your organization believe that the overall assessment made is representa-
tive of your environment?

Assessment 2: Assessing the Capabilities 
of Your Existing Test Processes

To assess the capabilities of your existing test processes, follow the same procedure that
you used to assess your test environment. Note that you should use the same team for
both assessments. The only change you will need is to substitute self-assessment ques-
tionnaires in assessing the test environment process with the self-assessment question-
naires for assessing the test processes included in this section. 

The assessment of test processes will be divided into the following seven categories:

Preparing for a software testing project

Conducting test planning

Executing the test plan

Conducting acceptance testing

Analyzing test results and preparing reports

Testing the installation of software

Post-test analysis

Note that these seven categories of test processes correspond to a seven-step soft-
ware testing process presented in Part 3 of this book. Thus, each assessment will help

Assessing Capabilities, Staff Competency, and User Satisfaction 13



you determine your strengths and weaknesses in each of the seven steps of the pro-
posed software testing process.

To conduct this self-assessment, answer the questionnaire in Work Paper 1-3 and
post your results to Work Paper 1-4, as described in the preceding section.

Assessment 3: Assessing the Competency of Your Testers

This practice will enable you to assess your testing competencies against the ten skill
categories in the Common Body of Knowledge (CBOK) for the Certified Software
Tester (CSTE) certificate. At the conclusion of the assessment, you will develop a Foot-
print Chart that shows your competencies against the skill categories needed to
become a CSTE. You can use the results to design a program for improving your per-
sonal test competencies.

Figure 1-7 shows a cause-effect diagram indicating the areas of competency assess-
ment. In the diagram these are called the drivers that result in becoming a fully com-
petent software tester. The drivers are, in fact, the ten CBOK skill categories.

Implementation Procedures

This practice involves performing the following four tasks:

1. Understand the CSTE CBOK.

2. Complete the assessment questionnaires.

3. Build the footprint chart.

4. Assess the results.

Figure 1-7 Test competency cause-effect diagram.

Test Control and Sec
urity 

Exec
uting The Plan 

Test Ne
w Technologies 

M
anaging Test Project 

Test Planning 

Test O
utso

urcing

Acceptance Testing 

Analysis and Reporting 

B
uild Test Environm

ent 
Testing Principles 

Fully Competent

Tester

DRIVERS OF TESTING COMPETENCY DESIRED RESULTS

14 Chapter 1



Understanding the CSTE CBOK

Before you can effectively evaluate your software test competencies, you need to under-
stand the 2006 CSTE CBOK. The final version of the 2006 CSTE CBOK is available
through the Software Certification Organization. The discussion draft version of the 2006
CSTE CBOK is included in Chapter 5 as a detailed skill-assessment questionnaire. This
step requires you to read through the CBOK and to obtain clarifications of the material as
necessary. The best source for these clarifications is the CSTE CBOK study guide, which
is available from the Quality Assurance Institute (www.QAIworldwide.org).

Completing the Assessment Questionnaires

The assessment questionnaire in Work Paper 1-5 contains ten knowledge categories
with 5 items in each category, for a total of 50 items to assess. For each item, a Yes or No
response should be made. The meanings of the Yes and No responses are as follows:

■■ A Yes response means all of the following:

■■ You have had formal training, experience, or self-study supporting this skill
item.

■■ You have actively used the skill in your personal or work life.

■■ You have accomplished some positive result using this skill item.

■■ A No response means any of the following:

■■ You do not understand the theory and concepts supporting the skill item.

■■ You have never used the skill item in a personal or work situation.

■■ You have used the skill item but you have never achieved any positive
results.

Prior to answering each question, you should think through the meaning of the
question. This may require referring back to the CSTE study guide. Using the Yes/No
response criteria, you need to come to a consensus on whether a Yes/No response
should be indicated for the skill item. The result of your assessment should be recorded
on the appropriate questionnaire.

You need to progress sequentially through the self-assessment questionnaires. Note
that you may wish to make notes on the questionnaire to clarify your response or to
indicate ideas on how you could improve your competency in that skill item.

Building the Footprint Chart

To build the footprint chart, transcribe the results of Work Paper 1-5 onto Work Paper
1-6. To do so, total the number of Yes responses for each of the ten knowledge cate-
gories. Then place a dot on Work Paper 1-6 on the lines corresponding to the knowl-
edge category. For example, if you have three Yes responses for the Test Planning
category, you should place a dot on the Test Planning line at the intersection of the line
representing the three Yes responses. After you have placed all ten dots, draw a line to
connect them. This line, called a footprint, represents the status of your testing compe-
tencies versus those specified in the CSTE CBOK.

Assessing Capabilities, Staff Competency, and User Satisfaction 15



Assessing the Results

You should make the following two assessments regarding the footprint you devel-
oped on Work Paper 1-6:

1. Compare your results for each knowledge category versus what the knowl-

edge category should be as indicated in the CSTE CBOK. Any rating less than
five Yes responses indicates a potential area of improvement in that knowledge
category. An analysis of the CBOK knowledge categories will be helpful in
determining where to focus improvement, as will studying the CSTE guide to
identify areas for potential improvement.

2. Compare your testing competencies against your current job responsibilities.

The footprint provides an overview of your current competencies. Using your
current job description, develop another footprint, which you believe is needed
to achieve your current job responsibilities. Any deficiencies should be your
first objective for improvement; your second for improvement would be to
achieve the skill competencies needed to become a CSTE.

Verifying the Assessment

A positive response to the following questions indicates that you have correctly per-
formed the competency assessment: (Note: Any negative response to the following five
questions would reduce the value in using this self-assessment to measure an individ-
ual tester’s competency.)

1. Do you have enough knowledge of the CSTE CBOK to understand the assess-
ment questions?

2. Do you understand the skills required for each of the 50 assessment items in
the questionnaires?

3. Do you understand the Yes and No response criteria, and have you used them
in developing the competency assessment?

4. Do you believe the 50 assessment items fairly represent the competencies
needed to be fully effective in software testing?

5. Do you believe that the 2006 CSTE CBOK used for this assessment is represen-
tative of your personal testing competencies?

Step 3: Develop an Improvement Plan

The objective of the action plan is to move software testing from where it is (the base-
line) to where it should be (the goal). There is no one way to develop this plan. Some
organizations want to implement the plan so it is on a “pay as you go basis.” Other
organizations are willing to invest in developing a significantly improved test process
knowing that the payback will come after the process is developed and deployed.

16 Chapter 1



The practices outlined in this book correspond to the three self-assessment foot-
prints. If your organization is deficient in one or more components of the footprints,
refer to the related chapter in this book that will help you develop your improvement
plan, as shown in the following table:

ASSESSMENT 
NUMBER ASSESSMENT CRITERIA CHAPTER 

1 Test environment assessment:

Test Environment Planning 2

Management Support 2

User Satisfaction 2

Use of Process 3

Test Tools 4

Test Training 5

Test Measurements 11

Test Quality Control 2, 23, 24

2 Test Process Assessment:

Preparing for a Software testing Project 6

Test Planning General 6, 7, 8

Planning for specialized areas:

The Impact of Software 14
Developmental Methodology When 
Testing

Testing Client/Server Systems 15

Testing Rapid Application 16
Development

Testing the Adequacy of Internal 17
Control

Testing Off-the-Shelf Software 18

Testing in a Multi-Platform 19
Environment

Testing Security 20

Testing a Data Warehouse 21

Testing Web-based Systems  22

(continues)

Assessing Capabilities, Staff Competency, and User Satisfaction 17



ASSESSMENT 
NUMBER ASSESSMENT CRITERIA CHAPTER 

Test Execution 9, 10

Acceptance Testing 12

Test Analysis and Reporting 11

Testing Software Installation 12

Post Test Analysis 13

Improving the test processes 23, 24

3 CSTE Knowledge Category

1 Software Testing Principles and 2 to 24
Concepts

2 Building the Test Environment 2 to 5

3 Managing the Test Project 6, 7

4 Test Planning 8

5 Executing the Test Plan 9, 10

6 Test Analysis and Reporting 11

7 User Acceptance Testing 12

8 Testing Software Developed by 18
Outside Organizations

9 Testing Software Controls and the 17, 20
Adequacy of Security Procedures

10 Testing New Technologies 14, 15, 16, 19, 21, 22

Summary

This chapter described how to assess your software testing processes and the compe-
tency of your testers. The chapter also briefly addressed specialized testing responsi-
bilities and the need to improve your testing process and/or make your testing process
more agile. 

The chapter was built around a simple, three-step improvement process: determin-
ing your desired software testing performance, measuring your current performance
against that performance goal, and developing a plan to move from where you are to a
world-class testing organization.

18 Chapter 1



WORK PAPER 1-1 Self-Assessment on Software Testing Environment

ITEMS TO ADDRESS ON TEST 

ENVIRONMENT PLANNING YES NO COMMENTS

1. Does your IT organization have a policy on 

software testing?

2. Does your software testing organization have a 

test strategy?

3. Does your software testing organization have 

software processes and tools to support that 

testing strategy?

4. Does your software testing approach include both 

erification and validation testing (i.e., testing the 

software in both a static and executable mode)?

5. Does your testing strategy address the various 

roles that testing can assume, and determine 

which of those roles will be incorporated into 

your organization’s testing strategy (e.g., testing 

user needs in addition to software specifications)?

ITEMS TO ADDRESS ON MANAGEMENT 

SUPPORT YES NO COMMENTS

1. Does management provide the resources 

necessary (including calendar time) to 

adequately train, plan, conduct, and evaluate 

results for software testing assignments?

2. Are testers involved from the inception through 

termination of software projects to ensure that 

testing concerns are continuously addressed?

3. Does management allocate as many resources to 

the test processes and tools as it does to the 

development process and tools?

4. Does management spend as much time on test 

planning and test execution as it does on 

development planning and development 

execution?

5. Is management knowledgeable and sufficiently 

trained in test theory, processes, and tools to 

effectively manage test planning and execution, 

and understand and effectively act on test results?

(continues)

Assessing Capabilities, Staff Competency, and User Satisfaction 19



WORK PAPER 1-1 (continued )

ITEMS TO ADDRESS ON THE USE OF TEST 

PROCESSES YES NO COMMENTS

1. Do testers follow processes to plan tests, prepare 

test data, execute tests, and develop and report 
test results?

2. Can testers correctly interpret documented test 

processes so that the test procedures can be 

followed as intended?

3. Do the processes provided for testing cover all 

the activities that are needed to perform effective 

testing?

4. Has a plan been developed and put in place to 

mature the test processes so that they become 

more effective and efficient and are performed 

on time?

5. Do the owners/users of the test processes (the 

testers) build the processes used for testing?

ITEMS TO ADDRESS ON TEST TOOLS YES NO COMMENTS

1. Do testers use an automated tool to generate 

and reuse test data?

2. Are test tools selected in a logical manner? 

3. Can testers use test tools only after they have 

received adequate training in how to use them?

4. Is test tool usage specified in the test plan? 

5. Has a process for obtaining assistance in using 

test tools been established, and does it provide 

testers with the needed instructional 

information?

20 Chapter 1



WORK PAPER 1-1 (continued )

ITEMS TO ADDRESS ON TEST TRAINING YES NO COMMENTS

1. Does a career training plan for testers exist, and 

is it in use to develop a tester from an unskilled 

state to a master tester state?

2. Are testers adequately trained in test processes 

before using those processes for testing?

3. Are testers trained in the theory of testing, risk 

analysis, the various approaches to testing, and 

so forth so that they understand “why” they 

perform certain test tasks?

4. Are testers trained in statistics so that they 

understand the level of confidence they can 

provide a user by different test approaches and 

how to interpret test results?

5. Are testers trained in how to measure process 

performance, and do they use the results of that 

measurement to improve the test processes?

ITEMS TO ADDRESS ON USER SATISFACTION YES NO COMMENTS

1. Do users get the information they need to track 

test progress and assess results prior to placing 

software into production?

2. Are surveys conducted to determine user 
satisfaction with test planning, test execution, 

test results, communications, and so forth?

3. Do users participate in tests that determine 

whether the software is acceptable for use?

4. Are users presented with a plan for testing, and 

do they “approve” (i.e., agree) that if that plan 

is followed, they will consider testing to be 

satisfactory?

5. Are the user support activities (such as data entry, 
output usage, terminal usage, manual usage, 

and so forth) validated as part of testing?

(continues)

Assessing Capabilities, Staff Competency, and User Satisfaction 21



WORK PAPER 1-1 (continued )

ITEMS TO ADDRESS TO TEST MEASUREMENT YES NO COMMENTS

1. Does a set of test measures and metrics exist, 

and are they used to measure the efficiency and 

effectiveness of software testing?

2. Has a measurement process been installed to 

measure the efficiency of the test processes?

3. Is compliance to the budget and schedule 

measured and variances addressed effectively?

4. Is tool usage measured to assess the contribution 

received from automated testing?

5. Is the percentage of defects removed versus the 

total defects eventually attributable to a 

development phase measured?

ITEMS TO ADDRESS TO TEST QUALITY 

CONTROL YES NO COMMENTS

1. Are defects made by testers during testing 

recorded and effectively addressed?

2. Is the test plan reviewed/inspected during/after 
completion by peers for adequacy and 

compliance to test standards?

3. Does the test plan include the procedures that 

will be used to verify that the plan is executed 

in accordance with the plan?

4. Are regular reports prepared that show the full 

status of testing individual software systems?

5. Are the individual quality control reports 
periodically summarized to show the efficiency 

and effectiveness of testing in the entire 

information services organization?

22 Chapter 1



WORK PAPER 1-2 Test Environment Assessment Footprint Chart

5

4

3

2

1

Test Measurement

User Satisfaction

with Test

Test Quality

Control

Test Environment

Planning

Management Support for Test

Use of Test Processes

Test Tools

Test Training

Assessing Capabilities, Staff Competency, and User Satisfaction 23



WORK PAPER 1-3 Self-Assessment on Test Processes

ITEMS TO ADDRESS ON PREPARING FOR A 

SOFTWARE TESTING PROJECT YES NO COMMENTS

1. Have the objectives and requirements for this 

software system being developed been defined?

2. Are the requirements testable?

3. Have adequate time and resources been allotted 

for both development and testing?

4. Has the process to be used for testing software 

been defined?

5. Are the testers familiar with the methodology 

that will be used to develop the software?

ITEMS TO ADDRESS ON TEST PLANNING YES NO COMMENTS

1. Have the risks associated with the software been 

defined?

2. Have the test objectives been defined?

3. Do the testers have a well-structured process to 

follow to develop the test plan?

4. Have the constraints that will be imposed on 

testing been defined?

5. Does the test plan include a matrix that relates 

the test objectives to the tests that will be 

conducted?

ITEMS TO ADDRESS ON TEST EXECUTION YES NO COMMENTS

1. Is there a process to follow to design test data?

2. Will verification testing be performed during the 

requirements phase of development?

3. Will verification testing be performed during 

the design and build phases of development?

4. Is a process in place to record and track defects?

5. Will test execution be performed in accordance 

with a plan included in the test plan?

24 Chapter 1



WORK PAPER 1-3 (continued )

ITEMS TO ADDRESS ON ACCEPTANCE 

TESTING YES NO COMMENTS

1. Have the users defined acceptance criteria?

2. Do the users have a planning process to follow in 

developing an acceptance test plan?

3. Do the users have the competencies needed to 

conduct acceptance testing? (Note that the 

competencies may include professional software 

testers involved in acceptance testing)

4. Will acceptance testing simulate real-world 

processing conditions?

5. Prior to acceptance testing, has the user 
determined the actions that will be taken based 

on the software meeting or not meeting the 

acceptance test criteria?

ITEMS TO ADDRESS ON TEST ANALYSIS 

AND REPORTING YES NO COMMENTS

1. Will test reporting be tied to the testing plan as 

defined in the test plan?

2. Will test reporting follow the test plan’s reporting 

standards?

3. Will both interim and final test reports be issued?

4. Will reporting report back on status of the 

function/test matrix included in the test plan?

5. Will the test report include an analysis and 

recommendation by the software test team?

(continues)

Assessing Capabilities, Staff Competency, and User Satisfaction 25



WORK PAPER 1-3 (continued )

ITEMS TO ADDRESS ON TESTINGSOFTWARE 

INSTALLATION YES NO COMMENTS

1. Does a software configuration plan exist and is 

that plan effective and operational?

2. Does version control exist as part of the software 

configuration management plan?

3. Does the installation plan include the 

appropriate training and use of personnel?

4. Have all the interfaces to other software systems 

been identified and addressed in the installation 

process?

5. Will the installed software be tested to ensure its 

correct prior to moving to an operational status?

ITEMS TO ADDRESS ON POST-TEST 

ANALYSIS YES NO COMMENTS

1. Will an analysis of the testing process be 

conducted after the software is placed into an 

operational status?

2. Will that analysis include the operational results 

of the software?

3. Will that analysis identify good and bad testing 

practices?

4. Does that analysis include a set-up matrix that 

will be used to quantitatively assess the 

effectiveness of testing?

5. Is there a process to incorporate the results of a 

post-test analysis into a process to improve the 

software testing process?

26 Chapter 1



WORK PAPER 1-4 Test Process Assessment Footprint Chart

5

4

3

2

1

Analyzing test results

and preparing reports

Testing

software
installation

Post-test

analysis

Test environment

planning

Prepare for a software
testing project

Conducting test

planning

Executing the

test plan

Conducting

acceptance testing

Assessing Capabilities, Staff Competency, and User Satisfaction 27



WORK PAPER 1-5 Self-Assessment on Tester Competency

ITEMS TO ADDRESS FOR SOFTWARE  

TESTING PRINCIPLES AND CONCEPTS YES NO COMMENTS

1. Are you familiar with the technical terms used to 

describe various testing techniques, tools, 

principles, concepts and activities?

2. Do you have knowledge of the different levels of 

testing, such as unit testing?

3. Do you have an understanding of the multiple 

roles of software testers, including testing against 

specifications and testing to meet users’ needs?

4. Do you understand the “V” concept of testing?

5. Do you understand the tester’s workbench, 

meaning that you understand the process by 

which the testing task is performed?

ITEMS TO ADDRESS FOR BUILDING THE  

TEST ENVIRONMENT YES NO COMMENTS

1. Do you understand the concepts of policies, 

standards and procedures and their integration 

into test processes?

2. Do you understand how to select processes for 
performing the test activities?

3. Do you understand how to adapt a test 

environment to different software development 

methodologies?

4. Do you understand a process for acquiring and 

deploying test tools?

5. Do you understand what management must do 

in order to create a work environment in which 

testers are motivated to do the right thing in an 

efficient and effective manner?

28 Chapter 1



WORK PAPER 1-5 (continued )

ITEM TO ADDRESS FOR MANAGING THE 

TEST PROJECT YES NO COMMENTS

1. Do you possess the necessary communication 

skills to effectively manage a test project?

2. Do you possess the personal effectiveness skills, 

such as negotiation, to effectively manage the 

test project?

3. Do you have the test administration skills, such 

as budgeting and scheduling, to effectively 

administer the test project?

4. Do you have the skills to ensure that the test 

plan and processes used in the project will be in 

line with the organizational goals, user business 

objectives, release cycles, and different 

development for methodologies?

5. Do you have the skills needed to develop 

working relationships with users and other 
stakeholders in the testing process?

ITEMS TO ADDRESS FOR TEST PLANNING YES NO COMMENTS

1. Do you understand the methods for performing 

risk analysis?

2. Do you know how to estimate the magnitude 

of risks?

3. Do you know how to develop a test plan that 

meets industry test plan standards?

4. Are you competent in software configuration 

management, change management, and version 

control?

5. Can you develop test objectives and acceptance 

criteria for a project being tested?

(continues)

Assessing Capabilities, Staff Competency, and User Satisfaction 29



WORK PAPER 1-5 (continued )

ITEMS TO ADDRESS FOR EXECUTING THE 

TEST PLAN YES NO COMMENTS

1. Do you have the skills necessary to design test 

data and test scripts?

2. Can you develop a test cycle strategy that will 

determine the number of test cycles to be 

conducted and what type of testing will occur 
during these cycles?

3. Do you know the type of information that must 

be recorded to effectively document test results?

4. Do you understand the process that testers 
should follow in recording and monitoring the 

resolution of defects?

5. Do you understand what is necessary to test 

changes introduced to software testing after you 

have started testing?

ITEMS TO ADDRESS FOR TEST ANALYSIS 

AND REPORTING YES NO COMMENTS

1. Do you understand the difference between a 

measure and a metric?

2. Do you know how to report results of testing 

that is consistent with the IT industry test 

reporting standards?

3. Are you familiar with, and can you calculate the 

more common metrics used in testing, such as 

defect removal efficiency?

4. Do you know the type of information that must 

be gathered during testing to enable test reports 
to provide the information projects need to 

assess their readiness to be placed into 

operation, such as code coverage and 

requirements coverage?

5. Do you have a knowledge of the tools needed 

to develop effective test reports, such as 

statistical analytical tools?

30 Chapter 1



WORK PAPER 1-5 (continued )

ITEMS TO ADDRESS FOR USER ACCEPTANCE 

TESTING YES NO COMMENTS

1. Do you understand the differences between the 

system test and acceptance test?

2. Can you create “use case” test conditions?

3. Do you understand that the user’s role and the 

software tester’s role in acceptance testing?

4. Can you develop, in conjunction with users, an 

acceptance test plan that is consistent with the 

industry standards for acceptance test plan?

5. Do you know how to develop user acceptance 

criteria that are verifiable?

ITEMS TO ADDRESS FOR TESTING 

SOFTWARE DEVELOPED BY OUTSIDE 

ORGANIZATIONS YES NO COMMENTS

1. Do you know the difference between software 

developed in-house and software developed by 

outside organizations?

2. Are you familiar with the process that would 

enable you to effectively test commercial 

off-the-shelf (COTS) software?

3. Are you knowledgeable in a process that would 

enable you to assess the software testing 

capabilities of an outside organization being 

considered for outsourcing?

4. Are you knowledgeable in the process that 

would enable you to test new versions of 

software acquired from outside organizations?

5. Do you know the risks/concerns associated with 

acquiring COTS software?

(continues)

Assessing Capabilities, Staff Competency, and User Satisfaction 31



WORK PAPER 1-5 (continued )

ITEMS TO ADDRESS FOR TESTING 

SOFTWARE CONTROLS AND THE 

ADEQUACY OF SECURITY PROCEDURES YES NO COMMENTS

1. Are you knowledgeable in the vocabulary of 

internal control and security?

2. Are you knowledgeable in the industry-accepted 

model for internal control?

3. Are you knowledgeable in how to test systems of 

internal control in software business applications?

4. Do you understand the relationship between risk 

and control?

5. Are you knowledgeable in how to test the 

adequacy of security in a business application 

software system?

ITEMS TO ADDRESS FOR TESTING NEW 

TECHNOLOGIES YES NO COMMENTS

1. Do you understand how to test new application 

architecture?

2. Do you know how to test new application 

business models?

3. Do you know how to test new communication 

methods?

4. Do you know how to test new hardware 

technologies?

5. Do you know how to evaluate the effective 

integration of new technologies into an 

organization’s IT policies and procedures?

32 Chapter 1



WORK PAPER 1-6 Test Process Assessment Footprint Chart

5

4

3

2

1

Analyze and

report test

Accept test

Test software

developed outside

organization

Test controls

and security

Test principlesTest new

technologies

Build test

environment

Manage test

project

Plan test

Execute test

Assessing Capabilities, Staff Competency, and User Satisfaction 33





PA R T

Two

Building a Software
Testing Environment





37

Senior IT management is responsible for creating an environment in which software
testing is effective and efficient. Only management can create that type of environ-
ment. If such an environment does not exist, the probability of dissatisfying project
personnel and software users is high.

Management controls all the attributes of the environment. They determine the
business that the organization performs, the physical location of the organization, the
layout of the office for testers, which hardware and operating system software will be
used, and which software projects will be developed. In addition, management hires
the testers, determines the type of training they will receive, and approves the testing
processes and tools. How testers are motivated, rewarded, and satisfied with their
work tasks is also under management’s control. 

This chapter focuses on management’s role in creating an environment conducive to
software testing by addressing the following topics:

■■ Management’s risk appetite for ineffective software

■■ The role management assigns to testing

■■ The policy for testing

■■ The type of support management provides for software testing

■■ The resources allocated for testing

■■ The processes and tools that will be used for testing

Creating an Environment
Supportive of Software Testing

C H A P T E R

2



Minimizing Risks

The primary objective of software testing is to minimize operational risk by identifying
defects prior to the software being placed into operation.

Risk Appetite for Software Quality

A risk appetite is the amount of risk that management is willing to take so that the soft-
ware placed into operations will be risk-free. Figure 2-1 illustrates the two gaps that
can cause customers and users to be dissatisfied: a specifications gap and a needs gap.

The IT project group defines the specifications for building software. The project
objective is to implement the specifications as documented by the IT project group and
agreed to by the customer/user. If they fail to deliver the specifications, or deliver them
in an incomplete and inaccurate manner, a specifications gap results. 

The second gap is a needs gap. This is the gap between what the customer of the
software needs and what was delivered. If the customer needs and the software speci-
fications were the same, there would be only one gap. However, because the process to
gather the software requirements is often defective, there are, in fact, two gaps.

Management’s risk appetite is the amount of gap that they are willing to accept.
Reasons that the gap might exist include tight schedules, limited budgets, inadequate
development and testing staff, and work processes that are prone to defects.

Software testers are a means that management can use to close both of these gaps.
The testers can determine whether the delivered software meets the specifications. The
testers can also determine whether both the specified and delivered software will meet
customer needs.

The testing environment to a large degree will enable software testers to perform a
role that will both identify early in the project potential gaps, and during the project
determine the magnitude of those gaps. However, to do this, management must create
an environment that enables the testers to fulfill these responsibilities.

Figure 2-1 Closing the customer dissatisfaction gap.

Start of
Software
Project

Delivered
Software

Software
Needs

Software
Specifications

Needs Gap

Specifications Gap

38 Chapter 2



Risks Associated with Implementing Specifications

There are many risks that, if not properly controlled, will result in missing, incomplete,
inaccurate specifications. The risk factors that can cause specifications not to be imple-
mented as specified include:

■■ Inadequate schedule and budget. If the testers do not have adequate time or
resources, they will not be able to test all the implemented specifications.

■■ Inadequate test processes. If the test processes are defective, the testers will
create defects as they conduct testing. Thus, even though they have performed
the process as specified, they will not be able to accomplish the tasks those test
processes were designed to achieve.

■■ Inadequate competency. Testers who do not know the basics of testing, who do
not know how to use the test processes provided them, and who are inade-
quately trained in the use of testing tools and techniques will not be able to
accomplish test objectives.

Faulty Software Design

The software problems that most commonly cause bad design decisions include:

■■ Designing software with incomplete or erroneous decision-making criteria.

Actions have been incorrect because the decision-making logic omitted factors
that should have been included. In other cases, decision-making criteria included
in the software were inappropriate, either at the time of design or later, because
of changed circumstances.

■■ Failing to program the software as intended by the customer (user) or

designer. This results in logic errors, often referred to as programming errors.

■■ Omitting needed edit checks for determining completeness of output data.

Critical data elements have been left blank on many input documents, and
because no checks were included, the applications processed the transactions
with incomplete data.

Data Problems

Common data input problems include:

■■ Incomplete data. Some input documents prepared by people omitted entries in
data elements that were critical to the application but were processed anyway.
The documents were not rejected when incomplete data was being used. In
other instances, data needed by the application that should have become part
of information technology (IT) files was not put into the system.

■■ Incorrect data. People have often unintentionally introduced incorrect data into
the IT system.

■■ Obsolete data. Data in the IT files became obsolete because of new circumstances.
The new data may have been available but was not entered into the computer.

Creating an Environment Supportive of Software Testing 39



Risks Associated with Not Meeting Customer Needs

Meeting customers’ needs must be differentiated from implementing the documented
software specifications. One of the major problems in meeting needs is that the process
for documenting needs by the IT project leader is defective.

Let’s look at an example of how implementing the specification correctly will not
meet the customer’s needs. Let’s assume we built an order entry system in which some-
one can order the product wanted and the quantity of that product. That sounds like a
relatively simple specification to implement. However, associated with that is a user
need that each order represents what the customer actually wants. Suppose they
wanted Y but ordered X. The specification would be met, but the wrong product would
be shipped. If the order entry specification also stated that the IT customer wanted 98
percent of the orders to represent what their customer actually wanted, meeting cus-
tomer expectations would be better defined. Without that qualifier the customer would
expect 100 percent correct orders.

In this book, these qualifiers will be called “test factors.” In other publications, they
have been referred to as quality factors and quality attributes. We will describe these
test factors which become software risks.

While the test factors themselves are not risks, they are attributes of the software
that, if they are wanted, pose a risk to the success of the software, and thus constitute a
business risk. For example, if the software is not easy to use, the resulting processing
may be incorrect. The test process should use those test factors during test planning.
The definition of the test factors enables the test process to be logically constructed like
other parts of information services.

When stated in a positive manner, the test risks become the factors that need to be
considered in the development of the test strategy. See Figure 2-2 for factors and exam-
ples. The following list briefly describes the test factors:

■■ Correctness. Assurance that the data entered, processed, and outputted by the
application system is accurate and complete. Accuracy and completeness are
achieved through controls over transactions and data elements, which should
commence when a transaction is originated and conclude when the transaction
data has been used for its intended purpose.

■■ File integrity. Assurance that the data entered into the application system will
be returned unaltered. The file integrity procedures ensure that the right file is
used and that the data on the file and the sequence in which the data is stored
and retrieved is correct.

■■ Authorization. Assurance that data is processed in accordance with the intents
of management. In an application system, there is both general and specific
authorization for the processing of transactions. General authorization governs
the authority to conduct different types of business, whereas specific authoriza-
tion provides the authority to perform a specific act.

■■ Audit trail. The capability to substantiate the processing that has occurred. The
processing of data can be supported through the retention of sufficient eviden-
tial matter to substantiate the accuracy, completeness, timeliness, and autho-
rization of data. The process of saving the supporting evidential matter is
frequently called an audit trail.

40 Chapter 2



■■ Continuity of processing. The ability to sustain processing in the event prob-
lems occur. Continuity of processing ensures that the necessary procedures and
backup information are available to recover operations should integrity be lost.
Continuity of processing includes the timeliness of recovery operations and the
ability to maintain processing periods when the computer is inoperable.

■■ Service levels. Assurance that the desired results will be available within a
time frame acceptable to the user. To achieve the desired service level, it is nec-
essary to match user requirements with available resources. Resources include
input/output capabilities, communication facilities, processing, and systems
software capabilities.

■■ Access control. Assurance that the application system resources will be pro-
tected against accidental and intentional modification, destruction, misuse, and
disclosure. The security procedure is the totality of the steps taken to ensure the
integrity of application data and programs from unintentional and unautho-
rized acts.

■■ Compliance. Assurance that the system is designed in accordance with organi-
zational strategy, policies, procedures, and standards. These requirements need
to be identified, implemented, and maintained in conjunction with other appli-
cation requirements.

■■ Reliability. Assurance that the application will perform its intended function
with the required precision over an extended period of time. The correctness of
processing deals with the ability of the system to process valid transactions cor-
rectly, while reliability relates to the system’s being able to perform correctly
over an extended period of time when placed into production.

■■ Ease of use. The extent of effort required to learn, operate, prepare input for,
and interpret output from the system. This test factor deals with the usability of
the system to the people interfacing with the application system.

■■ Maintainability. The effort required to locate and fix an error in an operational
system. Error is used in the broad context to mean both a defect in the system
and a misinterpretation of user requirements.

■■ Portability. The effort required to transfer a program from one hardware con-
figuration and/or software system environment to another. The effort includes
data conversion, program changes, operating system, and documentation
changes.

■■ Coupling. The effort required to interconnect components within an application
system and with all other application systems in their processing environment.

■■ Performance. The amount of computing resources and code a system requires
to perform its stated functions. Performance includes both the manual and
automated segments involved in fulfilling system functions.

■■ Ease of operation. The amount of effort required to integrate the system into the
operating environment and then to operate the application system. The proce-
dures can be both manual and automated.

Creating an Environment Supportive of Software Testing 41



TEST FACTOR EXAMPLE

Correctness Assurance that:
• Products are priced correctly on invoices
• Gross pay is properly calculated
• Inventory-on-hand balances are correctly accumulated

Authorization Assurance that:
• Price overrides are authorized by management
• Credits for product returns have been approved by 

management
• Employee overtime pay is authorized by the employee’s 

supervisor

File integrity Assurance that:
• The amounts in the detail records of a file support the control 

totals
• Customer addresses are correct
• Employee pay rates are correct

Audit trail Assurance that:
• Employee gross pay can be substantiated by supporting

documentation
• Sales tax paid to a specific state can be substantiated by the

supporting invoices
• Payments made to vendors can be substantiated should the 

vendor disavow receiving the payment

Continuity of Assurance that:
processing • Banking transactions can continue if computer becomes 

inoperational
• Recovery of an online system can occur within the 

predetermined tolerances

Service levels Assurance that:
• Response time in an online system is within the time span 

tolerance
• Application workload can be completed in accordance with 

the application schedule
• Changes to the system can be incorporated within the agreed 

upon schedule

Access control Assurance that:
• Programmers will not be given access to data
• Access will be restricted to predetermined system resources
• Automated access mechanisms will be current

Compliance Assurance that:
• Information services standards are complied with
• System development strategy is followed
• System is developed in accordance with budgets and schedules

Figure 2-2 Test factor examples.EST FACTOR EXAMPLE

42 Chapter 2



TEST FACTOR EXAMPLE

Reliability Assurance that:
• Users can enter the correct information on a day-to-day basis
• Errors can be correctly reprocessed
• Appropriate action will be taken on system reports

Ease of use Assurance that:
• Input forms minimize input errors
• Flow of work will be optimized in order to process work quickly
• Reporting procedures will be written in easy-to-understand

terminology

Maintainable Assurance that:
• Program documentation will be up-to-date
• Program segments will point to other segments that need to 

be changed concurrently with that segment
• Segments of programs will be identified with appropriate 

identifiers

Portable Assurance that:
• Computer program will only use common language features
• System will be hardware independent
• System will be independent of system software special 

features

Coupling Assurance that:
• Segments in one application requiring concurrent changes in 

other applications will be properly identified
• Common documentation will be up-to-date
• Changes will be coordinated

Performance Assurance that:
• System is completed within time and budget constraints
• System achieves performance acceptance criteria
• Hardware and software usage is optimized

Ease of Assurance that:
operations • Operation documentation is up-to-date

• Operators are trained in any special application operating 
procedures

• Correct version of programs run in production

Figure 2-2 (continued)

Developing a Role for Software Testers

Previously, this chapter recognized two customer dissatisfaction gaps, or two classes of
risk-associated implementing software. Also discussed were many of the specific risks
associated with these two gaps.

Creating an Environment Supportive of Software Testing 43



Management needs to evaluate these risks and determine their level of risk appetite.
For example, is management willing to accept the risk of unmaintainable software? If
not, management should take action to minimize that risk. An obvious action is to
develop maintenance standards. Another obvious action is to test the software to
ensure its maintainability. Implicit in this example is a definition of maintainability.
Does it mean that with unlimited effort, the software can be changed? Or, does it mean
a change to an internal table can be done within one hour, a minor specification change
can be done within four hours, and so forth?

The role of all software testing groups is to validate whether the documented speci-
fications have been implemented as specified. Additional roles that might be assigned
to software testers include the following:

■■ Testing for all or part of the test factors. When establishing the software test-
ing role, management will want to accept some test factors for incorporating
into the software tester’s role such as testing for ease of use, and exclude others
such as operational performance of the software. In other words, management
may decide they can live with inefficient software but cannot live with difficult
to use processes.

■■ Ensuring that the documented specifications meet the true needs of the 

customer. Testers can attempt to verify that the documented specifications 
are in fact the true needs of the customer. For example, they might initiate a
requirements review as a means of verifying the completeness of the defined
specifications. 

■■ Improving the software testing process. Testers can use the analysis of their
testing to identify ways to improve testing.

■■ Improving the developmental test process. Testers can use their experience in
testing to make recommendations on how the software development process
could be improved.

■■ Participating in acceptance testing. Testers can use their software testing
expertise to help the users of the software systems develop and implement
acceptance testing plans that will determine whether the completed software
meets the operational needs of the users.

■■ Recommending changes to the software system. In developing and conduct-
ing software tests, testers may identify better ways of implementing the docu-
mented specifications.

■■ Evaluating the adequacy of the system of controls within the software sys-

tem. There are two components of a software system: the component that does
the specified work and the component that checks that the specified work was
performed correctly. The latter component is referred to as the “system of 
internal control within the software system.” Testers can evaluate whether
those controls are adequate to reduce the risks for which they were designed 
to minimize.

44 Chapter 2



Management needs to clearly establish the role for software testers in their IT orga-
nization. Some IT managers want a limited role for software testers, whereas others
want an expanded role. Also included in a decision of the role of software testers is
whether they will be independent of the developmental project or part of the develop-
mental project.

Writing a Policy for Software Testing

A software testing policy serves two purposes. First, it is the basis for defining what
software testers will include in the test processes. Second, it explains to outside parties,
such as organizational management, IT customers and users, as well as project person-
nel, the role and responsibilities of software testing.

Criteria for a Testing Policy

A testing policy is management’s definition of testing for a department (see Figure 2-3).
A testing policy involves the following four criteria:

■■ Definition of testing. A brief but clear definition of testing.

■■ Testing system. The method through which testing will be achieved and
enforced.

■■ Evaluation. How information services management will measure and evaluate
testing.

■■ Standards. The standards against which testing will be measured.

Good testing does not just happen, it must be planned; and a testing policy should
be the cornerstone of that plan. Figure 2-3 is a simplistic testing policy that an IT
department could adopt. A good practice is for management to establish the testing
policy for the IT department, have all members of IT management sign that policy as
their endorsement and intention to enforce that testing policy, and then prominently
display that endorsed policy where everyone in the IT department can see it.

IT management normally assumes that their staff understands the testing function
and what management wants from testing. Exactly the opposite is typically true. Testing
often is not clearly defined, nor is management’s intent made known regarding their
desire for the type and extent of testing.

IT departments frequently adopt testing tools such as a test data generator, make the
system programmer/analyst aware of those testing tools, and then leave it to the discre-
tion of the staff how testing is to occur and to what extent. In fact, many “anti-testing”
messages may be indirectly transmitted from management to staff. For example, pres-
sure to get projects done on time and within budget is an anti-testing message from
management. The message says, “I don’t care how you get the system done, but get it
done on time and within budget,” which translates to the average systems analyst/
programmer as “Get it in on time even if it isn’t tested.”

Creating an Environment Supportive of Software Testing 45



Figure 2-3 Testing policy.

Methods for Establishing a Testing Policy

The following three methods can be used to establish a testing policy:

1. Management directive. One or more senior IT managers write the policy. They
determine what they want from testing, document that into a policy, and issue
it to the department. This is an economical and effective method to write a test-
ing policy; the potential disadvantage is that it is not an organizational policy,
but rather the policy of IT management.

2. Information services consensus policy. IT management convenes a group of
the more senior and respected individuals in the department to jointly develop
a policy. While senior management must have the responsibility for accepting
and issuing the policy, the development of the policy is representative of the
thinking of all the IT department, rather than just senior management. The
advantage of this approach is that it involves the key members of the IT depart-
ment. Because of this participation, staff is encouraged to follow the policy. The
disadvantage is that it is an IT policy and not an organizational policy.

TESTING POLICY
ABC INFORMATION TECHNOLOGY DEPARTMENT

TESTING DEFINITION

Determine the validity of the computer solution to a business problem.

TESTING SYSTEM

Develop and execute a test plan in accordance with departmental procedures
and user requirements.

MEASUREMENT OF TESTING

Calculate the cost of correcting defects not discovered during testing.

TESTING STANDARDS

Allow only one defect per 250 executable program statements.

46 Chapter 2



3. Users’ meeting. Key members of user management meet in conjunction with
the IT department to jointly develop a testing policy. Again, IT management
has the final responsibility for the policy, but the actual policy is developed
using people from all major areas of the organization. The advantage of this
approach is that it is a true organizational policy and involves all of those areas
with an interest in testing. The disadvantage is that it takes time to follow this
approach, and a policy might be developed that the IT department is obligated
to accept because it is a consensus policy and not the type of policy that IT itself
would have written.

Testing is an organizational responsibility. It is the recommendation of the author
that a user committee be convened to develop a testing policy. This meeting serves the
following purposes:

■■ It permits all involved parties to participate in the development of a testing
policy.

■■ It is an educational process where users understand the options and costs asso-
ciated with testing.

■■ It clearly establishes for all involved departments that testing is an organiza-
tional responsibility and not just an IT responsibility.

Economics of Testing

One information services manager described testing in the following manner: “Too lit-
tle testing is a crime, but too much testing is a sin.” The risk of under-testing is directly
translated into system defects present in the production environment. The risk of over-
testing is the unnecessary use of valuable resources in testing computer systems that
have no flaws, or so few flaws that the cost of testing far exceeds the value of detecting
the system defects.

Effective testing is conducted throughout the system development life cycle (SDLC).
The SDLC represents the activities that must occur to build software, and the sequence
in which those activities must occur.

Most of the problems associated with testing occur from one of the following causes:

Failing to define testing objectives

Testing at the wrong phase in the life cycle

Using ineffective testing techniques

The cost-effectiveness of testing is illustrated in Figure 2-4 as a testing cost curve. As
the cost of testing increases, the number of undetected defects decreases. The left side
of the illustration represents an under-test situation in which the cost of testing is less
than the resultant loss from undetected defects. At some point, the two lines cross and an
over-test condition begins. In this situation, the cost of testing to uncover defects exceeds
the losses from those defects. A cost-effective perspective means testing until the opti-
mum point is reached, which is the point where the cost of testing no longer exceeds the
value received from the defects uncovered.

Creating an Environment Supportive of Software Testing 47



Figure 2-4 Testing cost curve.

Few organizations have established a basis to measure the effectiveness of testing.
This makes it difficult for the individual systems analyst/programmer to determine
the cost-effectiveness of testing. Without testing standards, the effectiveness of the
process cannot be evaluated in sufficient detail to enable the process to be measured
and improved.

The use of a standardized testing methodology provides the opportunity for a cause
and effect relationship to be determined. In other words, the effect of a change in the
methodology can be evaluated to determine whether that effect resulted in a smaller or
larger number of defects. The establishment of this relationship is an essential step in
improving the test process.

The objective of this book is to explain how to develop a testing methodology that
enables an optimum cost-effective process to be used. The cost-effectiveness of a test-
ing process can be determined only when the effect of that process can be measured.
When the process can be measured, it can be adjusted to improve the cost-effectiveness
of the test process for the organization.

Studies at IBM demonstrated that an application system built by an immature sys-
tem development process will produce 60 errors (defects). These studies also showed
that testing prior to coding is 50 percent effective in detecting errors, and after coding,
80 percent effective. This study and others show that it is at least 10 times as costly to
correct an error after coding as before, and 100 times as costly to correct a production
error. 

These facts are illustrated in Figure 2-5 for a hypothetical system with 1,000 lines of
source code. A normal SDLC test process is shown on the left in which testing occurs
only after coding. In this example, all 60 errors remain after coding for testing, which
detects 48 errors (60 times 80 percent equals 48) at an average cost ten times as great as

NUMBER OF

DEFECTS

COST OF

TESTING

OVER

TEST

UNDER

TEST

EXTENT OF TESTING

Q
U

A
N

T
IT

Y

OPTIMUM 

TEST

48 Chapter 2



those detected prior to coding, resulting in a cost of 480 units. To that, we must add
1,200 units of cost representing the 12 remaining errors to be detected during produc-
tion at a cost of 100 units each. The net test cost is 1,680 units. Using life-cycle testing,
this can be reduced to 582 units or only one-third of the normal SDLC test concept cost
(illustrated on the right side of Figure 2-5).

Figure 2-5 Economics of SDLC testing.

REQUIREMENTS

20 ERRORS
0 20 10 10

Cost Detect

= 1

DESIGN

20 ERRORS
0 40 15 25

Cost Detect

= 1

PROGRAM

20 ERRORS
0 60 18 42

Cost Detect

= 1

TEST

80% ERROR

REDUCTION

480 12 4 182

Cost Detect

= 10

Cost Detect

= 100

MAINTENANCE

“0” ERRORS
1,680 0 0 582

NORMAL SDLC

ACCUMULATED

TEST

COST

ACCUMULATED

ERRORS/1,000

LINES CODE

SDLC TESTING

ACCUMULATED

ERRORS/1,000

LINES CODE

ACCUMULATED

TEST

COST

Creating an Environment Supportive of Software Testing 49



Testing—An Organizational Issue

Testing software systems is not just an IT issue, but rather is an organizational issue. The
IT department can verify that the system structure functions correctly and that the exe-
cutable system performs the requirements as IT understands those requirements, but the
IT department cannot test to determine that the executable system satisfies the needs of
the organization.

Effective testing must be done by a team comprised of information services profes-
sionals and users. Also, vendors of software may not be able, or may not want, to have
users testing their systems during the developmental process. Again, in these instances,
a professional test group can represent the users. The test group is known by different
names, including IT testing, quality control, quality assurance, and inspectors.

The following technological developments are causing organizations to revise their
approach to testing:

■■ Integration. Technology is being more closely integrated into the day-to-day
business, such that the business cannot operate without computer technology.
For example, the airlines can take reservations only when their computer sys-
tems are operational.

■■ System chains. More and more computer systems are interconnected into
cycles of chains such that problems in one can cascade into and affect others.

■■ The domino effect. One problem condition, such as a wrong price or a pro-
gram defect, can cause hundreds or even thousands of similar errors within a
few minutes.

■■ Reliance on electronic evidence. With hard-copy documents being removed
from processing, the validity of the transactions is dependent upon the ade-
quacy of controls, and thus a control error may result in extensive losses.

■■ Outside users. Systems no longer belong to internal users, but rather to outside
users, making it difficult to identify a single organizational unit responsible for a
system.

The organizational approach to testing commences with a policy on testing com-
puter systems. The policy should be developed under the direction of the IT depart-
ment, but should represent the philosophy of the entire organization. Once the policy
has been established, then the procedures and the methods of testing can be developed
based upon the desires of management as expressed in the testing policy.

Management Support for Software Testing

Many IT organizations have called upon the Quality Assurance Institute (QAI) to
improve their software testing process. In conducting the initial investigation, the QAI
always asks the following questions:

50 Chapter 2



■■ How much time does the senior IT manager spend on software development,

and how much time does the senior IT manager spend on software testing?

Experience has shown that in terms of developmental costs, 50 percent of the
cost is spent on developing and 50 percent is spent on testing and correcting
problems. Given these statistics, the senior IT manager should be spending
about 50 percent of his time on development and 50 percent of his time on test-
ing. If this ratio varies significantly (for example 80 percent on development
and 20 percent on testing), the tester has a clear message that their activity is
not as important as development.

■■ Are the pay grades of software developers the same pay grades as given to soft-

ware testers? Since development and testing consume an equal amount of IT
resources, it would seem logical that both developers and testers would have the
same pay grades. If not, it again indicates to software testers that they are not as
important as developers.

When testers feel this lack of management support, they lose motivation and inter-
est. Testers also recognize that if they want to improve their career opportunities they
should move to development and leave testing. 

Management support for software testing is needed in the following areas:

■■ Allocation of resources. Adequate resources should be allotted to testers so
that they can have effective and efficient test processes and up-to-date test
tools.

■■ Training. Software testers need to be trained to improve their competency in
software testing, testing processes, and the use of testing tools.

■■ Motivation. Senior IT management should undertake activities that motivate
software testers. This is done by setting a “tone” at the top. For example, con-
stantly referring to the importance of testing in staff meeting, assuring that the
test schedule and budget will not be cut to compensate for developmental
overruns, and periodically talking with testers about their concerns and job
responsibilities.

■■ Rewards. Software testers should be rewarded for the work they do. A reward
can be a “Thank you” at the end of testing, a letter of commendation to the soft-
ware tester’s job file, lunch or other rewards with the boss, as well as financial
and promotion rewards.

■■ Walking the “testing” talk. This means that IT managers will take the time to
learn testing basics, will become involved in the acquisition of testing tools, sit
in on testing courses, and so forth. The goal should be to convince testers that
testing is an important component of IT services.

Building a Structured Approach to Software Testing

Traditionally, the SDLC places testing immediately prior to installation and maintenance
(see Figure 2-6). All too often, testing after coding is the only verification technique used

Creating an Environment Supportive of Software Testing 51



to determine the adequacy of the system. When testing is constrained to a single phase
and confined to the latter stages of development, severe consequences can develop. It
is not unusual to hear of testing consuming 50 percent of the development budget. All
errors are costly, but the later in the SDLC the error is discovered, the more costly the
error. Indeed, an error discovered in the latter parts of the SDLC must be paid four dif-
ferent times. The first cost is developing the program erroneously, which may include
writing the wrong specifications, coding the system wrong, and documenting the sys-
tem improperly. Second, the system must be tested to detect the error. Third, the wrong
specifications and coding must be removed and the proper specifications, coding, and
documentation added. Fourth, the system must be retested to determine whether the
problem(s) have been corrected.

If information services has as its goal lower cost and higher quality systems, it must
not isolate verification to a single phase in the development process; rather, it must
incorporate verification into each phase of development. One of the most prevalent
and costly mistakes on systems development projects today is to defer the activity of
detecting and correcting problems until late in the project. A major justification for an
early verification activity is that many costly errors are made before coding begins.

Studies have shown that the majority of system errors occur in the design phase.
Figure 2-7 represents the results of numerous studies that show that approximately
two-thirds of all detected system errors can be attributed to errors made during the
design phase. This means that almost two-thirds of the errors must be specified and
coded into programs before they can be detected.

Table 2-1 presents the recommended testing process as a life cycle chart showing the
verification activities for each phase. The success of conducting verification through-
out the development cycle depends upon the existence of clearly defined and stated
products at each development stage. The more formal and precise the statement of the
development product, the more amenable it is to the analysis required to support ver-
ification. Many of the new system development methodologies encourage firm prod-
ucts even in the early development stages.

The following activities should be performed at each phase:

■■ Analyze the software documentation for internal testability and 
adequacy.

■■ Generate test sets based on the software documentation at this phase.

Figure 2-6 Traditional software development life cycle.

TEST INSTALLATION MAINTENANCEPROGRAMDESIGNREQUIRE-

MENTS

52 Chapter 2



Figure 2-7 Analysis and design errors are the most numerous.

In addition, the following should be performed during the design and program
phases:

■■ Determine that the software documentation is consistent with the software doc-
umentation produced during previous phases.

■■ Refine or redefine test sets generated earlier.

Table 2-1 Life Cycle Verification Activities

LIFE CYCLE PHASE VERIFICATION ACTIVITIES

Requirements ■■ Determine verification approach

■■ Determine adequacy of requirements

■■ Generate functional test data

■■ Determine consistency of design with requirements

Design ■■ Determine adequacy of design

■■ Generate structural and functional test data

■■ Determine consistency with design

Program ■■ Determine adequacy of implementation

■■ Generate structural and functional test data for programs

Test ■■ Test application system

Installation ■■ Place tested system into production

Maintenance ■■ Modify and retest

CODING ERRORS

36%

ANALYSIS AND

DESIGN ERRORS

64%

Creating an Environment Supportive of Software Testing 53



The recommended test process involves testing in every phase of the life cycle. Dur-
ing the requirements phase, the emphasis is on validation to determine that the defined
requirements meet the needs of the organization. During the design and program
phases, the emphasis is on verification to ensure that the design and programs accom-
plish the defined requirements. During the test and installation phases, the emphasis is
on inspection to determine that the implemented system meets the system specification.
During the maintenance phase, the system should be retested to determine whether the
changes work as planned and to ensure that the unchanged portion continues to work
correctly.

Throughout the entire life cycle, neither development nor verification is a straight-
line activity. Modifications or corrections to the software at one phase will require
modifications or re-verification of software produced during previous phases.

Requirements

The verification activities performed during the requirements phase of software devel-
opment are extremely significant. The adequacy of the requirements must be thor-
oughly analyzed and initial test cases generated with the expected (correct) responses.
Developing scenarios of expected system use may help to determine the test data and
anticipated results. These tests will form the core of the final test set. Vague or
untestable requirements will leave the validity of the delivered product in doubt.
Requirements defined to later phases of development can be very costly. A determina-
tion of the importance of software quality attributes should be made at this stage. Both
product requirements and validation requirements should be established.

Design

Organization of the verification effort and test management activities should be closely
integrated with preliminary design. During the design phase, the general testing strat-
egy is formulated and a test plan is produced. If needed, an independent test team is
organized. A test schedule with observable milestones should be determined. At this
same time, the framework for test documentation should be established.

During the design phase, validation support tools should be acquired or developed
and the test procedures themselves should be produced. Test data to exercise the func-
tions introduced during the design process, as well as test cases based upon the struc-
ture of the system, should be generated. Thus, as the software development proceeds,
a more effective set of test cases is built.

In addition to test organization and the generation of test cases, the design itself
should be analyzed and examined for errors. Simulation can be used to verify proper-
ties of the system structures and subsystem interaction, design walkthroughs should
be used by the developers to verify the flow and logical structure of the system, while
design inspection should be performed by the test team. Areas of concern include
missing cases, faulty logic, module interface mismatches, data structure inconsisten-
cies, erroneous I/O assumptions, and user interface inadequacies. The detailed design

54 Chapter 2



must prove to be internally coherent, complete, and consistent with the preliminary
design and requirements.

Program

Actual testing occurs during the program stage of development. Many testing tools
and techniques exist for this stage of system development. Code walkthrough and
code inspection are effective manual techniques. Static analysis techniques detect
errors by analyzing program characteristics such as data flow and language construct
usage. For programs of significant size, automated tools are required to perform this
analysis. Dynamic analysis, performed as the code actually executes, is used to deter-
mine test coverage through various instrumentation techniques. Formal verification or
proof techniques are used to provide further quality assurance.

Test

During the test process, careful control and management of test information is critical.
Test sets, test results, and test reports should be catalogued and stored in a database.
For all but very small systems, automated tools are required to do an adequate job—
the bookkeeping chores alone become too large to be handled manually. A test driver,
test data generation aids, test coverage tools, test results management aids, and report
generators are usually required.

Installation

The process of placing tested programs into production is an important phase nor-
mally executed within a narrow time span. Testing during this phase must ensure that
the correct versions of the program are placed into production, that data if changed or
added is correct, and that all involved parties know their new duties and can perform
them correctly.

Maintenance

More than 50 percent of a software system’s life cycle costs are spent on maintenance. As
the system is used, it is modified either to correct errors or to augment the original sys-
tem. After each modification, the system must be retested. Such retesting activity is
termed regression testing. The goal of regression testing is to minimize the cost of system
revalidation. Usually only those portions of the system impacted by the modifications
are retested. However, changes at any level may necessitate retesting, re-verifying, and
updating documentation at all levels below it. For example, a design change requires
design re-verification, unit retesting, and subsystem retesting. Test cases generated dur-
ing system development are reused or used after appropriate modifications. The quality
of the test documentation generated during system development and modified during
maintenance will affect the cost of regression testing. If test data cases have been cata-
logued and preserved, duplication of effort is minimized.

Creating an Environment Supportive of Software Testing 55



Developing a Test Strategy

If IT management selects a structured approach to testing software, they need a strat-
egy to implement it. This strategy explains “what to do.” Testing tactics explain “how
to” implement the strategy.

The objective of testing is to reduce the risks inherent in computer systems. The strat-
egy must address the risks and present a process that can reduce those risks. The system
concerns or risks then establish the objectives for the test process. The two components
of the testing strategy are the test factors and the test phase, defined as follows:

■■ Test factor. The risk or issue that needs to be addressed as part of the test strat-
egy. The strategy will select those factors that need to be addressed in the test-
ing of a specific application system.

■■ Test phase. The phase of the SDLC in which testing will occur.

Not all test factors will be applicable to all software systems. The development team
will need to select and rank the test factors for the specific software system being
developed. Once selected and ranked, the strategy for testing will be partially defined.

The test phase will vary based on the testing methodology used. For example, the test
phases in a traditional SDLC methodology will be much different from the phases in a
rapid application development methodology.

Figure 2-8 illustrates a generic strategy, the one presented in this book. However,
this strategy should be customized for any specific software system. The applicable
test factors would be listed and ranked, and the phases of development would be listed
as the phases in which testing must occur.

You must perform the following four steps to develop a customized test strategy.
The test strategy can be represented as the test factor/test phase matrix, as illustrated
in Figure 2-8. 

1. Select and rank test factors. The customers/key users of the system in con-
junction with the test team should select and rank the test factors. In most
instances, only three to seven factors will be needed. Statistically, if the key fac-
tors are selected and ranked, the other factors will normally be addressed in a
manner consistent with supporting the key factors. These should be listed in
the matrix in sequence from the most significant test factor to the least signifi-
cant. Rank your factors in sequence from the most to the least significant on
Work Paper 2-1. Specific test risks can be substituted for factors, or you can
expand the factors to describe risks in more detail.

2. Identify the system development phases. The project development team
should identify the phases of their development process. This is normally
obtained from the system development methodology. These phases should be
recorded in the test phase component of the matrix. Record these phases in the
test phase component of Work Paper 2-2, and then copy the appropriate test
factor from Work Paper 2-1 to Work Paper 2-2.

56 Chapter 2



Figure 2-8 Test factor/test phase matrix.

3. Identify the business risks associated with the system under development.

The developers, key users, customers, and test personnel should brainstorm
the risks associated with the software system. Most organizations have a brain-
storming technique, and it is appropriate for individuals to use the technique in
which they have had training and prior use. Using this technique, the risks
should be identified and agreed upon by the group. The risks should then be
ranked into high, medium, and low. This is a relational severity indicator,
meaning that one-third of all risks should be indicated as high; one-third,
medium; and one-third, low.

4. Place risks in the matrix. The risk team should determine the test phase in
which the risk needs to be addressed by the test team, and the test factor to
which the risk is associated. Take the example of a payroll system: If there were
a concern about compliance to federal and state payroll laws, the risk would be
the penalties associated with noncompliance. Assuming compliance was
picked as one of the significant test factors, the risk would be most prevalent
during the requirements phase. Thus, in the matrix, at the intersection between
the compliance test factor and the requirements phase, the risk of “penalties

R
E
Q

U
IR

E
M

E
N

T
STEST

PHASE

TEST
FACTORS

D
E
S
IG

N

B
U

IL
D

T
E
S
T

IN
S
T
A

LL
A

T
IO

N

M
A

IN
T
E
N

A
N

C
E

FA
CTORS

RISKS

Creating an Environment Supportive of Software Testing 57



associated with noncompliance to federal and state payroll laws” should be
inserted. Note that this may be done by a reference number, cross-referencing
the risk. The risk would then have associated with it an H, M, or L, for high,
medium, or low risk, respectively.

Use Work Paper 2-1

Work Paper 2-1 enables you to make the most important factors your test specifications.
The Work Paper should be completed jointly by the project and test teams. Rank the 15
factors from 1 to 15, with 1 as the most important factor and 15 as the least. You can also
rank them as high, medium, or low. To use this tool correctly, five factors should be high,
five medium, and five low. Table 2-2 describes the fields in Work Paper 2-1.

Use Work Paper 2-2

Copy the test factors from Work Paper 2-1 to Work Paper 2-2 and list the most impor-
tant factor at the top and the least important factor at the bottom in the Test Factors col-
umn. Do not list any inconsequential test factors. Next, list the matching concerns in
the appropriate test phase column. In the Figure 2-9 example, if accuracy was your
highest test factor, the concern you’d list would be incomplete identification of all soft-
ware requiring Year 2000 date corrections. A detailed example of how to complete and
use this Work Paper follows. Table 2-3 describes the fields in Work Paper 2-2.

Table 2-2 Field Requirements

FIELD DESCRIPTION

Number A sequential number identifying the 15 test factors
described in this chapter.

Test Factor The 15 test factors described in this chapter.

Factor Rank Rank the most important test factors, ideally 1
through 15; but in practice, this has proven difficult.
As an alternative, pick the top five without ranking
them; for example, just indicate a check in the
Factor Ranked column. Or rank five of them high,
five medium, and five low in importance.

Ranking Rationale Explain why a particular test factor was ranked as
indicated. For example, if correctness was ranked as
the number 1 factor, the ranking rationale might
explain that outputs would be sent to governmental
agencies which have viewed incorrect reports
negatively.

58 Chapter 2



Table 2-3 Field Requirements

FIIELD DESCRIPTION

Test Factors Contains the factors ranked in importance. If the
testers ranked the factors 1–15, then the number 1
test factor would be first in this column and the
number 15 test factor would be last. However, if 
five test factors were ranked as important, then 
just those five test factors would be listed in this
column.

Test Phase The six most common test phases, as described in
the text.

Test Concerns In the horizontal column under each of the six test
phases, list the test concern together with the
strategy used to address that test concern. Figure
2-9 further describes documenting the test concerns
and test strategy.

Figure 2-9 Example of a complete test strategy matrix for a Year 2000 test strategy.

Compliance

(Can tax

information be

transmitted

after 1/2/2000?)

Concern

Has tax

transmission risk for

our company and

government been

identified?

Test Strategy

Examine the

assessment document

to determine that

a risk regarding

transmission of tax

data has been

identified.

Assessment Plan Implement Dynamic Test

Concern

Is there a tax trans-

mission Y2K plan?

Test Strategy

Review the Y2K plan

to determine how,

and which, systems

will be modified to

ensure that tax data

can be transmitted

to the appropriate

governmental

agencies.

Concern

Was the plan

implemented?

Test Strategy

Inspect the programs

that govern

transmission of tax

information to

determine whether

they were

appropriately

modified.

Concern

Was the

implementation

tested?

Test Strategy

Create a test, which

will transmit to

appropriate

government

agencies with

a year 2000 date.

Year 2000 PhaseTest Factors
(Ranked High

to Low)

Creating an Environment Supportive of Software Testing 59



Summary

Establishing the right environment for software testing is an essential component of an
effective and efficient software testing process. Senior IT management has the primary
responsibility for establishing an environment that is conducive to software testing. The
key component of the environment is the “tone” at the top established by management
regarding software testing. This tone includes management’s personal involvement in
software testing, how they motivate the software testing staff to perform the testing
activities, the effort they are willing to expend to ensure the testing staff has the necessary
competencies, and providing the resources needed to develop/acquire the software
testing process including tools. This chapter has emphasized management’s role and
responsibility in creating an environment for effective software testing.

Once management has established a “tone” at the top regarding software testing,
the remaining pieces of the environment need to be developed. Although there are
many components of the environment, the three major ones are:

■■ Software testing work processes

■■ Software testing tools

■■ A competent software testing staff

The following three chapters will address those three key components of the soft-
ware testing environment.

60 Chapter 2



WORK PAPER 2-1 Test Factor/Risk Ranking

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Number A sequential number identifying the 15 test factors described in this chapter.

Test Factor The 15 test factors described in this chapter.

Factor Rank Rank the most important test factors, ideally 1 through 15; but in practice, this

has proven difficult. As an alternative, pick the top five without ranking them; for
example, just indicate a check in the Factor Rank column. Or rank five of them

high, five medium, and five low.

Ranking Rationale Explain why a particular test factor was ranked as indicated. For example, if

accuracy was ranked as the number 1 factor, the ranking rationale might explain
that outputs would be sent to governmental agencies that have viewed incorrect

reports negatively.

NUMBER TEST FACTOR FACTOR RANK RANKING RATIONALE

1 Accuracy

2 File Integrity

3 Authorization

4 Audit Trail

5 Processing Continuity

6 Service Levels

7 Access Control

8 Compliance

9 Reliability

10 Ease of Use

11 Ease of Maintenance

12 Portability

13 Coupling

14 Performance

15 Ease of Operation

Creating an Environment Supportive of Software Testing 61



WORK PAPER 2-2 Test Factors/Test Phase/Test Concerns

TEST

PHASE

REQUIREMENTS DESIGN PROGRAM TEST INSTALLATION MAINTAINENANCE

TEST

FACTORS

(RANKED 

HIGH TO 

LOW)

62 Chapter 2

Factors or

Risks

Test
Concerns



63

The testing process is the means by which the test strategy is achieved. The team that
develops the testing process uses the test strategy as the requirements for the process.
Their task is to determine the tests and methods of performance needed to address the
risks that the test strategy identifies.

Following a test process has two significant advantages. First, the tester does not
have to determine the process to be used for software testing because that process
already exists. Second, when all testers follow the same process, they will develop bet-
ter means for testing. These means will be incorporated into the process by continually
improving the software testing process.

This chapter describes the construction of a workbench for building software. The
workbench illustrates both the “do” and the “check” procedures. The “do” procedures
are the test procedures, and the “check” procedures determine whether the “do” pro-
cedures were performed correctly. The chapter then identifies the considerations for
customizing a process for testing, as well as explains the need for a test process. Part
Three of this book details the seven steps proposed as a generic test process.

Software Testing Guidelines

Experience has shown there are six general software testing guidelines that, if followed,
can significantly improve software testing. These guidelines are the primary reason for
building the software testing process:

Building the Software
Testing Process

C H A P T E R

3



1. Software testing should reduce software development risk. Risk is present
in all software development projects, and testing is a control that reduces
those risks.

2. Testing should be performed effectively. Testing should be performed in
a manner in which the maximum benefits are achieved from the software 
testing efforts.

3. Testing should uncover defects. Ideally, at the conclusion of testing there
should be no defects in the software.

4. Testing should be performed using business logic. Money should not be
spent on testing unless it can be spent economically to reduce business risk. In
other words, it does not make business sense to spend more money on testing
than the losses that might occur from the business risk.

5. Testing should occur throughout the development life cycle. Testing is not a
phase, but rather a process. It begins when development begins and ends when
the software is no longer being used.

6. Testing should test both structure and function. Testing should test the func-
tional requirements to ensure they are correct, and test the adequacy of the soft-
ware structure to process those functional requirements in an effective and
efficient manner.

NOTE To learn how to customize the test process for a specific software

system, see the section “Customizing the Software-Testing Process” later in

this chapter.

Guideline #1: Testing Should Reduce
Software Development Risk

Senior IT executives need to develop their IT strategy. Strategic plans are converted
into business initiatives. The planning cycle comprising the plan-do components of the
plan-do-check-act (PDCA) cycle is easy to understand. From a senior IT executive’s
perspective, the check component must address business risk.

Risk is the probability that undesirable events will occur. These undesirable events
will prevent the organization from successfully implementing its business initiatives.
For example, there is the risk that the information used in making business decisions
will be incorrect or late. If the risk turns into reality and the information is late or incor-
rect, an erroneous business decision may result in a failed initiative.

Controls are the means an organization uses to minimize risk. Software testing is a
control that contributes to eliminating or minimizing risks; thus, senior executives rely
on controls such as software testing to assist them in fulfilling their business objectives.

The purpose of controls such as software testing is to provide information to manage-
ment so that they can better react to risky situations. For example, testing may indicate
that the system will be late or that there is a low probability that the information pro-
duced will be correct. Knowing this information, management can then make decisions

64 Chapter 3



to minimize that risk: Knowing that the project may be late, they could assign additional
personnel to speed up the software development effort.

Testers must understand that their role in a business is to evaluate risk and report
the results to management. Viewed from this perspective, testers must first ensure they
understand the business risk, and then develop test strategies focused on those risks.
The highest business risk should receive the most test resources, whereas the lowest
business risk should receive the fewest resources. This way, the testers are assured that
they are focusing on what is important to their management.

Guideline #2: Testing Should Be Performed Effectively

Effectiveness means getting the maximum benefit from minimum resources. The
process is well-defined. There should be little variance in the cost of performing the
task from tester to tester. If no well-defined process is in place, the cost variance for per-
forming a task between testers can vary significantly. 

The object of the test process from an effective viewpoint is two-fold. First, processes
reduce variance by having the process performed in a consistent manner by each tester.
The second processes reduce variance through continuous process improvement. Once
variance is minimized, testers can perform those tests they say they will perform in the
timeframe and cost they say they can be performed in.

Guideline #3: Testing Should Uncover Defects

All testing focuses on discovering and eliminating defects or variances from what is
expected. There are two types of defects:

■■ Variance from specifications. A defect from the perspective of the builder of
the product.

■■ Variance from what is desired. A defect from a user’s (or customer’s) perspec-
tive. Testers need to identify both types of defects. Defects generally fall into
one of the following three categories:

■■ Wrong. The specifications have been implemented incorrectly. This defect is
a variance from what the customer/user specified.

■■ Missing. A specified or wanted requirement is not in the built product. This
can be a variance from specification, an indication that the specification was
not implemented, or a requirement of the customer identified during or
after the product was built.

■■ Extra. A requirement incorporated into the product was not specified. This
is always a variance from specifications, but may be an attribute desired by
the user of the product. However, it is considered a defect.

Defects Versus Failures

Adefect found in the system being tested can be classified as wrong, missing, or extra. The
defect may be within the software or in the supporting documentation. While the defect
is a flaw in the system, it has no negative impact until it affects the operational system.

Building the Software Testing Process 65



A defect that causes an error in operation or negatively impacts a user/customer is
called a failure. The main concern with defects is that they will turn into failures. It is
the failure that damages the organization. Some defects never turn into failures. On the
other hand, a single defect can cause millions of failures.

Why Are Defects Hard to Find?

Some defects are easy to spot, whereas others are more subtle. There are at least two
reasons defects go undetected:

■■ Not looking. Tests often are not performed because a particular test condition
is unknown. Also, some parts of a system go untested because developers
assume software changes don’t affect them.

■■ Looking but not seeing. This is like losing your car keys only to discover they
were in plain sight the entire time. Sometimes developers become so familiar
with their system that they overlook details, which is why independent verifi-
cation and validation should be used to provide a fresh viewpoint.

Defects typically found in software systems are the results of the following 
circumstances:

■■ IT improperly interprets requirements. Information technology (IT) staff mis-
interpret what the user wants, but correctly implement what the IT people
believe is wanted.

■■ The users specify the wrong requirements. The specifications given to IT staff
are erroneous.

■■ The requirements are incorrectly recorded. Information technology staff fails
to record the specifications properly.

■■ The design specifications are incorrect. The application system design does
not achieve the system requirements, but the design as specified is imple-
mented correctly.

■■ The program specifications are incorrect. The design specifications are incor-
rectly interpreted, making the program specifications inaccurate; however, it is
possible to properly code the program to achieve the specifications.

■■ There are errors in program coding. The program is not coded according to
the program specifications.

■■ There are data entry errors. Data entry staff incorrectly enter information into
the computers.

■■ There are testing errors. Tests either falsely detect an error or fail to detect one.

■■ There are mistakes in error correction. The implementation team makes errors
in implementing your solutions.

■■ The corrected condition causes another defect. In the process of correcting a
defect, the correction process itself institutes additional defects into the applica-
tion system.

66 Chapter 3



Usually, you can identify the test tactics for any test process easily; it’s estimating the
costs of the tests that is difficult. Testing costs depend heavily on when in the project
life cycle testing occurs. As noted in Chapter 2, the later in the life cycle testing occurs,
the higher the cost. The cost of a defect is twofold: You pay to identify a defect and to
correct it.

Guideline #4: Testing Should Be Performed
Using Business Logic

The cost of identifying and correcting defects increases exponentially as the project pro-
gresses. Figure 3-1 illustrates the accepted industry standard for estimating costs and
shows how costs dramatically increase the later you find a defect. A defect encountered
during the execution of a SDLC phase is the cheapest to fix if corrected in the same
SDLC phase where the defect occurred. Let’s assume a defect found and corrected dur-
ing the SDLC design phase costs x to fix. If that same defect is corrected during the sys-
tem test phase, it will cost 10x to fix. The same defect corrected after the system goes into
production will cost 100x. Clearly, identifying and correcting defects early is the most
cost-effective way to develop an error-free system.

Figure 3-1 Relative cost versus the project phase.

RELATIVE COST VS. THE PROJECT PHASE

R
E
LA

T
IV

E
 C

O
S
T
 T

O
 F

IX
 E

R
R
O

R

O
R
 M

IS
U

N
D

E
R
S
T
A

N
D

IN
G

Analysis Design Code System Operation

PHASE IN WHICH ERROR IS DETECTED

Test

20.0
15.0 
10.0 

9.0 
8.0 
7.0 
6.0 
5.0 
4.0 
3.0 
2.0 
1.0 
.9 
.8 
.7 
.6 
.5 
.4 
.3 
.2 
.1 

  

(.2)
$200

(.5)
$500

(1.2)
$1,200

(5.0)
$5,000

(15.0)
$15,000

Building the Software Testing Process 67



Testing should begin during the first phase of the life cycle and continue through-
out the life cycle. Although this book is centered on V-concept testing (detailed in
Chapter 6), it’s important to recognize that life-cycle testing is essential to reducing the
cost of testing. 

Guideline #5: Testing Should Occur Throughout 
the Development Life Cycle

Life-cycle testing involves continuous testing of the solution even after software plans
are complete and the tested system is implemented. At several points during the devel-
opment process, the test team should test the system to identify defects at the earliest
possible point.

Life-cycle testing cannot occur until you formally develop your test process. IT must
provide and agree to a strict schedule for completing various phases of the test process for
proper life-cycle testing to occur. If IT does not determine the order in which they deliver
completed pieces of software, appropriate tests are impossible to schedule and conduct.

Testing is best accomplished by forming a test team. The test team must use struc-
tured methodologies; they should not use the same methodology for testing that they
used to develop the system. The effectiveness of the test team depends on developing
the system under one methodology and testing it under another. As illustrated in Fig-
ure 3-2, when the project starts, both the development process and system test process
also begin. Thus, the testing and implementation teams begin their work at the same
time and with the same information. The development team defines and documents
the requirements for implementation purposes, and the test team uses those require-
ments for the purpose of testing the system. At appropriate points during the develop-
ment process, the test team runs the compliance process to uncover defects. The test
team should use the structured testing techniques outlined in this book as a basis of
evaluating the corrections.

As you’re testing the implementation, prepare a series of tests that your IT depart-
ment can run periodically after your revised system goes live. Testing does not stop
once you’ve completely implemented your system; it must continue until you replace
or update it again.

Figure 3-2 Life-cycle testing concepts.

DEVELOPMENT
PROCESS

M
AIN

TEN
ANCE

TEST

PROCES
S

TEST

SYSTEM

PROJECT SY
ST

EM

START

REQUIREMENTS DESIGN PROGRAM TEST OPERATION MAINTENANCE

SDLC PHASE

68 Chapter 3



Guideline #6: Testing Should Test Both 
Function and Structure

When testers test your project team’s solution, they’ll perform functional or structural
tests. Functional testing is sometimes called black box testing because no knowledge of
the system’s internal logic is used to develop test cases. For example, if a certain func-
tion key should produce a specific result when pressed, a functional test would be to
validate this expectation by pressing the function key and observing the result. When
conducting functional tests, you’ll be using validation techniques almost exclusively.

Conversely, structural testing is sometimes called white box testing because knowl-
edge of the system’s internal logic is used to develop hypothetical test cases. Structural
tests predominantly use verification techniques. If a software development team cre-
ates a block of code that will allow a system to process information in a certain way, a
test team would verify this structurally by reading the code, and given the system’s
structure, see if the code could work reasonably. If they felt it could, they would plug
the code into the system and run an application to structurally validate the code. Each
method has its pros and cons, as follows:

■■ Functional testing advantages:

■■ Simulates actual system usage

■■ Makes no system structure assumptions

■■ Functional testing disadvantages:

■■ Includes the potential to miss logical errors in software

■■ Offers the possibility of redundant testing

■■ Structural testing advantages:

■■ Enables you to test the software’s logic

■■ Enables you to test structural attributes, such as efficiency of code

■■ Structural testing disadvantages:

■■ Does not ensure that you’ve met user requirements

■■ May not mimic real-world situations

Why Use Both Testing Methods?

Both methods together validate the entire system. For example, a functional test case
might be taken from the documentation description of how to perform a certain func-
tion, such as accepting bar code input. A structural test case might be taken from a tech-
nical documentation manual. To effectively test systems, you need to use both methods.

Structural and Functional Tests Using 
Verification and Validation Techniques

Testers use verification techniques to confirm the reasonableness of a system by review-
ing its structure and logic. Validation techniques, on the other hand, strictly apply to

Building the Software Testing Process 69



physical testing, to determine whether expected results occur. You’ll conduct structural
tests primarily using verification techniques, and functional tests using validation tech-
niques. Using verification to conduct structural tests would include

■■ Feasibility reviews. Tests for this structural element would verify the logic
flow of a unit of software.

■■ Requirements reviews. These reviews verify software attributes; for example,
in any particular system, the structural limits of how much load (transactions
or number of concurrent users) a system can handle.

Functional tests are virtually all validation tests, and inspect how the system per-
forms. Examples of this include

■■ Unit testing. These tests verify that the system functions properly—for exam-
ple, pressing a function key to complete an action.

■■ Integrated testing. The system runs tasks that involve more than one applica-
tion or database to verify that it performed the tasks accurately.

■■ System testing. These tests simulate operation of the entire system, and verify
that it ran correctly.

■■ User acceptance. This real-world test means the most to your business. Unfor-
tunately, there’s no way to conduct it in isolation. Once your organization staff,
customers, or vendors begin to interact with your system, they’ll verify that it
functions properly for you.

Verification and validation are not mutually exclusive, so you will conduct func-
tional tests with verification and structural tests with validation during your project.
Table 3-3 shows the relationships just explained, listing each of the six test activities,
who performs them, and whether the activity is an example of verification or valida-
tion. For example, when conducting a feasibility review, developers and users verify
that the software could conceivably perform after the solution is implemented the way
the developers expect.

NOTE You can learn more about verification and validation techniques in

Chapters 9 and 10, respectively.

Table 3-3 Functional Testing

TEST PHASE PERFORMED BY VERIFICATION VALIDATION

Feasibility Review Developers, users X

Requirements Review Developers, users X

Unit Testing Developers X

Integration Testing Developers X

System Testing Developers with X
user assistance

User Acceptance Users X

70 Chapter 3



Now that you’ve seen how you must verify and validate your system structurally
and functionally, the last tool to introduce is a process template for employing these
tactics, called the tester’s workbench.

Workbench Concept

To understand testing methodology, you must understand the workbench concept. In
IT organizations, workbenches are more frequently referred to as phases, steps, or
tasks. The workbench is a way of illustrating and documenting how a specific activity
is to be performed. Defining workbenches is normally the responsibility of a process
management committee, which in the past has been more frequently referred to as a
standards committee. There are four components to each workbench:

1. Input. The entrance criteria or deliverables needed to complete a task.

2. Procedures to do. The work tasks or processes that will transform the input
into the output.

3. Procedures to check. The processes that determine that the output meet the
standards.

4. Output. The exit criteria or deliverables produced from the workbench.

NOTE Testing tools are not considered part of the workbench because they

are incorporated into either the procedures to do or procedures to check. The

workbench is illustrated in Figure 3-3, and the software development life cycle,

which is comprised of many workbenches, is illustrated in Figure 3-4.

Figure 3-3 The workbench for testing software.

Building the Software Testing Process 71



Figure 3-4 The test process contains multiple workbenches.

The workbench concept can be used to illustrate one of the steps involved in build-
ing systems. The programmer’s workbench consists of the following steps:

1. Input products (program specs) are given to the producer (programmer).

2. Work is performed (e.g., coding/debugging); a procedure is followed; a prod-
uct or interim deliverable (e.g., a program/module/unit) is produced.

3. Work is checked to ensure product meets specs and standards, and that the do
procedure was performed correctly.

4. If the check process finds problems, the product is sent back for rework.

5. If the check process finds no problems, the product is released to the next
workbench 

Chapters 6 through 13, which walk you through testing your software development
project, describe each step in workbench format. Each chapter begins with a work-
bench description for that step.

Testing That Parallels the Software Development Process

When the processes for developing software and testing software are shown in a single
diagram, they are frequently presented as what is known as a “V diagram.” On one
side of the V are the steps for developing software, and on the other side are the steps
for testing software. Figure 3-5 illustrates the V diagram for the seven-step software-
testing process presented in this book. 

The process for developing software contains the following generic steps:

1. Define the requirements for the software system.

2. Design the software system based on the requirements.

3. Build the software based on the design.

4. Test the software (which involves unit testing and frequently integration testing).

5. Install the software in an operational environment. 

6. Maintain the software as changes are needed (Note: unless changes are signifi-
cant, the developers will test the changes and then install the new version.)

72 Chapter 3



Figure 3-5 The V diagram for the seven-step software-testing process.

The process for testing software involves the following steps:

1. Prepare for testing a software system.

2. Plan the tests that will be conducted on the software system.

3. Execute the steps as defined in the test plan.

4. Conduct acceptance testing by the software system users. (Note: This testing
may be assisted by the IT independent test group.)

5. Analyze test results and report them to the appropriate software system 
stakeholders.

6. Test the installation of the software into the operational environment, and test
changes made to the software after it is placed into the operational environment.

7. Conduct a post-implementation analysis to evaluate the effectiveness and effi-
ciency of the test process.

Define
Requirements

Design

Software

Build
Software

Install
Software

Operate and
Maintain Software

Step 1
Organizing for Testing

Chapter 7

Step 2
Test Plan

Chapter 8

Step 3
Verification Testing

Chapter 9

Step 4
Validation Testing

Chapter 10

Step 5
Analyzing and Reporting

Chapter 11

Step 6
Acceptance and Operational Testing

Chapter 12

Step 7
Post-Implementation Analysis

Chapter 13

Development
of Software

Independent
Test of Software

Building the Software Testing Process 73



Each of the seven steps in the software-testing process can be represented by the soft-
ware testing workbench. In the seven-step process, these testing workbenches comprise
multiple steps. Therefore, there would be multiple workbenches within the overall
workbench for each step.

An IT organization should customize the seven-step testing process for its particu-
lar situation. The seven-step process presented in this book is one that testers might use
for a large, complex software system. The following sections discuss eight considera-
tions that your organization should use when customizing the seven-step software-
testing process.

Customizing the Software-Testing Process

The following are eight considerations you need to address when customizing the
seven-step software-testing process:

1. Determine the test strategy objectives.

2. Determine the type of development project.

3. Determine the type of software system.

4. Determine the project scope.

5. Identify the software risks.

6. Determine when testing should occur.

7. Define the system test plan standard.

8. Define the unit test plan standard.

NOTE You can use the CD included with this book to customize the templates

in the seven-step software-testing process for your organization.

Determining the Test Strategy Objectives

Test strategy is normally developed by a team very familiar with the business risks
associated with the software; tactics are developed by the test team. Thus, the test team
needs to acquire and study the test strategy. In this study, the test team should ask the
following questions:

■■ What is the ranking of the test factors?

■■ Which of the high-level risks are the most significant?

■■ What damage can be done to the business if the software fails to perform 
correctly?

74 Chapter 3



■■ What damage can be done to the business if the software is not completed
on time?

■■ Which individuals are most capable of understanding the impact of the identi-
fied business risks?

Determining the Type of Development Project

The type of development project refers to the environment/methodology in which the soft-
ware will be developed. As the environment changes, so does the testing risk. For exam-
ple, the risks associated with the traditional development effort differ from the risks
associated with off-the-shelf purchased software. Different testing approaches must be
used for different types of projects, just as different development approaches are used
(see Figure 3-6).

Building the Software Testing Process 75

- Uses a system devel-
opment methodology

- User knows 
requirements

- Development 
determines structure

- Requirements 
unknown

- Structure predefined

- Modify structure

- Structure unknown

- May contain defects

- Functionality defined 
in user 
documentation

- Documentation may 
vary from software

Traditional system
development (and most
perfective maintenance)

Iterative development/
prototyping

System maintenance

Purchased/contracted
software

- Test at end of each 
task/step/phase

- Verify that specs 
match need

- Test function and
structure

- Verify that tools 
are used properly

- Test functionality

- Test structure

- Works best with 
release methods

- Requires regression 
testing

- Verify that 
functionality matches 
need

- Test functionality

- Test fit into 
environment

TYPE CHARACTERISTICS TEST TACTICS

Figure 3-6 Test tactics for different project types.



Determining the Type of Software System

The type of software system refers to the processing that will be performed by that sys-
tem. This step contains 16 different software system types. However, a single software
system may incorporate more than one of these types. Identifying the specific software
type will help build an effective test plan.

■■ Batch (general). Can be run as a normal batch job and makes no unusual hard-
ware or input-output actions (for example, a payroll program or a wind tunnel
data analysis program).

■■ Event control. Performs real-time data processing as a result of external events
(for example, a program that processes telemetry data).

■■ Process control. Receives data from an external source and issues commands to
that source to control its actions based on the received data.

■■ Procedure control. Controls other software (for example, an operating system
that controls the execution of time-shared and batch computer programs).

■■ Advanced mathematical models. Resembles simulation and business strategy
software, but has the additional complexity of heavy use of mathematics.

■■ Message processing. Handles input and output messages, processing the text
or information contained therein.

■■ Diagnostic software. Detects and isolates hardware errors in the computer
where it resides or in other hardware that can communicate with that computer.

■■ Sensor and signal processing. Similar to that of message processing, but
requires greater processing to analyze and transform the input into a usable
data processing format.

■■ Simulation. Simulates an environment, mission situation, other hardware;
inputs from these to enable a more realistic evaluation of a computer program
or hardware component.

■■ Database management. Manages the storage and access of (typically large)
groups of data. Such software can also prepare reports in user-defined formats
based on the contents of the database.

■■ Data acquisition. Receives information in real time and stores it in some form
suitable for later processing (for example, software that receives data from a
space probe and files it for later analysis).

■■ Data presentation. Formats and transforms data, as necessary, for convenient
and understandable displays for humans. Typically, such displays would be for
some screen presentation.

■■ Decision and planning aids. Uses artificial intelligence techniques to provide
an expert system to evaluate data and provide additional information and con-
sideration for decision and policy makers.

■■ Pattern and image processing. Generates and processes computer images. Such
software may analyze terrain data and generate images based on stored data.

76 Chapter 3



■■ Computer system software. Provides services to operational computer 
programs. 

■■ Software development tools. Provides services to aid in the development of soft-
ware (for example, compilers, assemblers, and static and dynamic analyzers).

Determining the Project Scope

The project scope refers to the totality of activities to be incorporated into the software
system being tested—the range of system requirements/specifications to be under-
stood. The scope of new system development is different from the scope of changes to
an existing system. This step describes some of the necessary characteristics, but this
list must be expanded to encompass the requirements of the specific software system
being tested. The scope of the project usually delimits the scope of the testing effort.
Consider the following issues:

■■ New systems development:

■■ What business processes are included in the software?

■■ Which business processes will be affected?

■■ Which business areas will be affected?

■■ What existing systems will interface with this system?

■■ Which existing systems will be affected?

■■ Changes to existing systems:

■■ Are the changes corrective or is new functionality being added?

■■ Is the change caused by new standards?

■■ What other systems are affected?

■■ Is regression testing needed?

Identifying the Software Risks

Strategic risks are the high-level business risks faced by the software system; software
system risks are subsets. The purpose of decomposing the strategic risks into tactical
risks is to assist in creating the test scenarios that will address those risks. It is difficult
to create test scenarios for high-level risks.

Tactical risks can be categorized as follows:

Structural risks

Technical risks

Size risks

Work Papers 3-1, 3-2, and 3-3 provide the method for assessing the structural, tech-
nical, and size risks, respectively. These Work Papers are to be completed by the test
team interacting with the development team and selected end users/customers. Each

Building the Software Testing Process 77



of the three Work Papers identifies a risk, a rating for the risk, and a weight associated
with the risk. The identification of the risk and its associated weight are supplied as
part of the tactical risk assessment process. Weight is an indication of the relative
importance of each risk in relationship to the other risks.

To complete Work Papers 3-1, 3-2, and 3-3, perform the following steps:

1. Understand the risk and the ratings provided for that risk. The higher the
predefined rating, the greater the risk. In most instances, ratings will be
between 1 and 4.

2. Determine the applicable rating for the software system being tested. Select
one of the listed ratings for each risk and place it in the Ratings column. For
example, on the Structural Risk Assessment Work Paper (3-1), if you deter-
mined that the amount of time since the last major change to the existing area
of business was more than two years, you would note that a low rating was
indicated, and put a 1 in the Ratings column.

3. Calculate and accumulate the risk score. The ratings you provided in the 
Ratings column should be multiplied by the weight to get a score. The score
for each work paper should then be accumulated and the total score posted to
Work Paper 3-4. When the three work papers have been completed, you will
have posted three scores to the Risk Score Analysis Work Paper.

To complete Work Paper 3-4, perform the following steps:

1. Calculate average risk score by risk area. To do this, total the number of risks
on Work Papers 3-1, 3-2, and 3-3 and divide that into the total score on Work
Paper 3-4 to obtain an average score for the three risk areas. Do the same for the
total risk score for the software.

2. Post comparative ratings. After you have used these Work Papers a number of
times, you will develop average scores for your application systems. Take the
score totals for your application systems and rank them from high to low for
each of the three risk areas. Then determine an average for the high third of the
scores, the middle third of the scores, and the low third of the scores. This aver-
age is the cumulative rating for your company’s applications and can be perma-
nently recorded on Work Paper 3-4. This will enable you to compare the score of
the system you are testing against comparative ratings so you can determine
whether the system you are working on is high, medium, or low risk in each of
the three risk areas and overall.

3. List at the bottom of Work Paper 3-4 all the risk attributes from the three

worksheets that received a high-risk rating. Identify the area (for example,
structure) and list the specific risk that was given a high rating. Then, for each
of those risks, determine the specific test concern and list it on Work Paper 3-4.

When you have completed this assessment process, the tactical risks will be well
defined, enabling the insight gained from this step to be embedded into the test plan.
Obviously, areas of high risk may need special attention; for example, if size puts the
project in a high-risk rating, extra test effort may be needed, focused on ensuring that

78 Chapter 3



the system can handle the volume or size of transactions specified for the software. Test
concerns can be addressed by specific tests designed to evaluate the magnitude of the
risk and the adequacy of controls in the system to address that risk.

Determining When Testing Should Occur

The previous steps have identified the type of development project, the type of soft-
ware system, the project scope, and the technical risks. Using that information, the
point in the development process when testing should occur must be determined. The
previous steps have identified what type of testing needs to occur, and this step will
tell when it should occur.

Testing can and should occur throughout the phases of a project (refer to Figure 3-2).
Examples of test activities to be performed during these phases are:

A. Requirements phase activities

■■ Determine test strategy

■■ Determine adequacy of requirements

■■ Generate functional test conditions

B. Design phase activities

■■ Determine consistency of design with requirements

■■ Determine adequacy of design

■■ Generate structural and functional test conditions

C. Program phase activities

■■ Determine consistency with design

■■ Determine adequacy of implementation

■■ Generate structural and functional test conditions for programs/units

D. Test phase activities

■■ Determine adequacy of the test plan

■■ Test application system

E. Operations phase activities

■■ Place tested system into production

F. Maintenance phase activities

■■ Modify and retest

Defining the System Test Plan Standard

A tactical test plan must be developed to describe when and how testing will occur.
This test plan will provide background information on the software being tested, on
the test objectives and risks, as well as on the business functions to be tested and the
specific tests to be performed.

Building the Software Testing Process 79



Information on the test environment part of the test plan is described in Part Two of
this book. Reference other parts of the book for development methodologies other than
the SDLC methodology; for example, Chapter 15 addresses client/server systems.

The test plan is the road map you should follow when conducting testing. The plan
is then decomposed into specific tests and lower-level plans. After execution, the
results are rolled up to produce a test report. The test reports included in Chapter 11 are
designed around standardized test plans. A recommended test plan standard is illus-
trated in Figure 3-7; it is consistent with most of the widely accepted published test
plan standards.

80 Chapter 3

1. GENERAL INFORMATION

1.1 Summary. Summarize the functions of the software and the tests to be
performed.

1.2 Environment and Pretest Background. Summarize the history of the
project. Identify the user organization and computer center where the
testing will be performed. Describe any prior testing and note results that
may affect this testing.

1.3 Test Objectives. State the objectives to be accomplished by testing.

1.4 Expected Defect Rates. State the estimated number of defects for
software of this type.

1.5 References. List applicable references, such as:

a) Project request authorization.
b) Previously published documents on the project.
c) Documentation concerning related projects.

2. PLAN

2.1 Software Description. Provide a chart and briefly describe the inputs,
outputs, and functions of the software being tested as a frame of
reference for the test descriptions.

2.2 Test Team. State who is on the test team and their test assignment(s).

2.3 Milestones. List the locations, milestone events, and dates for the testing.

2.4 Budgets. List the funds allocated to test by task and checkpoint.

2.5 Testing (systems checkpoint). Identify the participating organizations and
the system checkpoint where the software will be tested.

2.5.1 Schedule (and budget). Show the detailed schedule of dates and
events for the testing at this location. Such events may include
familiarization, training, data, as well as the volume and frequency
of the input. Resources allocated for test should be shown.

Figure 3-7 System test plan standard.



Building the Software Testing Process 81

2.5.2 Requirements. State the resource requirement, including:

a) Equipment. Show the expected period of use, types, and
quantities of the equipment needed.

b) Software. List other software that will be needed to support
the testing that is not part of the software to be tested.

c) Personnel. List the numbers and skill types of personnel 
that are expected to be available during the test from both
the user and development groups. Include any special
requirements such as multishift operation or key personnel.

2. PLAN

2.5.3 Testing Materials. List the materials needed for the test, such as:

a) System documentation
b) Software to be tested and its medium
c) Test inputs
d) Test documentation
e) Test tools

2.5.4 Test Training. Describe or reference the plan for providing training
in the use of the software being tested. Specify the types of
training, personnel to be trained, and the training staff.

2.5.5 Test to be Conducted. Reference specific tests to be conducted at
this checkpoint.

2.6 Testing (system checkpoint). Describe the plan for the second and
subsequent system checkpoint where the software will be tested in a
manner similar to paragraph 2.5.

3. SPECIFICATIONS AND EVALUATION

3.1 Specifications

3.1.1 Business Functions. List the business functional requirement
established by earlier documentation, or Task 1 of Step 2.

3.1.2 Structural Functions. List the detailed structural functions to be
exercised during the overall test.

3.1.3 Test/Function Relationships. List the tests to be performed on the
software and relate them to the functions in paragraph 3.1.2.

3.1.4 Test Progression. Describe the manner in which progression is
made from one test to another so that the entire test cycle is
completed.

Figure 3.7 (continued)



82 Chapter 3

3.2 Methods and Constraints.

3.2.1 Methodology. Describe the general method or strategy of the
testing.

3.2.2 Test Tools. Specify the type of test tools to be used.

3.2.3 Extent. Indicate the extent of the testing, such as total or partial.
Include any rationale for partial testing.

3.2.4 Data Recording. Discuss the method to be used for recording the
test results and other information about the testing.

3.2.5 Constraints. Indicate anticipated limitations on the test due to test
conditions, such as interfaces, equipment, personnel, data- bases.

3. SPECIFICATIONS AND EVALUATION

3.3 Evaluation.

3.3.1 Criteria. Describe the rules to be used to evaluate test results,
such as range of data values used, combinations of input types
used, maximum number of allowable interrupts or halts.

3.3.2 Data Reduction. Describe the techniques to be used for
manipulating the test data into a form suitable for evaluation,
such as manual or automated methods, to allow comparison of
the results that should be produced to those that are produced.

4. TEST DESCRIPTIONS

4.1 Test (Identify). Describe the test to be performed (format will vary for on-
line test script).

4.1.1 Control. Describe the test control, such as manual, semiautomatic
or automatic insertion of inputs, sequencing of operations, and
recording of results.

4.1.2 Inputs. Describe the input data and input commands used during
the test.

4.1.3 Outputs. Describe the output data expected as a result of the test
and any intermediate messages that may be produced.

4.1.4 Procedures. Specify the step-by-step procedures to accomplish
the test. Include test setup, initialization, steps and termination.

4.2 Test (Identify). Describe the second and subsequent tests in a manner
similar to that used in paragraph 4.1.

Figure 3.7 (continued)



Defining the Unit Test Plan Standard

During internal design, the system is divided into the components or units that per-
form the detailed processing. Each of these units should have its own test plan. The
plans can be as simple or as complex as the organization requires based on its quality
expectations.

The importance of a unit test plan is to determine when unit testing is complete. It is
a bad idea economically to submit units that contain defects to higher levels of testing.
Thus, extra effort spent in developing unit test plans, testing units, and ensuring that
units are defect free prior to integration testing can have a significant payback in reduc-
ing overall test costs.

Figure 3-8 presents a suggested unit test plan. This unit test plan is consistent with
the most widely accepted unit test plan standards. Note that the test reporting in Chap-
ter 11 for units assumes that a standardized unit test plan is utilized.

Converting Testing Strategy to Testing Tactics

Developing tactics is not a component of establishing a testing environment. However,
understanding the tactics that will be used to implement the strategy is important in cre-
ating work processes, selecting tools, and ensuring that the appropriate staff is acquired
and trained. The objective of this section is to introduce you to the testing tactics that will
be incorporated into the approach to software testing presented in this book.

The testing methodology proposed in this book incorporates both testing strategy
and testing tactics. The tactics address the test plans, test criteria, testing techniques, and
testing tools used in validating and verifying the software system under development.

The testing methodology cube represents a detailed work program for testing soft-
ware systems (see Figure 3-9). A detailed testing work program is important to ensure
that the test factors have been adequately addressed at each phase of the systems
development life cycle. This book provides a detailed description of the work program
represented by the testing methodology cube.

The cube is a three-dimensional work program. The first and most important dimen-
sions are the test factors that are selected for a specific application system test strategy.
If the testing process can show that the selected test factors have been adequately han-
dled by the application system, the test process can be considered satisfactorily com-
pleted. In designing the test work program, there are concerns in each phase of the life
cycle that the test factors will not be achieved. While the factors are common to the
entire life cycle, the concerns vary according to the phase of the life cycle. These con-
cerns represent the second dimension of the cube. The third dimension of the cube is
the test tactics. There are criteria that, if satisfied, would assure the tester that the appli-
cation system has adequately addressed the risks. Once the test tactics have ensured
that the risks are addressed, the factors can also be considered satisfied and the test tac-
tics are complete.

Building the Software Testing Process 83



84 Chapter 3

1. PLAN

1.1 Unit Description. Provide a brief description and flowchart of the unit
which describes the input, outputs, and functions of the unit being tested
as a frame of reference for the specific tests.

1.2 Milestones. List the milestone events and dates for testing.

1.3 Budget. List the funds allocated to test this unit.

1.4 Test Approach. The general method or strategy used to test this unit.

1.5 Functions not Tested. List those functions which will not be validated as a
result of this test.

1.6 Test Constraints. Indicate anticipated limitations on the test due to test
conditions, such as interfaces, equipment, personnel, and data bases.

2. BUSINESS AND STRUCTURAL FUNCTION TESTING

2.1 Business Functions. List the business functional requirements included in
this unit.

2.2 Structural Functions. List the structural functions included in the unit.

2.3 Test Descriptions. Describe the tests to be performed in evaluating
business and structural functions.

2.4 Expected Test Results. List the desired result from each test. That which
will validate the correctness of the unit functions.

2.5 Conditions to Stop Test. The criteria which if occurs will result in the tests
being stopped.

2.6 Test Number Cross-Reference. A cross-reference between the system test
identifiers and the unit test identifiers.

3. INTERFACE TEST DESCRIPTIONS

3.1 Interface. List the interfaces that are included in this unit.

3.2 Test Description. Describe the tests to be performed to evaluate the
interfaces.

3.3 Expected Test Results. List the desired result from each test. That which
will validate the correctness of the unit functions.

3.4 Test Number Cross-Reference. A cross-reference between the system test
identifiers and the unit test identifiers.

4. TEST PROGRESSION

List the progression in which the tests must be performed. Note that this is
obtained from the system test plan. This section may be unnecessary if the
system test plan progression worksheet can be carried forward.

Figure 3-8 Unit test plan standard.



Figure 3-9 Example of a test-tactics matrix.

The three dimensions of the cube will be explained in detail in later chapters,
together with the tools and techniques needed for the testing of the application system.
The test factors have been previously explained. The test tactics outline the steps to be
followed in conducting the tests, together with the tools and techniques needed for each
aspect of testing. The test phases are representative of the more commonly accepted
system development life cycles. Later chapters are devoted to testing in each phase of
the life cycle, and in those chapters, the phase and test tactics for that phase are
explained in detail.

R
E
Q

U
IR

E
M

E
N

T
S

TEST
PHASE

TEST STRATEGY

TEST
FACTORS

D
E
S
IG

N

P
R
O

G
R
A

M

T
E
S
T

O
P
E
R
A
T
IO

N

M
A

IN
T
E
N

A
N

C
E

FACTORS

RISKS

TES
T T

ACTIC
S

PLANS

Building the Software Testing Process 85



Process Preparation Checklist

Work Paper 3-5 is a checklist that you can use to assess the items to be addressed by the
test planning process. Use this checklist as you build your test process; it will help
ensure that the test process will address the components of effective testing.

A Yes response to any checklist items means that you’ve chosen an effective process
component for your test process. If you don’t want to include a particular item in your
test process, insert No for that item. Use the Comments column to clarify your
response and to provide guidance for building the test process. A blank worksheet has
been provided for your use at the end of this chapter.

Summary

Effective and efficient testing will occur only when a well-defined process exists. This
chapter presented six guidelines to improve the effectiveness and efficiency of soft-
ware-testing process. The chapter explained the workbench concept to be used in
building your software-testing process. A seven-step software-testing process was pre-
sented that can be viewed as seven major testing workbenches; each of these steps
incorporate several minor or sub-workbenches within the step workbench. Normally,
that generic seven-step process requires customization to fit into your culture and IT
mission. Customization considerations were provided to help you with the customiza-
tion process. 

The seven-step process designed in this book is recommended as a generic software-
testing process you should use in your organization. The next chapter will provide
guidance on selecting and incorporating tools into the software testing process. 

86 Chapter 3



Building the Software Testing Process 87

WORK PAPER 3-1 Structural Risk Assessment

TEST DOCUMENT
Structural Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

1. Amount of time since last major change to existing area of 3

business

• More than 2 years L=1

• 1 to 2 years; unknown M=2

• Less than 1 year H=3

• No automated system H=3

2. Estimated frequency of change to proposed/existing systems 3

• No existing automated system; or development effort 

insufficient for estimate NA=0

• Fewer than 2 per year L=1

• 2 to 10 per year M=2

• More than 20 per year H=3

3. Estimated extent of total changes in business area methods 3

in last year in percentage of methods affected

• No changes NA=0

• Less than 10% L=1

• 10 to 25% M=2

• More than 25% H=3

4. Magnitude of changes in business area associated with this 3

project

• Minor change(s) L=1

• Significant but manageable change M=2

• Major changes to system functionality and/or resource H=4

needs

5. Project performance site 2

• Company facility L=1

• Local noncompany facility M=2

• Not in local area H=5

6. Critical staffing of project 2

• In-house L=1

• Contractor, sole-source M=2

• Contractor, competitive-bid H=6

7. Type of project organization 2

• Line and staff: project has total management control of L=1

personnel

• Mixture of line and staff with matrix-managed elements M=2

• Matrix: no management control transferred to project H=3

(continues)



88 Chapter 3

WORK PAPER 3-1 (continued)

TEST DOCUMENT
Structural Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

8. Potential problems with subcontractor relationship 5

• Not applicable to this project NA=0

• Subcontractor not assigned to isolated or critical task: prime L=1

contractor has previously managed subcontractor successfully

• Subcontractor assigned to all development tasks in M=2

subordinate role to prime contractor: company has 

favorable experience with subcontractor on other effort(s)

• Subcontractor has sole responsibility for critical task; H=3

subcontractor new to company

9. Status of the ongoing project training 2

• No training plan required NA=0

• Complete training plan in place L=1

• Some training in place M=2

• No training available H=3

10. Level of skilled personnel available to train project team 3

• No training required NA=0

• Knowledgeable on all systems L=1

• Knowledgeable on major components M=2

• Few components understood H=3

11. Accessibility of supporting reference and or compliance documents 3

and other information on proposed/existing system

• Readily available L=1

• Details available with some difficulty and delay M=2

• Great difficulty in obtaining details, much delay H=3

12. Status of documentation in the user areas 3

• Complete and current L=1

• More than 75% complete and current M=2

• Nonexistent or outdated H=6

13. Nature of relationship with users in respect to updating project 3

documentation to reflect changes that may occur during project 

development

• Close coordination L=1

• Manageable coordination M=2

• Poor coordination H=5

14. Estimated degree to which project documentation reflects actual 3

business need

• Excellent documentation L=1

• Good documentation but some problems with reliability M=2

• Poor or inadequate documentation H=3



Building the Software Testing Process 89

WORK PAPER 3-1 (continued)

TEST DOCUMENT
Structural Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

15. Quality of documentation for the proposed system 3

• Excellent standards: adherence and execution are integral L=1

part of system and program development

• Adequate standards: adherence is not consistent M=2

• Poor or no standards: adherence is minimal H=3

16. Quality of development and production library control 3

• Excellent standards: superior adherence and execution L=1

• Adequate standards: adherence is not consistent M=2

• Poor or no standards: adherence is minimal H=3

17. Availability of special test facilities for subsystem testing 2

• Complete or not required L=1

• Limited M=2

• None available H=3

18. Status of project maintenance planning 2

• Current and complete L=1

• Under development M=2

• Nonexistent H=3

19. Contingency plans in place to support operational mission 2

should application fail

• None required NA=0

• Complete plan L=1

• Major subsystems addressed M=2

• Nonexistent H=3

20. User approval of project specifications 4

• Formal, written approval based on structured, detailed review L=1

processes

• Formal, written approval based on informal unstructured, M=2

detailed review processes

• No formal approval; cursory review H=3

21. Effect of external systems on the system 5

• No external systems involved NA=0

• Critical intersystem communications controlled through L=1

interface control documents; standard protocols utilized: 

stable interfaces

• Critical intersystem communications controlled through M=2

interface control documents: some nonstandard protocols: 

interfaces change infrequently

• Not all critical intersystem communications controlled H=3

through interface control documents: some nonstandard 

protocols: some interfaces change frequently

(continues)



90 Chapter 3

WORK PAPER 3-1 (continued)

TEST DOCUMENT
Structural Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

22. Type and adequacy of configuration management planning 2

• Complete and functioning L=1

• Undergoing revisions for inadequacies M=2

• None available H=3

23. Type of standards and guidelines to be followed by project 4

• Standards use structured programming concepts, reflect L=1

current methodology, and permit tailoring to nature and 

scope of development project

• Standards require a top-down approach and offer some M=2

flexibility in application

• Standards are out of date and inflexible H=3

24. Degree to which system is based on well-specified requirements 5

• Detailed transaction and parametric data in requirements L=1

documentation

• Detailed transaction data in requirements documentation M=2

• Vague requirements documentation H=5

25. Relationships with those who are involved with system 3

(e.g., users, customers, sponsors, interfaces) or who must be 

dealt with during project effort

• No significant conflicting needs: system primarily serves one L=1

organizational unit

• System meets limited conflicting needs of cooperative

organization units M=2

• System must meet important conflicting needs of several

cooperative organization units H=3

• System must meet important conflicting needs of several

uncooperative organizational units H=4

26. Changes in user area necessary to meet system operating 3

requirements

• Not applicable NA=0

• Minimal L=1

• Somewhat M=2

• Major H=3

27. General user attitude 5

• Good: values data processing solution L=1

• Fair: some reluctance M=2

• Poor: does not appreciate data processing solution H=3



Building the Software Testing Process 91

WORK PAPER 3-1 (continued)

TEST DOCUMENT
Structural Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

28. Status of people, procedures, knowledge, discipline, and 4

division of details of offices that will be using system

• Situation good to excellent L=1

• Situation satisfactory but could be improved M=2

• Situation less than satisfactory H=3

29. Commitment of senior user management to system 3

• Extremely enthusiastic L=1

• Adequate M=3

• Some reluctance or level of commitment unknown H=3

30. Dependence of project on contributions of technical effort from 2

other areas (e.g., database administration)

• None L=1

• From within IT M=2

• From outside IT H=3

31. User’s IT knowledge and experience 2

• Highly capable L=1

• Previous exposure but limited knowledge M=2

• First exposure H=3

32. Knowledge and experience of user in application area 2

• Previous experience L=1

• Conceptual understanding M=2

• Limited knowledge H=4

33. Knowledge and experience of project team in 3

application area

• Previous experience L=1

• Conceptual understanding M=2

• Limited knowledge H=4

34. Degree of control by project management 2

• Formal authority commensurate with assigned responsibility L=1

• Informal authority commensurate with assigned responsibility M=2

• Responsibility but no authority H=3

35. Effectiveness of project communications 2

• Easy access to project manager(s); change information L=1

promptly transmitted upward and downward

• Limited access to project manager(s); downward M=2

communication limited

• Aloof project management; planning information closely held H=3

(continues)



92 Chapter 3

WORK PAPER 3-1 (continued)

TEST DOCUMENT
Structural Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

36. Test team’s opinion about conformance of system specifications 3

to business needs based on early tests and/or reviews

• Operational tests indicate that procedures and operations L=1

produce desired results

• Limited tests indicate that procedures and operations differ M=2

from specifications in minor aspects only

• Procedures and operations differ from specifications in H=3

important aspects: specifications insufficient to use for 

testing

37. Sensitivity of information 1

• None L=0

• High H=3

Total 107.00

PREPARED BY: DATE: Total Score / Total Weight = Risk Average



Building the Software Testing Process 93

WORK PAPER 3-2 Technical Risk Assessment

TEST DOCUMENT
Technical Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

1. Ability to fulfill mission during hardware or software failure 2

• Can be accomplished without system L=1

• Can be accomplished without fully operational system, but M=2

some minimum capability required

• Cannot be accomplished without fully automated system H=6

2. Required system availability 2

• Periodic use (weekly or less frequently) L=1

• Daily use (but not 24 hours per day) M=2

• Constant use (24 hours per day) H=5

3. Degree to which system’s ability to function relies on 2

exchange of data with external systems

• Functions independently: sends no data required for the L=0

operation of other systems

• Must send and/or receive data to or from another system M=2

• Must send and/or receive data to or from multiple systems H=3

4. Nature of system-to-system communications 1

• System has no external interfaces L=0

• Automated communications link using standard protocols M=2

• Automated communications link using nonstandard protocals H=3

5. Estimated system’s program size limitations 2

• Substantial unused capacity L=1

• Within capacity M=2

• Near limits of capacity H=3

6. Degree of specified input data control procedures 3

• Detailed error checking L=1

• General error checking M=2

• No error checking H=3

7. Type of system hardware to be installed 3

• No hardware needed NA=0

• Standard batch or on-line systems L=1

• Nonstandard peripherals M=2

• Nonstandard peripherals and mainframes H=3

8. Basis for selection of programming and system software 3

• Architectural analysis of functional and performance L=1

requirements

• Similar system development experience M=2

• Current inventory of system software and existing H=3

programming language skills

(continues)



94 Chapter 3

WORK PAPER 3-2 (continued)

TEST DOCUMENT
Technical Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

9. Complexity of projected system 2

• Single function (e.g., word processing only) L=1

• Multiple but related function (e.g., message generation, M=2

editing, and dissemination)

• Multiple but not closely related functions (e.g., database H=3

query, statistical manipulation, graphics plotting, text editing)

10. Projected level of programming language 2

• High level, widely used L=1

• Low-level or machine language, widely used M=2

• Special-purpose language, extremely limited use H=3

11. Suitability of programming language to application(s) 2

• All modules can be coded in straightforward manner in L=1

chosen language

• All modules can be coded in a straightforward manner with H=3

few exit routines, sophisticated techniques, and so forth

• Significant number of exit routines, sophisticated techniques, H=3

and so forth are required to compensate for deficiencies in 

language selected

12. Familiarity of hardware architecture 2

• Mainframe and peripherals widely used L=1

• Peripherals unfamiliar M=2

• Mainframe unfamiliar H=4

13. Degree of pioneering (extent to which new, difficult, and 5

unproven techniques are applied)

• Conservative: no untried system components; no pioneering L=1

system objectives or techniques

• Moderate: few important system components and functions H=3

are untried; few pioneering system objectives and techniques

• Aggressively pioneering: more than a few unproven hardware

or software components or system objectives H=3

14. Suitability of hardware to application environment 2

• Standard hardware NA=0

• Architecture highly comparable with required functions L=1

• Architecture sufficiently powerful but not particularly efficient M=2

• Architecture dictates complex software routines H=3



Building the Software Testing Process 95

WORK PAPER 3-2 (continued)

TEST DOCUMENT
Technical Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

15. Margin of error (need for perfect functioning, split-second 5

timing, and significant cooperation and coordination)

• Comfortable margin L=1

• Realistically demanding M=2

• Very demanding; unrealistic H=3

16. Familiarity of project team with operating software 2

• Considerable experience L=1

• Some experience or experience unknown M=2

• Little or no experience H=3

17. Familiarity of project team with system environment supporting 2

the application

• Considerable experience L=1

• Some experience or experience unknown M=2

• Little or no experience with:

Operating System H=3

DBMS H=3

Data Communications H=3

18. Knowledgeability of project team in the application area 2

• Previous experience L=1

• Conceptual understanding M=2

• Limited knowledge H=3

19. Type of test tools used 5

• Comprehensive test/debut software, including path analyzers L=1

• Formal, documented procedural tools only M=2

• None H=3

20. Realism of test environment 4

• Tests performed on operational system: total database and L=1

communications environment

• Tests performed on separate development system: total M=2

database, limited communications

• Tests performed on dissimilar development system: limited H=3

database and limited communications

21. Communications interface change testing 4

• No interfaces required NA=0

• Live testing on actual line at operational transaction rates L=1

• Loop testing on actual line, simulated transactions M=2

• Line simulations within development system H=3

(continues)



96 Chapter 3

WORK PAPER 3-2 (continued)

TEST DOCUMENT
Technical Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

22. Importance of user training to the success of the system 1

• Little training needed to use or operate system: L=1

documentation is sufficient for training

• Users and or operators need no formal training, but M=2

experience is required in addition to documentation

• Users essentially unable to operate system without formal, H=3

hands-on training in addition to documentation

23. Estimated degree of system adaptability to change 3

• High: structured programming techniques used: relatively L=1

unpatched, well documented

• Moderate M=2

• Low: monolithic program design, high degree of inner/ H=4

intrasystem dependency, unstructured development, 

minimal documentation

Total 61.00

PREPARED BY: DATE: Total Score / Total Weight = Risk Average



Building the Software Testing Process 97

WORK PAPER 3-3 Size Risk Assessment

TEST DOCUMENT
Size Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

1. Ranking of this project’s total worker-hours within the limits 3

established by the organization’s smallest and largest system

development projects (in number of worker-hours)

• Lower third of systems development projects L=1

• Middle third of systems development projects M=2

• Upper third of systems development projects H=3

2. Project implementation time 3

• 12 months or less L=1

• 13 months to 24 months M=2

• More than 24 months, with phased implementation H=3

• More than 24 months; no phasing H=4

3. Estimated project adherence to schedule 1

• Ahead of schedule L=1

• On schedule M=2

• Behind schedule (by three months or less) H=3

• Behind schedule (by more than three months) H=4

4. Number of systems interconnecting with the application 3

• 1 to 2 L=1

• 3 to 5 M=2

• More than 5 H=3

5. Percentage of project resources allocated to system testing 2

• More than 40% L=1

• 20 to 40% M=2

• Less than 20% H=3

6. Number of interrelated logical data groupings (estimate 1

if unknown)

• Fewer than 4 L=1

• 4 to 6 M=2

• More than 6 H=3

7. Number of transaction types 1

• Fewer than 6 L=1

• 6 to 25 M=2

• More than 25 H=3

8. Number of output reports 1

• Fewer than 10 L=1

• 10 to 20 M=2

• More than 20 H=3

(continues)



98 Chapter 3

WORK PAPER 3-3 (continued)

TEST DOCUMENT
Size Risk Assessment

Ratings: L - Low M - Medium H - High NA - Not Applicable RATING × WEIGHT=

RISK RATINGS SCORE

9. Ranking of this project’s number of lines of program code to be 3

maintained within the limits established by the organization’s 

smallest and largest systems development projects (in number 

of lines of code)

• Lower third of systems development projects L=1

• Middle third of systems development projects M=2

• Upper third of systems development projects H=3

Total 18.00

PREPARED BY: DATE: Total Score / Total Weight = Risk Average



Building the Software Testing Process 99

WORK PAPER 3-4 Risk Score Analysis

TEST DOCUMENT
Risk Score Analysis

APPLICATION SYSTEM ________________________________________________________________

COMPARATIVE RATING WITH

SCORE COMPANY APPLICATIONS

RISK AREA COMMENTS

TOTAL AVERAGE HIGH MEDIUM LOW

STRUCTURE

TECHNOLOGY

SIZE

TOTAL RISK SCORE

HIGH RISK ATTRIBUTES

RISK AREA RISK ATTRIBUTES TEST CONCERN

PREPARED BY: DATE:



100 Chapter 3

WORK PAPER 3-5 Testing Tactics Checklist

YES NO COMMENTS

1. Did you use your test strategy as a guide for developing 

the test tactics?

2. Did you decompose your strategy into test tactics? 

(May not fully occur until the test planning step.)

3. Did you consider trade-offs between test factors when 

developing test tactics (e.g., choosing between continuity 

of processing and accuracy)?

4. Did you compare your test tactics to the test strategy to 

ensure they support the strategy?

5. Have you identified the individuals who can perform 

the tests?

6. Did you compose a strategy for recruiting those 

individuals?

7. Did management agree to let the team members accept 

the proposed responsibilities on your project team?

8. Has a test plan for testing been established? If so 

does the test team have the following responsibilities:

Set test objectives.

Develop a test strategy.

Develop the test tactics.

Define the test resources.

Execute tests needed to achieve the test plan.

9. Modify the test plan and test execution as changes 

occur.

Manage use of test resources.

Issue test reports.

Ensure the quality of the test process.

Maintain test statistics.

10. Does the test team adequately represent the 

following:

User personnel

Operation’s staff

Data administration

Internal auditors

Quality assurance staff

Information technology

Management

Security administrator

Professional testers



Building the Software Testing Process 101

WORK PAPER 3-5 (continued)

YES NO COMMENTS

11. Did you develop test team assignments for each 

test member?

Does the test team accept responsibility for finding 

users/customer type defects?

12. Does the test team accept responsibility for finding 

defects?

13. Does the team recognize the benefit of removing defects 

earlier in the correction life cycle process?

14. Will testing begin when the development process begins?

15. Does one person have primary responsibility for testing?

16. Will the test team perform validation tests?

17. Will the test team perform verification tests?

18. Will verification tests include requirement reviews?

19. Will verification tests include design reviews?

20. Will verification tests include code walkthroughs?

21. Will verification tests include code inspections?

22. Will validation tests include unit testing?

23. Will validation tests include integration testing?

24. Will validation tests include system testing?

25. Will validation tests include user acceptance testing?

26. Will testers develop a testers’ workbench?

27. Will the workbench identify the deliverables/products 

to be tested?

28. Will the workbench include test procedures?

29. Will the workbench check accuracy of test 

implementation?

30. Will you identify test deliverables?

31. Does your workbench identify the tools you’ll use?

32. Have the testers identified a source of these generic 

test tools?





103

A tool can be defined as “anything that serves as a means to get something done.” It is
important to recognize that you first must determine what that something is before
acquiring a tool. Chapter 3 discussed the concept of a work process (the means for
accomplishing a testing objective). Within the work process would be one or more
tools to accomplish the objective. For example, in developing scripts, one might wish
to use a capture/playback tool.

This chapter describes the relationship between tools and work processes. The chap-
ter then explains the steps involved in selecting and installing a tool, as well as creating
a toolbox for testers. Finally, the chapter proposes how to train testing staff in the use of
tools, as well as designate a tool manager to provide testers the support they need in
using those tools.

Integrating Tools into the Tester’s Work Processes

It is important to recognize the relationship between a tool and a technique. A technique

is a procedure for performing an operation; a tool is anything that serves as a means to
get something done. Let’s look at a non-testing example. If you want to attach two
pieces of wood together, you might choose a nail as the means for accomplishing that
bonding process. Joining the two pieces of wood together is a technique for building an
object; a nail is a tool used to join two pieces of wood together. A technique for insert-
ing the nail into the two pieces of wood might be a swinging motion hitting the nail on
the head; a hammer is a tool that would help that technique.

Selecting and Installing
Software Testing Tools

C H A P T E R

4



Stress testing is a technique that a software tester might use to validate that software
can process large volumes of data. Tools that would be helpful in stress testing software
might include a test data generator or a capture/ playback tool for using and re-using
large amounts of test data.

Although software testing techniques are limited, software tools are almost unlim-
ited. Testers can select a variety of software tools to accomplish any specific software
testing technique, just as a carpenter could use tools such as nails, screws, or glue to
fasten two pieces of wood together.

NOTE This chapter will not discuss specific vendor tools. There are too many

operating platforms and too many vendor tools to effectively identify and

describe the availability of tools in this book. Search the Web for “software

testing tools” and you find a variety of sources to identify what is currently

available in the marketplace. 

It is important that tools be integrated into the software tester’s work processes. The
use of tools should always be mandatory. This does not mean that an individual tester
may not select among several tools to accomplish a specific task, but rather that the
process should identify specific tools or provide the tester a choice of tools to accom-
plish a specific work task. However, for that work task, the tester must use one of the
tools specified in the work process.

Tools Available for Testing Software

This section is designed to cause you to think “outside of the box” regarding tools
available for software testing. When the concept of the software testing tool is dis-
cussed, many testers think of automated tools provided by vendors of testing software.
However, there are many manual tools available that can aid significantly in testing
software (for example, code inspections).

The objective of this discussion is to categorize the tools used by testers into generic
categories. A test script, for example, is a means for accomplishing some aspect of soft-
ware testing. There are both manual tools to help you create scripts, such as building
use cases, as well as automated tools that can both generate and execute a test script.

Testing tools are the aids used by individuals with testing responsibility to fulfill
that responsibility. The tools cover a wide range of activities and are applicable for use
in all phases of the systems development life cycle. Some of the techniques are manual,
some automated; some perform static tests, others dynamic; some evaluate the system
structure, and others, the system function.

The skill required to use the tools and the cost of executing the tools vary signifi-
cantly. Some of the skills are highly technical and involve in-depth knowledge of com-
puter programming and the system being tested. Other tools are general in nature and
are useful to almost anyone with testing responsibilities. Some techniques involve only
a short expenditure of man-hours, whereas others must be conducted by a team and
make heavy use of computer resources in the test process.

104 Chapter 4



The following is a list of the more common testing tools:

■■ Boundary value analysis. A method of dividing application systems into seg-
ments so that testing can occur within the boundaries of those segments. The
concept complements top-down system design.

■■ Capture/playback. A technique that enables you to capture the data and results
of testing, and then play it back for future tests.

■■ Cause-effect graphing. Attempts to show the effect of each test event processed.
The purpose is to categorize tests by the effect that will occur as a result of test-
ing. This should reduce the number of test conditions by eliminating the need
for multiple test events that all produce the same effects.

■■ Checklist. A series of probing questions designed to review a predetermined
area or function.

■■ Code comparison. Identifies differences between two versions of the same pro-
gram. You can use this tool with either object or source code.

■■ Compiler-based analysis. Utilizes the diagnostics produced by a compiler or
diagnostic routines added to a compiler to identify program defects during the
compilation of the program.

■■ Confirmation/examination. Verifies the correctness of many aspects of the sys-
tem by contacting third parties, such as users, or examining a document to ver-
ify that it exists.

■■ Control flow analysis. Requires the development of a graphic  representation
of a program to analyze the branch logic within the program to identify logic
problems.

■■ Correctness proof. Involves developing a set of statements or hypotheses that
define the correctness of processing. These hypotheses are then tested to deter-
mine whether the application system  performs processing in accordance with
these statements.

■■ Data dictionary. The documentation tool for recording data elements and the
attributes of the data elements that, under some implementations, can produce
test data to validate the system’s data edits.

■■ Data flow analysis. A method of ensuring that the data used by the program
has been properly defined, and that the defined data is properly used.

■■ Database. A repository of data collected for testing or about testing that can be
summarized, re-sequenced, and analyzed for test  purposes.

■■ Design-based functional testing. Recognizes that functions within an applica-
tion system are necessary to support the requirements. This process identifies
those design-based functions for test purposes.

■■ Design reviews. Reviews conducted during the systems development process,
normally in accordance with systems development methodology. The primary
objective of design reviews is to ensure compliance to the design methodology.

Selecting and Installing Software Testing Tools 105



■■ Desk checking. Reviews by the originator of the requirements, design, or pro-
gram as a check on the work performed by that  individual.

■■ Disaster test. A procedure that predetermines a disaster as a basis for testing
the recovery process. The test group then causes or simulates the disaster as a
basis for testing the procedures and training for the recovery process.

■■ Error guessing. Uses the experience or judgment of people to predict what the
most probable errors will be and then test to ensure that the system can handle
those test conditions.

■■ Executable specs. Requires a computer system for writing system specifica-
tions so that those specifications can be compiled into a testable program. The
compiled specs have less detail and precision than will the final implemented
programs, but they are sufficient to evaluate the completeness and proper func-
tioning of the  specifications.

■■ Fact finding. Information needed to conduct a test or to ensure the correctness
of a document’s information, achieved through an investigative process requir-
ing obtaining information or searching for the facts about a predetermined 
condition.

■■ Flowchart. Graphically represents the system and/or program flow in order to
evaluate the completeness of the requirements, design, or program specifications.

■■ Inspections. A highly structured step-by-step review of the deliverables pro-
duced by each phase of the systems development life cycle in order to identify
potential defects.

■■ Instrumentation. The use of monitors and/or counters to determine the fre-
quency with which predetermined events occur.

■■ Integrated test facility. A concept that permits the introduction of test data 
into a production environment so that applications can be tested at the same
time they are running in production. The concept permits testing the accumula-
tion of data over many iterations of the process, and facilitates intersystem 
testing.

■■ Mapping. A process that analyzes which parts of a computer program are exer-
cised during the test and how frequently each statement or routine in a program
is executed. This can be used to detect system flaws, determine how much of a
program is executed during testing, and identify areas where more efficient
code may reduce execution time.

■■ Modeling. A method of simulating the functioning of the application system
and/or its environment to determine if the design specifications will achieve
the system objectives.

■■ Parallel operation. Runs both the old and new version within the same time
frame in order to identify differences between the two processes. The tool is
most effective when there is minimal change between the old and new process-
ing versions of the system.

106 Chapter 4



■■ Parallel simulation. Develops a less precise version of a segment of a com-
puter system in order to determine whether the results produced by the test 
are reasonable. This tool is effective when used with large volumes of data to
automatically determine the correctness of the results of processing. Normally,
this tool approximates only actual processing

■■ Peer review. A review process that uses peers to review that aspect of the sys-
tems development life cycle with which they are most familiar. Typically, the
peer review offers compliance to standards, procedures, guidelines, and the use
of good practices, as opposed to efficiency, effectiveness, and economy of the
design and implementation.

■■ Ratios/relationships. Quantitative analysis that enables testers to draw conclu-
sions about some aspect of the software to validate the reasonableness of the
software. For example, in test planning, they may want to compare the pro-
posed test budget to the number of function points being tested.

■■ Risk matrix. Tests the adequacy of controls through the identification of risks
and the controls implemented in each part of the application system to reduce
those risks to a level acceptable to the user.

■■ Scoring. A method to determine which aspects of the application system
should be tested by determining the applicability of problem criteria to the
application being tested. The process can be used to determine the degree of
testing (for example, high-risk systems would be subject to more tests than
low-risk systems) or to identify areas within the application system to deter-
mine the amount of  testing needed.

■■ Snapshot. A method of printing the status of computer memory at predeter-
mined points during processing. Computer memory can be printed when 
specific instructions are executed or when data with specific attributes are
processed.

■■ Symbolic execution. Permits the testing of programs without test data. The
symbolic execution of a program results in an expression that can be used to
evaluate the completeness of the programming logic.

■■ System logs. Uses information collected during the operation of a computer
system to analyze how well the system performed. System logs are produced
by operating software such as database management systems, operating sys-
tems, and job accounting systems.

■■ Test data. System transactions that are created for the purpose of testing the
application system.

■■ Test data generator. Software systems that can be used to automatically gener-
ate test data for test purposes. Frequently, these generators require only para-
meters of the data element values in order to generate large amounts of test
transactions.

■■ Test scripts. A sequential series of actions that a user of an automated system
would enter to validate the correctness of software processing.

Selecting and Installing Software Testing Tools 107



■■ Tracing. A representation of the paths followed by computer programs as they
process data or the paths followed in a database to locate one or more pieces of
data used to produce a logical record for processing.

■■ Use cases. Test transactions that focus on how users will use the software in an
operational environment.

■■ Utility programs. A general-purpose software package that can be used to test
an application system. The most valuable utilities are those that analyze or list
data files.

■■ Walkthroughs. A process that asks the programmer or analyst to explain the
application system to a test team, typically by using a simulation of the execu-
tion of the application system. The objective of the walkthrough is to provide a
basis for questioning by the test team to identify defects.

Selecting and Using Test Tools

This chapter presents an extensive array of tools for systems testing. Many of these tools
have not been widely used. The principal reasons for this include: 1) specialized use (sim-
ulation); 2) the high cost of their use (symbolic execution); and 3) their unproven applica-
bility (correctness proof). Many of these tools represent the state of the art and are in areas
where research is continuing. However, this should not prevent organizations from exper-
imenting with some of the newer test concepts. The tools attracting the most interest and
activity at present include automated test support systems (capture/playback) and auto-
mated analysis (compiler-based analysis).

As better tools are developed for testing during the requirements and design phases
of software testing, an increase in automatic analysis is possible. In addition, more
sophisticated analysis tools are being applied to the code during construction. More
complete control and automation of the actual execution of tests, both in assistance in
generating the test cases and in the management of the testing process and result, are
also taking place.

It is important that testing occur throughout the software development life cycle.
One reason for the great success of disciplined manual techniques is the uniform applic-
ability at the requirements, design, and coding phases. These tools can be used without
massive capital expenditure. However, to be most effective they require a serious com-
mitment and a disciplined application. Careful planning, clearly stated testing objec-
tives, precisely defined tools, good management, organized record keeping, and a
strong commitment are critical to successful testing. A disciplined approach must be fol-
lowed during both planning and execution of the testing activities.

An integral part of this process is the selection of the appropriate testing tool. The
following four steps are involved in selecting the appropriate testing tool:

1. Match the tool to its use.

2. Select a tool appropriate to its life cycle phase.

108 Chapter 4



3. Match the tool to the tester’s skill level.

4. Select an affordable tool.

Matching the Tool to Its Use

The better a tool is suited to accomplish its task, the more efficient the test process will
be. The wrong tool not only decreases the efficiency of testing, it may not permit testers
to achieve their objectives. The test objective can be a specific task in executing tests,
such as using an Excel spreadsheet to track defects, or to accomplish the testing tech-
nique, such as stress testing, using a tool such as capture/playback.

The objective for using a tool should be integrated into the process in which the tool
is to be incorporated. Again, the tool is the means to accomplish a test objective. When
test processes are developed, a decision is made as to whether a specific task should be
performed manually or whether it can be more effectively and efficiently performed
using a test tool. The test process comes first, the test tool second.

In some instances, an IT testing organization will become aware of a testing tool that
offers an opportunity to do more effective testing than is currently being performed. It
may be necessary to modify the test process to incorporate the capabilities of the new
tool. In this instance, the tool will help determine the process. What is important is that
the tool is integrated into the process and not used externally to the process at the dis-
cretion of the tester.

As test processes are continually improved, new tools will be integrated into the
process. The search for and analysis of available tools is a continuous process. The objec-
tive is to improve the testing process by incorporating more effective and efficient tools.

You can use Work Paper 4-1 to identify the tools that will be considered for selection.
Note that this Work Paper does not contain all the tools that might be considered. 

Chapter 8 describes a variety of testing techniques. Many of the tools used in testing
will be utilized to effectively perform those techniques. Again, stress testing is a tech-
nique for which tools are necessary to support a large volume of test data.

Selecting a Tool Appropriate to Its Life Cycle Phase

The type of testing varies by the life cycle in which it occurs. Just as the methods
change, so do the tools. Thus, it becomes necessary to select a tool appropriate for the
life cycle in which it will be used.

As the life cycle progresses, the tools tend to shift from manual to automatic. How-
ever, this should not imply that the manual tools are less effective than the automatic,
because some of the most productive testing can occur during the early phases of the
life cycle using manual tools.

Table 4-1 lists the life cycle phases in which the identified test tools are most effec-
tive. This matrix shows the 41 test tools and for which of the 6 systems development
life cycle phases each tool is most appropriate. You can use this matrix for the second
step of the selection process, in which the population of tools identified in the first step
can be reduced to those tools that are effective in the life cycle phase where the test will
be occurring.

Selecting and Installing Software Testing Tools 109



Table 4-1 SDLS Phase/Test Tool Matrix

TOOL SDLC PHASE

Require- Design Program Test Oper- Mainte- 
ments ation nance

Boundary value analysis X X

Capture/playback X X

Cause-effect graphing X X

Checklist X X X X X X

Code comparison X

Compiler-based analysis X

Confirmation/examination X X X X X X

Control flow analysis X X

Correctness proof X X

Data dictionary X

Data flow analysis X

Database X X

Design-based functional X X
testing

Design reviews X

Desk checking X X X X

Disaster test X X

Error guessing X X X X X X

Executable specs X

Fact finding X X X X X X

Flowchart X X X

Inspections X X X X X X

Instrumentation X X X

Integrated test facility X

Mapping X

Modeling X X

Parallel operation X

Parallel simulation X

110 Chapter 4



Table 4-1 (continued)

TOOL SDLC PHASE

Require- Design Program Test Oper- Mainte-
ments ation nance

Peer review X X X X X X

Ratios/relationships X x

Risk matrix X X

Scoring X X

Snapshot X

Symbolic execution x

System logs X X X

Test data X X X X

Test data generator X X

Test scripts X X

Tracing x X

Use cases X X

Utility programs X X X

Walkthroughs X X X

Matching the Tool to the Tester’s Skill Level

The individual performing the test must select a tool that conforms to his or her skill
level. For example, it would be inappropriate for a user to select a tool that requires pro-
gramming skills when the user does not possess those skills. This does not mean that an
individual will not have to be trained before the tool can be used but rather that he or
she possesses the basic skills necessary to undertake training to use the tool. Table 4-2
presents the tools divided according to the skill required. This table divides skills into
user skill, programming skill, system skill, and technical skill.

■■ User skill. Requires the individual to have an in-depth knowledge of the appli-
cation and the business purpose for which that application is used. Skills
needed include general business specializing in the area computerized, general
management skills used to achieve the mission of the user area, and a knowl-
edge of identifying and dealing with user problems.

■■ Programming skill. Requires understanding of computer concepts, flowchart-
ing, programming in the languages used by the organization, debugging, and
documenting computer programs.

Selecting and Installing Software Testing Tools 111



■■ System skill. Requires the ability to translate user requirements into computer
system design specifications. Specific skills include flowcharting, problem
analysis, design methodologies, computer operations, some general business
skills, error identification and analysis in automated applications, and project
management. The individual normally possesses a programming skill.

■■ Technical skill. Requires an understanding of a highly technical specialty and
the ability to exhibit reasonable performance at that specialty.

Table 4-2 indicates which skills are required to execute which tools. In some instances,
different skills are needed to develop the tool, and if this is the case, that has been indi-
cated in the Comments column. The comments also indicate any skill qualification or
specific technical skill needed.

Table 4-2 Skill Levels for Using Testing Tools

SKILL TOOL COMMENTS

User skill Checklist

Integrated test facility

Peer review

Risk matrix

Scoring

Use case

Walkthroughs

Programmer skill Boundary value analysis

Capture playback

Checklist

Code comparison

Control flow analysis

Correctness proof

Coverage-based metric testing

Data dictionary

Data flow analysis

Database

Design-based functional testing

Desk checking

Error guessing

112 Chapter 4



Table 4-2 (continued)

SKILL TOOL COMMENTS

Flowchart

Instrumentation

Mapping

Modeling

Parallel simulation

Peer review

Snapshot

Symbolic execution

System logs

Test data

Test data generator

Test scripts

Tracing

Volume testing

Walkthroughs

System skill Cause/effect graphing

Checklist

Confirmation/examination

Correctness proof

Design-based functional testing

Design reviews

Desk checking

Disaster test

Error guessing

Executable specs Few such languages in
existence

Fact finding

Flowchart

Inspections Helpful to have application
knowledge

(continues)

Selecting and Installing Software Testing Tools 113



Table 4-2 (continued)

SKILL TOOL COMMENTS

Integrated test facility Skills needed to develop but
not using ITF

Mapping

Modeling

Parallel simulation

Peer review

System logs

Test data

Test scripts

Tracing

Volume testing

Walkthroughs

Technical skill Checklist

Coverage-based metric Requires statistical skill to 
testing develop

Instrumentation System programmer skill

Parallel operation Requires operations skill

Peer review Must be taught how to
conduct review

Ratio/relationships Requires statistical skills to
identify, calculate, and
interpret the results of a
statistical analysis

Selecting an Affordable Tool

Typically, testing must be accomplished within a budget or time span. An extremely
time-consuming and hence costly tool, while desirable, may not be affordable under
the test budget and schedule. Therefore, the last selection criterion is to pick those tools
that are affordable from the population of tools remaining after the preceding step.
Work Paper 4-2 can be used to document selected tools.

Some test tools are extremely costly to execute, whereas others involve only nomi-
nal costs. It is difficult to put a specific price tag on many of the tools because they
require the acquisition of hardware or software, the cost of which may vary signifi-
cantly from vendor to vendor. 

114 Chapter 4



Table 4-3 lists three categories of cost: high, medium, and low. Where costs are
extremely high or low, the Comments column is used to further clarify the cost category.

It is possible that you will have gone through the selection process and ended up with
no tools to select from. In this instance, you have two options. First, you can repeat the
process and be more generous in your selection criteria. In other words, be more inclined
to include tools as you move from step to step. Second, you can ignore the formal selec-
tion process and use judgment and experience to select the tool that appears most appro-
priate to accomplish the test objective.

Table 4-3 Cost To Use Testing Tools

COST TOOL COMMENTS

High Correctness proof

Coverage-based metric Cost to develop metrics is 
testing high—not usage

Executable specs

Inspections

Modeling

Parallel operation

Parallel simulation

Symbolic execution

Test data Cost varies by volume of test
transactions

Medium Capture/playback

Cause-effect graphing

Code comparison Major cost is acquisition of utility
program

Control flow analysis

Database

Design-based functional 
testing

Design reviews Cost varies with size of review team

Disaster test Cost varies with size of test

Instrumentation

Integrated test facility Major cost is building ITF

Mapping Software is major cost

(continues)

Selecting and Installing Software Testing Tools 115



Table 4-3 (continued)

COST TOOL COMMENTS

Peer review

Risk matrix

Snapshot Major cost is building snapshot
routines into programs

Systems logs Assumes logs already in operation

Test data generator Major cost is acquiring software 

Test scripts

Utility programs Assumes utility already available

Volume testing

Walkthroughs Cost varies with size of 
walkthrough team

Low Boundary value analysis Requires establishing boundaries
during development

Checklist

Compiler-based analysis

Confirmation/examination

Data dictionary Assumes cost of DD is not a test cost

Desk checking

Error guessing

Fact finding

Flowchart Assumes software is available

Ratio/relationship

Scoring

Training Testers in Tool Usage

Training testers in the use of test tools is a “no-brainer.” Not training testers in how to
use tools before they begin to use them in practice is like letting someone drive an auto-
mobile without any training: It’s dangerous. The danger is that cost can escalate unnec-
essarily and by misusing the test tools, testers may not perform effective testing.

It is recommended that test tools be used only by testers who have demonstrated
proficiency in their use. If it is necessary for the testers to use a tool in which they are

116 Chapter 4



not proficient, a mentor or supervisor should assist the tester in the use of that tool to
ensure its effective and efficient use. 

Appointing Tool Managers

The objective of appointing a tool manager is twofold:

■■ More effective tool usage. Having a tool manager is, in fact, like establishing a
help desk for testers. Because the tool manager is knowledgeable in what the
tool does and how it works, that individual can speed the learning of other
users and assist with problems associated with the tool’s usage. 

■■ Managerial training. The individual appointed to be a tool’s manager should
have total responsibility for that tool. This includes contacting the vendor, budget-
ing for maintenance and support, overseeing training, and providing supervisory
support. Being appointed a tool manager is an effective way to provide manager-
ial training for individuals; it is also effective in evaluating future managerial 
candidates.

Managing a tool should involve budgeting, planning, training, and related manage-
rial responsibilities.

The workbench for managing testing tools using a tool manager is illustrated in Fig-
ure 4-1. The three steps involve appointing a tool manager; assigning the duties the tool
manager will perform; and limiting the tool manager’s tenure. This concept not only
facilitates the use of tools but builds future managers at the same time.

Figure 4-1 Tool manager’s workbench for managing testing tools.

DO CHECK

Tool
Manager
Effective

REWORK

Select
Tool

Manager

Task 1

Assign Tool
Manager

Duties

Task 2

Limit Tool
Manager
Tenure

Task 3

Tool
Objectives

Candidates for
Tool Manager

Managerial
Training

Test
Report

Selecting and Installing Software Testing Tools 117



Prerequisites to Creating a Tool Manager Position

Before appointing a tool manager, IT management should answer the following 
questions:

1. Has management established objectives for the tool to be managed?

2. Has the use of the tool been specified in IT work procedures?

3. Has a training program been established for using the tool?

4. Have the potential candidates for tool manager been trained in the use of the
tool they would manage?

5. Have potential candidates for tool manager effectively used the tool in a pro-
duction environment?

6. Do the candidates for tool manager have managerial potential?

7. Does the individual selected for tool manager want to be manager of the tool?

8. Do the candidates for tool manager believe that this tool is effective in accom-
plishing the organization’s mission?

9. Does the candidate for manager have sufficient time to perform the tool man-
ager duties?

10. Have reasonable duties been assigned to the tool manager?

11. Does the tool manager understand and agree that these are reasonable duties to
perform?

12. Has a tenure been established on the length of service for tool managers?

Once management has determined that a specific tool is needed (and selected that
tool), a tool manager can be appointed. There are two inputs needed for this work-
bench: a clear definition of the objective for acquiring and using the tool, and a list of
potential tool manager candidates.

Tool usage should be mandatory. In other words, work processes should indicate
when to use a specific tool. The work process should indicate whether a tool user can
select among two or more recommended tools. The tool manager should not be in the
mode of marketing a tool but rather assisting and making tool usage more effective.

This section describes a three-step process for using a tool manager.

Selecting a Tool Manager

Ideally, the tool manager should be selected during the process of selecting the tool,
and have ownership in the selection decision. The tool manager should possess the 
following:

■■ Training skills

■■ Tool skills

■■ Managerial skills

■■ Planning

■■ Organizing

118 Chapter 4



■■ Directing

■■ Controlling

If the tool manager candidate lacks the preceding skills, they can be developed dur-
ing the tool manager tenure. If the tool manager position is used to train future man-
agers, technical proficiency and competency in tool usage is the only real requirement.
The other skills can be developed during the tenure as tool manager. A mentor must be
assigned to a tool manager to develop the missing skills.

In addition to the tool manager, an assistant tool manager should also be named for
each tool. This individual will not have any direct managerial responsibilities but will
serve as backup for the tool manager. The primary responsibility of the assistant tool
manager will be to gain competency in the use of the tool. Normally, the assistant tool
manager is a more junior employee than the tool manager. The assistant is the most
logical person to become the next manager for the tool.

Assigning the Tool Manager Duties

A tool manager can be assigned any or all of the following duties:

■■ Assist colleagues in the use of the tool. The tool manager should be available to
assist other staff members in the use of the tool. This is normally done using a
“hotline.” Individuals having problems using the tool or experiencing opera-
tional problems with the tool can call the tool manager for assistance. Note: The
hours of “hotline” activities may be restricted; for example, 8 to 9 A.M. and 2 to 
5 P.M. This restriction will be dependent upon the other responsibilities of the tool
manager and the expected frequency of the calls.

■■ Train testers how to use the tool. The initial tool training normally comes from
the vendor. However, additional tool training is the responsibility of the tool
manager. Note that the tool manager may subcontract this training to the train-
ing department, the tool vendor, or other competent people. The tool manager
has the responsibility to ensure the training occurs and may or may not do it
personally.

■■ Act as the tool vendor’s contact. The tool manager would be the official contact
for the tool vendor. Questions from staff regarding the use of the tool that can
only be answered by the vendor should be funneled through the tool manager
to the vendor. Likewise, information from the vendor to the company should
be directed through the tool manager.

■■ Develop annual tool plans. The tool manager should develop an annual tool
plan complete with planned tool usage, schedule, and resources needed to
effectively utilize the tool. Tool managers may want to define penetration goals
(the percent of the department that will use the tool by the end of the planning
period) and should budget for upgrades, training, and other expenditures
involved in tool usage. The tool manager’s time should be budgeted and
accounted for.

■■ Install tool upgrades. As vendors issue new versions of the tool, the tool man-
ager is responsible for ensuring that those upgrades are properly incorporated

Selecting and Installing Software Testing Tools 119



and that the involved parties are made aware and trained, if necessary. Note
that the tool manager may not have to do a lot of this personally but is responsi-
ble to make sure it happens.

■■ Prepare annual reports. At the end of each year, or planning period, the tool
manager should prepare for IT management an overview of the use of the tool
during the year. This will require the tool manager to maintain statistics on tool
usage, problems, costs, upgrades, and so forth. (Note that tool usage for main-
frame tools can normally be obtained from job accounting software systems.
Non-mainframe usage may have to be estimated.)

■■ Determine timing of tool replacements. The tool manager, being responsible
for a specific software tool, should also be responsible for determining when
the tool is no longer effective or when better tools can be acquired to replace it.
When these situations occur, the tool manager should prepare proposals to
senior IT management regarding tool replacement.

The role of a tool manager can be enhanced in the following ways:

■■ Allow individuals adequate time to perform the tool manager’s role. The
assignment of a tool manager should be scheduled and budgeted so that the
individual knows the amount of time and resources that can be allocated to it.

■■ Incorporate tool manager performance into individual performance appraisals.

The performance of the tool manager’s duties should be considered an important
part of an individual’s work.

Limiting the Tool Manager’s Tenure

It is recommended that an individual serve two years as a manager for a specific tool.
The rationale for the two years is that individuals tend to lose interest over a period of
time. Also, after a period of time, the manager tends to lose perspective of new uses for
the tool or deficiencies in the tool. Bringing in a new tool manager every two years
tends to revitalize the use of that tool in the organization. Note that the tool managers
can be transferred to manage another tool.

In instances where tools are highly specialized, very complex, or have minimal usage,
it may be desirable to keep an individual manager for longer than a two-year period.

Summary

Efficient testing necessitates the use of testing tools. Each testing organization should
have a portfolio of tools used in testing. This chapter described the more common soft-
ware-testing tools. It also proposed the establishment of a test manager function for
each tool.

The selection of the appropriate tool in testing is an important aspect of the test
process. Techniques are few in number and broad in scope, whereas tools are large in
number and narrow in scope. Each provides different capabilities; each tool is designed
to accomplish a specific testing objective.

120 Chapter 4



WORK PAPER 4-1 Selecting Tools

Include in Tester’s 
Toolbox?

Tool Use Yes                   No

Boundary Divides system top down into logical segments and then 
value analysis limits testing within the boundaries of each segment.

Capture/ Testing used to capture transactions from the testing 
playback process for re-use in future tests.

Cause-effect Limits the number of test transactions by determining 
graphing which of the number of variable conditions pose minimal 

risk based on system actions.

Checklist Provides a series of questions designed to probe potential 

system problem areas.

Code Compares two versions of the same program in order to 
comparison identify differences between the two versions.

Compiler-based Detects errors during the program-compilation process.
analysis

Confirmation/ Verifies that a condition has or has not occurred.
examination

Control flow Identifies processing inconsistencies, such as routines with 
analysis no entry point, potentially unending loops, branches into 

the middle of a routine, and so on.

Correctness Requires a proof hypothesis to be defined and then used 
proof to evaluate the correctness of the system.

Data dictionary Generates test data to verify data validation programs 
based on the data contained in the dictionary.

Data flow Identifies defined data not used and used data 
analysis that is not defined.

Database Repository for collecting information for or about 
testing for later use analysis

Design-based Evaluates functions attributable to the design process as 
functional opposed to design requirements; for example, capability 
testing may be a design process.

Design reviews Requires reviews at predetermined points throughout systems 
development in order to examine progress and ensure the 
development process is followed.

(continues)

Selecting and Installing Software Testing Tools 121



WORK PAPER 4-1 (continued)

Include in Tester’s 
Toolbox?

Tool Use Yes                   No

Desk checking Provides an evaluation by programmer or analyst of the 
propriety of program logic after the program is coded or 
the system is designed.

Disaster test Simulates an operational or systems failure to determine if 
the system can be correctly recovered after the failure.

Error guessing Relies on the experience of testers and the organization’s 
history of problems to create test transactions that have 

a high probability of detecting an error.

Executable Provides a high-level interpretation of the system specs in 
specs order to create the response to test data. Interpretation of 

expected software packages requires system specs to be 
written in a high-level language.

Fact finding Performs those steps necessary to obtain facts to support 
the test process.

Flowchart Pictorially represents computer systems logic and data flow.

Inspections Requires a step-by-step explanation of the product with 
each step checked against a predetermined list of criteria.

Instrumentation Measures the functioning of a system structure by using 
counters and other monitoring instruments.

Integrated Permits the integration of test data in a production 
test facility environment to enable testing to run during production 

processing.

Mapping Identifies which part of a program is exercised during 
a test and at what frequency.

Modeling Simulates the functioning of the environment or system 
structure in order to determine how efficiently the 
proposed system solution will function.

Parallel Verifies that the old and new version of the application 
operation system produce equal or reconcilable results.

Parallel Approximates the expected results of processing by 
simulation simulating the process to determine if test results 

are reasonable.

122 Chapter 4



WORK PAPER 4-1 (continued)

Include in Tester’s 
Toolbox?

Tool Use Yes                   No

Peer review Provides an assessment by peers of the efficiency, style, 
adherence to standards, and so on of the product that 
is designed to improve the quality of the product.

Ratio/ To provide a high-level proof quantitatively that some 
Relationships aspect of the software or testing is reasonable.

Risk matrix Produces a matrix showing the relationship between system 
risk, the segment of the system where the risk occurs, and 

the presence or absence of controls to reduce that risk.

Scoring Identifies areas in the application that require testing, 
through the rating of criteria that have been shown 
to correlate to problems.

Snapshot Shows the content of computer storage at predetermined 
points during processing.

Symbolic Identifies processing paths by testing the programs with 
execution symbolic rather than actual test data.

System logs Provides an audit trail of monitored events occurring in 
the environment area controlled by system software.

Test data Creates transactions for use in determining the functioning 
of a computer system.

Test data Provides test transactions based on the parameters that 
generator need to be tested.

Test scripts Creating test transactions in the sequence in which those 
transactions will be processed for an online software system.

Tracing Follows and lists the flow of processing and database searches.

Use case Preparing test conditions that represent real world uses 
of the software.

Volume testing Identifies system restriction (e.g., internal table size) and then 
creates a large volume of transactions that exceed those limits.

Walkthroughs Leads a test team through a manual simulation of the 
product using test transactions.

Selecting and Installing Software Testing Tools 123



WORK PAPER 4-2 Documenting Tools

Tool Name: _______________________________________________________________________________

Tool Vendor: _______________________________________________________________________________

Tool Capabilities: ____________________________________________________________________________

_____________________________________________________________________________________________

_____________________________________________________________________________________________

Tool Purpose: _______________________________________________________________________________

_____________________________________________________________________________________________

_____________________________________________________________________________________________

Process That Will Use Tool: ___________________________________________________________________

_____________________________________________________________________________________________

_____________________________________________________________________________________________

Tool Training Availability: ____________________________________________________________________

_____________________________________________________________________________________________

_____________________________________________________________________________________________

Tool Limitations: ____________________________________________________________________________

_____________________________________________________________________________________________

_____________________________________________________________________________________________

124 Chapter 4



125

Effective software testing will not occur unless the testers are confident. They must be
confident in both testing basics and the use of their organization’s testing process and
tools. It is as important to build the competency of the individual testers as it is to build
test processes and acquire test tools. 

Many colleges and universities that offer curriculums in computer science do not
include courses on software testing. In many IT organizations, it is assumed that if you
can build software, you can test it. This concept is changing, albeit slowly.

The emphasis in this chapter will be on building the competency of the software
tester. The chapter will use the Common Body of Knowledge (CBOK) for the Certified
Software Tester (CSTE) designation offered by Software Certifications (www.software
certifications.org) and administered by the Quality Assurance Institute (www
.qaiusa.com).

What Is a Common Body of Knowledge?

Many professions have the following characteristics in common:

■■ A common body of knowledge

■■ A code of ethics

■■ An examination to demonstrate competency

■■ Continuing professional education

Building Software 
Tester Competency

C H A P T E R

5



Normally, senior members of the profession establish the board to oversee certifica-
tion. This board comprises individuals well respected within their profession, who
then define the CBOK, administer the certification examination, develop the code of
ethics, and oversee the profession’s continuing education policies and the conduct of
the certified professionals. 

Software Certifications, an organization that offers IT certifications, recently approved
the 2006 Common Body of Knowledge for Software Testers. The new CBOK contains ten
knowledge categories, each of which will be discussed in this chapter.

The CBOK is what the certification board believes individuals need to know to prac-
tice software testing effectively. If, based on results of the CSTE examination, it is deter-
mined that an individual is competent in software testing, that individual will receive
a certification in software testing.

Who Is Responsible for the Software 
Tester’s Competency?

IT management is responsible for the competency of software testers. They, or their des-
ignated subordinates, develop job descriptions for software testers, select the individuals
who will become software testers, and approve the necessary resources for training. 

This, of course, does not preclude the individual’s responsibility for competency.
Would-be software testers need to demonstrate to management that they have the nec-
essary competency to practice software testing. This competency can be obtained by self-
study or by formal study paid for by the tester and conducted on his or her time.
Competency can also be obtained on the employer’s cost and time. 

How Is Personal Competency 
Used in Job Performance?

To understand the role of personal competency in effective job performance, you need
to understand the continuum of work processes (see Figure 5-1). A work process com-
prises both personal competency and the maturity or effectiveness of the work process.
Maturity of the work process defines the amount of variance expected when the work
procedures are followed precisely. Implicit in process maturity is the worker’s ability
to understand and follow the process. 

Personal competency is the experience that the worker brings to the job. This expe-
rience is assumed in the process, but not integrated into the process. For example, the
process to write a computer program in a particular language assumes that the pro-
grammer knows how to code in that language and thus the focus is on how the lan-
guage is used, not how to use the language. Consider a non-IT example: When
performing an operation on an individual, it is assumed that the doctor has been
trained in surgery prior to following the surgical process in a specific hospital.

126 Chapter 5



Figure 5-1 Continuum of work processes.

As shown in Figure 5-1, the processes in a manufacturing environment are very
mature and require workers to be only minimally competent. One would expect a
worker whose responsibility is simply to follow a routine series of steps to recognize
any obvious deviations. For example, if an auto worker is confronted with three black
tires and one yellow tire, he should speak up.

In a “job shop” environment, on the other hand, no two like products are created
(although the products are similar), so greater personal competency is required than in
a manufacturing environment.

Professional work processes require extensive personal competency and less mature
work processes. For most IT organizations, software testing is a professional work
process. In many IT organizations, the testing processes serve more as guidelines than
step-by-step procedures for conducting tests. For example, the testing process may
state that all branches in a computer program should be tested. If a tester saw a large
number of very similar decision instructions, it may be more prudent to perform other
tests rather than testing each processing decision both ways.

Using the 2006 CSTE CBOK

The CSTE CBOK can be used for any of the following purposes:

■■ Developing the job description for software testers

■■ Assessing an individual’s competency in software testing

■■ Developing an examination to evaluate an individual’s competency

■■ Formulating a curriculum to improve an individual’s software testing 
competency

Work Paper 5-1 presents the discussion draft of the 2006 CSTE CBOK in a format
that will enable you to identify skills in which you are competent and those you need
to improve. Each Knowledge Category in the CBOK lists multiple skills. For example,

Process maturity

Manufacturing
Processes

Job Shop
Processes

Professional
Processes

Worker competency

Building Software Tester Competency 127



Knowledge Category 1, “Software Testing Principles and Concepts,” requires testers to
be proficient in the vocabulary of testing. 

For each skill, you should make one of the following three assessments:

■■ Not Competent. It is a skill you do not have or a skill you do not believe you
could use in the process of testing software. For example, for the vocabulary
skill, you do not have a sufficient vocabulary to adequately discuss the job of
software testing. Terms such as “regression testing,” “black box testing,” and
“boundary value analysis” are not within your vocabulary.

■■ Competent. You have learned the skill but have not practiced it sufficiently to
believe you have fully mastered the skill. For example, you understand regres-
sion testing and know what to do, but you have not practiced it enough to feel
you could perform it effectively.

■■ Fully Competent. You understand the skill, know what to do, and feel very
confident that you can perform the skill effectively. For example, you can
develop and execute a regression test with high confidence that you can iden-
tify changes that occurred in the unchanged portion of the software.

At this point, read each skill in Work Paper 5-1 and assess your competency in one
of the three assessment categories.

To develop a competency score, total the number of skills you have checked in each of
the three columns. Then, at the bottom of Work Paper 5-2, multiply the number of skills
checked in the Fully Competent column by 3; multiply the number of skills in the Com-
petent column by 2; and multiply the number of skills in the Not Competent column by
1. Total those three amounts and divide by 120 (the number of skills assessed).

The number produced will be between one and three. A score of three indicates that
you are a world-class software tester, whereas a score of one means that you are not
competent in software testing. If your score is between one and two, you do not have
the basic skills necessary to perform software testing; if your score is between 2 and 3,
you should consider yourself a software tester. The closer your score comes to a three,
the more competent you are. 

Developing a Training Curriculum

Every software testing organization should develop a curriculum for training software
testers. When an individual is hired or transferred to become a software tester, that
individual’s skill competency should be assessed. The competency assessment on
Work Papers 5-1 and 5-2 can be used for that purpose. Based on that assessment, the
individual can be placed into the curriculum at the appropriate point.

The following is a proposed curriculum to move individuals from “not competent”
to “fully competent.”

■■ Course 1: The Basics of Software Testing. Individuals need a basic under-
standing of the vocabulary, principles, and concepts for testing. Consider a job
in the math profession: The basics include the ability to add, subtract, multiply,

128 Chapter 5



and divide. Without these basic abilities, it would be difficult to perform any
significant mathematical computation. Likewise, without mastering the basics
of software testing, one could not test effectively.

■■ Course 2: The Process for Testing the Software System. Testers need to know
the right way to test a software project. Without an understanding of how to
prepare for testing or how to develop and execute a test plan, testers might just
prepare and run test conditions. The equivalent to this course is the seven-step
testing process presented in this book.

■■ Course 3: Software Testing Tools. If the tester’s organization uses tools to test
software, the tester should become proficient in the use of those tools. It is rec-
ommended that testers not be allowed to use a specific tool until they have
been sufficiently trained. 

■■ Course 4: Test Case Design. Preparing the appropriate test cases is an impor-
tant part of testing software. Testers need to know sources of test data, the vari-
ous types of test data that can be prepared (for example, use cases), and how to
prepare, use, and maintain those test cases.

■■ Course 5: Variance Analysis and Defect Tracking. Testers need to know how
to identify a variance from expected processes. Once they have identified the
variance, testers need to know how to document that variance and how to
track it until appropriate action has been taken.

■■ Course 6: Preparing Test Reports. Testers need to know the type of reports that
should be prepared, how to prepare them, who should get them, and how to
present them in an acceptable manner.

■■ Course 7: Test Process Improvement. Testers need to know how to use the
results of testing many different projects to identify opportunities for improv-
ing the testing process.

NOTE QAI offers public, in-house, and e-learning courses to assist you in

improving your competency in software testing. For more information, visit

www.qaiworldwide.org.

Table 5-1 cross-references the seven courses described in this chapter to the corre-
sponding chapters in the book. If testers do not go to a formal course, a mentor should
be assigned to help them master the material for each of the courses.

Using the CBOK to Build an Effective Testing Team

You can use Work Paper 5-3 to create a team that has mastery of all the competencies in
the CSTE CBOK. Simply transfer the rating number you developed in Work Paper 5-2 to
the corresponding columns for each team member. For example, if team member A was
deemed “Competent” in Knowledge Category 1, then enter 2 in the corresponding col-
umn of Work Paper 5-3.

Building Software Tester Competency 129



Table 5-1 Chapters Supporting the Software Tester’s Curriculum

COURSE NAME SEE CHAPTER(S)

Course 1: The Basics of Software Testing 1–13

Course 2: The Process for Testing the Software System 6–13

Course 3: Software Testing Tools 4

Course 4: Test Case Design 9–10

Course 5: Variance Analysis and Defect Tracking 11

Course 6: Preparing Test Reports 11

Course 7: Test Process Improvement 4, 23

After all the team members’ ratings are recorded, you can determine whether there is
adequate competency in each of the knowledge categories deemed necessary for this
specific software project. For example, if knowledge of testing security was not necessary
for a specific project, team members would not have to be competent in that particular
knowledge category. 

Generally, you would look for at least one member to be fully competent in each of
the knowledge categories needed. However, if no one is fully competent in a specific
skill category, having two or more individuals who are partially competent in that cat-
egory would probably be adequate to make the team effective. 

If the proposed software testing team does not have the necessary competency, you
should take one of the following actions:

■■ Replace one member with another tester who possesses the needed competency.

■■ Add another tester to the team with the needed competency.

■■ Assign a mentor to work with one or more team members to help them in test-
ing tasks in which that knowledge competency is needed.

The following are additional guidelines that can help to build an effective team:

■■ You can match team personalities by using techniques such as the Myers-
Briggs Type Indicator (MBTI).

■■ It is better to have a smaller test team than to add a tester who has a very nega-
tive attitude about testing or the assignment, which demoralizes the team and
requires extra supervisory effort.

■■ The number one skill for success in software testing is the ability to communi-
cate. Any member of the test team who will interact with developers and/or
users should be an effective communicator.

■■ Test teams are most effective when there is only one leader. If two members
want to set direction for the test team, conflict usually occurs. 

130 Chapter 5



Summary

Effective testing cannot occur unless the testers are competent. The best measure of a
tester’s competency is to assess him or her using the CSTE CBOK, which represents the
most current thinking in software tester competency. You can use the results of this
assessment for two purposes. The first is to determine the strengths and weaknesses of
an individual software tester so that the plan can be developed to improve his or her
competency. Second, you can use the assessment to help build a software testing team,
which, as a group, has the necessary competency to test a specific software project.

Building Software Tester Competency 131



WORK PAPER 5-1 2006 Common Body of Knowledge

Knowledge Category 1: Software Testing Principles and Concepts The “basics” of software
testing are represented by the vocabulary of testing, testing approaches, methods, and techniques,

as well as the materials used by testers in performing their test activities.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Testing Techniques

Understanding the various approaches 

used in testing, including static (e.g., 

desk checking), white-box (logic-driven), 

black-box (requirements-driven), load 

testing, coverage testing, and regression 

testing. Also included are the methods 

for designing and conducting tests.

22 Levels of Testing

Identifying testing levels such as unit, 

performance, string, integration, systems 

recovery, acceptance, parallel, 

performance, and interface testing.

33 Testing Different Types of Software

The changes in the approach to testing 

when testing different development 

approaches such as batch processing, 

client/server, Web-based, object-

oriented, and wireless systems.

44 Independent Testing

Testing by individuals other than those 

involved in product/system development.

55 Vocabulary

The technical terms used to describe 

various testing techniques, tools, 

principles, concepts, and activities.

66 The Multiple Roles of Software 

Testers

The objectives that can be incorporated 

into the mission of software testers. This 

would include the testing to determine 

whether requirements are met, testing 

effectiveness and efficiency, testing user 
needs versus software specifications, and 

testing software attributes such as 

maintainability, ease of use, and 

reliability.

132 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

77 Testers Workbench

An overview of the process that testers 
use to perform a specific test activity, 

such as developing a test plan or 
preparing test data.

88 The V Concept of Testing

The V concept relates the build 

components of the development phases 

to the test components that occur 

during the test phases.

Knowledge Category 2: Building the Test Environment The test environment comprises all

the conditions, circumstances, and influences surrounding and affecting software testing. The

environment includes the organization’s policies, procedures, culture, attitudes, rewards, test

processes, test tools, methods for developing and improving test processes, management’s support
of software testing, as well as any test labs developed for the purpose of testing software and multiple

operating environments. This category also includes ensuring the test environment fairly represents

the production environment.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Knowledge of Test Process Selection 

and Analysis

Concepts of Test Processes—The concepts 

of policies, standards, and procedures, 

and their integration into the test process.

Test Process Selection—Selecting processes 

that lead to efficient and effective testing 

activities and products.

Acquisition or Development of a Test Bed/

Test Lab/Test Processes—Designing, 

developing, and acquiring a test 

environment that simulates the “real” 

world, including the capability to create 

and maintain test data.

Quality Control—Testing quality control 

to ensure that the test process has been 

performed correctly.

(continues)

Building Software Tester Competency 133



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Test Process Analysis—Analyzing the test 

process to ensure

a. Its effectiveness and efficiency

b. Test objectives are applicable, 

reasonable, adequate, feasible, and 

affordable

c. The test program meets the test 

objectives

d. The correct test program is being 

applied to the project

e. The test methodology, including the 

processes, infrastructure, tools, 

methods, and planned work products 

and reviews, is adequate to ensure 

that the test program is conducted 

correctly

f. Test progress, performance, and 

process adherence are assessed to 

determine the adequacy of the test 

program

g. Adequate, not excessive, testing is 

performed

Continuous Improvement—Identifying and 

making improvements to the test process 

using formal process improvement 

processes.

Adapting the Test Environment to Different 

Software Development Methodologies—

Establishing the environment to properly 

test the methodologies used to build 

software systems, such as waterfall, Web-

based, object-oriented, agile, and 

so forth.

Competency of the Software Testers—

Providing the training necessary to ensure 

that software testers are competent in the 

processes and tools included in the test 

environment.

134 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

2 Test Tools

Tool Development and/or Acquisition—

Understanding the processes for 
developing and acquiring test tools.

Tool Usage—Understanding how tools are 

used for automated regression testing, 

defect management, performance/load 

testing; understanding manual tools such 

as checklists, test scripts, and decision 

tables; using traceability tools, code 

coverage, and test case management.

3 Management Support for Effective 

Software Testing

Creating a tone that encourages testers 
to work in an efficient and effective 

manner.

Aligning test processes with 

organizational goals, business objectives, 

release cycles, and different 

developmental methodologies.

Knowledge Category 3: Managing the Test Project Software testing is a project with almost

all the same attributes as a software development project. Software testing involves project planning,

project staffing, scheduling and budgeting, communicating, assigning and monitoring work, and

ensuring that changes to the project plan are incorporated into the test plan.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Test Planning, Scheduling, and 

Budgeting

Alignment—Ensuring the test processes 

are aligned with organizational goals, 

user business objectives, release cycles, 

and different development 

methodologies.

Test Performance—Monitoring test 

performance for adherence to the plan, 

schedule and budget, reallocating 

resources as required, and averting 

undesirable trends.

(continues)

Building Software Tester Competency 135



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Staffing—Acquiring, training, and 

retaining a competent test staff.

Management of Staff—Keeping staff 

appropriately informed, and effectively 

utilizing the test staff.

Differences Between Traditional 

Management—Using a hierarchical 

structure versus quality management 

using a flattened organization structure.

2 Personal and Organizational 

Effectiveness

Communication Skills

a. Written Communication—Providing 

written confirmation and explanation 

of a variance from expectations. 

Being able to describe on paper a 

sequence of events to reproduce the 

defect.

b. Oral Communication—Demonstrating 

the ability to articulate a sequence of 

events in an organized and 

understandable manner.

c. Listening Skills—Actively listening to 

what is said, asking for clarification 

when needed, and providing 

feedback.

d. Interviewing Skills—Developing and 

asking questions for the purpose of 

collecting data for analysis or 
evaluation.

e. Analyzing Skills—Determining how to 

use the information received.

136 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Personal Effectiveness Skills

a. Negotiation—Working effectively with 

one or more parties to develop 

options that will satisfy all parties.

b. Conflict Resolution—Bringing a 

situation into focus and satisfactorily 

concluding a disagreement or 
difference of opinion between parties.

c. Influence and Motivation—Influencing 

others to participate in a goal-

oriented activity.

d. Judgment—Applying beliefs, 

standards, guidelines, policies, 

procedures, and values to a decision.

e. Facilitation—Helping a group to 

achieve its goals by providing 

objective guidance.

Project Relationships—Developing an 

effective working relationship with 

project management, software 

customers, and users.

Recognition—Showing appreciation to 

individuals and teams for work 

accomplished.

Motivation—Encouraging individuals to 

do the right thing and do it effectively 

and efficiently.

Mentoring—Working with testers to 

ensure they master the needed skills.

Management and Quality Principles—

Understanding the principles needed to 

build a world-class testing organization.

(continues)

Building Software Tester Competency 137



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

3 Leadership

Meeting Chairing—Organizing and 

conducting meetings to provide 

maximum productivity over the shortest 

time period.

Facilitation—Helping the progress of an 

event or activity. Formal facilitation 

includes well-defined roles, an objective 

facilitator, a structured meeting, 

decision-making by consensus, and 

defined goals to be achieved.

Team Building—Aiding a group in 

defining a common goal and working 

together to improve team effectiveness.

Knowledge Category 4: Test Planning Testers need the skills to plan tests. Test planning

assesses the business and technical risks of the software application and then develops a plan to

determine if the software minimizing those risks. Test planners must understand the development

methods and environment to effectively plan for testing.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Prerequisites to Test Planning

Identifying Software Risks—Demonstrating 

knowledge of the most common risks 

associated with software development.

Identifying Testing Risks—Demonstrating 

knowledge of the most common risks 

associated with software testing.

Identifying Premature Release Risk—

Understanding how to determine the risk 

associated with releasing unsatisfactory, 
untested software products.

Risk Contributors—Identifying the 

contributors to risk.

Identifying Business Risks—Demonstrating 

knowledge of the most common risks 

associated with the business using the 

software.

138 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Risk Methods—Understanding of the 

strategies and approaches for identifying 

risks or problems associated with 

implementing and operating information 

technology, products, and processes; 

assessing their likelihood, and initiating 

strategies to test for those risks.

Risk Magnitude—Demonstrating the 

ability to calculate and rank the severity 

of a risk quantitatively.

Risk Reduction Methods—Understanding 

the strategies and approaches that can 

be used to minimize the magnitude of 

a risk.

Contingency Planning—Planning to 

reduce the magnitude of a known risk.

2 Test Planning Entrance Criteria

Success Criteria/Acceptance Criteria—

Understanding the criteria that must be 

validated to provide user management 

with the information needed to make an 

acceptance decision.

Test Objectives—Understanding the 

objectives to be accomplished through 

testing.

Assumptions—Establishing the conditions 

that must exist for testing to be 

comprehensive and on schedule.

Issues—Identifying specific situations/

products/processes that, unless 

mitigated, will impact forward progress.

Constraints—Limiting factors to success.

Entrance Criteria/Exit Criteria—

Understanding the criteria that must be 

met prior to moving software to the next 

level of testing or into production.

(continues)

Building Software Tester Competency 139



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Test Scope—Understanding what is to be 

tested.

Test Plan—Understanding the activities 

and deliverables to meet a test’s 

objectives.

Requirements/Traceability—Defining the 

tests needed and relating them to the 

requirements to be validated.

Estimating—Determining the resources 

and timeframes required to accomplish 

the planned activities.

Scheduling—Establishing milestones for 
completing the testing effort and their 
dependencies on meeting the rest of the 

schedule.

Staffing—Selecting the size and 

competency of the staff needed to 

achieve the test plan objectives.

Test Check Procedures—Incorporating test 

cases to ensure that tests are performed 

correctly.

Software Configuration Management—

Organizing the components of a 

software system, including 

documentation, so that they fit together 
in working order.

Change Management—Modifying and 

controlling the test plan in relationship 

to actual progress and scope of system 

development.

Version Control—Understanding the 

methods to control, monitor, and 

achieve change.

140 Chapter 5



WORK PAPER 5-1 (continued )

Knowledge Category 5: Executing the Test Plan This category addresses the skills required to

execute tests, design test cases, use test tools, and monitor testing.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Test Design and Test Data/Scripts 

Preparation

Specifications—Ensuring test data scripts 

meet the objectives included in the test 

plan.

Cases—Developing test cases, including 

techniques and approaches for validation 

of the product. Determination of the 

expected result for each test case.

Test Design—Understanding test design 

strategies and attributes.

Scripts—Developing the online steps to 

be performed in testing; focusing on the 

purpose and preparation of procedures; 

emphasizing entrance and exit criteria.

Data—Developing test inputs; using data 

generation tools; determining the data 

set or sub-sets to ensure a comprehensive 

test of the system; determining data that 

suits boundary value analysis and stress 

testing requirements.

Test Coverage—Achieving the coverage 

objectives in the test plan to specific 

system components.

Platforms—Identifying the minimum 

configuration and platforms on which 

the test must function.

Test Cycle Strategy—Determining the 

number of test cycles to be conducted 

during the test execution phase of 

testing; determining what type of testing 

will occur during each test cycle.

(continues)

Building Software Tester Competency 141



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

2 Performing Tests

Execute Tests—Performing the activities 

necessary to execute tests in accordance 

with the test plan and test design—

including setting up tests, preparing test 

data base(s), obtaining technical 

support, and scheduling resources.

Compare Actual Versus Expected Results—

Determining whether the actual results 

meet expectations.

Documenting Test Results—Recording test 

results in the appropriate format.

Use of Test Results—Understanding how 

test results should be used and who has 

access to them.

3 Defect Tracking

Defect Recording—Recording defects to 

describe and quantify deviations from 

requirements/expectations.

Defect Reporting—Reporting the status of 

defects, including severity and location.

Defect Tracking—Monitoring defects from 

the time of recording until satisfactory 

resolution has been determined and 

implemented.

4 Testing Software Changes

Static Testing—Evaluating changed code 

and associated documentation at the 

end of the change process to ensure 

correct implementation.

Regression Testing—Testing the whole 

product to ensure that unchanged 

functionality performs as it did prior to 

implementing a change.

142 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Verification—Reviewing requirements, 

design, and associated documentation to 

ensure they are updated correctly as a 

result of the change.

Knowledge Category 6: Test Status, Analysis, and Reporting Testers need to demonstrate

the ability to develop status reports. These reports should show the status of the testing based on the

test plan. Reporting should document what tests have been performed and the status of those tests.

To properly report status, testers should review and conduct statistical analysis on the test results and

discovered defects. The lessons learned from the test effort should be used to improve the next

iteration of the test process.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Metrics of Testing

Using quantitative measures and metrics 

to manage the planning, execution, and 

reporting of software testing.

2 Test Status Reports

Code Coverage—Monitoring the 

execution of software and reporting on 

the degree of coverage at the statement, 

branch, or path level.

Requirement Coverage—Monitoring and 

reporting the number of requirements 

tested, and whether they are correctly 

implemented.

Test Status Metrics—Understanding the 

following metrics:

a. Metrics Used to Test—Includes metrics 

such as defect removal efficiency, 

defect density, and mean time to last 

failure.

b. Complexity Measurements—

Quantitative values, accumulated by 

a predetermined method, that 

measure the complexity of a software 

product.

(continues)

Building Software Tester Competency 143



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

c. Project Metrics—The status of a 

project, including milestones, budget 

and schedule variance, and scope 

changes.

d. Size Measurements—Methods 

primarily developed for measuring 

the software size of information 

systems, such as lines of code and 

function points.

e. Defect Metrics—Values associated with 

the number or types of defects, 

usually related to system size, such as 

“defects/1000 lines of code” or 
“defects/100 function points.”

f. Product Measures—Measures of a 

product’s attributes, such as 

performance, reliability, and usability.

3 Final Test Reports

Reporting Tools—Using word processing, 

database, defect tracking, and graphic 

tools to prepare test reports.

Test Report Standards—Defining the 

components that should be included in 

a test report.

Statistical Analysis—Demonstrating the 

ability to draw statistically valid 

conclusions from quantitative test results.

Knowledge Category 7: User Acceptance Testing The objective of software development is to

meet the true needs of the user, not just the system specifications. Testers should work with the users
early in a project to clearly define the criteria that would make the software acceptable in meeting

the user needs. As much as possible, once the acceptance criteria have been established, they should

integrate it into all aspects of development.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Concepts of Acceptance Testing

Understanding the difference between 

system test and acceptance test.

144 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

2 Acceptance Test Planning Process

Defining the acceptance criteria.

Developing an acceptance test plan for 
execution by user personnel.

Testing data using use cases.

3 Acceptance Test Execution

Executing the acceptance test plan.

Developing an acceptance decision 

based on the results of acceptance 

testing.

Signing off on successful completion of 

the acceptance test plan.

Knowledge Category 8: Testing Software Developed by Outside Organizations Many

organizations do not have the resources to develop the type and/or volume of software needed to

effectively manage their business. The solution is to obtain or contract for software developed by

another organization. Software can be acquired by purchasing commerical off-the-shelf software
(COTS) or contracting for all or parts of the software development to be done by outside

organizations.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Understanding the difference between 

testing software developed in-house and 

software developed by outside 

organizations.

2 Understanding the election process for 
selecting COTS software.

3 Verifying that testers are able to

a. Ensure that requirements are testable.

b. Review the adequacy of the test plan 

to be performed by the outsourcing 

organization.

c. Oversee acceptance testing.

(continues)

Building Software Tester Competency 145



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

d. Issue a report on the adequacy of the 

software to meet the contractual 

specifications.

e. Ensure compatibility of software 

standards, communications, change 

control, and so on between the two 

organizations.

4 Using the same approach as used for 
in-house software, but may need to be 

modified based on documentation 

available from the developer.

5 Understanding the following objectives:

a. Testing the changed portion of the 

software

b. Performing regression testing

c. Comparing the documentation to 

the actual execution of the software

d. Issuing a report regarding the status 

of the new version of the software

Knowledge Category 9: Testing Software Controls and the Adequacy of Security

Procedures The software system of internal control includes the totality of the means developed 

to ensure the integrity of the software system and the products created by the software. Controls are
employed to control the processing components of software, ensure that software processing is in
accordance with the organization’s policies and procedures, and according to applicable laws and

regulations.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Principles and Concepts of a 

Software System of Internal 

Control and Security

Vocabulary of Internal Control and 

Security—Understanding the vocabulary 

of internal control and security, including 

terms such as risk, threat, control, 

exposure, vulnerability, and penetration.

146 Chapter 5



WORK PAPER 5-1 (continued )

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

Internal Control and Security Models—

Understanding internal control and 

security models (specifically, the COSO 

[Committee of Sponsoring 

Organizations] model).

2 Testing the System of Internal 

Controls

Perform Risk Analysis—Determining the 

risk faced by the transactions/events 

processed by the software.

Determining the controls for each of the 

processing segments for transactions 

processing, including

a. Transaction origination

b. Transaction entry

c. Transaction processing

d. Database control

e. Transaction results

Determining whether the identified 

controls are adequate to reduce the risks 

to an acceptable level.

3 Testing the Adequacy of Security 

for a Software System

Evaluating the adequacy of 

management’s security environment.

Determining the types of risks that 

require security controls.

Identifing the most probable points 

where the software could be penetrated.

Determining the controls at those points 

of penetration.

Assessing whether those controls are 

adequate to reduce the security risks to 

an acceptable level.

(continues)

Building Software Tester Competency 147



WORK PAPER 5-1 (continued )

Knowledge Category 10: Testing New Techniques Testers require skills in their organization’s

current technology, as well as a general understanding of the new information technology that might

be acquired by their organization.

FULLY PARTIALLY NOT 

COMPETENT COMPETENT COMPETENT

1 Understanding the Challenges of 

New Technologies

New application architecture

New application business models

New communication methods

New testing tools

2 Evaluating New Technologies to Fit 

into the Organization’s Policies 

and Procedures

Assessing the adequacy of the controls 

within the technology and the changes 

to existing policies and procedures that 

will be needed before the new 

technology can be implemented 

effectively. This would include:

Testing new technology to evaluate 

actual performance versus supplier’s 
stated performance.

Determining whether current policies and 

procedures are adequate to control the 

operation of the new technology and 

modify to bring in currency.

Assessing the need to acquire new staff 

skills to effectively implement the new 

technology

148 Chapter 5



WORK PAPER 5-2 Evaluating Individual Competency

KNOWLEDGE NUMBER FULLY PARTIALLY NOT 

CATEGORY OF SKILLS COMPETENT COMPETENT COMPETENT

1 Software Testing Principles 

and Concepts 8

2 Building the Test 

Environment 12

3 Managing the Test Project 16

4 Test Planning 27

5 Executing the Test Plan 19

6 Test Status, Analysis and 

Reporting 8

7 User Acceptance Testing 5

8 Testing Software 

Developed by Outside 

Organizations 6

9 Testing Software Controls 

and the Adequacy of 

Security Procedures 11

10 Testing New Technologies 8

Total 120

Multiply Total By 3 2 1

Multiplied Total

Total the Sum in Each of 

the Three Columns

Divide by 120

Software Testing 

Competency Score

Building Software Tester Competency 149



WORK PAPER 5-3 Building Test Team Competency

SOFTWARE TEST TEAM MEMBER

CATEGORY A B C D E

1 Software Testing Principles 

and Concepts

2 Building the Test 

Environment

3 Managing the Test Project

4 Test Planning

5 Executing the Test Plan

6 Test Status, Analysis and 

Reporting

7 User Acceptance Testing

8 Testing Software 

Developed by Outside 

Organizations

9 Testing Software Controls 

and the Adequacy of 

Security Procedures

10 Testing New Technologies

150 Chapter 5



PA R T

Three

The Seven-Step 
Testing Process





153

Chapters 2 through 5 explained how to establish a test environment. Now you’re 
ready to:

■■ Understand the advantages of following a process

■■ Understand the costs associated with testing

■■ Introduce the seven-step process that will take you through organizing, plan-
ning, testing, and completing your testing project

■■ Customize the seven-step process to the needs of your organization

■■ Establish a process to manage the seven-step testing process

The process for software testing described in this chapter is based on the experience
of more than 1,000 organizations affiliated with the Quality Assurance Institute.

Advantages of Following a Process

There is no best process for testing software. However, the seven-step process described
in this chapter incorporates the best aspects of many different processes. Understanding
and using a process for testing software provides the following advantages:

■■ Testing is consistent. With a process, testing can be performed in a consistent
manner from test to test. The use of the process will reduce variability of testing
and improve confidence in the test process.

Overview of the 
Software Testing Process 

C H A P T E R

6



■■ Testing can be taught. When testing is performed by a process, the process is
teachable. When testing is performed as an art or craft, one must study under a
master tester to learn how to test. The test process breaks testing into steps and
tasks that are easy to teach.

■■ Test processes can be improved. By using processes, one learns advantages
and disadvantages of the process. Disadvantages can be identified and the
process changed to continually improve testing.

■■ Test processes are manageable. With processes, the test manager can manage
the process. Without the test process, the test manager must manage people.
From a control perspective, it’s much easier to manage or control a process than
an individual. 

The Cost of Computer Testing

There are two general categories of testing: pre-implementation and post-
implementation testing. The first encompasses those activities that occur prior to placing
the application system in an operational status. The objective of pre-implementation
testing is to determine that the system functions as specified and that defects in the sys-
tem are removed prior to placing the system into production. The second type of 
testing occurs after the system goes into operation and is normally considered part of
systems maintenance.

The cost of removing system defects prior to the system going into production
includes:

■■ Building the defect into the system

■■ Identifying the defect’s existence

■■ Correcting the defect

■■ Testing to determine that the defect has been removed

Defects uncovered after the system goes into operation generate the following costs:

■■ Specifying and coding the defect into the system

■■ Detecting the problem within the application system

■■ Reporting the problem to the project manager and/or user

■■ Correcting the problems caused by the defect

■■ Operating the system until the defect is corrected

■■ Correcting the defect

■■ Testing to determine that the defect no longer exists

■■ Integrating the corrected program(s) into production

Testing should include the cost to test plus the cost of undetected defects. Few organi-
zations consolidate all the named costs as testing costs; therefore, an organization rarely
knows the true cost of testing. Testing is normally considered to be that process used to

154 Chapter 6



find defects and ensure that the system functions properly. However, as illustrated, the
cost of building and correcting defects may far exceed the cost of detecting those defects.

The National Institute of Standards and Technology has estimated that testing, includ-
ing the correction of defects prior to the application going into production, accounts for
at least half of the total system development effort.

The high cost of system defects poses the following two challenges to organizations:
how to quantify the true cost of removing defects, and how to reduce the cost of testing.

Quantifying the Cost of Removing Defects

Quality Assurance Institute surveys indicate that there are in the range of 20 to 60
defects in many application systems per 1,000 source statements. These surveys indi-
cate that approximately two-thirds of the defects per 1,000 lines of source code occur in
the requirements and design phases of application systems. Thus, while the defects are
normally caught in the test phase of the system development life cycle, they occur
early in the development process. (Note that as development processes mature, the
number of defects produced is reduced.)

The causes of the defects built into application systems include:

■■ Improperly interpreted requirements. IT personnel misinterpret what the user
wants, but correctly implement what the IT people believe is wanted.

■■ Users specify wrong requirements. The specifications given to IT personnel
are erroneous.

■■ Requirements are incorrectly recorded. IT personnel fail to record the specifi-
cations properly.

■■ Design specifications incorrect. The application system design does not
achieve the system requirements, but the design as specified may be correctly
implemented.

■■ Program specifications incorrect. The design specifications are incorrectly
interpreted, making the program specifications inaccurate, but the program 
can be properly coded to achieve the correct program specifications.

■■ Program coding error. The program is not coded according to the program
specifications.

■■ Program structural or instruction error. The programming capabilities are
improperly utilized, resulting in defects attributable to misuse of a program
instruction or the method in which the instruction is used.

■■ Data entry error. The system and/or program information is incorrectly
entered into the computer.

■■ Testing error. The test either detects an error where there is no error or fails to
detect an existing error in the application system.

■■ Error correction mistake. In the process of correcting an error, the corrected
condition contains a defect.

■■ Corrected condition causes another defect. In the process of correcting a
defect, a defect occurs in the unchanged portion of the software.

Overview of the Software Testing Process 155



The areas associated with the test process can usually be readily identified. It is the
estimation of the costs associated with these areas that is difficult to obtain. However,
until the total cost of testing is known, the cost of uncovering and correcting defects
will be unknown.

There are two methods for developing a more realistic estimate of testing. The first
is to ask IT personnel to identify all the preceding conditions and allocate their time
and effort accordingly. Although this concept works in theory, in practice it is difficult
to record the time and effort associated with incurring defects until that defect is actu-
ally known. Because the point of uncovering defects may be many weeks or months
after the actual day they were built into the system, it may be difficult to go back and
recover these costs.

The second, and more practical, approach is to record the number of defects encoun-
tered as a result of testing. As each defect is uncovered, it should be noted, as well as
the point in the system development life cycle process where it was uncovered.

The actual cost to redesign and correct the system should then be recorded. These
are the costs required for correcting the programs by some recompilation and change
of documentation. The costs are then multiplied by a factor that represents the totality
of the error and problems associated with the defect as follows:

■■ Defects corrected during design requirements phase. The cost to correct will
be the total cost associated with the correction of the defect.

■■ Defects corrected during building the software. The cost to correct require-
ment defects should be multiplied by a factor of 10 because the additional costs
are associated with removing the defective components of the software.

■■ Defects corrected after the system goes into production. The cost to correct
will be approximately 100 times the cost to correct the same defect prior to
placing the software into production. 

Reducing the Cost of Testing

The economics of computer testing clearly demonstrate that the method to reduce the
cost of defects is to locate those defects as early in the system development life cycle as
possible. This involves beginning testing during the requirements phase of the life
cycle and continuing testing throughout the life cycle. The objective of testing would
then become to detect the error as early in the life cycle as possible.

The Seven-Step Software Testing Process

The seven-step software testing process follows the “V” concept of testing (see Figure
6-1). The V represents both the software development process and the seven-step soft-
ware testing process. Both processes commence at the same time and proceed concur-
rently through the end of the project. Note that step 7, post-implementation analysis,
will occur for both the development process and the test process. The purpose of this
analysis is to determine whether development and/or testing can be performed more
effectively in the future.

156 Chapter 6



Figure 6-1 The seven-step software testing process.

A brief overview of the seven-step software testing process follows:

1. Organizing for testing

a. Define test scope. Determine which type of testing is to be performed.

b. Organize the test team. Determine, based on the type of testing to be per-
formed, who should be assigned to the test team.

c. Assess development plan and status. This is a prerequisite to building the
test plan that will be used to evaluate the software implementation plan.
During this step, testers will challenge the completeness and correctness of
the development plan. Based on the extensiveness and completeness of the
project plan, the testers will be in a position to estimate the amount of
resources they will need to test the implemented software solution.

2. Developing the test plan

a. Perform risk analysis. Identify the test risks.

Define
Requirements

Design
Software

Build
Software

Install
Software

Operate and
Maintain Software

Step 1
Organizing for Testing

Chapter 7

Step 2
Developing the Test Plan

Chapter 8

Step 3
Verification Testing

Chapter 9

Step 4
Validation Testing

Chapter 10

Step 5
Analyzing and Reporting Test Results

Chapter 11

Step 6
Acceptance and Operational Testing

Chapter 12

Step 7
Post-Implementation Analysis

Chapter 13

Development
of Software

Independent
Test of Software

Overview of the Software Testing Process 157



b. Write the test plan. Forming the plan for testing will follow the same pat-
tern as any software planning process. The structure of all plans should be
the same, but the content will vary based on the degree of risk the testers
perceive as associated with the software being developed.

3. Verification testing

a. Test software requirements. Incomplete, inaccurate, or inconsistent
requirements lead to most software failures. The inability to get the right
requirements during the requirements phase will increase the cost of imple-
mentation significantly. Testers, through verification, must determine that
the requirements are accurate and complete and that they do not conflict
with one another.

b. Test software design. This step tests both external and internal design
through the verification techniques. The testers are concerned that the
design will in fact achieve the objectives of the project as well as being 
effective and efficient on the designated hardware.

c. Test software construction. The method chosen to build the software from
the internal design document will determine the type and extensiveness of
tests needed. As the construction becomes more automated, less testing will
be required during this phase. However, if software is constructed by a
manual coding process, it is subject to error and should be verified. Experi-
ence has shown that it is significantly cheaper to identify defects during the
construction phase than through dynamic testing during the validation test-
ing step.

4. Validation testing

a. Perform validation testing. This involves the testing of code in a dynamic
state. The approach, methods, and tools specified in the test plan will be
used to validate that the executable codes meets the stated software require-
ments and the structural specifications of the design.

b. Record test results. Document the results achieved through testing.

5. Analyzing and reporting test results

a. Analyze the test results. Examine the results of testing to determine where
action is required because of variance between “what is” and “what 
should be.”

b. Develop test reports. Test reporting is a continuous process. It may be both
oral and written. It is important that defects and concerns be reported to the
appropriate parties as early as possible so that the can be corrected at the
lowest possible cost.

6. Acceptance and operational testing

a. Perform acceptance testing. Acceptance testing enables users of the software
to evaluate the applicability and usability of the software in performing 
their day-to-day job functions. This tests what the user believes the software
should perform, as opposed to what the documented requirements state the
software should perform.

158 Chapter 6



b. Test software installation. Once the test team has confirmed that the soft-
ware is ready for production, the ability to execute that software in a pro-
duction environment should be tested. This tests the interface to operating
software, related software, and operating procedures.

c. Test software changes. While this is shown as step 6 in the context of per-
forming maintenance after the software is implemented, the concept is also
applicable to changes throughout the implementation process. Whenever
requirements change, the test plan must change, and the impact of that
change on software systems must be tested and evaluated.

7. Post-implementation analysis. Test improvements can best be achieved by
evaluating the effectiveness of testing at the end of each software test assign-
ment. Although this assessment is primarily performed by the testers, it should
involve the developers, users of the software, and quality assurance profession-
als if the function exists in the IT organization.

Objectives of the Seven-Step Process

The following are the objectives of the seven-step testing process:

1. Organizing for testing. This step has two objectives. The first objective is to
define what is to be tested. This is the scope of testing. It is not the objectives 
for a specific application, but the scope of the testing that will be performed to
determine whether the application objectives have been met. Scope includes
such things as the test to determine whether or not user needs have been met.
Do you perform both static and dynamic testing? Do you test security? Do you
test internal control? Second, you need to determine who will perform the test.
This involves establishing the test team and determining what the individuals
on that team will test.

2. Developing the test plan. The plan will determine how testing will be per-
formed. During planning, the specific objectives for testing will be determined.
For example, in the payroll system, a test objective might be to test the calcula-
tion of the payroll taxes. Both the specific project objectives and the scope
objectives will be used to develop the detailed test plan.

3. Verification testing. The objective of verification testing is primarily to ensure
that you are building the right system. You will also perform tracing to ensure
that no requirements are lost as you move between developmental phases, but
the main objective is verifying that you have built the right system. During ver-
ification testing, you will challenge the requirements and design of the system.
The objective is to remove defects as close to the point they occur as possible.

4. Validation testing. The objective of validation testing is to determine whether
you built the system right. In other words, does the system perform as
expected? During validation testing, you will create test data and scripts and
run those in a dynamic mode against the software to validate that, in fact, the
output is the expected output.

Overview of the Software Testing Process 159



5. Analyzing and reporting test results. The objective of this step is to determine
what you have learned from testing and then inform the appropriate individu-
als. This would include what works, what doesn’t work, as well as any sugges-
tions that the testers might make. It would also include analyzing whether such
things as internal controls and security are adequate.

6. Acceptance and operational testing. The objective of this type of testing is to
determine if you can use the system now, and that as the system is changed
over time, it is still effective and efficient. Acceptance testing might be per-
formed immediately prior to the software going into production, or it may be
performed whenever changes are made to the system. The step also addresses
controlling changes to the software application.

7. Post-implementation analysis. The objective of this step is future-oriented. It
attempts to determine whether testing was performed effectively, and if not,
what changes could be made to the testing process so that future testing will be
more effective and efficient. Note that this can be done individually on a single
system or on multiple systems simultaneously. This step can be performed by
testers or by another group, such as quality assurance personnel.

Customizing the Seven-Step Process

The seven-step process defined in this chapter is a generic process. It is designed to test
the most complex software testing system. It is designed to be used by both develop-
ers and an independent test team. If the seven-step process is to be effective, it must be
customized for the organization using that process.

In order to get buy-in from those responsible for testing, they should be involved in
the customization process. It is recommended that a small team of well-respected testers
be organized for the purpose of customizing the process.

To customize the process, the following steps must be undertaken:

1. Understand the seven-step process. This involves reading Part Three of this
book and perhaps discussing the process among the group.

2. Customize for “who” tests. Testing can be performed by both developers and
testers. In some organizations, those who develop the software also test the
software. In other organizations, those who test may be independent of the
development team. As the test process is reviewed, it will become obvious that
some of the steps are designed for independent testers and will not be needed
for developers if they perform their own testing. For example, independent
testers may want to know that the project has allocated adequate time for test-
ing. Since it is the estimate of the developers, if the developers tested they would
not have to do that step.

3. Customize for the size and type of system to be tested. The seven-step process
is designed to enable you to test any software system and many different types
of systems. For some systems, those which may pose no risk to the organiza-
tion, it is not necessary to perform risk analysis as a prerequisite to testing. For
small systems, the scope of the test plan might be reduced, for example, elimi-
nating sections such as when to stop testing.

160 Chapter 6



4. Customize for “what” to test. The seven step process is a generic testing process.
It does not address such things as the platform to be tested, the type of devel-
opmental process, or specific testing needs, such as testing internal controls.
Part Four of this book includes many different types of testing that may need to
be incorporated into the seven-step testing process. The customization team
should become familiar with the materials in Part Four of this book plus any
specific testing needs they may have for their organization. These needs should
be incorporated into the testing process if appropriate.

5. Customize for in-house developed and/or contracted software. The generic
seven-step testing process is designed to be used with both in-house developed
and contracted or purchased software. However, depending on whether the
software is developed in-house or contracted, the steps in the process may need
to be modified. For example, in contracted software, the testers may not have
access to source code. Thus, they will be limited to black box testing and pre-
cluded from white box testing.

6. Customize for vocabulary. It is important that the testing process use the
vocabulary of the organization. For example, if your organization does not use
the terms verification and validation, you will want to change those phrases to
vocabulary suitable to your organization. For example, your organization may
refer to verification testing as static testing and validation testing as dynamic
testing.

7. Integrate testing into the development process. Development and testing
should not be completely independent processes. It is important that develop-
ment and testing be integrated into a process that will produce quality software.
If static testing is to be performed, for example, conducting a requirement review,
that should be incorporated into the overall process of building software. If not,
the developers may not allot adequate time for their participation in that aspect
of testing.

Customization is a very important component of getting the software testing process
implemented, accepted, and used by testers. It is important that they be involved in cus-
tomizing this process for their organization. Even if you decide to use the seven-step
process as is, your decision should involve the users of the process.

Managing the Seven-Step Process

The test manager uses the seven-step process to manage the entire testing process. The
test manager should also manage by process, by facts, and by results.

■■ Manage by process. The test manager uses the test process to manage day-to-
day testing activities. In preparing for testing, the test manager selects the test
team and defines the specific test objectives for the software system being
tested. The test process will then enable testers to accomplish those objectives.

The test plan provides the detailed budget, schedule, and tasks to be accom-
plished during testing. The test plan, combined with the test objectives, is in
fact a contract with the stakeholders of the tested system. It is what the testers
agreed to do in performing testing. The test manager needs to manage that

Overview of the Software Testing Process 161



plan as though it were a contract and ensure that all aspects of the plan are
accomplished.

■■ Manage by facts. The test manager needs to develop metrics in order to moni-
tor quantitatively some key aspects of testing. This is considered the dashboard

for test management. The test manager should select between three and eight
key metrics to help manage testing. These metrics might include:

■■ Budget

■■ Schedule

■■ Requirements tested/not tested

■■ Status of testing, including such things as requirements tested that were
implemented incorrectly

■■ Requirements tested and not corrected as of a certain time period (for exam-
ple, 10 days)

■■ Status of defects

■■ Manage by results. The process of testing is performed in order to accomplish
specific objectives. For many organizations, the objectives will be the criteria
for software acceptance—for example, the following customer needs:

■■ Transactions can be processed by someone with X skills.

■■ Ninety-six percent of all input transactions are acceptable for processing.

■■ Changes to a product’s price can be made within 24 hours.

The test manager should create a quantitative dashboard of key indicators that will
enable him or her to accomplish the test objectives. The types of key indicators the test
manager may want on the dashboard include

■■ Leaving customers satisfied with the testing process (customers may be devel-
opers, users, and/or management)

■■ Meeting testing objectives

■■ Completing the test plan’s contractual components

■■ Accomplishing special test needs, such as validating the adequacy of system
security

Using the Tester’s Workbench 
with the Seven-Step Process

Chapter 3 introduced the tester’s workbench, which forms the template describing the
procedures your test team will perform within the seven testing steps. Chapters 7
through 13 use the following workbench:

■■ Overview. A brief description of the step. This will expand on the overview
given earlier in this chapter for each step.

■■ Objective. A detailed description of the purpose of the step that you can use to
measure your progress at each step.

162 Chapter 6



■■ Concerns. Specific challenges that testers will have to overcome to complete
the step effectively.

■■ Workbench. A description of the process that the testers should follow to com-
plete the step.

■■ Input. The documents, information, and skills needed to complete the step.

■■ Do procedures. Detailed, task-by-task procedures that testers must follow to
perform the step. 

■■ Check procedures. A checklist that testers use to verify that they have per-
formed a step correctly. These procedures will be related to the test’s objective.

■■ Output. The deliverables that the testers must produce at the conclusion of
each step.

■■ Guidelines. Suggestions for performing each step more effectively and for
avoiding problems.

Workbench Skills

Manufacturing positions frequently are designed so that workers require minimal
skills to perform their tasks effectively. Job descriptions for these positions are accom-
panied by detailed documentation so that any worker could perform that function cor-
rectly. Professional positions, however, require more advanced skills and are usually
accompanied by far inferior documentation. (It’s assumed that the person coming into
the position will bring in a certain level of knowledge.)

A surgeon, for example, has to undergo 12 years of training before becoming
licensed. Although there are detailed do and check procedures for performing a given
operation, much of the execution depends on the doctor’s skills. The same is true when
the systems analyst defines end-user requirements. The systems analyst is guided by
work papers, but much of the innovative work needed to properly define requirements
depends on his or her years of experience and skill level.

Figure 6-2 illustrates the relationship between the tester’s competency and the
tester’s workbench. The workbench assumes an average skill level on the part of the
reader, incorporating these assumptions into its descriptions of procedures and tools.
The skills that a professional tester should possess are defined in the common body of
knowledge (CBOK) for a software testing professional. Developed by the Software
Certification Organization Certification Board, the CBOK is the basis used for evaluat-
ing the competency of testers.

If the people involved in the tester’s workbenches do not possess the basic testing
skills in the CBOK, one or more of the following recommendations should be pursued
to improve testing skills:

■■ Attend a basic course on software testing

■■ Take the necessary courses from the Quality Assurance Institute to prepare for
the Certified Software Tester Examination

Overview of the Software Testing Process 163



Figure 6-2 Workbench competency continuum.

Summary

This chapter presented the proposed seven-step testing process. The chapter also intro-
duced issues surrounding the costs associated with testing. This will be helpful for jus-
tifying testing and attempting to test in a cost-effective manner. The chapter presented
six areas for customizing the seven-step process to make it more effective in your orga-
nization. The chapter also addressed how test managers should manage the seven-step
process.

Chapters 7 through 13 describe each of the seven steps, respectively. Each chapter
includes all the necessary templates and checklists to perform those steps. It is impor-
tant when reading a chapter to recognize the objective is to provide the templates,
checklists, and tasks needed to perform those steps. This differs from many testing
books, which focus on what to do; these seven steps focus on how to perform software
testing.

Process MaturityLow

High

Completing
Time Reporting

Test
Execution

Test Planning/
Analysis

Personal Testing Skills

164 Chapter 6



165

Software development involves two concurrent processes: building the software and
testing it. It does not matter whether testing is performed by developers or by an inde-
pendent test team; what is important is that someone has responsibility for testing.
This chapter defines the tasks to prepare for testing and to organize the test team.

If the developers do the testing, it is probably not necessary for the testers to ensure
the project estimate is adequate and to develop a process to track the project’s status.
However, when independent testers perform the testing, unless they can control their
own test budget and the project team has an effective project status reporting process,
the testers should perform the last task.

Objective

Testing can fall short of expectations for two reasons. First, the necessary preparation
may not be accomplished. This chapter and the next discuss the needed preparatory
work prior to executing tests. Second, many testing tasks are never completed because
inadequate resources are allocated.

The objective of this chapter is to enable you to define the scope of testing and
ensure that adequate time and resources are available for testing. If testing is included
within the developer’s budget, the test manager needs to ensure that the estimate is
adequate for testing. The test manager must also ensure that overruns in project devel-
opment will not restrict the amount of testing as defined in the test plan.

Step 1: Organizing 
for Testing

C H A P T E R

7



Workbench

Figure 7-1 shows the workbench for organizing for testing. The workbench input is the
current documentation for the software system being tested. Five tasks are listed, but
some of the tasks may have been completed prior to starting the first task. The output
from this step is an organized test team, ready to begin testing.

Figure 7-1 Workbench for organizing testing.

DO CHECK

Tasks

Performed

Correctly

REWORK

Appoint the

Test Manager

Task 1

Define the

Scope of

Testing

Task 2

Verify the

Development

Documentation

Task 4

Task 3

Validate the Test

Estimate and

Status Reporting

Process

Task 5

Project

Documentation

Software

Development

Process

Test Team

Ready to Test

Appoint the

Test Team

166 Chapter 7



Input

The following two inputs are required to complete this step:

■■ Project documentation. This includes the project plan, objectives, scope, and
defined outputs.

■■ Software development process. This includes the procedures and standards to
be followed during the project’s implementation.

Do Procedures

The following five tasks are recommended for organizing the testing process:

1. Appoint the test manager. If testing is part of the in-house development effort,
the project leader should determine who is responsible for testing. If testing is
performed by independent testers, IT management should appoint the test
manager.

2. Define the scope of testing. The test manager defines the scope of testing,
although all or part of the scope may be defined by testing standards.

3. Appoint the test team. The test manager, project manager, or IT management
should appoint the test team.

4. Verify the development documentation. The test manager should verify that
adequate development documentation is available to perform effective testing.

5. Validate the test estimate and project status process. The test estimate can be
developed by either the test manager or the project manager.

Task 1: Appoint the Test Manager

Regardless of whether testing is performed by in-house developers or independent
testers, someone needs to be responsible for testing. The test manager has the follow-
ing responsibilities:

Define the scope of testing

Appoint the test team

Define the testing process and the deliverables produced

Write/oversee the test plan

Analyze test results and write the test report(s)

If the test manager cannot fulfill these responsibilities alone, other individuals
should be assigned to the test team to assist him or her. Responsibilities may change
based on the size of the project.

Step 1: Organizing for Testing 167



The skills required to be a test manager vary by the size of the project. For small pro-
jects (1–2 testers), the more experienced tester can fulfill the manager role; for medium-
sized projects (3–5 testers), the test manager must be both a tester and a manager; and
for larger projects (6 or more testers), managerial skills are more important than test
skills.

Task 2: Define the Scope of Testing

Chapters 1–3 discussed the options available for testing scope. Traditionally, software
testing validated that the specifications were implemented as specified. Previous dis-
cussions on testing scope expand that definition to include determining whether user
needs are met, identifying whether the project was implemented in the most effective
and efficient manner, ensuring the software system has met the desired quality factors,
and testing for specialized software attributes, such as the adequacy of the system of
internal control, and so forth. 

The scope of testing may be defined in the test mission. In other words, if the testers
are to ensure that the system meets the user’s needs, the test manager would not have
to define that in the test scope. Likewise, if testers are to assist users in developing and
implementing an acceptance test plan, it would not have to be defined in the scope of
testing for a specific project.

If the test mission is not specific about testing scope and/or there are specific objec-
tives to be accomplished from testing, the test manager should define that scope. It is
important to understand the scope of testing prior to developing the test plan.

Task 3: Appoint the Test Team

The test team is an integral part of the testing process. Without the formalization of the
test team, it is difficult to introduce a formalized testing concept into the development
process. Extensive “desk checking” by the individual who developed the work is not a
cost-effective testing method. The disadvantages of a person checking his or her own
work include the following:

■■ Misunderstandings will not be detected, because the checker will assume what
he or she was told is correct.

■■ Improper use of the development process may not be detected, because the
individual may not understand the process.

■■ The individual may be “blinded” into accepting erroneous test results because
he or she falls into the same trap during testing that led to the introduction of
the defect in the first place.

■■ The IT staff is optimistic in their ability to do defect-free work and thus some-
times underestimate the need for extensive testing.

■■ Without a formal division between software development and software testing,
an individual may be tempted to improve the system structure and documen-
tation rather than allocate that time and effort to the testing process.

This section describes the four approaches to appointing a test team (see Figure 7-2).

168 Chapter 7



COMPOSITION

TEST TEAM OF TEST TEAM

APPROACH MEMBERS ADVANTAGES DISADVANTAGES

Internal Project team • Minimize cost • Time allocation

• Training • Lack of independence

• Knowledge of • Lack of objectivity
project

External Quality assurance • Independent view • Cost

Professional testers • IT professionals • Overreliance

• Multiple project • Competition
testing experience

Non-IT Users • Independent view • Cost

Auditors • Independence in • Lack of IT knowledge

Consultants
assessment

• Lack of project
• Ability to act knowledge

Combination Any or all of the • Multiple skills • Cost
above

• Education • Scheduling reviews

• Clout • Diverse backgrounds

Figure 7-2 Test team composition.

Internal Team Approach

In the internal test team approach, the members of the project team become the mem-
bers of the test team. In most instances, the systems development project leader is the
test team project leader. It is not necessary to have all the development team members
participate on the test team, although there is no reason why they cannot. What is
important is that one member of the test team will be primarily responsible for testing
other members’ work. The objective of the team is to establish a test process that is inde-
pendent of the people who developed the particular part of the project being tested.

The advantage of the internal IT test team approach is that it minimizes the cost of
the test team. The project team is already responsible for testing, so using project mem-
bers on the test team is merely an alternate method for conducting the tests. Testing
using the test team approach not only trains the project people in good testing meth-
ods, it cross-trains them in other aspects of the project. The internal IT test team
approach uses those people in testing who are most knowledgeable about the project.

A potential disadvantage of the internal test team approach is that the team will not
allocate appropriate time for testing. In addition, the project team members may lack
independence and objectivity in conducting the test. The tendency is for the project

Step 1: Organizing for Testing 169



team members to believe that the project solution is correct and thus find it difficult to
challenge the project assumptions.

External Team Approach

Testing by an external team does not relieve the project personnel of responsibility for
the correctness of the application system. The external team approach provides extra
assurance of the correctness of processing. Typically, external testing occurs after the
project team has performed the testing it deems necessary. The development team ver-
ifies that the system structure is correct, and the independent test team verifies that the
system satisfies user requirements.

External testing is normally performed by either quality assurance personnel or a
professional testing group in the IT department. While the project team is involved in all
aspects of the development, the quality assurance test teams specialize in the testing
process (although most individuals in these testing groups have experience in systems
design and programming).

The advantage of external testers is the independent perspective they bring to the
testing process. The group comprises IT professionals who have specialized in the area
of testing. In addition, these groups have testing experience in multiple projects and,
thus, are better able to construct and execute tests than those individuals who test only
periodically.

The disadvantage of external IT testing is the additional cost required to establish
and administer the testing function. Also, the development team may place too much
reliance on the test team and thus fail to perform adequate testing themselves. In addi-
tion, the competition between the test team and the project team may result in a break-
down of cooperation, making it difficult for the test team to function properly.

Non-IT Team Approach

Testing also can be performed by groups external to the IT department. The three most
common groups are users, auditors, and consultants. These groups represent the organi-
zational needs and test on behalf of the organization. The advantage of a non-IT test team
is that they provide an independent assessment. The non-IT group is not restricted by
loyalty to report unfavorable results only to the IT department. The non-IT group has a
greater capacity to cause action to occur once problems are detected than a group within
an IT department.

The disadvantage of non-IT testing is its cost. Generally, these groups are not famil-
iar with the application and must first learn the application, and then learn how to test
within the organization.

Combination Team Approach

In the combination test team approach, any or all the preceding groups can participate
on a test team. The combination team can be assembled to meet specific testing needs.
For example, if the project has significant financial implications, an auditor could be
added to the test team; if the project has communication concerns, a communications
consultant could be added.

170 Chapter 7



The advantage of drawing on multiple skills for the test team is to enable a multi-
disciplined approach to testing. In other words, the skills and backgrounds of individ-
uals from different disciplines can be drawn into the test process. For some of the test
participants, particularly users, it can be helpful to make them aware of both the system
and the potential pitfalls in an automated system. In addition, a combination test team
has greater clout in approving, disapproving, or modifying the application system.

The disadvantage of the combination test team is the cost associated with assembling
and administering the test team. It also may pose some scheduling problems determin-
ing when the tests will occur. Finally, the diverse backgrounds of the test team may
make the determination of a mutually acceptable test approach difficult.

Task 4: Verify the Development Documentation

Testers rely on the development documentation to prepare tests and to determine the
desired results. If the development documentation is vague, testers cannot determine
the expected results. For example, an expectation that the system should be “easy to
use” is not specific enough to test. It is not good practice for the tester to define the
expected result or to indicate results are “adequate.”

It is important prior to test planning to determine the completeness and correctness
of development documentation. In organizations where good development documen-
tation standards exist, and IT management enforces compliance to those standards,
this task is not necessary. However in that case it is necessary for the testers to have a
thorough understanding of the development documentation standards.

Testers should be concerned that the documentation process will fail to

■■ Assist in planning and managing resources

■■ Help to plan and implement testing procedures

■■ Help to transfer knowledge of software development throughout the life cycle

■■ Promote common understanding and expectations about the system within the
organization and—if the software is purchased—between the buyer and seller

■■ Define what is expected and verify that is what is delivered

■■ Provide managers with technical documents to review at the significant devel-
opment milestones, to determine that requirements have been met and that
resources should continue to be expended

Development Phases

Programs and systems are developed in phases, from the initial idea for a system to a
properly working system. The terminology used to identify 170these inputs, phases,
and the stages within these phases is defined in the following list:

■■ Initiation. The objectives and general definition of the software requirements
are established during the initiation phase. Feasibility studies, cost/benefit
analyses, and the documentation prepared in this phase are determined by the
organization’s procedures and practices.

Step 1: Organizing for Testing 171



■■ Development. During the development phase, the requirements for the soft-
ware are determined and then the software is defined, specified, programmed,
and tested. The following documentation is prepared during the four stages of
this phase:

■■ Definition. During the definition stage, the requirements for the software
and documentation are determined. The functional requirements document
and the data requirements document should be prepared.

■■ Design. During this stage, the design alternatives, specific requirements,
and functions to be performed are analyzed and a design is specified. Docu-
ments that may be prepared include the system/subsystem specification,
program specification, database specification, and test plan.

■■ Programming. During the programming stage, the software is coded and
debugged. Documents that should be prepared during this stage include
the user manual, operations manual, program maintenance manual, and
test plan.

■■ Testing. During the test stage, the software and related documentation are
evaluated and the test analysis report is prepared.

■■ Operation. During the operation phase, the software is maintained, evaluated,
and changed as additional requirements are identified.

The 14 documents needed for system development, maintenance, and operations
are listed in Figure 7-3 and described in the following list:

■■ Project request. The purpose of the project request document is to provide a
means for users to request the development, purchase, or modification of soft-
ware or other IT-related services. It serves as the initiating document in the soft-
ware life cycle and provides a basis for communication with the requesting
organization to further analyze system requirements and assess the possible
effects of the system.

■■ Feasibility study. Feasibility studies help analyze system objectives, require-
ments, and concepts; evaluate alternative approaches for achieving objectives;
and identify proposed approaches. The feasibility study document, in conjunc-
tion with a cost/benefit analysis, should help management make decisions to
initiate or continue an IT project or service. The study can be supplemented
with an appendix containing details of a cost/benefit analysis or considered
with a separate cost/benefit analysis document.

■■ Cost/benefit analysis. Such analyses can help managers, users, designers, and
auditors evaluate alternative approaches. The analysis document, in conjunc-
tion with the feasibility study document, should help management decide to
initiate or continue an IT project or service.

■■ Software summary. This document is used for very small projects to substitute
for other development-phase documentation when only a minimal level of
documentation is needed.

172 Chapter 7



■■ Functional requirements. The purpose of the functional requirements docu-
ment is to provide a basis for users and designers to mutually develop an 
initial definition of the software, including the requirements, operating envi-
ronment, and development plan.

■■ Data requirements. During the definition stage, the data requirements docu-
ment provides data descriptions and technical information about data collection
requirements.

■■ System/subsystem specifications. Designed for analysts and programmers,
this document specifies requirements, operating environment, design charac-
teristics, and program specifications.

■■ Program specification. The purpose of the program specification is to specify
program requirements, operating environment, and design characteristics.

■■ Database specifications. This document specifies the logical and physical char-
acteristics of a particular database.

Step 1: Organizing for Testing 173

INITIATION DEVELOPMENT PHASE OPERATION

PHASE PHASE

Definition Design Programming Test

Stage Stage Stage Stage

SOFTWARE SUMMARY

Project Functional System/ User (Uses and
Request Requirements Subsystem Manual updates many 

Document Document Specification of the initiation

and 

development

Feasibility Program Operations phase 

Study Specification Manual documents.)

Document

Data Database Program

Cost/Benefit Requirements Specification Maintenance

Analysis Document Manual

Document

TEST PLAN

Test

Analysis

Report

Figure 7-3 Documentation within the software life cycle.



■■ User manual. Written in non-technical terminology, this manual describes sys-
tem functions so that user organizations can determine their applicability and
when and how to use them. It should serve as a reference document for prepa-
ration of input data and parameters and for interpretation of results.

■■ Operations manual. The purpose of this manual is to provide computer opera-
tion personnel with a description of the software and its required operational
environment.

■■ Program maintenance manual. This manual provides the information necessary
to understand the programs, their operating environment, and their maintenance
procedures.

■■ Test plan. This document provides detailed specifications, descriptions, and
procedures for all tests and test data reduction and evaluation criteria.

■■ Test analysis report. The purpose of the test analysis report is to document test
results, present the proven capabilities and deficiencies for review, and provide a
basis for preparing a statement of software readiness for implementation.

The standards for preparing documentation, as developed by your IT organization,
are the second input to this test process.

Measuring Project Documentation Needs

The formality, extent, and level of detail of the documentation to be prepared depend
on the organization’s IT management practices and the project’s size, complexity, and
risk. What is adequate for one project may be inadequate for another.

Too much documentation can also be wasteful. An important part of testing docu-
mentation is to determine first that the right documentation is prepared; there is little
value in confirming that unneeded documentation is adequately prepared.

The testing methodology uses 12 criteria to establish the need for documentation:

■■ Originality required. The uniqueness of the application within the organization.

■■ Degree of generality. The amount of rigidity associated with the application
and the need to handle a variety of situations during processing.

■■ Span of operation. The percentage of total corporate activities affected by the
system.

■■ Change in scope and objective. The frequency of expected change in require-
ments during the life of the system.

■■ Equipment complexity. The sophistication of the hardware and communica-
tions lines needed to support the application.

■■ Personnel assigned. The number of people involved in developing and main-
taining the application system.

■■ Developmental cost. The total dollars required to develop the application.

■■ Criticality. The importance of the application system to the organization.

■■ Average response time to program change. The average amount of time avail-
able to install a change to the application system.

174 Chapter 7



■■ Average response time to data input. The average amount of time available to
process an application transaction.

■■ Programming language. The language used to develop the application.

■■ Concurrent software development. Other applications and support systems
that need to be developed concurrently to fulfill the total mission.

A five-point weighting system is used for each of the 12 criteria, as shown in Figure
7-4. For example, if two people have been assigned to the project, a weight of 1 is allo-
cated for criterion 6, but if seven people were assigned, a weight of 3 would be used.

Work Paper 7-1 should be used in developing the total weighted documentation
score, as follows:

1. Determine the weight for each of the 12 criteria. This is done by determining
which weights for each criterion are appropriate for the application being
tested. The descriptive information in the five weight columns should be the
basis of this determination.

2. Enter the weight number on Work Paper 7-1 for each of the 12 criteria. For
example, if under the originality criterion weight 5 is most applicable, enter 
5 in the Weight column.

3. Total the weights for the 12 criteria. The minimum score is 12; the maximum 
is 60.

The weighted score is used in determining what specific documents should be pre-
pared for the software system being tested.

Determining What Documents Must Be Produced

Figure 7-5 relates the total weighted criteria score in Work Paper 7-1 to the previously
described software documents and recommends which document testers should pre-
pare. The need for several of the documents depends on the situation. (For example,
database specifications and data requirement documents are usually required for sys-
tems using database technology.) A project request document is needed in organiza-
tions that require formal approvals before conducting a feasibility study. Cost/benefit
analysis documents are needed in organizations requiring that such analyses be per-
formed before a project is put into development.

With the total weighted criteria score developed, Figure 7-5 can be used as follows:

■■ The appropriate row for selecting documents is determined by cross-referencing
the score developed in Work Paper 7-1 to the score in the Total Weighted Crite-
ria column. Some of the scores in this column overlap to accommodate highly
critical projects, regardless of their scores.

■■ For the row selected, the columns indicate which documents are needed.

If the project did not generate these documents, the test team should question the
documentation. If unneeded documents were prepared, the test team should challenge
the need for maintaining them.

Step 1: Organizing for Testing 175



CRITERIA WEIGHTS

1 2 3 4 5

1. Originality required None—reprogram on Minimum—more Limited—new interfaces Considerable—apply Extensive—requires
different equipment stringent requirements existing state of the art advance in state of the

to environment art

2. Degree of generality Highly restricted— Restricted— Limited flexibility— Multipurpose— Very flexible—able to
single purpose parameterized for a allows some change in flexible format, range handle a broad range of

range of capacities format of subjects subject matter on
different equipment

3. Span of operation Local or utility Small group Department Division Entire corporation

4. Change in scope and None Infrequent Occasional Frequent Continuous
objective

5. Equipment complexity Single machine— Single machine— Multicomputer— Multicomputer— Master control system—
routine processing routine processing, standard peripheral advanced multicomputer, auto

extended peripheral system programming, input/output, and 
system complex peripheral display equipment

system

6. Personnel assigned 1 to 2 3 to 5 6 to 10 11 to 18 More than 18

7. Developmental cost ($) 1K to 10K 10K to 50K 50K to 200K 200K to 500K More than 500K

8. Criticality Limited to data Routine corporate Important corporate Area/product survival Corporate survival
processing operations operations

9. Average response time 2 or more weeks 1 to 2 weeks 3 to 7 days 1 to 3 days 1 to 24 hours
to program change

10. Average response time 2 or more weeks 1 to 2 weeks 1 to 7 days 1 to 24 hours 0 to 60 minutes
to data input

11. Programming languages High-level language High-level and limited High-level and extensive Assembly language Machine language
assembly language assembly language

12. Concurrent software None Limited Moderate Extensive Exhaustive
development

Figure 7-4 Example of weighting criteria.



Figure 7-6 illustrates a simpler method to determine the level of documentation
needed. The four levels of documentation are:

1. Minimal. Level 1 documentation applies to single-use programs of minimal
complexity. This documentation should include the type of work being pro-
duced and a description of what the program really does. Therefore, the docu-
mentation that results from the development of the programs (i.e., program
abstract, compile listing, test cases) should be retained as well. The criteria for
categorizing a program as level 1 can be its expected use or its cost to develop
(in hours or dollars) and may be modified for the particular requirements of
the installation. Suggested cost criteria are programs requiring less than one
worker-month of effort or less than $1,000 (these are not assumed to be equal).

2. Internal. Level 2 documentation applies to special-purpose programs that, after
careful consideration, appear to have no sharing potential and to be designed 
for use only by the requesting department. Large programs with a short life
expectancy also fall into this category. The documentation required (other than

Step 1: Organizing for Testing 177

TOTAL

WEIGHTED

CRITERIA

0 to 12* X

12 to 15* X X

16 to 26 X X X X X X ** *** *** *** ***

24 to 38 X X X X X X X ** *** *** *** ***

36 to 50 X X X X X X X X X *** *** *** ***

48 to 60 X X X X X X X X X X *** *** *** ***

Notes:

*Additional document types may be required at lower-weighted criteria totals to satisfy local requirements.

**The test analysis report logically should be prepared, but may be informal.

***Preparation of the project request document, cost/benefit analysis document, data requirements document,

and database specification is situationally dependent.

S
O

F
T

W
A

R
E

 S
U

M
M

A
R

Y

U
S

E
R

 M
A

N
U

A
L

O
P

E
R

A
T

IO
N

S
 M

A
N

U
A

L

P
R

O
G

R
A

M
 M

A
IN

T
E

N
A

N
C

E

M
A

N
U

A
L

T
E

S
T

 P
L

A
N

F
E

A
S

IB
IL

IT
Y

 S
T

U
D

Y
 D

O
C

U
M

E
N

T

F
U

N
C

T
IO

N
A

L
 R

E
Q

U
IR

E
M

E
N

T
S

D
O

C
U

M
E

N
T

S
Y

S
T

E
M

/
S

U
B

S
Y

S
T

E
M

S
P

E
C

IF
IC

A
T

IO
N

T
E

S
T

 A
N

A
LY

S
IS

 R
E

P
O

R
T

P
R

O
G

R
A

M
 S

P
E

C
IF

IC
A

T
IO

N

D
A

TA
 R

E
Q

U
IR

E
M

E
N

T
S

D
O

C
U

M
E

N
T

D
A

TA
B

A
S

E
 S

P
E

C
IF

IC
A

T
IO

N

P
R

O
JE

C
T

 R
E

Q
U

E
S

T
 D

O
C

U
M

E
N

T

C
O

S
T

/
B

E
N

E
F

IT
 A

N
A

LY
S

IS

D
O

C
U

M
E

N
T

Figure 7-5 Total weighted documentation criteria versus required document types.



level 1) includes input/output formats, setup instructions, and sufficient com-
ments in the source code to provide clarification in the compile listing. The effort
spent toward formal documentation for level 2 programs should be minimal.

3. Working document. Level 3 documentation applies to programs that are
expected to be used by several people in the same organization or that may be
transmitted on request to other organizations, contractors, or grantees. This
level should include all documentation types. The documentation should be
typed but need not be in a finished format suitable for publication. Usually, it is
not formally reviewed or edited; however, certain programs that are important
to the using organization but not considered appropriate for publication
should undergo a more stringent documentation review.

4. Formal publication. Level 4 documentation applies to programs that are of 
sufficient general interest and value to be announced outside the originating
installation. This level of documentation is also desirable if the program is to be
referenced by a technical publication or paper. You should include programs that
are critical to installation activities. These programs also should be formally doc-
umented, reviewed in depth, and subjected to configuration control procedures.
You should include recurring applications (payroll, for example) in this level so
that you maintain an accurate history of how the system has conformed to
changing laws, rules, and regulations.

178 Chapter 7

DOCUMENTATION EXTENT OF

LEVEL USE ELEMENTS EFFORT

1

2

3

4

Minimal

Internal 

Working Document

Formal Publication

No special effort,
general good practice.

Minimal documentation
effort spent on informal
documentation. No
formal documentation
effort.

All basic elements of
documentation should
be typewritten, but
need not be prepared in
finished format for
publication or require
external edit or review.

At a minimum, all basic
elements prepared for
formal publication,
including external
review and edit.

Software summary plus any
incidentally produced
documentation.

Level 1 plus user manual and
operations manual.

Level 2 plus functional
requirements document,
program specification, program
maintenance manual, test plan,
test analysis report,
system/subsystem specification,
and feasibility study document.*

Level 3 produced in a form
suitable for publication.*

*In addition, the following documents should be prepared, depending on the situation: data requirements,

database specification, project report, and cost/benefit analysis.

Figure 7-6 Alternate method for determining documentation.



Figure 7-6 summarizes the criteria for determining these levels of documentation.
Additional criteria specific to an installation regarding program-sharing potential, life
expectancy, and use frequency should also be considered when determining documen-
tation levels.

You can determine which of the four documentation levels is appropriate:

■■ As an alternate to the total weighted criteria score method.

■■ As a means of validating the correctness of the total weighted score to the
application system. If the same types of documentation are indicated by both
methods, you have greater assurance that the documentation indicated is the
correct one.

Determining the Completeness of Individual Documents

Testers should use Work Paper 7-2 to document the results of the completeness test. If
the documentation does not meet a criterion, the Comments column should be used to
explain the deficiency. This column becomes the test report on the completeness of the
documentation.

The 12 criteria used to evaluate the completeness of a document are as follows:

■■ Content. The suggested content for all the documents (except the software
summary) is included in a later section. A table of contents for each document
is followed by a brief description of each element within the document. These
document content guidelines should be used to determine whether the docu-
ment contains all the needed information. 

■■ Audience. Each document type is written for a particular audience. The infor-
mation should be presented with the terminology and level of detail appropri-
ate to the audience.

■■ Redundancy. The 14 document types in this section have some redundancy. In
addition, most document types are specific (e.g., descriptions of input, output,
or equipment). Information that should be included in each of the document
types differs in context and sometimes in terminology and level of detail
because it is intended to be read by different audiences at different points in the
software life cycle.

■■ Flexibility. Flexibility in the use of the document results from the organization
of its contents.

■■ Size. Each document-type outline can be used to prepare documents that range
in size from a few to several hundred pages. Length depends on the size and
complexity of the project and the project manager’s judgment as to the level of
detail necessary for the environment in which the software will be developed
or run.

■■ Combining and expanding document types. It is occasionally necessary to
combine several document types under one cover or to produce several vol-
umes of the same document type. Document types that can be combined are
manuals for users, operations, and program maintenance. The contents of each

Step 1: Organizing for Testing 179



document type should then be presented with the outline (e.g., Part I—Users,
Part II—Operations, and Part III—Program Maintenance).

For large systems, you can prepare a document for each module. Sometimes,
the size of a document may require it to be issued in multiple volumes to allow
ease of use. In such cases, the document should be separated at a section divi-
sion (e.g., the contents of the test plan may be divided into sections of plan,
specifications and evaluation, and specific test descriptions).

■■ Format. The content guidelines have been prepared in a generally consistent
format. This particular format has been tested, and its use is encouraged.

■■ Content sequence. In general, the order of the sections and paragraphs in a
particular document type should be the same as shown in the content guide-
lines. The order may be changed if it significantly enhances the presentation.

■■ Documenting multiple programs or multiple files. Many of the document con-
tent outlines anticipate and are adaptable to documenting a system and its sub-
systems, multiple programs, or multiple files. All these outlines can, of course, be
used for a single system, subsystem, program, database, or file.

■■ Section titles. These titles are generally the same as those shown in the content
guidelines. They may be modified to reflect terminology unique to the software
being documented if the change significantly enhances the presentation. Sec-
tions or paragraphs may be added or deleted as local requirements dictate.

■■ Flowcharts and decision tables. The graphic representations of some problem
solutions in the form of flowcharts or decision tables may be included in or
appended to the documents produced.

■■ Forms. The use of specific forms depends on organizational practices. Some 
of the information specified in a paragraph in the content guidelines may be
recorded on such forms. 

Determining Documentation Timeliness

Documentation that is not current is worthless. Most IT professionals believe that if
one part of the documentation is incorrect, other parts are probably incorrect, and they
are reluctant to use it.

The documentation test team can use any or all the following four tests to validate the
timeliness of documentation. These tests can be done on complete documents or parts
of documents. Testers familiar with statistics can perform sampling and validate the
timeliness of that sample. Testers should strive for a 95 percent confidence level that the
documentation is current.

■■ Use the documentation to change the application. Timeliness can be validated
with the same test process described in the preceding section. The timeliness
test enables the tester to search for and confirm consistency between the vari-
ous documents and to determine whether the documentation supports the
operational system.

180 Chapter 7



■■ Compare the code with the documentation. This test uses the current version
of the programs as the correct basis for documentation. This test is usually
done on a sampling basis; the tester randomly selects several parts of the pro-
gram and traces them to the appropriate levels of documentation. The objective
is to determine whether the code is properly represented in the documentation.
Because this test is done statistically, a few variations might imply extensive
segments of obsolete documentation.

■■ Confirm documentation timeliness with documentation preparers. The indi-
viduals who prepare the documentation should be asked whether it is current.
Specific questions include:

■■ Is this documentation 100 percent representative of the application in 
operation?

■■ Is the documentation changed every time that a system change is made?

■■ Do the individuals who change the system rely on the documentation as
correct?

■■ Confirm the timeliness of documentation with end users. End users should
be asked whether the documentation for the system is current. Because end
users might not be familiar with all the contents of the documentation, they
may need to be selected on a sampling basis and asked about specific pieces of
documentation. Again, because sampling is used, a few variances may mean
extensive amounts of obsolete documentation.

Task 5: Validate the Test Estimate and 
Project Status Reporting Process

Troubled projects have two common characteristics: The project estimate is inadequate
and the status report of the development effort is misleading.

The objective of validating the project estimate is to determine what resources will
be available to produce and test software. Resources include staff, computer time, and
elapsed time. Because a good estimate shows when and how costs will be incurred, it
can be used not only to justify software development and testing but also as a man-
agement control tool.

Testers need to know the progress of the system under development. The purpose of
project management systems and accounting systems is to monitor this progress.
However, many of these systems are more budget- and schedule-oriented than project
completion–oriented.

The tester’s main concern during the development is that inadequate resources and
time will be allocated to testing. Because much of the testing will be performed after
development is complete, the time period between completing development and the
due date for production may be inadequate for testing. 

There are three general concerns regarding available time and resources for testing:

■■ Inaccurate estimate. The estimate for resources in time will not be sufficient to
complete the project as specified.

Step 1: Organizing for Testing 181



■■ Inadequate development process. The tools and procedures will not enable
developers to complete the project within the time constraints.

■■ Incorrect status reporting. The project leaders will not know the correct status
of the project during early developmental stages and thus cannot take the nec-
essary corrective action in time to meet the scheduled completion dates.

Validating the Test Estimate

Many software projects are essentially innovative, and both history and logic suggest
that cost overruns may be to the result of an ineffective estimating system. Software
cost estimating is a complicated process because project development is influenced by
a large number of variables, many of which are subjective, non-quantifiable, and inter-
related in complex ways.

Some reasons for not obtaining a good estimate include:

■■ A lack of understanding of the process of software development and 
maintenance

■■ A lack of understanding of the effects of various technical and 
management constraints

■■ A view that each project is unique, which inhibits project-to-project comparisons

■■ A lack of historic data against which the model can be checked

■■ A lack of historic data for calibration

■■ An inadequate definition of the estimate’s objective (whether it is intended as a
project management tool or purely to aid in making a go-ahead decision) and
at what stage the estimate is required so that inputs and outputs can be chosen
appropriately

■■ Inadequate specifications of the scope of the estimate (what is included and
what is excluded)

■■ An inadequate understanding of the premises on which the estimate is based

Strategies for Software Cost Estimating

There are five commonly used methods for estimating the cost of developing and
maintaining a software system:

■■ Seat-of-the-pants method. This method, which is often based on personal
experience, is still very popular because no better method has been proven.
One of its problems is that each estimate is based on different experience, and
therefore different estimates of the cost of a single project may vary widely. A
second problem is that the estimator must have experience with a similar proj-
ect, of a similar size. Experience does not work on systems larger than those
used for comparison nor on systems with a totally different content.

■■ Constraint method. The constraint method is equivalent to taking an educated
guess. Based on schedule, cost, or staffing constraints, a manager agrees to

182 Chapter 7



develop the software within the constraints. The constraints are not related to
the complexity of the project. In general, this method will result in delivery of
the software within the specified constraints, but with the specification
adjusted to fit the constraints.

■■ Percentage-of-hardware method. This method is based on the 
following two assumptions:

■■ Software costs are a fixed percentage of hardware costs.

■■ Hardware cost estimates are usually reasonably accurate.

A study on estimating has indicated that the first of these assumptions is not
justified. 

■■ Simulation method. Simulation is widely used in estimating life cycle support
costs for hardware systems, but it is not appropriate for software cost estimat-
ing because it is based on a statistical analysis of hardware failure rates and
ignores logistics for which there is no software equivalent.

■■ Parametric modeling method. Parametric models comprise the most com-
monly used estimating method and are described in the following section.

Parametric Models

Parametric models can be divided into three classes: regression, heuristic, and 
phenomenological.

■■ Regression models. The quantity to be estimated is mathematically related to 
a set of input parameters. The parameters of the hypothesized relationship are
arrived at by statistical analysis and curve fitting on an appropriate historical
database. There may be more than one relationship to deal with different data-
bases, different types of applications, and different developer characteristics.

■■ Heuristic models. In a heuristic model, observation and interpretation of his-
torical data are combined with supposition and experience. Relationships
between variables are stated without justification. The advantage of heuristic
models is that they need not wait for formal relationships to be established that
describe how the cost-driving variables are related. Over a period of time, a
given model can become very effective in a stable predicting environment. If
the model fails, it is adjusted to deal with the situation. It therefore becomes a
repository for the collected experiences and insights of the designers.

■■ Phenomenological models. The phenomenological model is based on a
hypothesis that the software development process can be explained in terms of
some more widely applicable process or idea. For example, the Putnam model
is based on the belief that the distribution of effort during the software life
cycle has the same characteristics as the distribution of effort required to solve
a given number of problems given a constant learning rate.

Most of the estimating models follow a similar pattern, based on the following 
six steps. Not all steps occur in all models. For example, some models do not initially

Step 1: Organizing for Testing 183



perform a total project labor or cost estimate, but start by estimating the different
phases separately, so Step 4 aggregates the separate estimates instead of dividing up
the total estimate. Similarly the adjustments for special project characteristics may
occur between Steps 1 and 2 as well as or instead of between Steps 2 and 3.

1. Estimate the software size. Most models start from an estimate of project size,
although some models include algorithms for computing size from various other
system characteristics, such as units of work.

2. Convert the size estimate (function points or lines of code) to an estimate of

the person-hours needed to complete the test task. Some models convert from
size to labor, whereas others go directly from size to money estimates.

3. Adjust the estimate for special project characteristics. In some models, an
effective size is calculated from the basic size estimate obtained in Step 1; 
in others, a person-hours or cost estimate is calculated from the estimates
obtained in Step 2. The estimate is an adjustment of the basic estimate intended
to take account of any special project characteristics that make it dissimilar to
the pattern absorbed in the underlying historical database. Such variations,
which include the effect of volatility of the requirements, different software
tools, difficulty above the level of projects in the database, or a different
method of dealing with support costs, are frequently based on intuitively
derived relationships, unsupported by statistical verification.

The adjustment may precede amalgamation of the costs of the different phases,
or a single adjustment may be applied to the total.

4. Divide the total estimate into the different project phases. Each model deal-
ing with a project’s schedule makes assumptions about the allocation of effort
in the different project phases. The simplest assumption defines a percentage of
the effort for each phase, for example, the much-quoted 40 percent design, 20
percent code, and 40 percent test rule. It should be noted that this is not a uni-
versally agreed-on rule. Some estimating research shows that other percentages
may be more appropriate, and the percentage in each phase may depend on
other software characteristics. Some models assume that staffing allocation
with respect to time follows a rectangular distribution; others assume that it
follows a beta distribution, or a Rayleigh distribution. In general, the assump-
tions on staffing allocation with respect to time are based on historical data.
The effect of deviating from historical patterns has not been considered.

5. Estimate the computer time and non-technical labor costs. Where these costs
are explicitly included, they are often calculated as a percentage of the technical
labor costs. Sometimes such costs are included implicitly because they were
included in the database from which the model was derived.

6. Sum the costs. The non-technical labor costs and the cost of computer time,
where these are included in the estimates, are added to the technical costs 
of the different phases of the software life cycle to obtain an aggregated cost
estimate.

184 Chapter 7



Testing the Validity of the Software Cost Estimate

An improper cost estimate can do more damage to the quality of a software project than
almost any other single factor. People tend to do that which they are measured on. If they
are measured on meeting a software cost estimate, they will normally meet that estimate.
If the estimate is incorrect, the project team will make whatever compromises are neces-
sary to meet that estimate. This process of compromise can significantly undermine the
quality of the delivered project. The net result is increased maintenance costs, dissatisfied
customers, increased effort in the customer area to compensate for software system
weaknesses, and discouraged, demoralized project personnel.

Estimating software costs is just that—estimating. No one can guarantee that the
software estimate will be correct for the work to be performed. However, testing can
increase the validity of the estimate, and thus is a worthwhile endeavor. Testing of a
software estimate is a three-part process, as follows:

1. Validate the reasonableness of the estimating model.

2. Validate that the model includes all the needed factors.

3. Verify the correctness of the cost-estimating model estimate.

Validate the Reasonableness of the Estimating Model

Work Paper 7-3 lists the 14 characteristics of a desirable estimating model. The work-
sheet provides a place to indicate whether the attributes are present or absent, and any
comments you care to make about the inclusion or exclusion of those characteristics.
The closer the number comes to 14, the more reliance you can place on your software-
estimating model.

Validate That the Model Includes All the Needed Factors

The factors that influence the cost of a software project can be divided into those con-
tributed by the development and maintenance organization, many of which are sub-
jective, and those inherent in the software project itself. Current models differ with
respect to the factors that are required as specific inputs. Many different factors may 
be subsumed in a single parameter in some models, particularly the more subjective
parameters.

Depending on the information fed to the model, the estimate produced can vary sig-
nificantly. It is important that all the factors that influence software costs are properly
entered into the model. Models can produce incorrect results in two ways. First, the
factor can be excluded from the model, resulting in an incorrect estimate. Second, the
factor can be incomplete or incorrectly entered into the model, again causing incorrect
software cost estimates to be produced.

Work Paper 7-4 lists the factors that can influence software costs. Testers must deter-
mine whether a missing factor will significantly affect the actual costs of building the
software. Factors that influence the software system include:

■■ Size of the software. A favorite measure for software system size is lines of oper-
ational code, or deliverable code (operational code plus supporting code, for
example, for hardware diagnostics) measured either in object code statements or

Step 1: Organizing for Testing 185



in source code statements. It is rarely specified whether source code statements
include non-executable code, such as comments and data declarations.

■■ Percentage of the design and/or code that is new. This is relevant when mov-
ing existing software systems to new hardware, when planning an extension to
or modification of an existing software 
system, or when using software prototypes.

■■ Complexity of the software. Different software projects have different degrees
of complexity, usually measured by the amount of interaction between the dif-
ferent parts of the software system, and between the software and the external
world. The complexity affects programmer productivity and is an input para-
meter for several models.

■■ Difficulty of implementing the software requirements. Different application
areas are considered to have different levels of difficulty in design and coding,
affecting programmer productivity. For example, operating system software is
usually regarded as more difficult than standalone commercial applications.
Software projects might be given a difficulty or an application mix rating,
according to the degree to which they fall into one (or more) of the following
areas:

■■ Operating systems

■■ Self-contained real-time projects

■■ Standalone, non–real-time applications

■■ Modifications to an existing software system

There are, of course, other categories. Each model deals with the difficulty in its
own way, some requiring estimates of the percentage of each type of software
system, others asking for a number on a predefined scale. Others merge the fac-
tor with the complexity rating.

■■ Quality. Quality, documentation, maintainability, and reliability standards
required are all included in a single factor. This factor is sometimes called the
platform type, reflecting the fact that the documentation and reliability require-
ments for software in a manned spacecraft are higher than in a standalone sta-
tistical package. The documentation and reliability requirements may be given
a defined numeric scale—for example, from 1 to 10. Some estimating models
include a parameter for the number of different locations at which the software
will be run.

■■ Languages to be used. The choice of programming language affects the cost,
size, timescale, and documentation effort.

■■ Security classification. The higher the security classification of the project, the
more it will cost because of the additional precautions required. The security
classification is not an input factor in most models.

■■ Volatility of the requirement. The firmness of the requirement specification
and the interface between developer and customer affect the amount of rework

186 Chapter 7



that will be needed before the software is delivered. This highly subjective but
nonetheless important factor is an input factor to several models. The following
are included in this factor:

■■ Amount of change expected in the requirement

■■ Amount of detail omitted from the requirement specification

■■ Concurrent development of associated hardware, causing changes in the
software specification

■■ Unspecified target hardware

Organization-dependent factors include the following:

■■ Project schedule. Attempts to save time by adding more people to a project
prove counterproductive because more time and effort are expended in com-
munication between project team members than can be gained by adding extra
people. There must therefore be either a minimum time below which the proj-
ect cannot be completed or at least a time below which the costs of saving a
small amount of time become prohibitive. Conversely, if more time is allocated
to a project than is required, it has been argued that the cost decreases. How-
ever, other models show costs increasing if more than some optimum time is
allocated because more personnel are consumed. One effect of the compression
of timescales is that work that should be done in series is undertaken in paral-
lel, with the increased risk that some of the work will have to be scrapped (e.g.,
if coding is started before design is complete).

Not all models deal with project schedules. Of those that do, some assume the
40-20-40 rule (40 percent design, 20 percent coding, and 40 percent testing), 
and others use more elaborate scheduling assumptions. Some research throws
doubt on the validity of the 40-20-40 rule and indicates that phases are strongly
interrelated, so effort skimped in one phase will probably result in a consider-
able increase in the effort needed in a later phase.

■■ Personnel. The personnel assigned to a project contribute to the cost. Most proj-
ects are resource limited, in that the number of people with a given skill who
are available to the project is limited. The number of personnel available at any
stage in a project will affect the timescales, and hence the cost. An industrial
engineering model called the “Raleigh Curve” shows the relationship between
the number of assigned staff and project effectiveness.

■■ Technical competence. Effective projects are staffed with personnel with
the competence needed to complete the project successfully. A less compe-
tent staff will increase the cost and schedule of the defined testing tasks.

■■ Non-technical staff. Estimates of the non-technical personnel levels
required by a project are frequently made as a percentage of the technical
personnel levels.

■■ Development environment. The adequacy of the development environment,
both in hardware and software, depends largely on the management of the

Step 1: Organizing for Testing 187



development organization. This factor is not usually requested as an explicit
input to a model, but may be implicit in the calibration of the model, or in some
general management parameter. The following are three aspects of the devel-
opment environment that are sometimes required as inputs:

■■ Development machine. The adequacy of the development machine as a host
for developing software for the selected target, and the availability of the
development machine to the software development personnel, will affect
both the schedule and the cost of a software development. The study showed
that time sharing, where the development machine is constantly available, is
20 percent more productive than batch systems for software development.

■■ Availability of associated software and hardware. Projected late delivery
of some item of associated hardware or software can affect schedules and
costs.

■■ Software tools and techniques used during system design and develop-

ment. Newer tools and techniques, properly applied, can reduce develop-
ment effort.

■■ Resources not directly attributable to technical aspects of the project. The
development organization’s management style affects the amount of effort team
members expend communicating with each other, the level of non-technical
effort involved, as well as software/hardware costs, subcontracting costs, and
profit. These factors are usually ignored, are implicit in the database from
which the model is derived, or are taken care of by a general management fac-
tor. The geographical distribution of the development organization may affect
costs because of travel and the cost of transmitting data between sites, and is
therefore input to some models.

■■ Labor rates. If the model estimates costs in terms of money rather than staff-
hours, the relationship of labor costs to staff-hours within the development orga-
nization may be required by the model. The model may be capable of reflecting
increased rates for staff required to work irregular hours because of decreases in
the development timescale or lack of availability of development tools.

■■ Inflation. Costs estimated in terms of money rather than staff hours should
include inflation rates if the project will last more than 12 months.

Verify the Correctness of the Cost-Estimating Model Estimate

The amount of testing of the produced estimate will depend on the reasonableness of
the estimating model and the completeness of the influencing factors included in the
model. The less the tester can rely on the model, the more testing that needs to be per-
formed on the validity of the estimate produced by the model.

The following four steps are suggested when testing the validity of the estimate pro-
duced by the software cost-estimating model:

■■ Recalculate the estimate. The tester can validate the processing of the estimate
by rerunning the estimating model. The purpose of this is to:

188 Chapter 7



■■ Validate the input was entered correctly

■■ Validate the input was reasonable

■■ Validate the mathematical computation was performed correctly

This test can be done in totality or in part. For example, the tester can completely
recalculate the estimate, check that the input going into the estimating model
was correct, test the reasonableness of some of the input test by recalculating all
or parts of the estimate, and so forth.

■■ Compare produced estimate to similar projects. The tester can determine how
long it took to develop projects of similar size and complexity. These actual proj-
ect costs should be available from the organization’s accounting system. The esti-
mate produced by the estimating system is then compared to the actual costs for
like projects completed in the past. If there is any significant difference, the tester
can challenge the validity of the estimate. This challenge may result in a recalcu-
lation or change of the estimate based on previous experience.

■■ The prudent person test. This test is similar to the preceding test in that past
experience is utilized. The tester documents the factors influencing the cost
estimate, documents the estimate produced by the estimating system, and then
validates the reasonableness of that estimate by asking experienced project
leaders for their opinions regarding the validity of the estimate. It is recom-
mended that three experienced project leaders be asked to validate the esti-
mate. If one or more does not feel that the estimate is reasonable, the validity 
of the estimate should be challenged.

■■ Redundancy in software cost estimating. This test has the tester recalculate the
estimate using another cost-estimating model. For example, assume that your
organization has developed a cost-estimating model. The project people have
used that model to develop the cost estimate. The tester uses another method, for
example, a software-estimating package. If the two estimating systems produce
approximately the same estimate, the reliance on that estimate is increased. On
the other hand, if there is a significant variance between the estimates using the
two methods, then the tester needs to pursue additional investigation.

Sources of software estimating models include:

■■ Organization-developed estimating models

■■ Estimating models included in system development methodologies

■■ Software packages for developing software estimates

■■ Function points in estimating software costs

Calculating the Project Status Using a Point System

The suggested project status test is based on a simple point-accumulation system. The
points can then be compared to the project management or accounting system progress

Step 1: Organizing for Testing 189



report. If the results of the two progress measurement systems differ, testers can chal-
lenge the validity of the results produced by the project management and/or account-
ing system.

The point system provides an objective, accurate, efficient means of collecting and
reporting performance data in an engineering field that often lacks visibility. The
method uses data based on deliverable software items and collected as a normal part
of the development process. The results are easily interpreted and can be presented in
a number of formats and sub-divisions. The scheme is flexible and can be modified to
meet the needs of projects, both large and small.

Overview of the Point Accumulation Tracking System

The increasing complexity of software systems, combined with the requirements for
structured and modular designs, has increased significantly the number of software ele-
ments developed and delivered on recent simulator programs. The increased number of
elements and the traditionally “soft” milestones used to measure progress have made
monitoring software development and predicting future progress time-consuming,
subjective, and often unreliable.

A tracking system that uses an earned point scheme has been successfully used to
monitor software development on several large tests. Points are assigned for each step
in the software development cycle on a per-element basis. The steps are “hard” mile-
stones in which a generated product is accepted by program management. As the
products are accepted, the associated points are earned. The ratio of earned points to
total possible points is compiled on an element, functional area, or total software sys-
tem basis to determine progress achieved. A program that generates reports, usually
resident on the simulator computational system, tabulates the data in a variety of man-
agement reports.

The system as implemented is flexible, highly automated, and closely coupled to
configuration management systems and software quality assurance procedures to
ensure the validity of data. Simple calculations or comparisons of the accumulated
point values provide an accurate measure of progress, deviation from schedule, and
prediction of future progress.

Typical Methods of Measuring Performance

Performance in software development is measured typically either by estimating the
percentage of a task completed or by counting the number of predetermined milestones
that have been reached. In the estimate of percent completed method, the person per-
forming the work estimates the percent of the work that has been accomplished in reach-
ing a milestone or completing a task. The percent completed method has several faults.
The major fault is that the measurement is subjective. The manager is asking a person
with a vested interest in completing the task as early as possible to make an educated
guess as to how nearly complete it is. Most people tend to be optimistic in their ability to
complete a task—particularly if their manager subtly encourages optimism. The old bro-
mide of a task being 95 percent complete for months is all too true.

A potential shortcoming of this method when used with tasks rather than milestones
is that the definition of completion is not always stated. Therefore, the person making the

190 Chapter 7



estimate may have one perception of what the task includes, whereas the manager may
have another. Hence, when the programmer states the task is 100 percent complete—
written, tested, and documented—the manager may have an unpleasant surprise when
he or she asks to see the installation guide. Therefore, because the end of the task may not
be clearly defined, the estimates of completion may be quite inaccurate.

Because the estimates are subjective, the interpretation of the results may also be sub-
jective. In trying to ascertain the degree of completeness of a job, a manager may ask who
made the estimate and then apply a “correction factor” to the estimate for that person to
get a number he feels comfortable with.

The second method, the milestone method, attempts to alleviate these problems by
defining specific milestones that must be met and measuring performance by summing
the number of milestones that have been met. This method is much more objective, tends
to describe the overall task more fully, and, as a result, is easier to interpret. The short-
comings of this method are more in the area of resolution of the measurement versus the
efficiency of collecting, collating, and presenting the results in a meaningful way.

To get the resolution of measurement fine enough to show incremental progress on
a periodic basis, numerous milestones need to be defined. However, the large number
of milestones makes it more difficult to collect and present the data in a timely and
meaningful way. A common method is to present the data on bar graphs, but on a large
project with thousands of milestones, the upkeep of bar graphs can be a slow, expen-
sive effort.

Another potential problem is that the milestone may not accurately reflect the real
task. If care is not taken to define the milestone, the milestone may not be based on
deliverable items, but on something that appears to show progress, such as lines of code
generated. Also, if the milestones are not carefully chosen, it may be difficult to deter-
mine if the milestone has been reached.

These performance measurement tools and techniques emphasize functions per-
formed early in the life of a project. Less information is available on the ongoing man-
agement function of control. Control can be thought of as a three-step process: An
attribute or characteristic of interest is measured, the measured value is compared with
an expected or baseline value, and an appropriate action is taken if an unacceptable
deviation exists. Any number of items of interest during software development may be
controlled in this manner. Development time, development costs, computer memory
usage, and computer time are some of the more common items.

A performance measurement scheme should meet several criteria. First and most
important, the scheme should be objective. The person claiming performance should
not be required to estimate degree of completion. Likewise, the person monitoring per-
formance should know exactly what a performance measurement represents. Ideally,
the state of development should be sufficiently visible and the measurement means
sufficiently clear to enable any project member to make the actual measurement.

Second, the scheme should measure performance in accomplishing the real task
(i.e., the development of deliverable software). Further, the resolution of the measuring
scheme should be sufficiently fine to measure incremental progress on a weekly or
monthly basis, and the measurement should be timely in that it measures the current
state of development. Providing accurate, current performance information on a peri-
odic basis can be a positive motivating factor for a programming staff.

Step 1: Organizing for Testing 191



Finally, the scheme must be efficient. It should require minimal resources to collect,
collate, and report performance data and should require minimum time to interpret
the results. Systems that require constant inputs from the programming staff, updates
by clerical personnel, or integration of large amounts of data by management should
not be used.

Using the Point System

The point system is really an extension to the milestone system that lends itself to
automation. In its simplest form, it is assumed that each software module goes through
a similar development process and that the process comprises clearly identifiable mile-
stones. For example, assume ten modules will be developed and four milestones will
define the development process. The milestones may represent a reviewed and accepted
design, a completed code walkthrough, verified test results, and a released module.

In the simple case, each milestone for each software item is worth 1 point. In the case
of the system with ten modules, 40 points can be earned. As part of each design review,
code walkthrough, test verification, or release audit, the milestone is achieved and the
corresponding point earned. By including the milestones achieved (points earned) and
creating a few simple generators, you can get an objective, accurate, and timely measure
of performance. Figure 7-7 shows what a simple status report might look like.

This simplified scheme works well for a homogeneous set of modules, where all
modules are of the same complexity and each of the milestones represents an approxi-
mately equal amount of work. Through an introduction of weighting factors, you can
easily handle modules of varying complexity or milestones representing unequal
effort to complete.

Before this and other extensions are discussed, however, a brief description of
implementation is in order. The heart of the system is a computer data file and a few
simple report generators. The data file is simply a collection of records, one for each
item that is to be tracked, that contains fields to indicate whether a particular milestone
has been met. Usually, it is advantageous to include the following fields: item descrip-
tion, analyst responsible, work package identification, as well as various file identifi-
cation fields. Often such a file will serve multiple uses, particularly if a few additional
fields are added. Typical uses include family tree definition, specification cross-refer-
ences, configuration control lists, and documentation cross-references.

Maintaining or updating the file can be as straightforward as modifying records
with a line editor or as complex as building a special-purpose interactive update pro-
gram. Some means of limited access should be used to restrict unauthorized modifica-
tion of the file, particularly if some of the other uses of the file are sensitive to change.

Once the file is updated to include an entry of the module under development, the
milestone status fields are updated as the milestones are met. In some cases this may be
a manual process; once an event has occurred and the milestone achieved, a program
librarian or other authorized person updates the status file. In other instances, in a more
sophisticated system, a computer program could determine that a milestone event has
occurred and automatically update the milestone status.

192 Chapter 7



After the file has been built, programs to generate reports are written to print the sta-
tus. For smaller projects, a program that simply prints each record, sums the earned
and defined points, and calculates the percent points earned may be sufficient. Larger
projects may need several reports for different subsystems or summary reports that
emphasize change.

Extensions

A number of extensions can be added to the scheme as described so far. The first is to
add a method of weighting modules and/or milestones. While weighting all modules
equally on a large program where many (over 1,000) modules exist appears to give
good results, smaller programs with few modules may need to weight the modules to
give a sufficiently accurate performance measurement. Also, depending on the level of
visibility of the measuring system and the attitude of the personnel involved, there may
be a tendency to do all the “easy” modules first to show early performance.

A similar argument can be made for weighting milestones. Depending on the accep-
tance criteria, some milestones may involve more work than others. Therefore, achiev-
ing those milestones represents accomplishing a greater amount of work than in
meeting other milestones. Further, there may be instances where a combination of
module weight and milestone weight may interact. An example is a module that was

Step 1: Organizing for Testing 193

SOFTWARE STATUS REPORT

POINTS
DESIGN CODE TEST RELEASE EARNED

Module A 1 1 2

Module B 1 1

Module C 1 1

Module D 1 1 1 3

Module E 1 1 2

Module F 1 1

Module G 1 1 2

Module H 1 1 1 1 4

Module I 1 1

Module J 1 1 2

TOTALS 10 6 2 1 19

PERCENT COMPLETE = 19/40 = 48%

Figure 7-7 Simple status report.



previously written on another project in a different language. The amount of design
work for that module may be considerably less than a module designed from scratch,
but the amount of effort to code the routine might be more because an unfamiliar lan-
guage may be involved.

The weighting scheme is easily implemented by assigning points to each milestone
for all modules. Then, as a milestone is earned, the assigned points are added to the total
earned and divided by the total defined points to compute percent completion. The
number of points assigned to each milestone is in proportion to the difficulty in achiev-
ing the milestone, and, in fact, relates directly to the estimated number of hours needed
to complete the milestone. When assigning points, it is recommended that points first be
assigned to each of the modules and then reapportioned to the milestones.

A second extension is to add selecting and sorting options to the programs that gen-
erate the reports. Selecting options allows the user to select all entries in the file by some
field, such as work package number, file name, software family tree component, or
responsible analyst. Once the entries of interest are selected, the sort option allows the
user to order the entries by some key. The points earned and points defined are summed
from the selected entries and the percent complete calculated. Therefore, reports can be
printed listing all modules and percent complete for a certain analyst, work package, or
other selected criteria. It has been found valuable to allow Boolean operations on selec-
tion fields (analyst A and subsystem B) and to provide for major and minor sort fields
(for example, to list modules in alphabetical order by analyst).

A third extension is to add target dates and actual completion dates to each module
record. In this extension the individual milestone status fields are replaced by two
dates. The first date field is a target date indicating when the milestone should be met.
The target dates do not have to be used for all modules or milestones but are useful
where interdependency exists between a particular module milestone and some other
element in the system. These interdependencies may exist in the design stage to some
extent, but they become very important during the integration phase of a project.

The actual completion date field becomes a flag identifying when the milestone is
achieved. By adding up the points assigned to a milestone that have an actual date
entered in the file, the percent complete can be computed.

Using the two date fields has two advantages: You can monitor schedule interde-
pendence and a historical record exists for future analysis. By making the date fields
selectable and sortable, additional reports can be generated. Assuming that an integra-
tion milestone has been identified, a list of all modules of interest can be selected by
work package number, family tree identification, or individual module name. Target
dates for the milestone of interest can then be entered. As the date of the integration
milestone comes closer, lists of all modules of interest that have a particular due date
and have not been completed can be provided to the responsible analyst or work pack-
age manager. Judicious use of these lists on a periodic basis can be used to monitor and
motivate the programming staff to ensure that the milestone is met. Usually, several of
these lists in various stages are active at once as key milestones are coming up. It has
been found that choosing approximately one major milestone a month and starting the
list several months in advance of the target date is very effective. More milestones than

194 Chapter 7



this tend to set up multiple or conflicting goals for the individual analysts. Also, the
lists need to be started well enough in advance to allow suitable time for the work to
be completed and to enable you to institute workarounds if problems arise.

It should be noted that the meeting of these interdependency dates is really separate
from performance measurement. It is possible that in a given subsystem the perfor-
mance may be fully adequate, say 75 percent complete, but a key integration event
may have been missed. The manager must be aware of both elements. If performance
is where it should be but an integration event has been missed, it may mean the man-
ager’s people are not concentrating on the right item and need to be redirected.

Rolling Baseline

A potential problem with the point system described thus far has to do with an effect
known as a rolling baseline. The rolling baseline occurs over the life of a program as new
items are continually defined and added to the status file. This has the effect of chang-
ing the baseline, which causes percent complete to vary independently of milestones
earned. During periods when few new items are added to the file, the percent complete
accurately reflects real performance. At other times, as new items are added as quickly
as previously defined milestones are met, reported progress tends to flatten out. In
some instances where more new items were added than old items completed, negative
progress is reported.

This problem is overcome by freeing the baseline for a unit of work or work package
and reporting progress on the unit. That is, once a package of work is defined, no new
points are allocated to the package. If, for some reason, it is decided certain modules have
to be split up for the sake of modularity or computing efficiency, the points are likewise
split up. In the instance where the scope of work changes because of an oversight or con-
tract change, the effort is reprogrammed and either new work packages are created or
existing work packages are expanded with a corresponding increase of points.

This has the effect of measuring performance on active or open work packages only,
not on the system as a whole. However, because performance is being compared to an
established schedule, which is also made up of units of work, the comparison is valid
and useful.

Reports

Several informative detail and summary reports can be generated from the data file.
The most encompassing detail report, of course, is a listing of all elements. Such a list
may be useful in creating inventory lists of software items to be delivered and might be
used during physical configuration audits. Other lists may be sorted and/or selected
by work package or family tree identification number. Such lists show status of specific
modules within subsets of the work breakdown structure or functional items of the
system. Other sorts or selections by a responsible analyst show status of a particular
individual’s effort. Figures 7-8 through 7-11 show sample summary reports. Collecting
data from several summary runs allows rates of completion to be calculated, upon
which trends or predictions of future performance can be made.

Step 1: Organizing for Testing 195



Figure 7-8 Detail interdependency listing.



Figure 7-9 Detail status listing.



Figure 7-10 Summary report.



Figure 7-11 Summary status report.



Check Procedures

Work Paper 7-5 is a quality control checklist for this step. It is designed so that Yes
responses indicate good test practices and No responses warrant additional investiga-
tion. A Comments column is provided to explain No responses and to record investiga-
tion results. The N/A column should be used when the checklist item is not applicable to
the test situation.

Output

The output from this step includes a test manager, a definition of the scope of testing,
an organized test team, and verification that development documentation is complete.
Another output from this step is a report to the project personnel on the adequacy of
the test estimate and the reasonableness of the project status. Note that this step may
need to be repeated periodically as the project plan changes. Testers may also want to
evaluate the reasonableness of the status report multiple times during the develop-
ment process.

Summary

Time spent organizing for a test project will reduce the overall test effort. The five orga-
nizing tasks described in this chapter are an important prerequisite to test planning. It
is less important as to who does the tasks, and when the tasks are performed, than the
fact that the tasks are performed.

200 Chapter 7



Step 1: Organizing for Testing 201

WORK PAPER 7-1 Calculation of Total Weighted Documentation Criteria
Score

CRITERION WEIGHT EXPLANATION

1. Originality required

2. Degree of generality

3. Span of operation

4. Change in scope and
objective

5. Equipment complexity

6. Personnel assigned

7. Developmental cost

8. Criticality

9. Average response time 
to program change

10. Average response time 
to data input

11. Programming languages

12. Concurrent software
development

Total Weighted Criteria Score:



202 Chapter 7

WORK PAPER 7-2 Testing Documentation Completeness

COMPLETENESS CRITERION ADEQUATE INADEQUATE COMMENTS

1. Content

2. Audience

3. Redundancy

4. Flexibility

5. Size

6. Combining and expanding 
of document types

7. Format

8. Content sequence

9. Documenting of multiple 
programs or multiple files

10. Section titles

11. Flowcharts and decision 
tables

12. Forms



WORK PAPER 7-3 Characteristics Included/Excluded from Your Organization’s Software Estimating Model

Name of Model: ____________________________________________________________________________________________________________________

CHARACTERISTIC INCLUDED EXCLUDED COMMENTS

1. The model should have well-defined scope.

(It should be clear which activities associated with the software life cycle are
taken into account in the model and which are excluded. It should also be
clear which resources—manpower, computer time, and elapsed time—are
being estimated, and whether costs of support software are included.)

2. The model should be widely applicable.

(It should be possible to tailor a model to fit individual organizations, and
types of software development.)

3. The model should be easy to use.

(Input requirements should be kept to a minimum, and output should be
provided in an immediately useful format.)

4. The model should be able to use actual project data as it becomes available.

(Initial project cost estimates are likely to be based on inadequate
information. As a project proceeds, more accurate data becomes available
for cost estimating. It is essential that any estimating model be capable of
using actual data gathered at any stage in the project life to update the
model and provide refined estimates, probably with a lower likely range of
values than achieved initially.

Estimating is based on a probabilistic model. This means that an estimate is
a number in the likely range of the quantity being estimated, and
confidence in the estimate depends on the likely range of the quantity being
estimated. The better the information we have on which to base an
estimate, the smaller the likely range and the greater the confidence.)

5. The model should allow for the use of historic data in the calibration for a
particular organization and type of software.

6. The model should have been checked against a reasonable number of
historic projects.

(continues)



WORK PAPER 7-3 (continued)

Name of Model: ____________________________________________________________________________________________________________________

CHARACTERISTIC INCLUDED EXCLUDED COMMENTS

7. The model should only require inputs based on properties of the project
which are well defined and can be established with a reasonable degree of
certainty at the time the estimate is required.

8. The model should favor inputs based on objective rather than subjective
criteria.

9. The model should not be oversensitive to subjective input criteria.

10. The model should be sensitive to all the parameters of a project which have
been established as having a market effect on the cost, and should not
require input of parameters which do not have a marked effect on cost.

11. The model should include estimates of how and when the resource will be
needed.

(This is particularly important if the estimates are to be used for resource
allocation, but also important if the results are given in financial terms since
inflation needs to be taken into account.)

12. The model should produce a range of likely values for the quantity being
estimated.

(It is important to realize that an estimate cannot provide a precise
prediction of the future. It must, of course, predict sufficiently closely to be
useful, and to do this it should ideally be able to place bounds on either side
of the estimate within a stated probability that the actual figures will lie
within the stated bounds.)

13. The model should include possibilities for sensitivity analysis, so that the
response of the estimates to variation of selected input parameters can be
seen.

14. The model should include some estimate of the risk of failure to complete
within the estimated time or cost.

TOTAL CHARACTERISTICS INCLUDED



Step 1: Organizing for Testing 205

WORK PAPER 7-4 Factors that Influence Software Cost Estimate

FACTOR INCLUDED EXCLUDED COMMENTS

Project-Specific Factors

1. Size of the software

2. Percentage of the design and/or code 
that is new

3. Complexity of the software system

4. Difficulty of design and coding

5. Quality

6. Programming language

7. Security classification level

8. Target machine

9. Utilization of the target hardware

10. Requirement volatility

Organization-Dependent Factors

1. Project schedule

2. Personnel

• Technical competence

• Nontechnical manpower

3. Development environment

• Development machine

• Availability of associated software 
and hardware

• Software tools and techniques to be 
used during design and development

4. Resources not directly attributable to 
technical aspects of the project

5. Computing resources

6. Labor rates

7. Inflation



206 Chapter 7

WORK PAPER 7-5 Organizing for Testing Quality Control Checklist

YES NO N/A COMMENTS

1. Has the test team manager been appointed?

2. Has the test team manager’s role been defined?

3. Is the scope of testing consistent with the 
competency of the test manager?

4. Is the test team competent?

5. Are there standards for system documentation?

6. Are the members of the test team in total 
knowledgeable of the intent and content of 
those standards?

7. Are the standards customizable for systems of 
various sizes, so that small projects may not 
need as extensive documentation as large 
projects?

8. Are the testers provided a complete copy of 
system documentation current to the point 
where the tests occur?

9. Have the testers measured the documentation 
needs for the project based on the twelve 
criteria included in this chapter?

10. Have the testers determined what documents 
must be produced?

11. Do the project personnel agree with the testers’ 
assessment as to what documents are needed?

12. Have the testers determined the completeness 
of individual documents using the 13 criteria 
outlined in Task 3?

13. Have the testers used the inspection process 
to determine the completeness of system 
documentation?

14. Have the testers determined the currentness 
of the project documentation at the point of 
test?

15. Have the testers prepared a report that outlines 
documentation deficiency?

16. Do the testers ensure that the documentations 
deficiency outlined in their report is acted upon?

17. Does project management support the 
concept of having the test team assess the 
development estimate and status?



Step 1: Organizing for Testing 207

WORK PAPER 7-5 (continued)

YES NO N/A COMMENTS

18. If so, is the test team knowledgeable in the
estimation process?

19. If so, is the test team knowledgeable in the 
method that will be used to report project 
status?

20. Does the test team understand how the
software estimate was calculated?

21. Has the test team performed a reasonable
test to determine the validity of the
estimate?

22. If the test team disagrees with the validity of the 
estimate, will a reasonable process be followed 
to resolve that difference?

23. Does the project team have a reasonable status
reporting system?

24. Have the testers determined that the project
status system will be utilized on a regular basis?

25. Is there a process to follow if the status 
reporting system indicates that the project 
is ahead or behind estimates?

26. Have the test team taken into account the
influencing factors in evaluating the estimate 
(e.g., size of the software and so forth)?

27. Will the team receive copies of the status
reports?

28. Is there a process in the test plan to act
upon the status reports when received?

29. Does the test team have a knowledge of
how projects are planned and how the
content of a project is planned?

30. Does the test team have an understanding
of the project estimating process used to
estimate this project?

31. Does the project team have an
understanding of the developmental
process that will be used to build the
software specified in this project?

32. Is the project plan complete?

33. Is the project estimate fully documented?

34. Is the developmental process documented?

35. Is the estimating method used for this
project reasonable for the project
characteristics?

(continues)



WORK PAPER 7-5 (continued)

YES NO N/A COMMENTS

36. Is the estimate reasonable to complete the
project as specified in the plan?

37. Has the project been completed using the
development process?

38. Does the project team have a method for
determining and reporting project status?

39. Is that project status method used?

40. Do the testers agree that the project status
as reported is representative of the actual
status?

208 Chapter 7



209

The scope of the effort to determine whether software is ready to be placed into pro-
duction should be defined in a test plan. To expend the resources for testing without a
plan will almost certainly lead to waste and the inability to evaluate the status of cor-
rections prior to installation. The test planning effort should follow the normal test plan-
ning process, although the content will vary because it will involve not only in-house
developed software but also vendor-developed software and software embedded into
computer chips.

Overview

The test plan describes how testing will be accomplished. Its creation is essential to
effective testing and should take about one-third of the total testing effort. If you
develop the plan carefully, test execution, analysis, and reporting will flow smoothly. 

Consider the test plan as an evolving document. As the developmental effort changes
in scope, the test plan must change accordingly. It is important to keep the test plan cur-
rent and to follow it, for it is the execution of the test plan that management must rely
on to ensure that testing is effective; and it is from this plan that testers will ascertain the
status of the test effort and base opinions on its results.

This chapter contains a standard that defines what to include in the test plan. The
procedures described here are amplified with work papers and checklists detailing
how to develop the planning material. The organizing test described in Chapter 7 will
assist in developing the test plan. Chapters 9 through 13 discuss executing the test plan
and summarizing and reporting the results.

Step 2: Developing 
the Test Plan

C H A P T E R

8



Objective

The objective of a test plan is to describe all testing that is to be accomplished, together
with the resources and schedule necessary for completion. The test plan should pro-
vide background information on the software being tested, test objectives and risks,
and specific tests to be performed. Properly constructed, the test plan is a contract
between the testers and the project team/users. Thus, status reports and final reports
will be based on that contract.

Concerns

The concerns testers face in ensuring that the test plan will be complete include the 
following:

■■ Not enough training. The majority of IT personnel have not been formally
trained in testing, and only about half of full-time independent testing personnel
have been trained in testing techniques. This causes a great deal of misunder-
standing and misapplication of testing techniques.

■■ Us-versus-them mentality. This common problem arises when developers and
testers are on opposite sides of the testing issue. Often, the political infighting
takes up energy, sidetracks the project, and negatively impacts relationships.

■■ Lack of testing tools. IT management may consider testing tools to be a luxury.
Manual testing can be an overwhelming task. Although more than just tools are
needed, trying to test effectively without tools is like trying to dig a trench with
a spoon.

■■ Lack of management understanding/support of testing. If support for testing
does not come from the top, staff will not take the job seriously and testers’
morale will suffer. Management support goes beyond financial provisions;
management must also make the tough calls to deliver the software on time
with defects or take a little longer and do the job right.

■■ Lack of customer and user involvement. Users and customers may be shut out
of the testing process, or perhaps they don’t want to be involved. Users and
customers play one of the most critical roles in testing: making sure the soft-
ware works from a business perspective.

■■ Not enough time for testing. This is common complaint. The challenge is to
prioritize the plan to test the right things in the given time.

■■ Over-reliance on independent testers. Sometimes called the “throw it over the
wall” syndrome. Developers know that independent testers will check their
work, so they focus on coding and let the testers do the testing. Unfortunately,
this results in higher defect levels and longer testing times.

■■ Rapid change. In some technologies, especially rapid application development
(RAD), the software is created and/or modified faster than the testers can test
it. This highlights the need for automation, but also for version and release
management.

210 Chapter 8



■■ Testers are in a lose-lose situation. On the one hand, if the testers report too
many defects, they are blamed for delaying the project. Conversely, if the
testers do not find the critical defects, they are blamed for poor quality.

■■ Having to say no. The single toughest dilemma for testers is to have to say,
“No, the software is not ready for production.” Nobody on the project likes to
hear that, and frequently, testers succumb to the pressures of schedule and cost.

Workbench

The workbench in Figure 8-1 shows the six tasks required to complete the test plan.

Figure 8-1 Workbench for developing a test plan.

DO CHECK

Test
Plan

Complete

REWORK

Profile the
Software
Project

Task 1

Understand the

Project Risks

Task 2

Select a
Testing

Technique

Task 3

Plan
Unit

Testing

Task 4

Build the
Test Plan

Task 5

Inspect the
Test Plan

Task 6

Project Plan

Project Plan
Assessment and

Status

Test
Plan

Step 2: Developing the Test Plan 211



Input

Accurate and complete inputs are critical for developing an effective test plan. The fol-
lowing two inputs are used in developing the test plan:

■■ Project plan. This plan should address the totality of activities required to
implement the project and control that implementation. The plan should also
include testing.

■■ Project plan assessment and status report. This report (developed from Step 1
of the seven-step process) evaluates the completeness and reasonableness of
the project plan. It also indicates the status of the plan as well as the method for
reporting status throughout the development effort.

Do Procedures

The following six tasks should be completed during the execution of this step:

1. Profile the software project.

2. Understand the software project’s risks.

3. Select a testing technique.

4. Plan unit testing and analysis.

5. Build the test plan.

6. Inspect the test plan.

Task 1: Profile the Software Project

Effective test planning can occur only when those involved understand the attributes
of the software project being tested. Testers need more information than is normally
contained in a software development plan. Also, because testers should begin the test-
ing process early in the developmental process, the project plan may not be complete
when planning begins.

This task can be divided into the following two subtasks:

1. Conduct a walkthrough of the customer/user areas.

2. Develop a profile of the software project.

Conducting a Walkthrough of the Customer/User Area

Many, including this author, believe that testers work for the customers/users of the
project, particularly if the scope of testing is greater than simply testing against speci-
fications. And because testers represent the customer/users, they should have access
to the users of the system.

212 Chapter 8



A walkthrough of the customer/user area is designed for two purposes: to give an
overview of the totality of activities users perform, and to gain an appreciation of the
how the software will be used. For example, if your organization is building a software
system to calculate employee tax deductions, testers should understand the totality of
payroll responsibility so that they can put the tax deductions in the proper perspective
of the overall payroll responsibilities.

Testers can gain an understanding of user responsibilities in two ways. The first is an
orientation to the user area. This orientation should focus on user responsibilities before
data is entered into the software project and the types of processing or uses of software
deliverables during and at the conclusion of the software development process. Second,
they need to follow the major business transactions as they move through the user area.
If possible, it is helpful for testers to sit and observe for several hours activity in the user
areas. By doing so, testers can gain an insight into busy and slack times in the user area,
problems that users have in processing business transactions, and the frequency of
transaction processing events.

Developing a Profile of the Software Project

The primary objective of understanding the business responsibilities of the user(s) is to
develop a profile for the software project. Some of the needed profile information can
be collected by the developmental project team, some can be collected by testers con-
ducting a walkthrough of the user area, and other profile information can be gathered
directly from the user or other stakeholders in the software project.

The following is the profile information that is helpful in preparing for test planning:

■■ Project objectives. The test team should understand the high-level project objec-
tives. Without this information, team members may make problematic test deci-
sions. For example, if the user wants a particular screen to be easy to use but
testers are not aware of that objective, they could conduct tests on the screen but
never look at the “easy-to-use” attribute.

■■ Development process. The type of development process for implementing
software can have a significant impact on the test plan. For example, the
process could be developed in-house or outsourced, and it can be waterfall,
spiral, or agile. 

An important component of the development process is the maturity of that
process. Testers can expect much higher defect rates at lower levels of process
maturity than at higher levels.

■■ Customer/users. Testers need to identify the software’s customers and users.
For example, in an insurance company, the customer might be the organiza-
tional function responsible for writing property damage, whereas the users are
the independent agents who write that type of insurance. If testers know the
needs and competencies of users/customers, they can develop tests to assess
whether the software performs appropriately.

■■ Project deliverables. Just as it is important to know the deliverables to be pro-
duced by the test team, the testers need to know the deliverables produced by
the project, including both interim and final deliverables. For example, in a

Step 2: Developing the Test Plan 213



payroll system, an interim deliverable may be the calculation of withholding
tax, whereas a final deliverable would be a paycheck. Just as objectives help
focus the tester on the real needs of the software system, the deliverables focus
the tester on what the system is attempting to accomplish.

■■ Cost/schedule. Resources for testing should be included in a project’s budget
and schedule. In the preceding walkthrough step, there were tasks for the tester
to validate the project costs and schedule through status reports. For the pro-
file, both the costs and the schedule must be defined in much more detail. The
testers need to know checkpoints, and they need to know how resources will
be allocated.

■■ Project constraints. Every software project should have a list of constraints, or
conditions that will limit the type of software system produced. For example,
a constraint in the payroll system may be the implementation of a new tax
withholding table. Other constraints include expected turnaround time, vol-
umes of transactions to be processed in a specific time period, skill sets of indi-
viduals entering data, relationships with other organizations, and the number
of staff assigned to the project. These constraints can affect the extensiveness of
testing, as well as conditions that need to be evaluated such as the probability
of implementing a new tax withholding table on January 1 with existing devel-
opmental staff.

■■ Developmental staff competency. The testers need to know the competency of
the developmental staff. For example, with a relatively new and inexperienced
staff, the testers might expect a much higher defect rate than with a very expe-
rienced staff.

■■ Legal/industry issues. Software projects need to comply with governmental
laws and industry standards and guidelines. For example, when building
patient systems in hospitals, developers should be aware of laws such as
HIPPA (the Health Insurance Portability and Accountability Act of 1996),
as well as guidelines issued by leading hospital associations.

■■ Implementation technology. Systems developed using proven technologies
tend to have fewer defect rates than systems built using cutting-edge technol-
ogy. For example, systems built around wireless technology may have to pio-
neer the use and control of that technology. On the other hand, building batch
systems has been perfected over years and testers should have confidence that
batch systems developed today will have minimal problems in development.

■■ Databases built/used. Testers need to know the types of databases that will be
used by the software system. These databases can be built specifically for that
system or they can be existing databases. In establishing a software-testing
environment, the testers will have to use controlled versions of databases or
create equivalent databases for test purposes.

■■ Interfaces to other systems. The more systems interfaced by the system being
tested, the greater the test effort. Testers must ensure that proper coordination
exists among all the systems affected by the software being developed. Testers
should develop an inventory of systems directly interfaced as well as systems

214 Chapter 8



that will use the data but may not be directly interfaced. For example, if the
system being tested creates a database that is used by many individuals on
their own PCs, there may be issues with accounting cut-offs, which, if not con-
trolled, would enable users to produce accounting information different than
that produced by the software system that created the database.

■■ Project statistics. Testers should attempt to gather as many statistics about the
software system being developed as practical. For example, knowing the num-
ber of transactions, the periods in which those transactions exist, the number
of users on the system, as well as any historical data on the application (such
as problems encountered, downtime occurring, customer complaints, and so
forth) will help testers develop appropriate test data. 

Task 2: Understand the Project Risks

The test factors describe the broad objectives of testing. These are the risks/concerns
that testers need to evaluate to ensure the objectives identified by that factor have been
achieved. The following discussion (and Figure 8-2) delineates the type of system char-
acteristics that testers should evaluate to determine whether test factors have been met.
(Note: Testers should customize these factors for their specific system.)

■■ Reliability

■■ The level of accuracy and completeness expected in the operational envi-
ronment is established.

■■ Data integrity controls are implemented in accordance with the design.

■■ Manual, regression, and functional tests are performed to ensure the data
integrity controls work.

■■ The completeness of the system installation is verified.

■■ The accuracy requirements are maintained as the applications are updated.

■■ Authorization

■■ The rules governing the authorization of transactions are defined.

■■ The application is designed to identify and enforce the authorization rules.

■■ The application implements the authorization rules.

■■ Unauthorized data changes are prohibited during the installation process.

■■ The method and rules for authorization are preserved during maintenance.

■■ File integrity

■■ Requirements for file integrity are defined.

■■ The design provides for the controls to ensure the integrity of the file.

■■ The specified file integrity controls are implemented.

■■ The file integrity functions are tested to ensure they perform properly.

■■ The integrity of the files is preserved during the maintenance phase.

Step 2: Developing the Test Plan 215



■■ Audit trail

■■ The requirements to reconstruct processing are defined.

■■ The audit trail requirements are incorporated into the system.

■■ The audit trail functions are tested to ensure the appropriate data is saved.

■■ The audit trail of installation events is recorded.

■■ The audit trail requirements are updated during systems maintenance.

■■ Continuity-of-processing

■■ The impact of each system failure is defined.

■■ The contingency plan and procedures have been written.

■■ Recovery testing verifies that the contingency plan functions properly.

■■ The integrity of the previous systems is ensured until the integrity of the
new system is verified.

■■ The contingency plan is updated and tested as system requirements change.

■■ Service level

■■ The desired service level for all aspects of the system is defined.

■■ The method to achieve the predefined service levels is incorporated into the
system design.

■■ The programs and manual systems are designed to achieve the specified
service level.

■■ Stress testing is conducted to ensure that the system can achieve the desired
service level when both normal and above normal volumes of data are
processed.

■■ A fail-safe plan is used during installation to ensure service is not disrupted.

■■ The predefined service level is preserved as the system is maintained.

■■ Access control

■■ Access to the system is defined.

■■ The procedures to enforce the access rules are designed.

■■ The defined security procedures are implemented.

■■ Compliance tests are utilized to ensure that the security procedures func-
tion in a production environment.

■■ Access to the computer resources is controlled during installation.

■■ The procedures controlling access are preserved as the system is updated.

■■ Methodology

■■ The system requirements are defined and documented in compliance with
the development methodology.

■■ The system design is executed in accordance with the design methodology.

216 Chapter 8



■■ The programs are constructed and documented in compliance with the pro-
gramming methodology.

■■ Testing is performed in compliance with the test methodology.

■■ The integration of the application system in a production environment com-
plies with the installation methodology.

■■ System maintenance is performed in compliance with the maintenance
methodology.

■■ Correctness

■■ The user has fully defined the functional specifications.

■■ The developed design conforms to the user requirements.

■■ The developed program conforms to the system design specifications.

■■ Functional testing ensures that the requirements are properly implemented.

■■ The proper programs and data are placed into production.

■■ The user-defined requirement changes are properly implemented in the
operational system.

■■ Ease-of-use

■■ The usability specifications for the application system are defined.

■■ The system design attempts to optimize the usability of the implemented
requirements.

■■ The program optimizes ease of use by conforming to the design.

■■ The relationship between the manual and automated system is tested to
ensure the application is easy to use.

■■ The usability instructions are properly prepared and disseminated to the
appropriate individuals.

■■ As the system is maintained, its ease of use is preserved.

■■ Maintainable

■■ The desired level of maintainability is specified.

■■ The design is developed to achieve the desired level of maintainability.

■■ The program is coded and designed to achieve the desired level of 
maintainability.

■■ The system is inspected to ensure that it is maintainable.

■■ The system documentation is complete.

■■ Maintainability is preserved as the system is updated.

■■ Portable

■■ The portability in moving the system among hardware or software compo-
nents is determined.

Step 2: Developing the Test Plan 217



■■ The design is prepared to achieve the desired level of portability.

■■ The program is designed and implemented to conform to the portability
design.

■■ The system is subjected to a disaster test to ensure that it is portable.

■■ The documentation is complete to facilitate portability.

■■ Portability is preserved as the system is maintained.

■■ Coupling

■■ The interface between the system being developed and related systems is
defined.

■■ The design takes into account the interface requirements.

■■ The program conforms to the interface design specifications.

■■ Functional and regression testing are performed to ensure that the interface
between systems functions properly.

■■ The interface between systems is coordinated prior to the new system being
placed into production.

■■ The interface between systems is preserved during the systems mainte-
nance process.

■■ Performance

■■ The performance criteria are established.

■■ The design specifications ensure that the desired level of performance is
achieved.

■■ The program is designed and implemented to achieve the performance 
criteria.

■■ The system is compliance tested to ensure that the desired performance 
levels are achieved.

■■ System performance is monitored during the installation phase.

■■ The desired level of performance is preserved during system maintenance.

■■ Ease-of-operation

■■ The operational needs are incorporated into the system design.

■■ The operational procedures are tested to ensure they achieve the desired
level of operational usability.

■■ The operating procedures are implemented during the installation phase.

■■ Changes to the operational system are updated in the operating procedures.

The test team should investigate the system characteristics to evaluate the potential
magnitude of the risk, as follows:

1. Define what meeting project objectives means. These are the objectives to be
accomplished by the project team.

218 Chapter 8



TEST FACTOR REQUIREMENTS DESIGN PROGRAM TEST OPERATION MAINTENANCE

Reliability Tolerances Data integrity Data integrity Manual, Accuracy and Update accuracy
established controls designed controls regression, and completeness of requirements

implemented functional testing installation 
verified

Authorization Authorization Authorization Authorization Compliance Data changes Preserve
rules defined rules designed rules testing during installation authorization

implemented prohibited rules

File Integrity File integrity File integrity File integrity Functional testing Integrity of Preserve file
requirements controls controls production integrity
defined designed implemented files verified

Audit Trail Reconstruction Audit trail Implement audit Functional testing Installation Update audit trail
requirements designed trail audit trail 
defined recorded

Continuity of Impact of failure Contingency plan Write contingency Recovery testing Integrity  Update
Processing defined designed plan and of previous contingency plan

procedures testing ensured

Service Level Desired service Method to Design system to Stress testing Fail-safe Preserve service
level defined achieve service achieve service installation  level

level designed level plan
implemented

Access Access defined Access procedure Implement Compliance Access during Preserve security
Control designed security testing integration 

procedures controlled

Methodology Requirements Design complies Programs comply Compliance Integration Maintenance
comply with with methodology with testing complies with complies with
methodology methodology methodology methodology

Figure 8.2 Testing concerns matrix. (continues)



TEST FACTOR REQUIREMENTS DESIGN PROGRAM TEST OPERATION MAINTENANCE

Correctness Functional Design conforms Programs Functional Proper Update
specifications to requirements conform to testing programs and requirements
designed design data placed

into production

Ease of use Usability Design facilitates Programs Manual support Usability Preserve ease of
specifications use conform to testing instructions use
determined design disseminated

Maintainable Maintenance Design is Programs are Inspection Documentation Preserve
specifications maintainable maintainable completed maintainability
determined

Portable Portability needs Design is portable Programs Disaster testing Documentation Preserve
determined conform to completed portability

design

Coupling Systems interface Interface design Programs Functional and Interface Ensure proper
defined complete conform to regression testing coordinated interface

design

Performance Performance Design achieves Programs Compliance Integration Preserve level of
criteria criteria achieve testing performance performance
established criteria monitored

Ease of Operational Communicate Develop Operations Operating Update operating
operation needs defined needs to operating testing procedures procedures

operations procedures implemented

Figure 8.2 (continued)



2. Understand the core business areas and processes. All information systems
are not created equal. Systems that support mission-critical business processes
are clearly more important than systems that support mission-support func-
tions (usually administrative), although these, too, are necessary functions. A
focus on core business areas and processes is essential to the task of assessing
the impact of the problem on the enterprise and for establishing priorities.

3. Assess the severity of potential failures. This step must be performed for each
core business area and its associated processes.

4. Identify the system components:

■■ Links to core business areas or processes

■■ Platforms, languages, and database management systems

■■ Operating system software and utilities

■■ Telecommunications

■■ Internal and external interfaces

■■ Owners

■■ Availability and adequacy of source code and associated documentation

5. Identify, prioritize, and estimate the test resources required. Achieving test
objectives requires significant investment in two vital resources: money and
people. Accordingly, the organization has to make informed choices about 
priorities by assessing the costs, benefits, and risks of competing projects. In
some instances, it may be necessary to defer or cancel new system develop-
ment efforts and reprogram the freed resources to achieve and test a project.

6. Develop validation strategies and testing plans for all converted or replaced

systems and their components. The testing and validation of converted or
replaced systems require a phased approach. Consider the specific objectives
for the following phases:

■■ Phase 1, unit testing. This phase focuses on functional and compliance test-
ing of a single application or software module.

■■ Phase 2, integration testing. This phase tests the integration of related soft-
ware modules and applications.

■■ Phase 3, system testing. This phase tests all the integrated components of a
system.

■■ Phase 4, acceptance testing. This phase tests that the system will function
with live, operational data.

7. Identify and acquire automated test tools and write test scripts. Regardless
of the strategy selected, the scope of the testing and validation effort requires
careful planning and use of automated tools, including test case analyzers and
test data libraries.

Step 2: Developing the Test Plan 221



8. Define requirements for the test facility. Organizations should operate in an
adequate testing environment to avoid potential contamination or interference
with the operation of production systems.

9. Address implementation schedule issues. This step includes:

■■ Selecting conversion facilities

■■ Determining the time needed to put converted systems into production

■■ Converting backup and archival data

10. Address interface and data exchange issues. The test team should consider the
following issues when conducting this step:

■■ Development of a model showing the internal and external dependency
links among enterprise core business areas, processes, and information 
systems

■■ Notification of all outside data exchange entities

■■ Data bridges and filters

■■ Contingency plans if no data is received from an external source

■■ The validation process for incoming external data

■■ Contingency plans for invalid data

11. Evaluate contingency plans. These should be realistic contingency plans,
including the development and activation of manual or contract procedures to
ensure the continuity of core business processes.

12. Identify vulnerable parts of the system and processes operating outside the

information resource management area. This includes telephone and network
switching equipment and building infrastructure systems. Testers should
develop a separate plan for their testing.

Task 3: Select a Testing Technique

Testing techniques should be selected based on their ability to accomplish test objec-
tives. The technique selection process begins with selecting the test factor. Once the fac-
tor has been selected, testers know in which life cycle phase the technique will be
utilized.

Both structural and functional testing can be accomplished using a predetermined
set of techniques. Once the technique has been selected, the test method for imple-
menting that technique needs to be determined. The test method can be either dynamic
or static. Dynamic techniques attempt to determine whether the system functions
properly while the programs are being operated, and static testing looks at the system
in a non-operating environment.

The following describes the generic techniques testers can use for structural and
functional testing.

222 Chapter 8



Structural System Testing Techniques

The objective of structural testing is to ensure that the system is structurally sound. It
attempts to determine that the technology has been used properly and that when all the
component parts are assembled they function as a cohesive unit. The techniques are not
designed to ensure that the application system is functionally correct but rather that it is
structurally sound. The following techniques are briefly described in Figure 8-3 and
then individually explained:

■■ Stress testing

■■ Execution testing

■■ Recovery testing

■■ Operations testing

■■ Compliance testing

■■ Security testing

Step 2: Developing the Test Plan 223

TECHNIQUE DESCRIPTION EXAMPLE

Stress System performs • Sufficient disk space 
with expected volumes allocated

• Communication lines 
adequate

Execution System achieves desired level • Transaction turnaround time
of proficiency adequate

• Software/hardware use
optimized

Recovery System can be returned to an • Induce failure
operational status after a

• Evaluate adequacy of backupfailure
data

Operations System can be executed in a • Determine systems can run
normal operational status using documention

• JCL adequate

Compliance System is developed in • Standards followed
accordance with standards
and procedures • Documentation complete

Security System is protected in • Access denied
accordance with importance to
organization • Procedures in place

Figure 8-3 Structural testing techniques.



Stress Testing

Stress testing is designed to determine whether the system can function when subjected
to larger volumes than normally would be expected. Areas stressed include input trans-
actions, internal tables, disk space, output, communications, and computer capacity. If
the application functions adequately under stress testing, testers can assume that it will
function properly with normal volumes of work.

Objectives

Specific objectives of stress testing include

■■ Normal or above-normal volumes of transactions can be processed within the
expected time frame.

■■ System capacity, including communication lines, has sufficient resources to
meet expected turnaround times.

■■ Users can perform their assigned tasks and maintain the desired turnaround
time.

How to Use Stress Testing

Stress testing should simulate the production environment as closely as possible.
Online systems should be stress tested by having people enter transactions at a normal
or above-normal pace. Batch systems can be stress tested with large input batches. Error
conditions should be included in tested transactions. Transactions for use in stress test-
ing can be obtained from one of the following three sources:

Test data generators

Test transactions created by the test group

Transactions previously processed in the production environment

In stress testing, the system should be run as it would in the production environment.
Operators should use standard documentation, and the people entering transactions or
working with the system should be the clerical personnel that will work with the sys-
tem after it goes into production. Online systems should be tested for an extended
period of time, and batch systems tested using more than one batch of transactions.

When to Use Stress Testing

Stress testing should be used when there is uncertainty regarding the volume of work
the application system can handle without failing. Stress testing is most common with
online applications because it is difficult to simulate heavy-volume transactions using
the other testing techniques. The disadvantage of stress testing is the amount of time it
takes to prepare for the test, as well as the number of resources consumed during the
execution of the test. Testers should weigh these costs against the risk of not identify-
ing volume-related failures until the application is placed into an operational mode.

224 Chapter 8



Execution Testing

Execution testing is designed to determine whether the system achieves the desired
level of proficiency in a production status. Execution testing can verify response and
turnaround times, as well as design performance. The execution of a system can be
tested in whole or in part, using the actual system or a simulated model.

Objectives

Specific objectives of execution testing include:

■■ Determining the performance of the system structure

■■ Verifying the optimum use of hardware and software

■■ Determining response time to online requests

■■ Determining transaction processing turnaround time

How to Use Execution Testing

Testers can conduct execution testing in any phase of the system development life
cycle. The testing can evaluate a single aspect of the system—for example, a critical
routine in the system—or the ability of the proposed structure to satisfy performance
criteria. Execution testing can be performed in any of the following manners:

■■ Using hardware and software monitors

■■ Using a simulation model

■■ Creating a quick and dirty program(s) to evaluate the approximate perfor-
mance of a completed system

The earlier the technique is used, the greater the likelihood that the completed appli-
cation will meet the performance criteria.

When to Use Execution Testing

Execution testing should be used early in the development process. Although there is
value in knowing that the completed application does not meet performance criteria, if
that assessment is not known until the system is operational, it may be too late or too
costly to make the necessary modifications. Therefore, execution testing should be used
at that point in time when the results can be used to affect or change the system structure.

Recovery Testing

Recovery is the ability to restart operations after the integrity of the application has been
lost. The process normally involves reverting to a point where the integrity of the sys-
tem is known, and then reprocessing transactions up until the point of failure. The time
required to recover operations is affected by the number of restart points, the volume
of applications run on the computer center, the training and skill of the people con-
ducting the recovery operation, and the tools available. The importance of recovery
will vary from application to application.

Step 2: Developing the Test Plan 225



Objectives

Recovery testing is used to ensure that operations can be continued after a disaster.
Recovery testing not only verifies the recovery process, but also the effectiveness of
the component parts of that process. Specific objectives of recovery testing include the
following:

■■ Adequate backup data is preserved.

■■ Backup data is stored in a secure location.

■■ Recovery procedures are documented.

■■ Recovery personnel have been assigned and trained.

■■ Recovery tools have been developed.

How to Use Recovery Testing

Testers should conduct recovery testing in two modes. First, they should assess the
procedures, methods, tools, and techniques. Then, after the system has been devel-
oped, they should introduce a failure into the system and test the ability to recover.

Evaluating the procedures and documentation is a process that primarily calls for
judgment and checklists. The actual recovery test may involve off-site facilities and
alternate processing locations. Normally, procedural testing is conducted by skilled
systems analysts, professional testers, or management personnel. Testing the actual
recovery procedures should be performed by computer operators and other clerical
personnel who would, in fact, be involved had it been an actual disaster instead of a
test disaster.

A simulated disaster is usually performed on one aspect of the application system.
For example, the test may be designed to determine whether people using the system
can continue processing and recover computer operations after computer operations
cease. While several aspects of recovery need to be tested, it is better to test one seg-
ment at a time rather than induce multiple failures at a single time. When multiple fail-
ures are induced, it may be more difficult to pinpoint the cause of the problem than
when only a single failure is induced.

It is preferable not to advise system participants when a disaster test will be con-
ducted. When people are prepared, they may perform the recovery test in a manner
different from the performance when it occurs at an unexpected time. Even if the 
participants know that recovery may be part of the test, I recommend that you don’t
let them know specifically when the test will occur or what type of recovery will be
necessary.

When to Use Recovery Testing

Recovery testing should be performed whenever the user of the application states that
the continuity of operation is essential to the proper functioning of the user area. The
user should estimate the potential loss associated with inability to recover operations
over various time spans—for example, the inability to recover within five minutes, one
hour, eight hours, and one week. The potential loss should determine both the amount
of resources to be devoted to disaster planning as well as recovery testing.

226 Chapter 8



Operations Testing

After an application has been tested, it is integrated into the operating environment. At
this point, the application will be executed using the normal operations staff, proce-
dures, and documentation. Operations testing is designed to verify prior to production
that the operating procedures and staff can properly execute the application.

Objectives

Specific objectives of operations testing include

■■ Determining the completeness of computer operator documentation

■■ Ensuring that the necessary support mechanisms, such as job control language,
have been prepared and function properly

■■ Evaluating the completeness of operator training

How to Use Operations Testing

Operations testing evaluates both the process and the execution of the process. During
the requirements phase, operational requirements can be evaluated to determine their
reasonableness and completeness. During the design phase, the operating procedures
should be designed and evaluated.

The execution of operations testing can normally be performed in conjunction with
other tests. However, if operations testing is included, the operators should not be
prompted or helped by outside parties. The test needs to be executed as though it were
part of normal computer operations so that it adequately evaluates the system’s effec-
tiveness in an operational environment.

When to Use Operations Testing

Operations testing should occur prior to placing any application into a production sta-
tus. If the application is to be tested in a production-type setting, operations testing can
piggyback that process at a very minimal cost.

Compliance Testing

Compliance testing verifies that the application was developed in accordance with IT
standards, procedures, and guidelines. The methodologies are used to increase the
probability of success, to enable the transfer of people in and out of the project with
minimal cost, and to increase the maintainability of the application system. 

Objectives

Specific objectives of compliance testing include the following:

■■ Determining that systems development and maintenance methodologies are
followed

■■ Ensuring compliance to departmental standards, procedures, and guidelines

■■ Evaluating the completeness and reasonableness of system documentation

Step 2: Developing the Test Plan 227



How to Use Compliance Testing

Compliance testing requires that the prepared document/program be compared to
organizational standards. The most effective method for compliance testing is the
inspection process.

When to Use Compliance Testing

The type of testing conducted varies based on the phase of the development life cycle.
However, it may be more important to test adherence to the process during the require-
ments phase than at later stages because it is difficult to correct applications when
requirements are not adequately documented.

Security Testing

The level of security required depends on the risks associated with compromise or loss
of information. Security testing is designed to evaluate the adequacy of protective pro-
cedures and countermeasures.

Objectives

Specific objectives of security testing include the following:

■■ Determining that adequate attention has been devoted to identifying security
risks

■■ Determining that a realistic definition and enforcement of access to the system
has been implemented

■■ Determining that sufficient expertise exists to perform adequate security testing

■■ Conducting reasonable tests to ensure that the implemented security measures
function properly

How to Use Security Testing

Security testing is a highly specialized part of the test process. Most organizations can
evaluate the reasonableness of security procedures to prevent the average perpetrator
from penetrating the application. However, the highly skilled perpetrator using
sophisticated techniques may use methods undetectable by novices designing security
measures and/or testing those measures.

The first step is to identify the security risks and the potential loss associated with
those risks. If either the loss is low or the penetration method routine, IT personnel can
conduct the necessary tests. On the other hand, if either the risks are very high or the
technology that might be used is sophisticated, specialized help should be acquired in
conducting the security tests.

When to Use Security Testing

Security testing should be used when the information and/or assets protected by the
application system are of significant value to the organization. The testing should be per-
formed both before and after the system goes into an operational status. The extent of test-
ing depends on the security risks, and the individual assigned to conduct the test should
be selected based on the estimated sophistication that might be used to penetrate security.

228 Chapter 8



Functional System Testing Techniques

Functional system testing is designed to ensure that the system requirements and spec-
ifications are achieved. The process normally involves creating test conditions to eval-
uate the correctness of the application. The following techniques are briefly described
in Figure 8-4 and then individually explained:

Requirements testing

Regression testing

Error-handling testing

Manual-support testing

Intersystems testing

Control testing

Parallel testing

Step 2: Developing the Test Plan 229

TECHNIQUE DESCRIPTION EXAMPLE

Requirements System performs as • Prove system requirements
specified

• Compliance to policies, regulations
regulations

Regression Verifies that anything • Unchanged system segments 
unchanged still function
performs correctly

• Unchanged manual procedures 
correct

Error Errors can be prevented • Error introduced into test
Handling or detected, and then 

corrected • Errors reentered

Manual The people-computer • Manual procedures developed
support interaction works

• People trained

Intersystems Data is correctly passed • Intersystem parameters changed 
from system to system

• Intersystem documentation updated

Control Controls reduce system • File reconciliation procedures work 
risk to an acceptable 

• Manual controls in placelevel

Parallel Old system and new • Old and new system can reconcile 
system are run and the 

• Operational status of old results compared to 
system maintaineddetect unplanned 

differences

Figure 8-4 Functional testing techniques.



Requirements Testing

Requirements testing must verify that the system can perform correctly over a contin-
uous period of time. The system can be tested throughout the life cycle, but it is diffi-
cult to test the reliability before the program becomes operational.

Objectives

Specific objectives of requirements testing include the following:

■■ User requirements are implemented.

■■ Correctness is maintained over extended processing periods.

■■ Application processing complies with the organization’s policies and procedures.

■■ Secondary user needs have been included, such as:

■■ Security officer

■■ Database administrator

■■ Internal auditors

■■ Comptroller

■■ The system processes accounting information in accordance with procedures.

■■ Systems process information in accordance with governmental regulations.

How to Use Requirements Testing

Requirements testing is primarily performed through the creation of test conditions
and functional checklists. Test conditions are generalized during the requirements
phase, and become more specific as the life cycle progresses.

Functional testing is more effective when the test conditions are created directly
from user requirements. When test conditions are created from the system documenta-
tion, defects in that documentation will not be detected through testing. When the test
conditions are created from other than the system documentation, defects introduced
into the documentation will be detected.

When to Use Requirements Testing

The process should begin in the requirements phase and continue through every phase
of the life cycle. It is not a question as to whether requirements must be tested but, rather,
the extent and methods used.

Regression Testing

One of the attributes that has plagued IT professionals for years is the cascading effect
of making changes to an application system. One segment of the system is developed
and thoroughly tested, and then a change is made to another part of the system, which
has a disastrous effect on the tested portion. Regression testing retests previously tested
segments to ensure that they still function properly after a change has been made to
another part of the application.

230 Chapter 8



Objectives

Specific objectives of regression testing include the following:

■■ Determining that system documentation remains current

■■ Determining that system test data and conditions remain current

■■ Determining that previously tested system functions perform properly after
changes are introduced 

How to Use Regression Testing

Regression testing is retesting unchanged segments of the application system. It nor-
mally involves rerunning tests that have been previously executed to ensure that the
same results can be achieved. While the process is simple in that the test transactions
have been prepared and the results known, unless the process is automated it can be a
very time-consuming and tedious operation. It is also one in which the cost/benefit
needs to be carefully evaluated or large amounts of effort can be expended with mini-
mal payback.

When to Use Regression Testing

Regression testing should be used when there is a high risk that new changes may affect
unchanged areas of the application system. In the developmental process, regression
testing should occur after a predetermined number of changes are incorporated into the
application system. In the maintenance phase, regression testing should be conducted if
the potential loss that could occur due to affecting an unchanged portion is very high.
The determination as to whether to conduct regression testing should be based on the
significance of the loss that could occur as a result of improperly tested applications.

Error-Handling Testing

One of the characteristics that differentiate automated from manual systems is the pre-
determined error-handling feature. Manual systems can deal with problems as they
occur, but automated systems must preprogram error handling. In many instances, the
completeness of error handling affects the usability of the application. Error-handling
testing determines the ability of the application system to properly process incorrect
transactions.

Objectives

Specific objectives of error-handling testing include:

■■ Determining that all reasonably expected error conditions are recognizable by
the application system

■■ Determining that the accountability for processing errors has been assigned and
that the procedures provide a high probability that the error will be corrected

■■ Determining that reasonable control is maintained during the correction
process

Step 2: Developing the Test Plan 231



How to Use Error-Handling Testing

Error-handling testing requires a group of knowledgeable people to anticipate what
can go wrong with the application system. Most other forms of testing involve verify-
ing that the application system conforms to requirements. Error-handling testing uses
exactly the opposite concept.

A successful method for developing error conditions is to have IT staff, users, and
auditors brainstorm what might go wrong with the application. The totality of their
thinking must then be organized by application function so that a logical set of test
transactions can be created. Without this type of synergistic interaction, it is difficult to
develop a realistic body of problems prior to production.

Error-handling testing should test the introduction of the error, the processing of the
error, the control condition, and the reentry of the condition properly corrected.

When to Use Error-Handling Testing

Error testing should occur throughout the system development life cycle. At all points
in the developmental process the impact from errors should be identified and appro-
priate action taken to reduce those errors to an acceptable level. Error-handling testing
assists in the error management process of systems development and maintenance.
Some organizations use auditors, quality assurance, or professional testing personnel
to evaluate error processing.

Manual-Support Testing

The manual part of the system requires the same attention to testing as does the auto-
mated segment. Although the timing and testing methods may differ, the objectives of
manual testing remain the same as testing the automated segment of the system.

Objectives

Specific objectives of manual-support testing include the following:

■■ Verifying that the manual-support procedures are documented and complete

■■ Determining that manual-support responsibility has been assigned

■■ Determining that the manual-support personnel are adequately trained

■■ Determining that the manual support and the automated segment are properly
interfaced

How to Use Manual-Support Testing

Manual testing involves first the evaluation of the adequacy of the process, and sec-
ond, the execution of the process. The process itself can be evaluated in all phases of
the development life cycle. Rather than preparing and entering test transactions them-
selves, testers can have the actual clerical and supervisory people prepare, enter, and
use the results of processing from the application system.

Manual-support testing normally involves several iterations of the process. Testing
people processing requires testing the interface between people and the application sys-
tem. This means entering transactions, getting the results back from that processing,

232 Chapter 8



and taking additional action based on the information received, until all aspects of the
manual computer interface have been adequately tested.

Manual-support testing should occur without the assistance of the systems person-
nel. The manual-support group should operate using the training and procedures pro-
vided them by the systems personnel. However, the results should be evaluated by the
systems personnel to determine if they have been adequately performed.

When to Use Manual-Support Testing

Although manual-support testing should be conducted throughout the development
life cycle, extensive manual-support testing is best done during the installation phase so
that clerical personnel do not become involved with the new system until immediately
prior to its entry into operation. This avoids the confusion of knowing two systems and
not being certain which rules to follow. During the maintenance and operation phases,
manual-support testing may involve only providing people with instructions on the
changes and then verifying that they understand the new procedures.

Intersystem Testing

Application systems are frequently interconnected to other application systems. The
interconnection may be data coming into the system from another application, leaving
for another application, or both. Frequently, multiple applications—sometimes called
cycles or functions—are involved. For example, there could be a revenue cycle that
interconnects all the income-producing applications, such as order entry, billing,
receivables, shipping, and returned goods. Intersystem testing is designed to ensure
that the interconnection between applications functions correctly.

Objectives

Specific objectives of intersystem testing include the following:

■■ Determining that the proper parameters and data are correctly passed between
applications

■■ Ensuring that proper coordination and timing of functions exists between the
application systems

■■ Determining that the documentation for the involved systems is accurate and
complete

How to Use Intersystem Testing

One of the best testing tools for intersystem testing is the integrated test facility. This
permits testing to occur in a production environment and thus the coupling of systems
can be tested at minimal cost.

When to Use Intersystem Testing

Intersystem testing should be conducted whenever there is a change in parameters
between application systems. The extent and type of testing will depend on the risk
associated with those parameters being erroneous. If the integrated test facility concept
is used, the intersystem parameters can be verified after the changed or new applica-
tion is placed into production.

Step 2: Developing the Test Plan 233



Control Testing

Approximately one-half of the total system development effort is directly attributable
to controls. Controls include data validation, file integrity, audit trails, backup and
recovery, documentation, and the other aspects of systems related to integrity. Control
testing is designed to ensure that the mechanisms that oversee the proper functioning
of an application system work.

Objectives

Specific objectives of control testing include the following:

■■ Accurate and complete data

■■ Authorized transactions

■■ Maintenance of an adequate audit trail of information

■■ Efficient, effective, and economical process

■■ Process meeting the needs of the user

How to Use Control Testing

The term “system of internal controls” is frequently used in accounting literature to
describe the totality of the mechanisms that ensure the integrity of processing. Controls
are designed to reduce risks; therefore, to test controls, the risks must be identified.

One method for testing controls is to develop a risk matrix. The matrix identifies the
risks, the controls, and the segment within the application system in which the controls
reside.

When to Use Control Testing

Control testing should be an integral part of system testing. Controls must be viewed
as a system within a system, and tested in parallel with other systems tests. Because
approximately 50 percent of the total development effort goes into controls, a propor-
tionate part of testing should be allocated to evaluating the adequacy of controls.

Parallel Testing

In the early days of computer systems, parallel testing was one of the more popular
testing techniques. However, as systems become more integrated and complex, the 
difficulty in conducting parallel tests increased and thus the popularity of the tech-
nique diminished. Parallel testing is used to determine that the results of the new
application are consistent with the processing of the previous application or version of
the application.

Objectives

Specific objectives of parallel testing include the following:

■■ Conducting redundant processing to ensure that the new application performs
correctly

■■ Demonstrating consistency and inconsistency between two versions of the
same application system

234 Chapter 8



How to Use Parallel Testing

Parallel testing requires that the same input data be run through two versions of the
same application. Parallel testing can be done with the entire application or with a seg-
ment of the application. Sometimes a particular segment, such as the day-to-day inter-
est calculation on a savings account, is so complex and important that an effective
method of testing is to run the new logic in parallel with the old logic.

If the new application changes data formats, the input data will have to be modified
before it can be run through the new application. The more difficulty encountered in
verifying results or preparing common input, the less attractive the parallel testing
technique becomes.

When to Use Parallel Testing

Parallel testing should be used when there is uncertainty regarding the correctness of
processing of the new application, and the old and new versions of the application are
similar. For example, in payroll, banking, and other financial applications where the
results of processing are similar, even though the methods may change significantly—
for example, going from batch to online banking—parallel testing is one of the more
effective methods of ensuring the integrity of the new application.

Task 4: Plan Unit Testing and Analysis

This section examines the techniques, assessment, and management of unit testing and
analysis. The strategies are categorized as functional, structural, or error-oriented.
Mastery of the material in this section assists the software engineer to define, conduct,
and evaluate unit tests and analyses and to assess new unit testing techniques.

Unit testing and analysis are the most practiced means of verifying that a program
possesses the features required by its specification. Testing is a dynamic approach to
verification in which code is executed with test data to assess the presence (or absence)
of required features. Analysis is a static approach to verification in which required fea-
tures are detected by analyzing, but not executing, the code. Many analysis techniques,
such as proof of correctness, safety analysis, and the more open-ended analysis proce-
dures represented by code inspections and reviews, have become established tech-
nologies with their own substantial literature. These techniques are not discussed in
this section.

This section focuses on unit-level verification. What constitutes a “unit” has been
left imprecise; it may be as little as a single statement or as much as a set of coupled
subroutines. The essential characteristic of a unit is that it can meaningfully be treated
as a whole. Some of the techniques presented here require associated documentation
that states the desired features of the unit. This documentation may be a comment in
the source program, a specification written in a formal language, or a general state-
ment of requirements. Unless otherwise indicated, this documentation should not be
assumed to be the particular document in the software life cycle called a “software
specification,” “software requirements definition,” or the like. Any document contain-
ing information about the unit may provide useful information for testing or analysis.

Step 2: Developing the Test Plan 235



Functional Testing and Analysis

Functional testing and analysis ensure that major characteristics of the code are covered.

Functional Analysis

Functional analysis seeks to verify, without execution, that the code faithfully imple-
ments the specification. Various approaches are possible. In the proof-of-correctness
approach, a formal proof is constructed to verify that a program correctly implements
its intended function. In the safety-analysis approach, potentially dangerous behavior
is identified and steps are taken to ensure such behavior is never manifested. Func-
tional analysis is mentioned here for completeness, but a discussion of it is outside the
scope of this section.

Functional Testing

Unit testing is functional when test data is developed from documents that specify a
module’s intended behavior. These documents include, but are not limited to, the actual
specification and the high- and low-level design of the code to be tested. The goal is to
test for each software feature of the specified behavior, including the input domains, the
output domains, categories of inputs that should receive equivalent processing, and the
processing functions themselves.

Testing Independent of the Specification Technique

Specifications detail the assumptions that may be made about a given software unit.
They must describe the interface through which access to the unit is given, as well as
the behavior once such access is given. The interface of a unit includes the features of
its inputs, its outputs, and their related value spaces (called domains). The behavior of
a module always includes the function(s) to be computed (its semantics), and some-
times the runtime characteristics, such as its space and time complexity.

Functional testing can be based either on the interface of a module or on the function
to be completed.

■■ Testing based on the interface. Testing based on the interface of a module
selects test data based on the features of the input and output domains of the
module and their interrelationships.

■■ Input domain testing. In external testing, test data is chosen to cover the
extremes of the input domain. Similarly, midrange testing selects data
from the interiors of domains. The motivation is inductive—it is hoped
that conclusions about the entire input domain can be drawn from the
behavior elicited by some of its representative members. For structured
input domains, combinations of extreme points for each component are
chosen. This procedure can generate a large quantity of data, although con-
siderations of the inherent relationships among components can ameliorate
this problem somewhat.

■■ Equivalence partitioning. Specifications frequently partition the set of all
possible inputs into classes that receive equivalent treatment. Such parti-
tioning is called equivalence partitioning. A result of equivalence partitioning

236 Chapter 8



is the identification of a finite set of functions and their associated input and
output domains. Input constraints and error conditions can also result from
this partitioning. Once these partitions have been developed, both external
and midrange testing are applicable to the resulting input domains.

■■ Syntax checking. Every robust program must parse its input and handle
incorrectly formatted data. Verifying this feature is called syntax checking.
One means of accomplishing this is to execute the program using a broad
spectrum of test data. By describing the data with documentation language,
instances of the input language can be generated using algorithms from
automata theory.

■■ Testing based on the function to be computed. Equivalence partitioning
results in the identification of a finite set of functions and their associated input
and output domains. Test data can be developed based on the known charac-
teristics of these functions. Consider, for example, a function to be computed
that has fixed points (that is, certain of its input values are mapped into them-
selves by the function). Testing the computation at these fixed points is possi-
ble, even in the absence of a complete specification. Knowledge of the function
is essential in order to ensure adequate coverage of the output domains.

■■ Special-value testing. Selecting test data on the basis of features of the func-
tion to be computed is called special-value testing. This procedure is particu-
larly applicable to mathematical computations. Properties of the function to
be computed can aid in selecting points that will indicate the accuracy of the
computed solution.

■■ Output domain coverage. For each function determined by equivalence
partitioning there is an associated output domain. Output domain coverage
is performed by selecting points that will cause the extremes of each of
the output domains to be achieved. This ensures that modules have been
checked for maximum and minimum output conditions and that all cate-
gories of error messages have, if possible, been produced. In general, con-
structing such test data requires knowledge of the function to be computed
and, hence, expertise in the application area.

Testing Dependent on the Specification Technique

The specification technique employed can aid in testing. An executable specification
can be used as an oracle and, in some cases, as a test generator. Structural properties of
a specification can guide the testing process. If the specification falls within certain lim-
ited classes, properties of those classes can guide the selection of test data. Much work
remains to be done in this area of testing.

■■ Algebraic. In algebraic specification, properties of a data abstraction are
expressed by means of axioms or rewrite rules. In one testing system, the consis-
tency of an algebraic specification with an implementation is checked by testing.
Each axiom is compiled into a procedure, which is then associated with a set of
test points. A driver program supplies each of these points to the procedure of

Step 2: Developing the Test Plan 237



its respected axiom. The procedure, in turn, indicates whether the axiom is satis-
fied. Structural coverage of both the implementation and the specification is
computed.

■■ Axiomatic. Despite the potential for widespread use of predicate calculus as a
specification language, little has been published about deriving test data from
such specifications. A relationship between predicate calculus specifications
and path testing has been explored.

■■ State machines. Many programs can be specified as state machines, thus pro-
viding an additional means of selecting test data. Because the equivalence
problem of two finite automata is decidable, testing can be used to decide
whether a program that simulates a finite automation with a bounded number
of nodes is equivalent to the one specified. This result can be used to test those
features of programs that can be specified by finite automata—for example, the
control flow of a transaction-processing system.

■■ Decision tables. Decision tables are a concise method of representing an equiv-
alence partitioning. The rows of a decision table specify all the conditions that
the input may satisfy. The columns specify different sets of actions that may
occur. Entries in the table indicate whether the actions should be performed if
a condition is satisfied. Typical entries are “Yes,” “No,” or “Don’t care.” Each
row of the table suggests significant test data. Cause-effect graphs provide a
systematic means of translating English specifications into decision tables,
from which test data can be generated.

Structural Testing and Analysis

In structural program testing and analysis, test data is developed or evaluated from the
source code. The goal is to ensure that various characteristics of the program are ade-
quately covered.

Structural Analysis

In structural analysis, programs are analyzed without being executed. The techniques
resemble those used in compiler construction. The goal here is to identify fault-prone
code, to discover anomalous circumstances, and to generate test data to cover specific
characteristics of the program’s structure.

■■ Complexity measures. As resources available for testing are always limited, it
is necessary to allocate these resources efficiently. It is intuitively appealing to
suggest that the more complex the code, the more thoroughly it should be
tested. Evidence from large projects seems to indicate that a small percentage
of the code typically contains the largest number of errors. Various complexity
measures have been proposed, investigated, and analyzed in the literature.

■■ Data flow analysis. A program can be represented as a flow graph annotated
with information about variable definitions, references, and indefiniteness.

238 Chapter 8



From this representation, information about data flow can be deduced for use
in code optimization, anomaly detection, and test data generation. Data flow
anomalies are flow conditions that deserve further investigation, as they may
indicate problems. Examples include: defining a variable twice with no inter-
vening reference, referencing a variable that is undefined, and undefining a
variable that has not been referenced since its last definition. Data flow analysis
can also be used in test data generation, exploiting the relationship between
points where variables are defined and points where they are used.

■■ Symbolic execution. A symbolic execution system accepts three inputs: a pro-
gram to be interpreted, symbolic input for the program, and the path to follow.
It produces two outputs: the symbolic output that describes the computation of
the selected path, and the path condition for that path. The specification of the
path can be either interactive or preselected. The symbolic output can be used to
prove the program correct with respect to its specification, and the path condi-
tion can be used for generating test data to exercise the desired path. Structured
data types cause difficulties, however, because it is sometimes impossible to
deduce what component is being modified in the presence of symbolic values.

Structural Testing

Structural testing is a dynamic technique in which test data selection and evaluation
are driven by the goal of covering various characteristics of the code during testing.
Assessing such coverage involves the instrumentation of the code to keep track of
which characteristics of the program text are actually exercised during testing. The low
cost of such instrumentation has been a prime motivation for adopting this technique.
More important, structural testing addresses the fact that only the program text reveals
the detailed decisions of the programmer. For example, for the sake of efficiency, a pro-
grammer might choose to implement a special case that appears nowhere in the speci-
fication. The corresponding code will be tested only by chance using functional testing,
whereas use of a structural coverage measure such as statement coverage should indi-
cate the need for test data for this case. Structural coverage measures form a rough
hierarchy, with higher levels being more costly to perform and analyze, but being more
beneficial, as described in the list that follows:

■■ Statement testing. Statement testing requires that every statement in the pro-
gram be executed. While it is obvious that achieving 100 percent statement cov-
erage does not ensure a correct program, it is equally obvious that anything
less means that there is code in the program that has never been executed!

■■ Branch testing. Achieving 100 percent statement coverage does not ensure that
each branch in the program flow graph has been executed. For example, execut-
ing an if...then statement (no else) when the tested condition is true, tests
only one of two branches in the flow graph. Branch testing seeks to ensure that
every branch has been executed. Branch coverage can be checked by probes
inserted at points in the program that represent arcs from branch points in the
flow graph. This instrumentation suffices for statement coverage as well.

Step 2: Developing the Test Plan 239



■■ Conditional testing. In conditional testing, each clause in every condition
is forced to take on each of its possible values in combination with those of
other clauses. Conditional testing thus subsumes branch testing and, therefore,
inherits the same problems as branch testing. Instrumentation for conditional
testing can be accomplished by breaking compound conditional statements
into simple conditions and nesting the resulting if statements.

■■ Expression testing. Expression testing requires that every expression assume a
variety of values during a test in such a way that no expression can be replaced
by a simpler expression and still pass the test. If one assumes that every state-
ment contains an expression and that conditional expressions form a proper
subset of all the program expressions, then this form of testing properly sub-
sumes all the previously mentioned techniques. Expression testing does require
significant runtime support for the instrumentation.

■■ Path testing. In path testing, data is selected to ensure that all paths of the pro-
gram have been executed. In practice, of course, such coverage is impossible
to achieve, for a variety of reasons. First, any program with an indefinite loop
contains an infinite number of paths, one for each iteration of the loop. Thus,
no finite set of data will execute all paths. The second difficulty is the infeasible
path problem: It is undecided whether an arbitrary path in an arbitrary pro-
gram is executable. Attempting to generate data for such infeasible paths is
futile, but it cannot be avoided. Third, it is undecided whether an arbitrary 
program will halt for an arbitrary input. It is therefore impossible to decide
whether a path is finite for a given input.

In response to these difficulties, several simplifying approaches have been pro-
posed. Infinitely many paths can be partitioned into a finite set of equivalence
classes based on characteristics of the loops. Boundary and interior testing
require executing loops zero times, one time, and, if possible, the maximum
number of times. Linear sequence code and jump criteria specify a hierarchy
of successively more complex path coverage.

Path coverage does not imply condition coverage or expression coverage
because an expression may appear on multiple paths but some subexpressions
may never assume more than one value. For example, in

if a / b then S1 else S2

b may be false and yet each path may still be executed.

Error-Oriented Testing and Analysis

Testing is necessitated by the potential presence of errors in the programming process.
Techniques that focus on assessing the presence or absence of errors in the program-
ming process are called error oriented. There are three broad categories of such tech-
niques: statistical assessment, error-based testing, and fault-based testing. These are
stated in order of increasing specificity of what is wrong with the program. Statistical
methods attempt to estimate the failure rate of the program without reference to the
number of remaining faults.

240 Chapter 8



Error-based testing attempts to show the absence of certain errors in the program-
ming process. Fault-based testing attempts to show the absence of certain faults in the
code. Since errors in the programming process are reflected as faults in the code, both
techniques demonstrate the absence of faults. They differ, however, in their starting
point: Error-based testing begins with the programming process, identifies potential
errors in that process, and then asks how those errors are reflected as faults. It then
seeks to demonstrate the absence of those reflected faults. Fault-based testing begins
with the code and asks what are the potential faults in it, regardless of what error in the
programming process caused them.

Statistical Methods

Statistical testing employs statistical techniques to determine the operational reliability
of the program. Its primary concern is how faults in the program affect its failure rate
in its actual operating environment. A program is subjected to test data that statistically
models the operating environment, and failure data is collected. From the data, a reli-
ability estimate of the program’s failure rate is computed. This method can be used in
an incremental development environment. A statistical method for testing paths that
compute algebraic functions has also been developed. A prevailing sentiment is that
statistical testing is a futile activity because it is not directed toward finding errors.
However, studies suggest it is a viable alternative to structural testing. Combining sta-
tistical testing with an oracle appears to represent an effective tradeoff of computer
resources for human time.

Error-Based Testing

Error-based testing seeks to demonstrate that certain errors have not been committed in
the programming process. Error-based testing can be driven by histories of programmer
errors, measures of software complexity, knowledge of error-prone syntactic constructs,
or even error guessing. Some of the more methodical techniques are described in the list
that follows:

■■ Fault estimation. Fault seeding is a statistical method used to assess the num-
ber and characteristics of the faults remaining in a program. Harlan Mills origi-
nally proposed this technique, and called it error seeding. First, faults are
seeded into a program. Then the program is tested and the number of faults
discovered is used to estimate the number of faults yet undiscovered. A diffi-
culty with this technique is that the faults seeded must be representative of the
yet-undiscovered faults in the program. Techniques for predicting the quantity
of remaining faults can also be based on a reliability model.

■■ Domain testing. The input domain of a program can be partitioned according
to which inputs cause each path to be executed. These partitions are called path

domains. Faults that cause an input to be associated with the wrong path
domain are called domain faults. Other faults are called computation faults.
(The terms used before attempts were made to rationalize nomenclature were
“domain errors” and “computation errors.”) The goal of domain testing is
to discover domain faults by ensuring that the test data limits the range of
undetected faults.

Step 2: Developing the Test Plan 241



■■ Perturbation testing. Perturbation testing attempts to decide what constitutes a
sufficient set of paths to test. Faults are modeled as a vector space, and charac-
terization theorems describe when sufficient paths have been tested to discover
both computation and domain errors. Additional paths need not be tested if
they cannot reduce the dimensionality of the error space.

Fault-Based Testing

Fault-based testing aims at demonstrating that certain prescribed faults are not in the
code. It functions well in the role of test data evaluation: Test data that does not succeed
in discovering the prescribed faults is not considered adequate. Fault-based testing
methods differ in both extent and breadth. One with local extent demonstrates that a
fault has a local effect on computation; it is possible that this local effect will not pro-
duce a program failure. A method with global extent demonstrates that a fault will
cause a program failure. Breadth is determined by whether the technique handles a
finite or an infinite class of faults. Extent and breadth are orthogonal, as evidenced by
the techniques described below.

■■ Local extent, finite breadth. Input-output pairs of data are encoded as a com-
ment in a procedure, as a partial specification of the function to be computed
by that procedure. The procedure is then executed for each of the input values
and checked for the output values. The test is considered adequate only if each
computational or logical expression in the procedure is determined by the test;
that is, no expression can be replaced by a simpler expression and still pass the
test. Simpler is defined in a way that allows only a finite number of substitu-
tions. Thus, as the procedure is executed, each possible substitution is evalu-
ated on the data state presented to the expression. Those that do not evaluate
the same as the original expression are rejected. The system allows methods of
specifying the extent to be analyzed.

■■ Global extent, finite breadth. In mutation testing, test data adequacy is judged
by demonstrating that interjected faults are caught. A program with interjected
faults is called a mutant, and is produced by applying a mutation operator.
Such an operator changes a single expression in the program to another expres-
sion, selected from a finite class of expressions. For example, a constant might
be incremented by one, decremented by one, or replaced by zero, yielding one
of three mutants. Applying the mutation operators at each point in a program
where they are applicable forms a finite, albeit large, set of mutants. The test
data is judged adequate only if each mutant in this set is either functionally
equivalent to the original program or computes different output than the origi-
nal program. Inadequacy of the test data implies that certain faults can be intro-
duced into the code and go undetected by the test data.

Mutation testing is based on two hypotheses. The competent-programmer hypoth-

esis says that a competent programmer will write code that is close to being 
correct; the correct program, if not the current one, can be produced by some
straightforward syntactic changes to the code. The coupling-effect hypothesis says
that test data that reveals simple faults will uncover complex faults as well.

242 Chapter 8



Thus, only single mutants need be eliminated, and combinatory effects of mul-
tiple mutants need not be considered. Studies formally characterize the compe-
tent-programmer hypothesis as a function of the probability of the test set’s
being reliable, and show that under this characterization, the hypothesis does
not hold. Empirical justification of the coupling effect has been attempted, but
theoretical analysis has shown that it does not hold, even for simple programs.

■■ Local extent, infinite breadth. Rules for recognizing error-sensitive data are
described for each primitive language construct. Satisfaction of a rule for a given
construct during testing means that all alternate forms of that construct have
been distinguished. This has an obvious advantage over mutation testing—
elimination of all mutants without generating a single one! Some rules even
allow for infinitely many mutants. Of course, since this method is of local extent,
some of the mutants eliminated may indeed be the correct program.

■■ Global extent, infinite breadth. We can define a fault-based method based on
symbolic execution that permits elimination of infinitely many faults through
evidence of global failures. Symbolic faults are inserted into the code, which is
then executed on real or symbolic data. Program output is then an expression
in terms of the symbolic faults. It thus reflects how a fault at a given location
will affect the program’s output. This expression can be used to determine
actual faults that could not have been substituted for the symbolic fault and
remain undetected by the test.

Managerial Aspects of Unit Testing and Analysis

Administration of unit testing and analysis proceeds in two stages. First, techniques
appropriate to the project must be selected, and then these techniques must be system-
atically applied.

Selecting Techniques

Selecting the appropriate techniques from the array of possibilities is a complex task
that requires assessment of many issues, including the goal of testing, the nature of the
software product, and the nature of the test environment. It is important to remember
the complementary benefits of the various techniques and to select as broad a range of
techniques as possible, within imposed limits. No single testing or analysis technique
is sufficient. Functional testing suffers from inadequate code coverage, structural test-
ing suffers from inadequate specification coverage, and neither technique achieves the
benefits of error coverage.

■■ Goals. Different design goals impose different demands on the selection of test-
ing techniques. Achieving correctness requires use of a great variety of tech-
niques. A goal of reliability implies the need for statistical testing using test
data representative of the anticipated user environment. It should be noted,
however, that proponents of this technique still recommend judicious use of
“selective” tests to avoid embarrassing or disastrous situations. Testing may
also be directed toward assessing the utility of proposed software. This kind of

Step 2: Developing the Test Plan 243



testing requires a solid foundation in human factors. Performance of the soft-
ware may also be of special concern. In this case, external testing is essential.
Timing instrumentation can prove useful.

Often, several of these goals must be achieved simultaneously. One approach to
testing under these circumstances is to order testing by decreasing benefit. For
example, if reliability, correctness, and performance are all desired features, it is
reasonable to tackle performance first, reliability second, and correctness third,
since these goals require increasingly difficult-to-design tests. This approach
can have the beneficial effect of identifying faulty code with less effort.

■■ Nature of the product. The nature of the software product plays an important
role in the selection of appropriate techniques.

■■ Nature of the testing environment. Available resources, personnel, and project
constraints must be considered in selecting testing and analysis strategies.

Control

To ensure quality in unit testing and analysis, it is necessary to control both documen-
tation and the conduct of the test:

■■ Configuration control. Several items from unit testing and analysis should be
placed under configuration management, including the test plan, test proce-
dures, test data, and test results. The test plan specifies the goals, environment,
and constraints imposed on testing. The test procedures detail the step-by-step
activities to be performed during the test. Regression testing occurs when pre-
viously saved test data is used to test modified code. Its principal advantage
is that it ensures previously attained functionality has not been lost during a
modification. Test results are recorded and analyzed for evidence of program
failures. Failure rates underlie many reliability models; high failure rates may
indicate the need for redesign.

■■ Conducting tests. A test bed is an integrated system for testing software. Mini-
mally, such systems provide the ability to define a test case, construct a test dri-
ver, execute the test case, and capture the output. Additional facilities provided
by such systems typically include data flow analysis, structural coverage
assessment, regression testing, test specification, and report generation.

Task 5: Build the Test Plan

The development of an effective test plan involves the following four steps:

1. Set the test objectives.

2. Develop a test matrix.

3. Define test administration.

4. Write the test plan.

244 Chapter 8



Setting Test Objectives

The objectives of testing should restate the project objectives from the project plan. In
fact, the test plan objectives should determine whether the project plan objectives have
been achieved. If the project plan does not have clearly stated objectives, testers must
develop their own. In that case, testers must have them confirmed as the project objec-
tives by the project team. Testers can:

■■ Set objectives to minimize the project risks

■■ Brainstorm to identify project objectives

■■ Relate objectives to the testing policy, if established

Normally, there should be ten or fewer test objectives. Having too many objectives
scatters the test team’s focus.

Work Paper 8-1 is designed for documenting test objectives. To complete the Work
Paper:

■■ Itemize the objectives so that they can be referred to by number.

■■ Write the objectives in a measurable statement to focus testers’ attention.

■■ Assign a priority to the objectives, as follows:

■■ High. The most important objectives to be accomplished during testing

■■ Average. Objectives to be accomplished only after the high-priority test
objectives have been met

■■ Low. The least important of the test objectives

■■ Define the completion criteria for each objective. This should state quantita-
tively how the testers will determine whether the objective has been accom-
plished. The more specific the criteria, the easier it will be for the testers to
follow through.

NOTE Establish priorities so that approximately one-third are high, one-third

are average, and one-third are low.

Developing a Test Matrix

The test matrix is the key component of the test plan. On one side it lists what is to be
tested; on the other, it indicates which test is to be performed, or “how” software will
be tested. Between the two dimensions of the matrix are the tests applicable to the soft-
ware; for example, one test may test more than one software module. The test matrix is
also a test “proof.” It proves that each testable function has at least one test, and that
each test is designed to test a specific function.

An example of a test matrix is illustrated in Table 8-1. This shows four functions in a
payroll system, with three tests to validate the functions. Because payroll is a batch sys-
tem, batched test data is used with various dates, the parallel test is run when posting

Step 2: Developing the Test Plan 245



to the general ledger, and all changes are verified through a code inspection. The test
matrix can be prepared using the work papers described in the following sections.
(Note: The modules that contain the function(s) to be tested will be identified.)

Table 8-1 Test Matrix Example

SOFTWARE TEST DECK PARALLEL CODE 
FUNCTION TRANSACTION TEST INSPECTION

FICA Calculation X X

Gross Pay X X

Tax Deduction X X

General Ledger Charges X X

The recommended test process is first to determine the test factors to be evaluated in
the test process, and then to select the techniques that will be used in performing the test.
Figure 8-5 is a test factor/test technique matrix that shows which techniques are most
valuable for the various test factors. For example, if testers want to evaluate the system
structure for reliability, the execution and recovery testing techniques are recommended.
On the other hand, if testers want to evaluate the functional aspects of reliability,
the requirements, error handling, manual support, and control testing techniques are
recommended.

Individual Software Modules

Testers should list the software modules to be tested on Work Paper 8-2, including the
name of the module, a brief description, and the evaluation criteria. When document-
ing software modules, testers should include the following three categories:

Modules written by the IT development group

Modules written by non-IT personnel

Software capabilities embedded in hardware chips

Structural Attributes

Testers can use Work Paper 8-3 to identify the structural attributes of software that may
be affected and thus require testing. The structural attributes can be those described
earlier (maintainability, reliability, efficiency, usability, and so on) or specific processing
concerns regarding how changes can affect the operating performance of the software.

Structural attributes also include the impact the processing of one software system
has on another software system. This is classified as a structural attribute because the
structure of one system may be incompatible with the structure of another.

246 Chapter 8



STRUCTURAL TESTING FUNCTIONAL TESTING

Re- Error UNIT

TEST Execu- Recov- Opera- Compli- Secur- quire- Regres- Hand- Manual Inter- Par- TEST-

FACTOR Stress tion ery tions ance ity ments sion ling Support systems Control allel ING

Reliability x x x x x

Authorization x x x

File Integrity x x x x

Audit Trail x x x

Continuity of x x x x
Processing

Service Level x x x

Access x
Control

Methodology x

Correctness x x x x x x x x

Ease of Use x x x x

Maintainable x x

Portable x x

Coupling x x x

Performance x x x x

Ease of x x
Operation

Figure 8-5 Test factor/technique matrix.



Batch Tests

Batch tests are high-level tests. They must be composed during the execution phase in
specific test transactions. For example, a test identified at the test plan level might vali-
date that all dating in a software module is correct. During execution, each date-related
instruction in a software module would require a test transaction. (It is not necessary for
test descriptions at the test planning level to be that detailed.)

Work Paper 8-4 describes each batch test to perform during testing. If you use our
previous example of the testing-related processing date, that task can be described in
the test plan and related to all the software modules in which that test will occur. How-
ever, during execution, the test data for each module that executes that test will be a
different transaction. To complete Work Paper 8-4, you must identify the software proj-
ect, unless it is applicable to all software projects, in which case the word “all” should
be used to describe the software project.

Each test should be named and numbered. In our example, it might be called Date
Compliance test and given a unique number. Numbering is important both to control
tests and to roll test results back to the high-level test described in the test plan.

Figure 8-6 shows a completed test document for a hypothetical test of data valida-
tion routines. Although all the detail is not yet known because the data validation rou-
tines have not been specified at this point, there is enough information to enable a
group to prepare the data validation routines.

Conceptual Test Script for Online System Test

Work Paper 8-5 serves approximately the same purpose for online systems as Work
Paper 8-4 does for batch systems. Work Paper 8-4 is a high-level description of the test
script, not the specific transaction that will be entered during online testing. For the test
planning perspective, it is unimportant whether the individual items will be manually
prepared or generated and controlled using a software tool.

The example given for entering a batch test to validate date-related processing is
also appropriate for test scripts. The primary differences are the sequence in which the
events must occur and the source or location of the origin of the online event.

Figure 8-7 shows an example of developing test scripts for the data validation func-
tion of an order-entry software project. It lists two scripting events, the evaluation cri-
teria, and comments that would be helpful in developing these tests.

Verification Tests

Testers can use Work Paper 8-6 to document verification testing. Verification is a static
test performed on a document developed by the team responsible for creating soft-
ware. Generally, for large documents, the verification process is a review; for smaller
documents, the verification process comprises inspections. Other verification methods
include the following:

■■ Static analyzers incorporated into the compilers

■■ Independent static analyzers

■■ Walkthroughs

■■ Third-party confirmation of the document’s accuracy

248 Chapter 8



Verification tests normally relate to a specific software project, but because of the
extensiveness of testing, a single verification test may be applicable to many software
projects. For example, it may be determined that each source code listing that is
changed will be inspected prior to unit testing. In this case, the software project should
be indicated as “all.”

Software/Test Matrix

The objective of Work Paper 8-7 is to illustrate that the tests validate and verify all the
software modules, including their structural attributes. The matrix also illustrates which
tests exercise which software modules.

Step 2: Developing the Test Plan 249

Software Project: Payroll Application

Name of Test: Validate Input Test No. 1

Test Objective

Exercise data validation routines.

Test Input

Prepare the following types of input data for each input field:

• valid data

• invalid data

• range of codes

• validation of legitimate values and tables

Test Procedures

Create input transactions that contain the conditions described in test input.
Run the entire test deck until all conditions are correctly processed.

Test Output

Reject all invalid conditions and accept all valid conditions.

Test Controls

Run the entire test each time the test is conducted. Rerun the test until all specified
output criteria have been achieved.

Software or Structure Attribute Tested

The data validation function.

Figure 8-6 Conducting batch tests.



The information to complete this matrix has already been recorded in Work Papers 8-2
through 8-6. The vertical axis of the matrix lists the software modules and structural
attributes from Work Papers 8-2 and 8-3. The horizontal axis lists the tests indicated on
Work Papers 8-4, 8-5, and 8-6. The intersection of the vertical and horizontal axes indi-
cates whether the test exercises the software module/structural attributes listed. This can
be indicated by a check mark or via a reference to a more detailed description that relates
to the specific test and software module.

Defining Test Administration

The administrative component of the test plan identifies the schedule, milestones, and
resources needed to execute the test plan as illustrated in the test matrix. This cannot
be undertaken until the test matrix has been completed.

Prior to developing the test plan, the test team has to be organized. This initial test
team is responsible for developing the test plan and then defining the administrative
resources needed to complete the plan. Thus, part of the plan will be executed as the
plan is being developed; that part is the creation of the test plan, which itself consumes
resources.

The test plan, like the implementation plan, is a dynamic document—that is, it
changes as the implementation plan changes and the test plan is being executed. The test
plan must be viewed as a “contract” in which any modifications must be incorporated.

250 Chapter 8

Software Project: Order Entry

Software Module: Test No.: 2

EVALUATION

SEQUENCE SOURCE SCRIPT EVENT CRITERIA COMMENTS

1

2

Data
entry
clerk

Data
entry
clerk

The data entry
clerk enters an
invalid customer
order.

The data entry
clerk enters a
correct order into
the system for
one or more
invalid company
products.

The customer
number should be
rejected as invalid.

The system should,
first, confirm that
the information
entered is valid and
for legitimate values,
and, second, ask the
data entry clerk to
verify that all the
information has
been entered
correctly.

A help routine
would help to
locate the proper
customer
number.

This tests the
entry of a valid
order through the
data validation
routines.

Figure 8-7 Example of a test script for a data validation function.



Work Papers 8-8 through 8-10, described in the following sections, are provided to
help testers develop and document the administrative component of the test plan.

Test Plan General Information

Work Paper 8-8 is designed to provide background and reference data on testing. In
many organizations this background information will be necessary to acquaint testers
with the project. It is recommended that, along with this background data, testers be
required to read all or parts of Chapters 1 through 4.

Define Test Milestones

Work Paper 8-9 is designed to indicate the start and completion date of each test. These
tests are derived from the matrix in Work Papers 8-4, 8-5, and 8-6. The start/comple-
tion milestones are listed as numbers. If you prefer, these may be days or dates. For
example, milestone 1 could just be week 1, day 1, or November 18. The tests from the
test matrix are then listed in this work paper in the Test column; a start and completion
milestone are checked for each test.

NOTE Organizations that have scheduling software should use that in lieu of this

work paper. Both the work paper and the scheduling software should include the

person responsible for performing that test as the assignment becomes known.

Define Checkpoint Administration

Test administration contains all the attributes associated with any other project. Test
administration is, in fact, project management; the project is testing. Administration
involves identifying what is to be tested, who will test it, when it will be tested, when it
is to be completed, the budget and resources needed for testing, any training the testers
need, and the materials and other support for conducting testing.

Work Paper 8-10, which is completed for each milestone, can be used to schedule
work as well as to monitor its status. Work Paper 8-10 also covers the administrative
aspects associated with each testing milestone. If the test plan calls for a different test
at six milestones, testers should prepare six different work papers. Because budgeting
information should be summarized, a total budget figure for testing is not identified in
the administrative part of the plan.

Writing the Test Plan

The test plan can be as formal or informal a document as the organization’s culture dic-
tates. When the test team has completed Work Papers 8-1 through 8-10, they have com-
pleted the test plan. The test plan can either be the ten work papers or the information
on those work papers transcribed to a more formal test plan. Generally, if the test team
is small, the work papers are more than adequate. As the test team grows, it is better to
formalize the test plan.

Figure 8-8 illustrates a four-part test plan standard. It is a restatement and slight
clarification of the information contained on the work papers in this chapter.

Step 2: Developing the Test Plan 251



252 Chapter 8

1. GENERAL INFORMATION

1.1 Summary. Summarize the functions of the software and the tests to be
performed.

1.2 Environment and Pretest Background. Summarize the history of the
project. Identify the user organization and computer center where the
testing will be performed. Describe any prior testing and note results that
may affect this testing.

1.3 Test Objectives. State the objectives to be accomplished by testing.

1.4 Expected Defect Rates. State the estimated number of defects for
software of this type.

1.5 References. List applicable references, such as:

a) Project request authorization.
b) Previously published documents on the project.
c) Documentation concerning related projects.

2. PLAN

2.1 Software Description. Provide a chart and briefly describe the inputs,
outputs, and functions of the software being tested as a frame of
reference for the test descriptions.

2.2 Test Team. State who is on the test team and their test assignment(s).

2.3 Milestones. List the locations, milestone events, and dates for the testing.

2.4 Budgets. List the funds allocated to test by task and checkpoint.

2.5 Testing (systems checkpoint). Identify the participating organizations and
the system checkpoint where the software will be tested.

2.5.1 Schedule (and budget). Show the detailed schedule of dates and
events for the testing at this location. Such events may include
familiarization, training, data, as well as the volume and
frequency of the input. Resources allocated for test should be
shown.

2.5.2 Requirements. State the resource requirement, including:

a) Equipment. Show the expected period of use, types, and
quantities of the equipment needed.

b) Software. List other software that will be needed to support
the testing that is not part of the software to be tested.

c) Personnel. List the numbers and skill types of personnel that
are expected to be available during the test from both the
user and development groups. Include any special
requirements such as multishift operation or key personnel.

Figure 8-8 System test plan standard.



Step 2: Developing the Test Plan 253

2.5.3 Testing Materials. List the materials needed for the test, such as:

a) System documentation
b) Software to be tested and its medium
c) Test inputs
d) Test documentation
e) Test tools

2.5.4 Test Training. Describe or reference the plan for providing training
in the use of the software being tested. Specify the types of
training, personnel to be trained, and the training staff.

2.5.5 Test to be Conducted. Reference specific tests to be conducted at
this checkpoint.

2.6 Testing (system checkpoint). Describe the plan for the second and
subsequent system checkpoint where the software will be tested in a
manner similar to paragraph 2.5.

3. SPECIFICATIONS AND EVALUATION

3.1 Specifications

3.1.1 Business Functions. List the business functional requirement
established by earlier documentation.

3.1.2 Structural Functions. List the detailed structural functions to be
exercised during the overall test.

3.1.3 Test/Function Relationships. List the tests to be performed on the
software and relate them to the functions in paragraph 3.1.2.

3.1.4 Test Progression. Describe the manner in which progression is
made from one test to another so that the entire test cycle is
completed.

3.2 Methods and Constraints.

3.2.1 Methodology. Describe the general method or strategy of the
testing.

3.2.2 Test Tools. Specify the type of test tools to be used.

3.2.3 Extent. Indicate the extent of the testing, such as total or partial.
Include any rationale for partial testing.

3.2.4 Data Recording. Discuss the method to be used for recording the
test results and other information about the testing.

3.2.5 Constraints. Indicate anticipated limitations on the test due to
test conditions, such as interfaces, equipment, personnel, data-
bases.

Figure 8-8 (continued)



254 Chapter 8

3. SPECIFICATIONS AND EVALUATION (continued)

3.3 Evaluation.

3.3.1 Criteria. Describe the rules to be used to evaluate test results,
such as range of data values used, combinations of input types
used, maximum number of allowable interrupts or halts.

3.3.2 Data Reduction. Describe the techniques to be used for
manipulating the test data into a form suitable for evaluation,
such as manual or automated methods, to allow comparison of
the results that should be produced to those that are produced.

4. TEST DESCRIPTIONS

4.1 Test (Identify). Describe the test to be performed (format will vary for on-
line test script).

4.1.1 Control. Describe the test control, such as manual, semiautomatic
or automatic insertion of inputs, sequencing of operations, and
recording of results.

4.1.2 Inputs. Describe the input data and input commands used during
the test.

4.1.3 Outputs. Describe the output data expected as a result of the test
and any intermediate messages that may be produced.

4.1.4 Procedures. Specify the step-by-step procedures to accomplish
the test. Include test setup, initialization, steps and termination.

4.2 Test (Identify). Describe the second and subsequent tests in a manner
similar to that used in paragraph 4.1.

Figure 8-8 (continued)

Task 6: Inspect the Test Plan

This task describes how to inspect the corrected software prior to its execution. This
process is used, first, because it is more effective in identifying defects than validation
methods; and second, it is much more economical to remove the defects at the inspec-
tion stage than to wait until unit or system testing. This task describes the inspection
process, including the role and training of the inspectors, and the step-by-step proce-
dures to complete the process.

The implementation/rework step of the project team involves modifying software
and supporting documentation to make it compliant. Thereafter, the software needs
to be tested. However, as already noted, identifying defects in dynamic testing is more
costly and time-consuming than performing a static inspection of the changed prod-
ucts or deliverables.

Inspection, then, is a process by which completed but untested products are evalu-
ated as to whether the specified changes were installed correctly. To accomplish this,



inspectors examine the unchanged product, the change specifications, and the changed
product to determine the outcome. They look for three types of defects: errors, meaning
the change has not been made correctly; missing, meaning something should have
been changed but was not changed; and extra, meaning something not intended was
changed or added.

The inspection team reviews the product after each inspector has reviewed it individ-
ually. The team then reaches a consensus on the errors and missing/extra defects. The
author (the person implementing the project change) is given those defect descriptions
so that the product can be changed prior to dynamic testing. After the changes are made,
they are re-inspected to verify correctness; then dynamic testing can commence. The pur-
pose of inspections is twofold: to conduct an examination by peers, which normally
improves the quality of work because the synergy of a team is applied to the solution,
and to remove defects.

Inspection Concerns

The concerns regarding the project inspection process are basically the same associated
with any inspection process. They are as follows:

■■ Inspections may be perceived to delay the start of testing. Because inspection
is a process that occurs after a product is complete but before testing, it does in
fact impose a delay to dynamic testing. Therefore, many people have trouble
acknowledging that the inspection process will ultimately reduce implementa-
tion time. In practice, however, the time required for dynamic testing is
reduced when the inspection process is used; thus, the total time is reduced.

■■ There is resistance to accepting the inspection role. There are two drawbacks
to becoming an inspector. The first is time; an inspector loses time on his or her
own work assignments. The second is that inspectors are often perceived as
criticizing their peers. Management must provide adequate time to perform
inspections and encourage a synergistic team environment in which inspectors
are members offering suggestions, as opposed to being critics.

■■ Space may be difficult to obtain for conducting inspections. Each deliverable
is inspected individually by a team; therefore, meeting space is needed in
which to conduct inspections. Most organizations have limited meeting space,
so this need may be difficult to fulfill. Some organizations use cafeteria space
during off hours; or if the group is small enough, they can meet in someone’s
work area. However, it is important to hold meetings in an environment that
does not affect others’ work.

■■ Change implementers may resent having their work inspected prior to test-

ing. Traditional software implementation methods have encouraged sloppy
developments, which rely on testing to identify and correct problems. Thus,
people instituting changes may resist having their products inspected prior to
having the opportunity to identify and correct the problems themselves. The
solution is to encourage team synergism with the goal of developing optimal
solutions, not criticizing the work of individuals.

Step 2: Developing the Test Plan 255



■■ Inspection results may affect individual performance appraisal. In a sense,
the results of an inspection are also a documented list of a person’s defects,
which can result in a negative performance appraisal. Management must
emphasize that performance appraisals will be based on the final product,
not an interim defect list.

Products/Deliverables to Inspect

Each software project team determines the products to be inspected, unless specific
inspections are mandated by the project plan. Consider inspecting the following 
products:

■■ Project requirements specifications

■■ Software rework/maintenance documents

■■ Updated technical documentation

■■ Changed source code

■■ Test plans

■■ User documentation (including online help)

Formal Inspection Roles

The selection of the inspectors is critical to the effectiveness of the process. It is impor-
tant to include appropriate personnel from all impacted functional areas and to care-
fully assign the predominant roles and responsibilities (project, operations, external
testing, etc.). There should never be fewer than three inspection participants but not
more than five.

Each role must be filled on the inspection team, although one person may take on
more than one role. The following subsections outline the participants and identify
their roles and responsibilities in the inspection process.

Moderator

The moderator coordinates the inspection process and oversees any necessary follow-
up tasks. It is recommended that the moderator not be a member of the project team.
Specifically, the moderator does the following:

■■ Organizes the inspection by selecting the participants; verifies the distribution
of the inspection materials; and schedules the overview, inspection, and
required follow-up sessions.

■■ Leads the inspection process; ensures that all participants are prepared; encour-
ages participation; maintains focus on finding defects; controls flow and direc-
tion; and maintains objectivity.

256 Chapter 8



■■ Controls the inspection by enforcing adherence to the entry and exit criteria;
seeks consensus on defects; makes the final decision on disagreements; directs
the recording and categorizing of defects; summarizes inspection results; and
limits inspections to one to two hours.

■■ Ensures the author completes the follow-up tasks.

■■ Completes activities listed in moderator checklist (reference Work Paper 8-11):

■■ Determine if the product is ready for inspection, based on entry criteria for
the type of inspections to be conducted.

■■ Select inspectors and assign the roles of reader and recorder.

■■ Estimate inspection preparation time (e.g., 20 pages of written documenta-
tion per two hours of inspections).

■■ Schedule the inspection meeting and send inspection meeting notices to
participants.

■■ Determine if overview is required (e.g., if the product is lengthy or complex)
with author and project leader.

■■ Oversee the distribution of the inspection material, including the meeting
notice.

Reader

The reader is responsible for setting the pace of the inspection. Specifically, the reader:

■■ Is not also the moderator or author

■■ Has a thorough familiarity with the material to be inspected

■■ Presents the product objectively

■■ Paraphrases or reads the product material line by line or paragraph by para-
graph, pacing for clarity and comprehension

Recorder

The recorder is responsible for listing defects and summarizing the inspection results.
He or she must have ample time to note each defect because this is the only informa-
tion that the author will have to find and correct the defect. The recorder should avoid
using abbreviations or shorthand that may not be understood by other team members.
Specifically, the recorder:

■■ May also be the moderator but cannot be the reader or the author

■■ Records every defect

■■ Presents the defect list for consensus by all participants in the inspection

■■ Classifies the defects as directed by the inspectors by type, class, and severity,
based on predetermined criteria

Step 2: Developing the Test Plan 257



Author

The author is the originator of the product being inspected. Specifically, the author:

■■ Initiates the inspection process by informing the moderator that the product is
ready for inspection

■■ May also act as an inspector during the inspection meeting

■■ Assists the moderator in selecting the inspection team

■■ Meets all entry criteria outlined in the appropriate inspection package cover
sheet

■■ Provides an overview of the material prior to the inspection for clarification, if
requested

■■ Clarifies inspection material during the process, if requested

■■ Corrects the defects and presents finished rework to the moderator for sign-off

■■ Forwards all materials required for the inspection to the moderator as indicated
in the entry criteria

Inspectors

The inspectors should be trained staff who can effectively contribute to meeting objec-
tives of the inspection. The moderator, reader, and recorder may also be inspectors.
Specifically, the inspectors:

■■ Must prepare for the inspection by carefully reviewing and understanding the
material

■■ Maintain objectivity toward the product

■■ Record all preparation time

■■ Present potential defects and problems encountered before and during the
inspection meeting

Formal Inspection Defect Classification

The classification of defects provides meaningful data for their analysis and gives the
opportunity for identifying and removing their cause. This results in overall cost sav-
ings and improved product quality.

Each defect should be classified as follows:

■■ By origin. Indicates the development phase in which the defect was generated
(requirements, design, program, etc.).

■■ By type. Indicates the cause of the defect. For example, code defects could be
errors in procedural logic, or code that does not satisfy requirements or deviates
from standards.

■■ By class. Defects should be classified as missing, wrong, or extra, as described
previously.

258 Chapter 8



■■ By severity. There are two severity levels: major (those that either interrupt 
system operation or cause an incorrect result) and minor (all those that are not
major).

Inspection Procedures

The formal inspection process is segmented into the following five subtasks, each of
which is distinctive and essential to the successful outcome of the overall process:

1. Planning and organizing

2. Overview session (optional)

3. Individual preparation

4. Inspection meeting

5. Rework and follow-up

Planning and Organizing

The planning step defines the participants’ roles and defines how defects will be clas-
sified. It also initiates, organizes, and schedules the inspection.

Overview Session

This task is optional but recommended. Its purpose is to acquaint all inspectors with the
product to be inspected and to minimize individual preparation time. This task is espe-
cially important if the product is lengthy, complex, or new; if the inspection process is
new; or if the participants are new to the inspection process.

Individual Preparation

The purpose of this task is to allot time for each inspection participant to acquire a thor-
ough understanding of the product and to identify any defects (per exit criteria).

The inspector’s responsibilities are to:

■■ Become familiar with the inspection material

■■ Record all defects found and time spent on the inspection preparation report
(see Work Paper 8-12) and inspection defect list (see Work Paper 8-13)

Each inspector performs a “desk review” of the material, with the following recom-
mended guidelines:

■■ It should be performed in one continuous time span.

■■ The inspector must disregard the style of the work product (for example, the
way a programmer chooses to build a report).

■■ The emphasis should be on meeting standards and ensuring that output meets
the product specification.

■■ Every defect must be identified.

Step 2: Developing the Test Plan 259



The activities involved in performing an individual inspection are as follows:

■■ Review the input product (product specification).

■■ Review the output product (author’s work).

■■ Identify each input specification by a unique identifier on the input product
document.

■■ Trace specifications one by one to the output product, essentially repeating the
author’s process.

■■ Cross-reference the output to the input specification (block out output that
relates to the input specification).

■■ Continue this process until all specifications have been traced and all output
has been referenced.

During the individual inspection, each inspector records defects, questions, and
concerns to be addressed during the inspection meeting. Recommended guidelines for
recording these items are that:

■■ Every defect should be recorded, no matter how small.

■■ Areas of concern regarding correctness of input specifications should be noted
as issues to discuss.

■■ Significant inefficiencies in the output product should be noted as issues to 
discuss.

■■ Any output that does not have an input specification should be marked as a
defect (that is, “extra”).

Inspection Meeting

The purpose of the inspection meeting is to find defects in the product, not to correct
defects or suggest alternatives. A notice is sent to all participants notifying them of the
meeting (see Work Paper 8-14). The following are the responsibilities of the meeting
participants, in the sequence they occur:

■■ Moderator responsibilities (at the beginning of the inspection)

■■ Introduce participants and identify roles.

■■ Restate the objective of the inspection.

■■ Verify inspectors’ readiness by checking time spent in preparation and
whether all material was reviewed prior to the meeting (as indicated on
each inspector’s inspection preparation report). If any of the participants
are not prepared, the moderator must decide whether to continue with the
inspection or reschedule it to allow for further preparation.

■■ Reader responsibilities

■■ Read or paraphrase the material.

260 Chapter 8



■■ Inspector responsibilities

■■ Discuss potential defects and reach a consensus about whether the defects
actually exist.

■■ Recorder responsibilities

■■ Record defects found, by origin, type, class, and severity, on the inspection
defect list.

■■ Classify each defect found, with concurrence from all inspectors.

■■ Prepare the inspection defect summary (see Work Paper 8-15).

■■ Author responsibilities

■■ Clarify the product, as necessary.

■■ Moderator responsibilities (at the end of the inspection)

■■ Call the inspection to an end if a number of defects are found early, indicat-
ing that the product is not ready for inspection. The author then is responsi-
ble for reinitiating an inspection, through the moderator, once the product
is ready.

■■ Determine the disposition of the inspection and any necessary follow-up
work.

■■ Approve the inspection defect list and the inspection summary, and then
forward copies to the author and quality assurance personnel.

■■ Sign off on the inspection certification report if no defects were found (see
Work Paper 8-16).

Rework and Follow-Up

The purpose of this task is to complete required rework, obtain a sign-off or initiate a
reinspection, and capture inspection results. Listed next are the responsibilities of the
participants, in order of occurrence:

■■ Author responsibilities

■■ Complete all rework to correct defects found during the inspection.

■■ Reinitiate the inspection process if the inspection ended with major rework
required.

■■ Contact the moderator to approve the rework if the inspection ended with
minor rework required.

■■ Moderator responsibilities

■■ Review all rework completed and sign off on the inspection report after all
the defects have been corrected.

■■ Recorder responsibilities

■■ Summarize defect data and ensure its entry into an inspection defect database.

Step 2: Developing the Test Plan 261



Check Procedures

Work Paper 8-17 contains the items to evaluate to determine the accuracy and com-
pleteness of the test plan. The questions are designed so that a Yes response is desirable,
and a No response requires that testers evaluate whether that item should be addressed.
If the item is not applicable, a check mark should be placed in the N/A column. For No
responses, a comment should be entered; if action is required, the results of the action
should also be recorded in the Comments column.

Output

The single deliverable from this step is the test plan. It should be reviewed with appro-
priate members of management to determine its adequacy. Once approved, the tester’s
primary responsibility is to execute the test in accordance with that plan, and then
report the results. Once the test plan is approved, testers should not be held responsi-
ble for potential omissions.

Guidelines

Planning can be one of the most challenging aspects of the software testing process.
The following guidelines can make the job a little easier:

1. Start early. Even though you might not have all the details at hand, you can
complete a great deal of the planning by starting on the general and working
toward the specific. By starting early, you can also identify resource needs and
plan for them before they are subsumed by other areas of the project.

2. Keep the test plan flexible. Make it easy to add test cases, test data, and so on.
The test plan itself should be changeable, but subject to change control.

3. Review the test plan frequently. Other people’s observations and input greatly
facilitate achieving a comprehensive test plan. The test plan should be subject
to quality control just like any other project deliverable.

4. Keep the test plan concise and readable. The test plan does not need to be
large and complicated. In fact, the more concise and readable it is, the more
useful it will be. Remember, the test plan is intended to be a communication
document. The details should be kept in a separate reference document.

5. Calculate the planning effort. You can count on roughly one-third of the test-
ing effort being spent on planning, execution, and evaluation, respectively.

6. Spend the time to develop a complete test plan. The better the test plan, the
easier it will be to execute the tests.

262 Chapter 8



Summary

The test plan drives the remainder of the testing effort. Well-planned test projects tend
to cost less and get completed earlier than projects with incomplete test plans. It is not
unusual to spend approximately one-third of the total test effort on planning, but that
time reaps rewards during test execution and reporting.

This chapter covers test planning from a risk-oriented approach. Test objectives are
designed to address the significant risks. The objectives are decomposed into test
transactions. The test plan is completed when the administrative data, such as sched-
ule and budget, are added to the written test plan.

Step 2: Developing the Test Plan 263



264 Chapter 8

WORK PAPER 8-1 Test Objective

Completion
Number Objective Priority Criteria



Step 2: Developing the Test Plan 265

WORK PAPER 8-2 Software Module

Software Project:

Software Module Evaluation
Number Name Description Criteria



266 Chapter 8

WORK PAPER 8-3 Structural Attribute

Software Project:

Software Structural Evaluation
Model Number Attribute Description Criteria



Step 2: Developing the Test Plan 267

WORK PAPER 8-4 Batch Tests

Software Project:

Name of Test: Test No.

Test Objective

Test Input

Test Procedures

Test Output

Test Controls

Software or Structure Attribute Tested



268 Chapter 8

WORK PAPER 8-5 Conceptual Test Script for Online System Test

Software Project: ___________________________________________________

Software Module: __________________________________   Test No. _______________________

Evaluation
Sequence Source Script Event Criteria Comments



Step 2: Developing the Test Plan 269

WORK PAPER 8-6 Verification Tests

Software Project:

Verification System Test Point/
Number Test Product Purpose Responsibility Schedule



270 Chapter 8

WORK PAPER 8-7 Software/Test Matrix

Software Project: ___________________________________________________

Tests

Software Module 1 2 3 4 5 6 7 8 9 10



Step 2: Developing the Test Plan 271

WORK PAPER 8-8 Test Plan General Information

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Software Project The name or number that uniquely identifies the project or system that will be tested
for compliance.

Summary A one- or two-paragraph overview of what is to be tested and how the testing will be
performed.

Pretest Background Summary of any previous test experiences that might prove helpful with testing.The
assumption is, if there were problems in the past, they will probably continue;
however, if there were few problems with test tools, the test team can expect to use
those tools effectively.

Test Environment The computer center or facilities used to test the application. In a single computer
center installation, this subsection is minimal. If the software is used in multiple
installations, the test environments may need to be described extensively.

Test Constraints Certain types of testing may not be practical or possible during testing. For example,
in banking systems in which the software ties into the Fed Wire system, it is not
possible to test software with that facility. In other cases, the software cannot yet
interface directly with production databases, and therefore the test cannot provide
assurance that some of those interfaces work. List all known constraints.

References Any documents, policies, procedures, or regulations applicable to the software being
tested or the test procedures. It is also advisable to provide a brief description of why
the reference is being given and how it might be used during the testing process.

When to stop What type of test results or events should cause testing to be stopped and the 
testing software returned to the implementation team for more work.

Software Project:

Summary

Pretest Background

Test Environment

Test Constraints

References

When to Stop Testing



272 Chapter 8

WORK PAPER 8-9 Test Milestones

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Tests Tests to be conducted during execution (the tests described on Work Papers 8-4, 
8-5, and 8-6 and shown in matrix format in Work Paper 8-7). The vertical column 
can contain either or both the test number and/or name.

Start/Completion The names to identify when tests start and stop. The milestones shown in
Milestone Work Paper 8-9 are numbers 1–30, but these could be week numbers, day 

numbers, or specific dates such as November 18, 1999, included in the heading 
of the vertical columns.

Intersection between Insert a check mark in the milestone where the test starts, and a check mark in the
Tests and Start/ column where the tests are to be completed.
Completion
Milestones

Tests Start/Completion Milestones

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30



Step 2: Developing the Test Plan 273

WORK PAPER 8-10 Administrative Checkpoint

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Software Project The name or number that uniquely identifies the project or system that will be tested
for compliance.

Project The name of the project being tested.

Checkpoint for Test The name of the systems development checkpoint at which testing occurs. Unless the
test team knows which development documents have been completed, testing is
extremely difficult to perform.

Schedule The dates on which the following items need to be started and completed:
• plan
• train test group
• obtain data
• test execution
• test report(s)

Budget The test resources allocated at this milestone, including both test execution and test 
analysis and reporting.

Resources The resources needed for this checkpoint, including:
• equipment (computers and other hardware needed for testing)
• software and test personnel (staff to be involved in this milestone test, designated by

name or job function)

Testing Materials Materials needed by the test team to perform the test at this checkpoint, including:
• system documentation (specific products and documents needed to perform the test

at this point)
• software to be tested (names of the programs and subsystems to be tested at this

point)
• test input (files or data used for test purposes)
• test documentation (any test documents needed to conduct a test at this point)
• test tools (software or other test tools needed to conduct the test at this point)

Note: Not all these materials are needed for every test.

Test Training It is essential that the test team be taught how to perform testing. They may need 
specific training in the use of test tools and test materials, the performance of specific
tests, and the analysis of test results.

(continues)



274 Chapter 8

WORK PAPER 8-10 (continued)

Software Project:

Test Milestone Number:

Start Finish

Schedule: Test Plan:

Tester Training:

Obtaining Data:

Execution:

Report:

Budget:

Resources

Equipment:

Support Personnel:

Test Personnel:

Testing Materials

Project Documentation:

Software to Be Tested:

Test Input:

Test Documentation:

Test Tools:

Test Training



Step 2: Developing the Test Plan 275

WORK PAPER 8-11 Moderator Checklist

Check that entry criteria (inspection package cover sheet) have been met.

Meet with author and team leader to select qualified inspection participants and 
assign roles.

Determine need for an overview session.

Schedule inspection meeting; complete inspection meeting notice.

Gather materials from author, and distribute to inspection participants.

Talk with inspectors to ensure preparation time.

Complete self-preparation of material for inspection.

Conduct inspection meeting.

Ensure completion and distribution of inspection defect list and inspection summary.

Verify conditional completion (moderator review or reinspection).

Complete inspector certification report.



276 Chapter 8

WORK PAPER 8-12 Inspection Preparation Report

Software Project: Date:

Name of Item Being Inspected:

Item Version Identification:

Material Size (lines/pages): Expected Preparation Time:

Preparation Log:

Date Time Spent

__________ __________

__________ __________

Total Preparation Time: __________

Defect List:

Location Defect Description Exit Criteria Violated

___________________________ ____________________ ____________________

___________________________ ____________________ ____________________

___________________________ ____________________ ____________________

___________________________ ____________________ ____________________

___________________________ ____________________ ____________________

___________________________ ____________________ ____________________

___________________________ ____________________ ____________________



Step 2: Developing the Test Plan 277

WORK PAPER 8-13 Inspection Defect List

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Project Name The name of the project in which an interim deliverable is being inspected.

Date The date on which this workpaper is completed.

Name of Item Being The number or name by which the item being Inspected is known.
Inspected

Item Version The version number if more than one version of the item is being inspected.
Identification

Material Size The size of the item being inspected. Code is frequently described as number of
lines of executable code. Written documentation is frequently described as
number of pages.

Expected Preparation Total expected preparation time of all the inspectors.
Time

Moderator The name of the person leading the inspection.

Phone The phone number of the moderator.

Inspection Type Indicates whether an initial inspection or a reinspection of the item to verify
defect correction.

Release # A further division of version number indicating the sequence in which variations 
of a version are released into test.

Product Type The type of product being inspected, such as source code.

Location The location of a defect determined to be a defect by the formal inspection
meeting.

Origin/Defect Description The name by which the defect is known in the organization; inspectors’ opinion
as to where that defect originated.

Defect Phase The phase in the development process at which the defects were uncovered.

Defect Type A formal name assigned to the defect. This Work Paper suggests 17 different
defect types. Your organization may wish to modify or expand this list.

Severity Class Indicate whether the defect is an extra, missing, or wrong class. (See Chapter 8 
for explanation of defect class.)

Severity MAJ/MIN Indicate whether the defect is of major or minor severity. (See Chapter 8 for a
discussion of the meaning of major and minor.

Note: This form is completed by the inspector filling the reporter role during the
formal inspection process.

(continues)



278 Chapter 8

WORK PAPER 8-13 (continued)

Project Name: Date:

Name of Item Being Inspected:

Item Version Identification:

Material Size (lines/pages): Expected Preparation Time:

Moderator: Phone:

Inspection Type: Inspection Release #:

Reinspection Product Type:

Severity
Origin Defect Defect

Location Defect Description Phase Type Class Maj/Min

___________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

__________ _____________________ _________ __________ ________ _________

Defect Types:

CM Comments LO Logic PF Performance

DA Data LR Linkage Requirements RQ Requirements

DC Documentation MN Maintainability SC Spec Clarification

EN English Readability MS Messages/Return Codes ST Standards

IF Interface OT Other TP Test Plan

LD Logical Design PD Physical Design

Defect Class: E Extra M Missing W Wrong



Step 2: Developing the Test Plan 279

WORK PAPER 8-14 Inspection Meeting Notice

Project Name: Date:

Name of Item Being Inspected:

Item Version Identification:

Material Size (lines/pages): Expected Preparation Time:

Moderator: Phone:

Inspection Type: Inspection

Reinspection

Schedule:

Date:

Time:

Location:

Duration:

Participants:

Name Phone Role

________________________ _____________________ ___________________

________________________ _____________________ ___________________

________________________ _____________________ ___________________

________________________ _____________________ ___________________

________________________ _____________________ ___________________

(continues)



280 Chapter 8

WORK PAPER 8-14 (continued)

Comments:



Step 2: Developing the Test Plan 281

WORK PAPER 8-15 Inspection Defect Summary

Project Name: Date:

Name of Item Being Inspected:

Item Version Identification:

Material Size (lines/pages):

Moderator: Phone:

Inspection Type: Inspection

Reinspection

Minor Defect Class Major Defect Class

Defect Types E M W Total E M W Total

CM (Comments)

DA (Data)

DC (Documentation)

EN (English Readability)

IF (Interfaces)

LD (Logical Design)

LO (Logic)

LR (Linkage Requirements)

MN (Maintainability)

MS (Messages/Return
Codes)

OT (Other)

PD (Physical Design)

PF (Performance)

RQ (Requirements)

SC (Spec Clarification)

ST (Standards)

TP (Test Plan)

Totals:



282 Chapter 8

WORK PAPER 8-16 Inspection Certification Report

Project Name: Date:

Name of Item Being Inspected:

Item Version Identification:

The following people have inspected the named item and have agreed that all technical,
contractual, quality, and other requirements and inspection criteria have been satisfied:

Moderator:

Recorder:

Reader:

Author:

Software Quality Representative:

Inspectors:

Moderator Signature/Date



Step 2: Developing the Test Plan 283

WORK PAPER 8-17 Quality Control Checklist

YES NO NA COMMENTS

Software Function/Software Attribute

Work Papers

1. Have all the business software functions
been identified?

2. Does the sponsor/user agree that these
are the appropriate software functions?

3. Is the software function identified by a
commonly used name?

4. Are all the software functions described?

5. Have the criteria for evaluating the 
software functions been identified?

6. Are the evaluation criteria measurable?

7. Has the structure addressed:
Reliability?
Efficiency?
Integrity?
Usability?
Maintainability?
Testability?
Flexibility?
Portability?
Reusability?
Interoperability?

(continues)



284 Chapter 8

WORK PAPER 8-17 (continued)

YES NO NA COMMENTS

8. Have the criteria for each structural
attribute been stated?

9. Are the evaluation criteria measurable?

10. Has the description for each structural
attribute been given?

Work Papers on Tests to Be Conducted

1. Has the test been named?

2. Has the test been given a unique
identifying number?

3. Has the test objective been stated clearly
and distinctly?

4. Are the tests appropriate to evaluate the
functions defined?

5. Is the level of detail on the document
adequate for creating actual test con-
ditions once the system is implemented?

6. Are the verification tests directed at
project products?

7. Is the verification test named?



Step 2: Developing the Test Plan 285

WORK PAPER 8-17 (continued)

YES NO NA COMMENTS

8. Is the name of the verification test 
adequate for test personnel to
understand the intent of the test?

9. Have the products to be tested
been identified?

10. Has the purpose of the verification test
been stated?

11. Has the sequence in which each online
test will be performed been identified?

12. Has the name for each test been
included (optional)?

13. Have the criteria that would cause
testing to be stopped been indicated?

14. Are the stop criteria measurable (i.e.,
there is no question that the criteria
have been met)?

15. Are the stop criteria reasonable?

Software Function/Test Matrix

1. Does the matrix contain all the software
functions defined on Work Paper 8-2?

2. Does the matrix contain all the structural
attributes defined on Work Paper 8-3?

3. Does the matrix contain all the tests
described in test Work Papers 8-4, 8-5,
and 8-6?

(continues)



286 Chapter 8

WORK PAPER 8-17 (continued)

YES NO NA COMMENTS

4. Are the tests related to the functions?

5. Are there tests for evaluating each
software function?

6. Are there tests for evaluating each
structural attribute?

Administrative Work Papers

1. Has a work paper been prepared for each
test milestone?

2. Has the date for starting the testing
been identified?

3. Has the date for starting test team
training been identified?

4. Has the date for collecting the testing
material been identified?

5. Has the concluding date of the test been
identified?

6. Has the test budget been calculated?

7. Is the budget consistent with the test
workload?

8. Is the schedule reasonably based on the
test workload?

9. Have the equipment requirements for
the test been identified?



Step 2: Developing the Test Plan 287

WORK PAPER 8-17 (continued)

YES NO NA COMMENTS

10. Have the software and documents
needed for conducting the test been
identified?

11. Have the personnel for the test been
identified?

12. Have the system documentation
materials for testing been identified?

13. Has the software to be tested been
identified?

14. Has the test input been defined?

15. Have the needed test tools been
identified?

16. Has the type of training that needs to be
conducted been defined?

17. Have the personnel who require training
been identified?

18. Will the test team be notified of the
expected defect rate at each checkpoint?

19. Has a test summary been described?

20. Does this summary indicate which
software is to be included in the
test?

21. Does the summary indicate the general
approach to testing?

(continues)



288 Chapter 8

WORK PAPER 8-17 (continued)

YES NO NA COMMENTS

22. Has the pretest background been
defined?

23. Does the pretest background describe
previous experience in testing?

24. Does the pretest background
describe the sponsor’s/user’s
attitude to testing?

25. Has the test environment been
defined?

26. Does the test environment indicate
which computer center will be used for
testing?

27. Does the test environment indicate
permissions needed before beginning
testing (if appropriate)?

28. Does the test environment state all the
operational requirements that will be
placed on testing?

29. Have all appropriate references been
stated?

30. Has the purpose for listing references
been stated?

31. Are the number of references complete?

32. Are the test tools consistent with the
departmental standards?

33. Are the test tools complete?



Step 2: Developing the Test Plan 289

WORK PAPER 8-17 (continued)

YES NO NA COMMENTS

34. Has the extent of testing been defined?

35. Have the constraints of testing been
defined?

36. Are the constraints consistent with the
resources available for testing?

37. Are the constraints reasonable based on
the test objectives?

38. Has the general method for recording
test results been defined?

39. Is the data reduction method consistent
with the test plan?

40. Is the information needed for data
reduction easily identifiable in the test
documentation?

Test Milestones Work Paper

1. Has the start date of testing been
defined?

2. Are all the test tasks defined?

3. Are the start and stop dates for each test
indicated?

4. Is the amount of time allotted for each
task sufficient to perform the task?

5. Will all prerequisite tasks be completed
before the task depending on them is
started?





291

Verification testing is the most effective way to remove defects from software. If most
of the defects are removed prior to validation testing (i.e., unit, integration, system,
and acceptance testing), validation testing can focus on testing to determine whether
the software meets the true operational needs of the user and can be effectively inte-
grated into the computer operations activity.

Because the experience of many testers is limited to unit, integration, systems, and
acceptance testing, these testers are not experienced in verification techniques. The veri-
fication techniques are not complex, and once understood, can be easily implemented
into the test process.

Typically, verification testing—testing in a static mode—is a manual process. Verifi-
cation testing provides two important benefits: defects can be identified close to the
point where they originate, and the cost to correct defects is significantly less than
when detected in dynamic testing.

Verification testing normally occurs during the requirements, design, and program
phases of software development, but it can also occur with outsourced software. There
are many different techniques for verification testing, most of which focus on the docu-
mentation associated with building software. This chapter discusses the many different
ways to perform verification testing during the requirements, design, and programming
phases of software development.

Step 3: 
Verification Testing

C H A P T E R

9



Overview

Most but not all verification techniques are manual. However, even in manual tech-
niques, automated tools can prove helpful. For example, when conducting a software
review, reviewers might want to use templates to record responses to questions. 

Because most testing focuses on validation/dynamic testing, verification technique
names are not consist. Consider, for example, a review, which is an independent inves-
tigation of some developmental aspect. Some call these reviews System Development
Reviews, others call them End-of-Phase Reviews, still others refer to them as Peer
Reviews, and some use Requirements Review. Because some of the verification tech-
niques are similar, they may also be referred to as a walkthrough or inspection.

For the purposes of this chapter, specific names are assigned to the review techniques,
as follows:

■■ Reviews. A review is a formal process in which peers and/or stakeholders chal-
lenge the correctness of the work being reviewed. For example, in a requirements
review, the correctness and completeness of requirements is challenged. It is a
formal process usually based on the experience of the organization or outside
experts, and uses a predetermined set of questions to accomplish the objectives
of the review.

■■ Walkthroughs. A walkthrough is an informal process by which peers and other
stakeholders interact with project personnel to help ensure the best possible
project is implemented. Frequently, the walkthrough is requested by the project
team, to resolve issues that they are not sure they have resolved in the most
effective and efficient manner. For example, they may be uncertain that they
have the best design for a specific requirement and want an independent
process to “brainstorm” better methods.

■■ Inspections. Inspections are a very formal process in which peers and project
personnel assume very specific roles. The objective of an inspection is to ensure
that the entrance criteria for a specific workbench were correctly implemented
into the exit criteria. The inspection process literally traces the entrance criteria
to the exit criteria to ensure that nothing is missing, nothing is wrong, and
nothing has been added that was not in the entrance criteria.

■■ Desk debugging. This can be a formal or informal process used by a worker 
to check the accuracy and completeness of his/her work. It is most beneficial
when the process is formalized so that the worker has a predefined series of
steps to perform. The objective is basically the same as an inspection, tracing
the entrance criteria to the exit criteria; unlike the inspection, however, it is 
performed by the worker who completed the task.

■■ Requirements tracing. Requirements tracing, sometimes called quality func-
tion deployment (QFD), ensures that requirements are not lost during imple-
mentation. Once defined, the requirements are uniquely identified. They are
then traced from work step to work step to ensure that all the requirements
have been processed correctly through the completion of that process.

292 Chapter 9



■■ Testable requirements. A testable requirement has a built-in validation tech-
nique. Incorporation of testable requirements is sometimes referred to as devel-
oping a “base case,” meaning that the method of testing all the requirements has
been defined. If you use this method, the requirements phase of software devel-
opment or contracting cannot be considered complete until the testable compo-
nent of each requirement has been defined. Some organizations use testers to
help define and/or agree to a test that will validate the requirements.

■■ Test factor analysis. This verification technique is unique to the test process
incorporated in this book. It is based on the test factors described in an earlier
chapter. Under this analysis, a series of questions helps determine whether
those factors have been appropriately integrated into the software develop-
ment process. Note that these test factors are attributes of requirements such 
as ease of use.

■■ Success factors. Success factors are the factors that normally the customer/user
will define as the basis for evaluating whether the software system meets their
needs. Success factors correlate closely to project objectives but are in measur-
able terms so that it can be determined whether the success factor has been
met. Acceptance criteria are frequently used as the success factors.

■■ Risk matrix. The objective of a risk matrix is to evaluate the effectiveness of
controls to reduce those risks. (Controls are the means organizations use to
minimize or eliminate risk.) The risk matrix requires the identification of risk,
and then the matching of controls to those risks so an assessment can be made
as to whether the risk has been minimized to an acceptable level. 

■■ Static analysis. Most static analysis is performed through software. For exam-
ple, most source code compilers have a static analyzer that provides informa-
tion as to whether the source code has been correctly prepared. Other static
analyzers examine code for such things as “non-entrant modules” meaning
that for a particular section of code there is no way to enter that code.

These techniques are incorporated into either the verification process of requirements,
design, or programming the software. However, just because a specific technique is
included in one phase of development does not mean it cannot be used in other phases.
Also, some of the techniques can be used in conjunction with one another. For example,
a review can be coupled with requirements tracing.

Objective

Research has shown that the longer it takes to find and correct a defect, the more costly
the correction process becomes. The objectives of verification testing during the require-
ments, design, and programming phases are twofold. The first is to identify defects as
close to the point were they originated as possible. This will speed up development and
at the same time reduce the cost of development. The second objective is to identify
improvement opportunities. Experienced testers can advise the development group of
better ways to implement user requirements, to improve the software design, and/or to
make the code more effective and efficient.

Step 3: Verification Testing 293



Concerns

Testers should have the following concerns when selecting and executing verification
testing:

■■ Assurance that the best verification techniques will be used. The verification
technique can be determined during the development of the test plan or as
detailed verification planning occurs prior to or during an early part of the devel-
opmental phase. Based on the objectives to be accomplished, testers will select
one or more of the verification techniques to be used for a specific developmental
phase.

■■ Assurance that the verification technique will be integrated into a develop-

mental process. Development should be a single process, not two parallel
processes of developing and testing during implementation. Although two
processes are performed by potentially different groups, they should be care-
fully integrated so that development looks like a single process. This is impor-
tant so that both developers and testers know when and who is responsible for
accomplishing a specific task. Without this, developers may not notify testers
that a particular phase has begun or ended, or budget the developer’s time, so
that testers are unable to perform the verification technique. If verification has
been integrated into the developmental process, verification will be performed.

■■ Assurance that the right staff and appropriate resources will be available

when the technique is scheduled for execution. Scheduling the staff and fund-
ing the execution of the verification technique should occur in parallel with the
previous action of integrating the technique into the process. It is merely the
administrative component of integration, which includes determining who will
execute the technique, when the technique will be executed, and the amount of
resources allocated to the execution of the technique.

■■ Assurance that those responsible for the verification technique are ade-

quately trained. If testers who perform the verification technique have not
been previously trained, their training should occur prior to executing the veri-
fication technique.

■■ Assurance that the technique will be executed properly. The technique should
be executed in accordance with the defined process and schedule. 

Workbench

Figure 9-1 illustrates the workbench for performing verification testing. The input to
the workbench is the documentation prepared by the development team for the phase
being tested. Near the end of the requirements, design, and programming phases, the
appropriate verification technique will be performed. The quality control procedures
are designed to ensure the verification techniques were performed correctly. At the end
of each development phase test, testers should list the defects they’ve uncovered, plus
any recommendations for improving the effectiveness and efficiency of the software.

294 Chapter 9



Figure 9-1 The workbench for verification testing.

DO CHECK

Verification

Technique

Performed

Correctly

REWORK

Test During

Requirements

Phase

Task 1

Test During

Design Phase

Task 2

Test During

Programming

Phase

Task 3

Documentation

for the Phase

Being Tested

List of Defects

and

Recommendations



Input

This section describes the inputs required to complete the verification testing during
each phase of development: requirements, design, and programming.

The Requirements Phase

The requirements phase is undertaken to solve a business problem. The problem and
its solution drive the system’s development process. Therefore, it is essential that the
business problem be well defined. For example, the business problem might be to
improve accounts receivable collections, reduce the amount of on-hand inventory
through better inventory management, or improve customer service.

The analogy of building a home illustrates the phases in a system’s development life
cycle. The homeowner’s needs might include increased living space, and the results of
the requirements phase offer a solution for that need. The requirements phase in build-
ing a home would specify the number of rooms, the location of the lot on which the
house will be built, the approximate cost to construct the house, the type of architec-
ture, and so on. At the completion of the requirements phase, the potential home-
owner’s needs would be specified. The deliverables produced from the homeowner’s
requirements phase would be a functional description of the home and a plot map of
the lot on which the home is to be constructed. These are the inputs that go to the archi-
tect to design the home.

The requirements phase should be initiated by management request and should
conclude with a proposal to management on the recommended solution for the busi-
ness need. The requirements team should study the business problem, the previous
methods of handling the problem, and the consequences of that method, together with
any other input pertinent to the problem. Based on this study, the team develops a
series of solutions. The requirements team should then select a preferred solution from
among these alternatives and propose that solution to management.

The most common deliverables from the requirements phase needed by the testers
for this step include the following:

■■ Proposal to management describing the problem, the alternatives, and propos-
ing a solution

■■ Cost/benefit study describing the economics of the proposed solution

■■ Detailed description of the recommended solution, highlighting the recom-
mended method for satisfying those needs. (Note: This becomes the input to
the systems design phase.)

■■ List of system assumptions, such as the life of the project, the value of the sys-
tem, the average skill of the user, and so on

The Design Phase

The design phase verification process has two inputs: test team understanding of how
design, both internal and external, occurs; and the deliverables produced during the
design phase that will be subject to a static test.

296 Chapter 9



The design process could result in an almost infinite number of solutions. The sys-
tem design is selected based on an evaluation of multiple criteria, including available
time, desired efficiency, skill of project team, hardware and software available, as well
as the requirements of the system itself. The design will also be affected by the method-
ology and tools available to assist the project team.

In home building, the design phase equivalent is the development of blueprints and
the bill of materials for supplies needed. It is much easier to make changes in the early
phases of design than in later phases.

From a project perspective, the most successful testing is that conducted early in the
design phase. The sooner the project team becomes aware of potential defects, the
cheaper it is to correct those defects. If the project waited until the end of the design
phase to begin testing, it would fall into the same trap as many projects that wait until
the end of programming to conduct their first tests: When defects are found, the cor-
rective process can be so time-consuming and painful that it may appear cheaper to
live with the defects than to correct them.

Testing normally occurs using the deliverables produced during the design phase.
The more common design phase deliverables include the following:

Input specifications

Processing specifications

File specifications

Output specifications

Control specifications

System flowcharts

Hardware and software requirements

Manual operating procedure specifications

Data retention policies

The Programming Phase

The more common programming phase deliverables that are input for testing are as
follows:

Program specifications

Program documentation

Computer program listings

Executable programs

Program flowcharts

Operator instructions

In addition, testers need to understand the process used to build the program 
under test.

Step 3: Verification Testing 297



Do Procedures

Testers should perform the following steps during requirements phase testing:

1. Prepare a risk matrix.

2. Perform a test factor analysis.

3. Conduct a requirements walkthrough.

4. Perform requirements testing.

5. Ensure requirements are testable.

Testers should perform the following steps during design phase testing:

1. Score success factors.

2. Analyze test factors.

3. Conduct design review.

4. Inspect design deliverables.

Testers should perform the following steps during programming phase testing:

1. Desk debug the program.

2. Perform programming phase test factor analysis.

3. Conduct a peer review.

Task 1: Test During the Requirements Phase

System development testing should begin during the requirements phase, when most
of the critical system decisions are made. The requirements are the basis for the sys-
tems design, which is then used for programming to produce the final implemented
application. If the requirements contain errors, the entire application will be erroneous.

Testing the system requirements increases the probability that the requirements will
be correct. Testing at this point is designed to ensure the requirements are properly
recorded, have been correctly interpreted by the software project team, are reasonable
when measured against good practices, and are recorded in accordance with the IT
department’s guidelines, standards, and procedures.

The requirements phase should be a user-dominated phase. In other words, the user
should specify the needs and the information services personnel should record the
needs and provide counseling about the alternative solutions, just as the builder and
architect would counsel the homeowner on building options. This means that the user,
being the dominant party, should take responsibility for requirements phase testing.

Having responsibility for testing does not necessarily mean responsibility for per-
forming the test. Performance of the test is different from the party having responsibil-
ity for the test—responsibility means the acceptance or rejection of the product based
on the test results.

298 Chapter 9



If there are multiple users, responsibility may be assigned to a committee, which may
be the same committee that develops the requirements. One of the primary objectives of
testing during requirements is to ensure that the requirements have been properly stated
and recorded. Normally, only the user can look at recorded requirements and make that
determination. Therefore, it is important for the user to accept testing responsibility dur-
ing the requirements phase and to be an active participant in the test process.

People undertaking the test process must understand the requirements phase objec-
tives and then evaluate those objectives through testing. Should the requirements
phase be found inadequate as a result of testing, the phase should be continued until
requirements are complete. Without testing, inadequacies in the requirements phase
may not be detected.

Customarily, a management review occurs after the requirements phase is complete.
Frequently, this is done by senior management, who are not as concerned with the
details as with the economics and the general business solution. Unfortunately, inade-
quate details can significantly affect the cost and timing of implementing the proposed
solution.

The recommended test process outlined in this book is based on the 15 requirements
phase test factors and the test concerns for each factor (see the section “Requirements
Phase Test Factors”). The test team determines which of those factors apply to the
application being tested, and then conducts those tests necessary to determine whether
the test factor has been adequately addressed during the requirements phase. This
chapter defines the test factors and recommends tests to enable you to address the
requirements phase testing concerns.

Requirements Phase Test Factors

The following list provides a brief description of the 15 requirement phase test factors
(concerns):

■■ Requirements comply with methodology (methodology test factor). The
process used by the information services function to define and document
requirements should be adhered to during the requirements phase. The more
formal these procedures, the easier the test process. The requirements process 
is one of fact gathering, analysis, decision making, and recording the require-
ments in a predefined manner for use in design.

■■ Functional specifications defined (correctness test factor). User satisfaction
can only be ensured when system objectives are achieved. The achievement 
of these objectives can only be measured when the objectives are measurable.
Qualitative objectives—such as improving service to users—are not measurable
objectives, whereas processing a user order in four hours is measurable.

■■ Usability specifications determined (ease-of-use test factor). The amount of
effort required to use the system and the skill level necessary should be defined
during requirements. Experience shows that difficult-to-use applications or 
features are not often used, whereas easy-to-use functional systems are highly
used. Unless included in the specifications, the ease-of-use specifications will
be created by default by the systems analyst or programmer.

Step 3: Verification Testing 299



■■ Maintenance specifications determined (maintainable test factor). The 
degree of expected maintenance should be defined, as well as the areas where
change is most probable. Specifications should then determine the methods of
maintenance—such as user-introduced change of parameters—and the time
span in which certain types of maintenance changes need to be installed; for
example, a price change must be operational within 24 hours after notification
to information services.

■■ Portability needs determined (portable test factor). The ability to operate the
system on different types of hardware, to move it at a later time to another type
of hardware, or to move from version to version of software should be stated 
as part of the requirements. The need to have the application developed as a
portable one can significantly affect the implementation of the requirements.

■■ System interface defined (coupling test factor). The information expected as
input from other computer systems, and the output to be delivered to other
computer systems, should be defined. This definition not only includes the
types of information passed, but the timing of the interface and the expected
processing to occur as a result of that interface. Other interface factors that may
need to be addressed include privacy, security, and retention of information.

■■ Performance criteria established (performance test factor). The expected effi-
ciency, economy, and effectiveness of the application system should be estab-
lished. These system goals are an integral part of the design process and, unless
established, default to the systems analyst/programmer. When this happens,
user dissatisfaction is almost guaranteed to occur with the operational system.
An end product of the requirements phase should be a calculation of the cost/
benefit to be derived from the application. The financial data should be devel-
oped based on procedures designed to provide consistent cost and benefit
information for all applications.

■■ Operational needs defined (ease-of-operations test factor). The operational
considerations must be defined during the requirements phase. This becomes
especially important in user-driven application systems. The processes that
must be followed at terminals to operate the system—in other words, the pro-
cedures needed to get the terminal into a state ready to process transactions—
should be as simple as possible. Central site operating procedures also need to
be considered.

■■ Tolerances established (reliability test factor). The expected reliability from
the system controls should be defined. For example, the requirements phase
should determine the control requirements for the accuracy of invoicing, the
percent of orders that need to be processed within 24 hours, and other such
concerns. An invoicing tolerance might state that invoices are to be processed
with a tolerance of plus or minus 1 percent from the stated current product
prices. If you don’t establish these tolerances, there is no basis to design and
measure the reliability of processing over an extended period of time. If you
don’t define an expected level of defects, zero defects are normally expected.
Controls to achieve zero defects are normally not economical. It is usually more
economical and to the advantage of the user to have some defects occur in pro-
cessing, but to control and measure the number of defects.

300 Chapter 9



■■ Authorization rules defined (authorization test factor). Authorization require-
ments specify the authorization methods to ensure that transactions are, in fact,
processed in accordance with the intent of management.

■■ File integrity requirements defined (file integrity test factor). The methods 
of ensuring the integrity of computer files need to be specified. This normally
includes the control totals that are to be maintained both within the file and
independently of the automated application. The controls must ensure that the
detail records are in balance with the control totals for each file.

■■ Reconstruction requirements defined (audit trail test factor). Reconstruction
involves both substantiating the accuracy of processing and recovery after an
identified problem. Both of these needs involve he retention of information to
backup processing. The need to substantiate processing evolves both from the
organization and regulatory agencies, such as tax authorities requiring that suf-
ficient evidential matter be retained to support tax returns.

Application management needs to state if and when the system recovery process
should be executed. If recovery is deemed necessary, management needs to state
the time span in which the recovery process must be executed. This time span
may change based upon the time of the day and the day of the week. These
recovery requirements affect the type and availability of data retained.

■■ Impact of failure defined (continuity-of-processing test factor). The necessity
to ensure continuity of processing is dependent upon the impact of failure. If
system failure causes only minimal problems, ensuring continuous processing
may be unnecessary. On the other hand, where continuity of operations is
essential, it may be necessary to obtain duplicate data centers so that one can
continue processing should the other experience a failure.

■■ Desired service level defined (service level test factor). Service level implies
response time based on the requirements. The service level required will vary
based on the requirements. Each level of desired service needs to be stated; for
example, there is a service level to process a specific transaction, a service level
to correct a programming error, a service level to install a change, and a service
level to respond to a request.

■■ Access defined (security test factor). Security requirements should be devel-
oped showing the relationship between system resources and people. Require-
ments should state all of the available system resources subject to control, and
then indicate who can have access to those resources and for what purposes.
For example, access may be authorized to read, but not change, data.

At the conclusion of the testing, the test team can judge the adequacy of each of the
criteria, and thus of all the test concerns included in the test process for the require-
ments phase. The test team should make one of the following four judgments about
each criterion:

1. Very adequate. The project team has done more than normally would be
expected for the criterion.

2. Adequate evaluation. The project team has done sufficient work to ensure the
reasonableness of control over the criterion.

Step 3: Verification Testing 301



3. Inadequate assessment. The project team has not done sufficient work, and
should do more work in this criterion area.

4. Not applicable (N/A). Because of the type of application or the system design
philosophy by the organization, the implementation of this criterion is not
applicable to the application being reviewed.

Each test process contains a test that can be performed for each evaluation criterion.
The objective of the test is to assist the team in evaluating each criterion. The test
should be conducted prior to assessing the adequacy of the project being tested. It
should be noted that because of time limitations, review experience, and tests previ-
ously performed, the test team may choose not to assess each criterion.

The 15 test processes are recommended in Work Paper 9-1 as a basis for testing the
requirements phase. One test program is constructed to evaluate each of the require-
ments phase concerns. Work Paper 9-2 is a quality control checklist for this task.

Preparing a Risk Matrix

A risk matrix is a tool designed to assess the adequacy of controls in computer systems.
The term controls is used in its broadest context, meaning all the mechanisms, methods,
and procedures used in the application to ensure that it functions in accordance with the
intent of management. It is estimated that in automated systems, controls account for at
least one-half of the total developmental effort. Therefore, effort expended to ensure the
adequacy of controls is essential to the success and credibility of the application system.

One of the major benefits of the risk matrix is the identification of risks and what the
system must do for each of those risks. The risk matrix is primarily a design tool, but it
can be used as a test tool because it is infrequently used in the design process.

The risk matrix can be used in both the requirements phase and the design phase. The
following discussion explains how to use the risk matrix. Ideally, the risk matrix starts in
the requirements phase and is expanded and completed in the design phase. The execu-
tion of the risk matrix requires five actions. The actions should be performed in the fol-
lowing sequence.

Establishing the Risk Team

The key to a successful risk matrix is the establishment of the correct risk team, whose
responsibility will be to complete the matrix. The objective of completing the matrix is
to determine the adequacy of the control requirements and design to reduce the risks
to an acceptable level.

The risk team may be part of the requirements team or part of the test team, or it may
be a team specifically selected for the purpose of completing the risk matrix. The team
should consist of three to six members and at a minimum possess the following skills:

Knowledge of the user application

Understanding of risk concepts

Ability to identify controls

302 Chapter 9



Familiarity with both application and information services risks

Understanding of information services concepts and systems design

Understanding of computer operations procedures

The candidates for the risk team should, at a minimum, include someone from the
user area and any or all of the following:

Internal auditor

Risk consultant

Data processor

Security officer

Computer operations manager

Identifying Risks

The objective of the risk team is first to identify the application-oriented, not environ-
mental, risks associated with the application system. For example, the risks that relate to
all applications equally (for example, environmental risks) need not be identified unless
they have some special relevance to the applicants. The risk team can use one of the fol-
lowing two methods for risk identification:

1. Risk analysis scenario. In this method, the risk team “brainstorms” the poten-
tial application risks using their experience, judgment, and knowledge of the
application area. It is important to have the synergistic effect of a group so that
group members can challenge one another to develop a complete list of risks
that are realistic for the application.

2. Risk checklist. The risk team is provided with a list of the more common risks
that occur in automated applications. From this list, the team selects those risks
applicable to the application. In this method, the team needs fewer skills because
the risk list provides the stimuli for the process, and the objective of the team 
is to determine which of the risks on the list are applicable to the application.
Figure 9-2 provides a list of risks for the purpose of identification.

Establishing Control Objectives (Requirements Phase Only)

During the requirements phase, the control objectives for each risk should be estab-
lished. These objectives define the acceptable level of loss for each of the identified
risks. Another way of stating the acceptable level of loss is the measurable objective for
control. When control can be stated in measurable terms, the controls to achieve that
objective have a requirement to use for control-decision purposes.

The adequacy of control cannot be tested until the acceptable level of loss from each
risk has been defined. Therefore, although the definition of the control objectives is a
user and project responsibility, it may take the formation of a risk team to get them
defined. After the control objectives have been defined, the requirements can be tested
to determine whether those objectives are achievable.

Step 3: Verification Testing 303



304 Chapter 9

CATEGORY: Uncontrolled System Access

1. Date or programs may be stolen from the computer room or other storage areas.

2. Information services facilities may be destroyed or damaged by either intruders
or employees.

3. Individuals may not be adequately identified before they are allowed to enter
the information services area.

4. Remote terminals may not be adequately protected from use by unauthorized
persons.

5. An unauthorized user may gain access to the system and an authorized user’s
password.

6. Passwords may be inadvertently revealed to unauthorized individuals. A user
may write his or her password in some convenient place, or the password may
be obtained from card decks, discarded printouts, or by observing the user as
he or she types it.

7. A user may leave a logged-in terminal unattended, allowing an unauthorized
person to use it.

8. A terminated employee may retain access to an information services system
because his or her name and password are not immediately deleted from
authorization tables and control lists.

9. An unauthorized individual may gain access to the system for his or her own
purposes (e.g., theft of computer services or data or programs, modification of
data, alteration of programs, sabotage, denial of services).

10. Repeated attempts by the same user or terminal to gain unauthorized access
to the system or to a file may go undetected.

CATEGORY: Ineffective Security Practices for the Application

1. Poorly defined criteria for authorized access may result in employees not
knowing what information they, or others, are permitted to access.

2. The person responsible for security may fail to restrict user access to only those
processes and data which are needed to accomplish assigned tasks.

3. Large disbursements, unusual price changes, and unanticipated inventory
usage may not be reviewed for correctness.

4. Repeated payments to the same party may go unnoticed because there is no
review.

5. Sensitive data may be carelessly handled by the application staff, by the mail
service, or by other personnel within the organization.

6. Post-processing reports analyzing system operations may not be reviewed to
detect security violations.

Figure 9-2 List of generalized application risks.



Step 3: Verification Testing 305

CATEGORY: Ineffective Security Practices for the Application (continued)

7. Inadvertent modification or destruction of files may occur when trainees are
allowed to work on live data.

8. Appropriate action may not be pursued when a security variance is reported to
the system security officer or to the perpetrating individual’s supervisor; in fact,
procedures covering such occurrences may not exist.

CATEGORY: Procedural Errors at the Information Services Facility

Procedures and Controls

1. Files may be destroyed during database reorganization or during release of
disk space.

2. Operators may ignore operational procedures (for example, by allowing
programmers to operate computer equipment).

3. Job control language parameters may be erroneous.

4. An installation manager may circumvent operational controls to obtain
information.

5. Careless or incorrect restarting after shutdown may cause the state of a
transaction update to be unknown.

6. An operator may enter erroneous information at CPU console (e.g., control
switch in wrong position, terminal user allowed full system access, operator
cancels wrong job from queue).

7. Hardware maintenance may be performed while production data is online and
the equipment undergoing maintenance is not isolated.

8. An operator may perform unauthorized acts for personal gain (e.g., make extra
copies of competitive bidding reports, print copies of unemployment checks,
delete a record from a journal file).

9. Operations staff may sabotage the computer (e.g., drop pieces of metal into a
terminal).

10. The wrong version of a program may be executed.

11. A program may be executed twice using the same transactions.

12. An operator may bypass required safety controls.

13. Supervision of operations personnel may not be adequate during nonworking
hour shifts.

14. Due to incorrectly learned procedures, an operator may alter or erase the
master files.

15. A console operator may override a label check without recording the action in
the security log.

Figure 9-2 (continued)



306 Chapter 9

CATEGORY: Procedural Errors at the Information Services Facility

Storage Media Handling

1. Critical tape files may be mounted without being write-protected.

2. Inadvertently or intentionally mislabeled storage media are erased. In a case
where they contain backup files, the erasure may not be noticed until the
backup is needed.

3. Internal labels on storage media may not be checked for correctness.

4. Files with missing or mislabeled expiration dates may be erased.

5. Incorrect processing of data or erroneous updating of files may occur when card
decks have been dropped, partial input decks are used, write rings are mistakenly
placed in tapes, paper tape is incorrectly mounted, or wrong tape is mounted.

6. Scratch tapes used for jobs processing sensitive data may not be adequately
erased after use.

7. Temporary files written during a job step for use in subsequent steps may be
erroneously released or modified through inadequate protection of the files or
because of an abnormal termination.

8. Storage media containing sensitive information may not get adequate protection
because operations staff is not advised of the nature of the information content.

9. Tape management procedures may not adequately account for the current
status of all tapes.

10. Magnetic storage media that have contained very sensitive information may
not be degaussed before being released.

11. Output may be sent to the wrong individual or terminal.

12. Improperly operating output or post-processing units may result in loss of
output.

13. Surplus output material may not be disposed of properly.

14. Tapes and programs that label output for distribution may be erroneous or not
protected from tampering.

CATEGORY: Program Errors

1. Records may be deleted from sensitive files without a guarantee that the
deleted records can be reconstructed.

2. Programmers may insert special provisions in programs that manipulate data
concerning themselves (e.g., payroll programmer may alter his or her own
payroll records).

Figure 9-2 (continued)



Step 3: Verification Testing 307

CATEGORY: Program Errors (continued)

3. Data may not be stored separately from code with the result that program
modifications are more difficult and must be made more frequently.

4. Program changes may not be tested adequately before being used in a
production run.

5. Changes to a program may result in new errors because of unanticipated
interactions between program modules.

6. Program acceptance tests may fail to detect errors that only occur for unusual
combinations of input (e.g., a program that is supposed to reject all except a
specified range of values actually accepts an additional value).

7. Programs, the contents of which should be safeguarded, may not be identified
and protected.

8. Code, test data with its associated output, and documentation for certified
programs may not be filed and retained for reference.

9. Documentation for vital programs may not be safeguarded.

10. Programmers may fail to keep a change log, to maintain backup copies, or to
formalize recordkeeping activities.

11. An employee may steal programs he or she is maintaining and use them for
personal gain.

12. Poor program design may result in a critical data value being initialized twice.
An error may occur when the program is modified to change the data value—
but only changes it in one place.

13. Production data may be disclosed or destroyed when it is used during testing.

14. Errors may result when the programmer misunderstands requests for changes
to the program.

15. Errors may be introduced by a programmer who makes changes directly to
machine code.

16. Programs may contain routines not compatible with their intended purpose,
which can disable or bypass security protection mechanisms. For example, a
programmer who anticipates being fired inserts code into a program that will
cause vital system files to be deleted as soon as his/her name no longer
appears in the payroll file.

17. Inadequate documentation or labeling may result in the wrong version of
program being modified.

Figure 9-2 (continued)



308 Chapter 9

CATEGORY: Operating System Flaws

1. User jobs may be permitted to read or write outside assigned storage area.

2. Inconsistencies may be introduced into data because of simultaneous
processing of the same file by two jobs.

3. An operating system design or implementation error may allow a user to
disable audit controls or to access all system information.

4. An operating system may not protect a copy of information as thoroughly as it
protects the original.

5. Unauthorized modification to the operating system may allow a data entry
clerk to enter programs and thus subvert the system.

6. An operating system crash may expose valuable information such as password
lists or authorization tables.

7. Maintenance personnel may bypass security controls.

8. An operating system may fail to record that multiple copies of output have
been made from spooled storage devices.

9. An operating system may fail to maintain an unbroken audit trail.

10. When restarting after a system crash, the operating system may fail to ascertain
that all terminal locations that were previously occupied are still occupied by
the same individuals.

11. A user may be able to get into monitor or supervisory mode.

12. The operating system may fail to erase all scratch space assigned to a job after
the normal or abnormal termination of the job.

13. Files may be allowed to be read or written without having been opened.

CATEGORY: Communication System Failure

Accidental Failures

1. Undetected communications errors may result in incorrect or modified data.

2. Information may be accidentally misdirected to the wrong terminal.

3. Communication nodes may leave unprotected fragments of messages in
memory during unanticipated interruptions in processing.

4. Communication protocols may fail to positively identify the transmitter or
receiver of a message.

Figure 9-2 (continued)



Table 9-1 shows an example risk matrix at the end of the requirements phase for a typ-
ical billing and distribution system. This matrix lists four risks for the billing and distri-
bution system and lists control objectives for each of those risks. For example, one of the
risks is that the product will be shipped but not billed. In this instance, the control objec-
tive is to ensure that all shipments are billed. In other words, the acceptable level of loss
for this risk is zero, and the project team must install a system that ensures that for each
shipment leaving the distribution area an invoice will be prepared. However, note that
the next risk is that the product will be billed at the wrong price or quantity and that the
controls have a greater than zero level of loss established, as do the other two risks.

Table 9-1 Requirements Phase Risk Matrix Example

RISK CONTROL OBJECTIVE

Shipped but not billed Ensure all shipments are billed.

Billed for wrong quantity Bill at current price on 99 percent of line items and or
price have error pricing less than plus or minus 10 percent.

Billed to wrong customer Reduce incorrect billings to less than 0.1 percent of
invoices.

Shipped wrong product Ship correct product and quantity on 99 percent of or
quantity line items.

Step 3: Verification Testing 309

CATEGORY: Communication System Failure (continued)

Intentional Acts

1. Communication lines may be monitored by unauthorized individuals.

2. Data or programs may be stolen via telephone circuits from a remote job entry
terminal.

3. Programs in the network switching computers may be modified to
compromise security.

4. Data may be deliberately changed by individuals tapping the line.

5. An unauthorized user may “take over” a computer communication port as an
authorized user disconnects from it. Many systems cannot detect the change.
This is particularly true in much of the currently available communication
protocols.

6. If encryption is used, keys may be stolen.

7. A terminal user may be “spoofed” into providing sensitive data.

8. False messages may be inserted into the system.

9. True messages may be deleted from the system.

10. Messages may be recorded and replayed into the system.

Figure 9-2 (continued)



Identifying Controls in Each System Segment

The following are the common system segments:

■■ Origination. The creation of the source document plus the authorization asso-
ciated with that transaction origination.

■■ Data entry. The transfer of information to machine-readable media.

■■ Communication. The movement of data from one point in the system to
another. Movement may be manual or electronic.

■■ Processing. Application of the system logic to the data.

■■ Storage. The retention of data, for both temporary and extended periods of
time.

■■ Output. The translation of data from computer media to media understandable
and usable by people.

■■ Use. Satisfaction of the business need through the results of system processing.

The risk team determines which controls are applicable to which risk and records
them in the correct segment of the system. At the conclusion of the development of the
risk matrix, the risk team assesses whether the controls are adequate to reduce the risk to
the acceptable level identified in the control objective. This will test the adequacy of the
controls at the conclusion of the design process. An example of a risk matrix for billing
and distribution systems at the end of the design phase is illustrated in Table 9-2.

The same four risks that were identified during the requirements phase (refer to
Table 9-1) are listed on this matrix also, as are the controls associated with each risk. In
this example, the shipped-but-not-billed risk shows that three controls (1, 2, and 3) will
help reduce that risk. (Note that for an actual matrix these controls must be described.)
The matrix shows in which segment of the application system those controls reside.
After the controls have been identified and recorded, the risk team must determine
whether those three controls and the segments in which they exist are adequate to
reduce the shipped-but-not-billed risk to the point where all shipments will be billed.

Determining the Adequacy of Controls 

The test concludes when the risk team assesses whether controls are adequate to
reduce each identified risk to an acceptable level.

Performing a Test Factor Analysis

Work Paper 9-1 provides a process to assess the concerns associated with the require-
ments phase of the system’s development life cycle. A test program is included for each
concern. There are 15 concerns, covering each phase of the development process. For
each concern, there is a test program comprising eight criteria. The test program lists
those criteria that, if proved to be adequately addressed through testing, should ensure
the test team that the concern is minimal.

310 Chapter 9



Table 9-2 Design Phase Risk Matrix Example

SYSTEM DATA 
SEGMENT RISK ORIGINATION ENTRY COMMUNICATION PROCESSING STORAGE OUTPUT USE

Shipped but not billed 1 2 6

Billed for wrong 6 7 10 11
quantity or price 8

9

Billed to wrong 12 14 15 16
customer 3

Shipped wrong 17 18 19 21 22
product or quantity 20



The test team must perform sufficient testing to evaluate the adequacy with which the
project team has handled each of the test criteria. For example, in the requirements phase,
one test criterion is “Have the significant financial fields been identified?” To determine
that the project team has adequately addressed this criterion, the test team conducts such
tests as necessary to assure themselves that the significant financial fields have been
identified. The testing may require fact finding in the accounting department to verify
that the fields indicated as financial fields are complete.

Conducting a Requirements Walkthrough

The requirements phase involves creativity, experience, and judgment, as well as a
methodology to follow. During this phase, the methodology helps, but it is really cre-
ativity and problem solving that is needed. Of the review processes, the walkthrough is
the least structured and the most amenable to creativity. Therefore, the walkthrough
becomes a review process that complements the objectives of the requirements phase.
The objective of the walkthrough is to create a situation in which a team of skilled indi-
viduals can help the project team in the development of the project solutions. The walk-
through attempts to use the experience and judgment of the review team as an adjunct
or aid in the developmental process. The walkthrough in the requirements phase is ori-
ented toward assistance in problem solving as opposed to compliance to methodology.

The walkthrough involves five actions to be completed in the sequence listed below.
The amount of time allocated to each step will depend on the size of the application
being reviewed and the degree of assistance desired from the walkthrough team.

Establishing Ground Rules

The walkthrough concept requires that the project participants make a presentation
explaining the functioning of the system as developed at the time of the presentation.
The presentation, or reading of the requirements, is the vehicle for initiating discussion
between the project team and the walkthrough team. The prime objective is to elicit
questions, comments, and recommendations.

The walkthrough is most productive when ground rules are established before the
actual walkthrough. The ground rules should be understood by both the project team
and the walkthrough team and should normally include the following:

■■ Size and makeup of the walkthrough team (Three to six skilled participants is a
good size. Three members are needed to get sufficient perspective and discus-
sion, but more than six members makes the process too large and unwieldy.)

■■ Responsibility of the walkthrough team, which is usually limited to recommen-
dations, comments, and questions.

■■ Obligation of the project team to answer all questions and respond to recom-
mendations.

■■ Approximate length, time, and location of the walkthrough.

■■ Confidentiality of information discussed at the walkthrough.

■■ Non-negotiable aspects of the system.

312 Chapter 9



■■ Who will receive the results of the walkthrough and how are those results to be
used? (For example, if a report is to be prepared, who will receive it, what is the
purpose of the report, and what is the most likely action based on that report?)

Selecting the Team

The ground rules establish the size and makeup of the team. The ground rules are nor-
mally generic in nature, and must be converted into action. For example, if the ground
rules say that the team should consist of two members of user management and two
project leaders, the most appropriate individuals must then be selected.

The walkthrough team should be selected based on the objectives to be accom-
plished. Any of the involved parties (i.e., users, information services, and senior man-
agement) may want to recommend walkthrough team participants. These tend to be
selected based on project concerns. For example, if operations is a major concern, oper-
ations people should be selected for the walkthrough team.

The most common participants on a walkthrough team include the following:

■■ Information services project manager/systems analyst.

■■ Senior management with responsibility over the computerized area.

■■ Operations management.

■■ User management.

■■ Consultants possessing needed expertise. (The consultants may be from inside
or outside the corporation. For example, the consultants may be internal audi-
tors, database administrators, or independent computer consultants.)

A good review team has at least one member of user management, one senior mem-
ber of information services, and one member of senior management. Additional par-
ticipants can be added as necessary.

The team participants should be notified as soon as possible that they have been
selected for the walkthrough and advised of the responsibility and time commitments
and the date for the walkthrough. Generally, if people do not want to participate in the
walkthrough, they should be relieved of that responsibility and another person selected.
If a team participant has a scheduling conflict and cannot complete the review in time, it
may be more advisable to change the time of the review than to lose the participant.

Presenting Project Requirements

The project personnel should present the project requirements to the walkthrough team.
A good walkthrough includes a presentation of the following:

■■ Statement of the goals and objectives of the project.

■■ Background information, including appropriate statistics on the current and
proposed application area. (Note that these statistics should be business statis-
tics and not computer system statistics.)

■■ List of any exceptions made by the project team.

■■ Discussion of the alternatives considered and the alternative selected.

Step 3: Verification Testing 313



■■ A walkthrough of the requirements using representative transactions as a base-
line. (Rather than describing the system, it is better to select the more common
transaction types and explain how those transactions will be processed based
on the defined requirements.)

Responding to Questions/Recommendations

The project presentation should be interrupted with questions, comments, and recom-
mendations as they occur to the walkthrough team. The objective of the walkthrough
is to evoke discussion and not to instruct the walkthrough team on the application
requirements. The project team should be prepared to deviate from any presentation
plan to handle questions and recommendations as they occur.

It is generally good to appoint one person as recorder for the walkthrough. This is nor-
mally a member of the project team. The recorder’s duty is to capture questions for
which appropriate answers are not supplied during the walkthrough, and to indicate
recommendations for which acceptance and implementation are possible.

Issuing the Final Report (Optional)

The ground rules determine whether a report will be issued, and if so, to whom. How-
ever, if it is determined that a walkthrough report should be issued, responsibility
should be given to a single person to write the report. State in advance to whom the
report is to be issued. The entire walkthrough team should agree on the contents of the
report; if they do not, the report should state minority opinions. The information cap-
tured by the recorder may prove valuable in developing the report. To be most valu-
able to the project team, the report should be issued within five days of the
walkthrough.

Performing Requirements Tracing

Requirements tracing is a simple but difficult-to-execute concept. The objective is to
uniquely identify each requirement to be implemented, and then determine at each
checkpoint whether that requirement has been accurately and completely processed.

Requirements tracing requires the following three actions:

1. Uniquely identify each requirement. The identification process can be as sim-
ple as 1 through x, or requirements can be named or any other method chosen
that can uniquely identify the requirement. The end process of this step is a
detailed listing of all the requirements (see the requirements tracing matrix in
Figure 9-2).

2. Identify the development checkpoints at which requirements will be traced.

In most developmental processes, requirements will be traced at predefined
checkpoints. For small projects, the checkpoints may be at the end of a phase,
whereas in larger projects, sub-phases might require checkpoints. The check-
points will be incorporated into the requirements tracing matrix. Note that in
this matrix five checkpoints have been listed (a, b, c, d, e) as well as four
requirements (1, 2, 3, 4).

314 Chapter 9



3. Check that the requirements have been accurately and completely imple-

mented at the end of a checkpoint. Use the requirements tracing matrix to inves-
tigate whether the identified requirements have been accurately and correctly
implemented at the end of a specific checkpoint. In Figure 9-3, for example, at
developmental checkpoint A, a decision would be made as to whether require-
ments 1, 2, 3, and 4 have been accurately and correctly implemented. If they have
not been, the developmental team must make the necessary corrections.

Ensuring Requirements Are Testable

Many believe this is one of the most valuable verification techniques. If requirements
are testable, there is a high probability that they will, in fact, meet the user needs as
well as simplify implementation. Ideally, users of the requirement would develop the
means for validating whether the requirement has been correctly implemented. For
example, if there was a requirement that customers could not exceed their credit limit
on purchases, the users might define three tests that test below the credit limit, at the
credit limit, and above the credit limit.

Ensuring that requirements are testable requires only that some stakeholder
develop the means for testing the requirement. As previously discussed, ideally this is
the user. However, some users do not have the background necessary to develop the
test conditions without the assistance of someone experienced in creating test data.
Note that developing testable requirements is very similar to a concept called “use
cases.” A use case is a case that tests how the outputs from the software will be used by
the operating personnel. 

Use cases are helpful in three ways:

■■ Testing that requirements are accurately and completely implemented

■■ Assisting developers in implementing requirements because the implementers
will know how the outputs will be used

■■ Developing cases for the acceptance testing of the software by the users

Figure 9-3 Requirement tracing matrix.

A B C D E

Development
Phase Checkpoints

Name of Software
Requirements

1

2

3

4

Step 3: Verification Testing 315



Task 2: Test During the Design Phase

During the design phase, the user and the system designer must work together closely.
Neither party should be dominant during this period, the phase during which the user-
defined requirements are converted into a process that can be accomplished by a com-
puter. It is important that both the user and system designer work as partners to develop
not only an efficient application system, but also one that is acceptable to the user.

Testing during the design phase should be jointly shared by the user and the infor-
mation services project team. If the team consists of both users and IT personnel, the
project team can accept test responsibility.

The system design is an IT responsibility. It is therefore logical to assume that IT
should accept responsibility for the adequacy of that design, and thus have test respon-
sibility. Unfortunately, this logic shifts responsibility from the user to information ser-
vices. The danger is that the system may become information services’ system, as
opposed to the user’s system. When the user is involved in establishing test criteria,
the ultimate responsibility for the application is more clearly established.

The design phase provides the opportunity to test the structure (both internal 
and external) of the software application. The greater the assurance of the project team
that the structure is sound and efficient, the higher the probability that the project will
succeed.

Current test tools permit the structure to be tested in both a static and a dynamic
mode. It is possible through modeling and simulation to model the structure on the
computer to analyze the performance characteristics of the structure. However, the
testing concepts must be developed hand in hand with the design process to gain max-
imum test advantages. State testing of the adequacy of the design has proved to be
effective.

The design phase can be viewed as a funnel that takes the broad system require-
ments at the wide end of the funnel and narrows them down through a design process
to very detailed specifications. This is a creative phase of the life cycle. Along with this
creativity is a concern that some important design aspects will be overlooked.

Understanding design phase concerns produces more effective testing. Testing can
then be directed at specific concerns instead of attempting broad-based testing.

Scoring Success Factors

Scoring is a predictive tool that utilizes previous systems experience. Existing systems
are analyzed to determine the attributes of those systems and their correlation to the
success or failure of that particular application. When attributes that correlate to suc-
cess or failure can be identified, they can be used to predict the behavior of systems
under development.

Attributes of an effective scoring tool are as follows:

■■ Sampling. The criteria that represent a sample of all the criteria involved in the
implementation of an automated application system. The sampling criteria are
not meant to be complete.

316 Chapter 9



■■ High positive correlation. The criteria picked will have shown a high positive
correlation in the past with either success or failure of an automated applica-
tion. These criteria should not be judgmental or intuitive, but rather, those 
criteria for which it can be demonstrated that the absence or presence of that
attribute has shown a high correlation to the outcome of the project.

■■ Ease of use. To be effective, the process of scoring must be simple. People 
will use an easy predictive concept, but will be hesitant to invest significant
amounts of time and effort.

■■ Develop risk score. The score for each attribute should be determined in a
measurable format so that a total risk score can be developed for each applica-
tion. This will indicate the degree of risk, the area of risk, and a comparison of
risk among application systems.

The scoring test tool is prepared for use in evaluating all applications. The tool should
be general in nature so that it will apply to diverse applications, because the degree of
risk must be compared against a departmental norm.

The scoring tool can be used in one of the following two ways under the direction of
the test team:

1. Project leader assessment. The application project leader can be given the scor-
ing mechanism and asked to rate the degree of risk for each of the attributes for
his or her project. The project leader need not know the importance of any of
the attributes in a risk score, but only needs to measure the degree of project
risk based on his or her in-depth knowledge of the project.

2. Test team assessment. A member of the test team can be assigned the responsi-
bility to develop the risk score. If the test team has worked on the project from
the beginning, that person may be knowledgeable enough to complete the scor-
ing instrument. However, if the test team member lacks knowledge, investiga-
tion may be needed to gather sufficient evidence to score the project.

At the conclusion of the scoring process, the result can be used in any of the follow-
ing ways:

■■ Estimate extent of testing. The higher the risk, the more testing that manage-
ment may desire. Knowing that an application is high risk alerts management
to the need to take those steps necessary to reduce that risk to an acceptable
level.

■■ Identify areas of test. Depending on the sophistication of the scoring instru-
ment, specific areas may be identified for testing. For example, if computer
logic is shown to be high risk, testing should thoroughly evaluate the correct-
ness of that processing.

■■ Identify composition of test team. The types of risks associated with the appli-
cation system help determine the composition of the test team. For example, if
the risks deal more with technology than with logic, the test team should
include individuals thoroughly knowledgeable in that technology.

Step 3: Verification Testing 317



A scoring instrument for application systems is presented in Work Paper 9-3 at the end
of the chapter. This scoring instrument develops a computer application system profile
on many different system characteristics/attributes. The user is then asked to determine
whether the system being reviewed is high, medium, or low risk for the identified char-
acteristic. For example, the first characteristic deals with the importance of the function
being computerized. If that function is important to several organizational units, it is a
high-risk application. If the requirements are only of limited significance to cooperating
units, the risk drops to medium; if there are no significant conflicting needs and the
application is primarily for one organizational unit, the risk is low. The person doing the
assessment circles the appropriate indicator. At the conclusion, a score can be developed
indicating the number of high-risk, medium-risk, and low-risk indicators.

A risk score is achieved by totaling the number of characteristics rated high,
medium, and low, respectively, and then multiplying each of these totals by the risk
factor (high = 3, medium = 2, low = 1) to arrive at a risk score. The three resulting risk
score numbers are then added together to arrive at a total risk score, which you can use
to compare application systems against a norm. Another way to use the information is
to divide the total score by the total number of risk characteristics to obtain a score
between one and three. The closer the score is to three, the higher the risk, and con-
versely, the lower the score, the lower the risk.

Analyzing Test Factors

Work Paper 9-4 contains a test process for each of the design phase test factors. The per-
son conducting the test can select the concerns of interest and use the appropriate test
programs, keeping in mind the following general objectives for the design phase:

■■ Develop a solution to the business problem.

■■ Determine the role of the computer in solving the business problem.

■■ Develop specifications for the manual and automated segments of the system.

■■ Comply with policies, procedures, standards, and regulations.

■■ Define controls that will reduce application risks to an acceptable level.

■■ Complete the project within budgetary, staffing, and scheduling constraints.

The concerns to be analyzed during the design phase are as follows:

■■ Data integrity controls designed. Data integrity commences with risk identifi-
cation, followed by management decisions on the acceptability of that risk,
stated in terms of the amount of loss acceptable. The data integrity controls are
then designed to these risk-tolerance specifications.

■■ Authorization rules designed. Authorization in automated systems may be
manual and/or automated. The procedures for manual authorization should
be specified during the design phase. Automated authorization methods must
be specified in more detail than manual procedures because they cannot rely on
people to react to unexpected situations.

318 Chapter 9



■■ File integrity controls designed. File integrity is ensured by file identification
methods, automated file controls, and independently maintained file integrity
controls. The specifications for this three-part integrity process must be deter-
mined during the design phase.

■■ Audit trail designed. The audit trail provides the capability to trace transac-
tions from their origination to control totals, and to identify all the transactions
substantiating a control total. In addition, the audit trail is used to substantiate
individual transaction processing, and to recover the integrity of computer
operations after it has been lost. Frequently, governmental agencies specify the
types of information that need to be retained for audit trail purposes—this
information must be defined during the design phase. The audit trail should 
be designed to achieve those purposes.

■■ Contingency plan designed. The contingency plan outlines the actions to be
performed in the event of problems. This plan includes the manual methods to
be followed while the automated applications are not in operation, the backup
and recovery procedures, as well as physical site considerations. Contingency
plan specifications should be outlined during the design phase.

■■ Method to achieve service level designed. The requirements phase defined the
service levels to be achieved during the operation of the application. This con-
cern deals primarily with the performance of the system and its ability to sat-
isfy user needs on a timely basis.

■■ Access procedures defined. Security in an automated system is achieved by
predefining who can have access and for what purpose and then enforcing
those access rules. A security profile indicates who can have access to what
resources. 

■■ Design complies with methodology. The system design process should be 
performed and documented in accordance with IT methodology. Standardized
design procedures ensure ease of understanding by all parties trained in that
methodology, and at the same time help ensure the completeness of the design
process. The purpose of the methodology is to develop better systems at a
lower cost.

■■ Design conforms to requirements. The system design is a translation of the
user requirements into detailed system specifications. During any translation,
misunderstandings or misinterpretations can occur. Steps need to be taken 
to ensure that the completed design achieves the objectives and intent of the
defined requirements.

■■ Design facilitates use. The final product must be used by people. The easier
the system is to use, the more likely that the features will be utilized and the
transactions processed correctly. The design must take into consideration the
skill levels and job motivation of the people using the application system.

■■ Design is maintainable. The cost of maintaining a computer application nor-
mally far exceeds the cost to develop. Identifying those system aspects that are
most likely to be changed and building those parts of the system for ease of

Step 3: Verification Testing 319



maintenance is an important aspect of the design process. The system design
needed for maintainability may change significantly depending on the expected
frequency of change.

■■ Design is portable. If the requirements indicate that the application system
should be transferable from one piece of hardware to another or from one ver-
sion of software to another, the design should incorporate those portability fea-
tures. When future hardware and software is uncertain, the design should be
generalized, and not attempt to take advantage of features or facilities of exist-
ing hardware and software.

■■ Interface design is complete. The interface to other applications needs to be
identified and the specifications for that interface designed. Interface specifica-
tions should also consider secondary uses of application information. Under-
standing these secondary uses may result in additional capabilities included
within the design process.

■■ Design fulfills criteria. The cost/benefit study performed during the require-
ments phase may not supply a high-precision evaluation. During the design
phase, the performance estimates can be more accurately stated so that a better
prediction can be made as to whether the performance criteria can be achieved.
A guideline used by one corporation is that the accuracy of estimating the
achievement of the performance criteria at the end of the design phase should
be within plus or minus 10 percent.

■■ Needs communicated to operations. Operations needs to identify future pro-
cessing requirements to prepare to handle those requirements when the system
becomes operational. The larger the processing requirements, the greater the
need to involve operations in the design alternative considerations.

A detailed work program is provided for each of the 15 design phase test concerns.
These work programs follow and outline the criteria to be assessed for each concern,
together with the recommended test, test technique, and test tool to be used in evaluat-
ing each criterion. Note that the person conducting the test should use judgment regard-
ing the extent of testing relative to the importance of the criteria to the application.

Conducting a Design Review

The design review is structured using the same basic information that formed the basis
for scoring. However, in the case of the design review, the criteria is more specific. The
objective is to pre-identify those attributes of design that correlate to system problems.
The design review then investigates those attributes to determine that they have been
appropriately addressed by the project team.

The design review is conducted by a team knowledgeable in the design process. They
are responsible for reviewing the application system for completeness and reasonable-
ness. It is not necessary that the team be knowledgeable about the specific application,
but they must be knowledgeable about the design methodology.

In conducting a design review, the team follows a predetermined review process.
The design review is normally formal and highly structured in nature, in that the

320 Chapter 9



review team has predetermined investigations to make and has known start and stop
points. The design review normally follows the design methodology. Team members
attempt to determine that all the tasks have been properly performed. At the conclu-
sion of the design review, the team normally issues a formal report indicating their
findings and recommendations about the project.

The design review team may consist of the following members:

■■ Project personnel. The project personnel can conduct their own design review.
Typically, the individual on the project who is assigned review responsibility is
not the same person that actually designed the system; however, the reviewer
may have had partial design responsibility. This requires team members to
accept different roles and responsibilities during the review process than they
have held during the design process. Because of the possible ties to the actual
design of the system, having the design review checklist as a self-assessment
tool normally fulfills a valuable function for the reviewer(s).

■■ Independent review team. The members of this review team are not members
of the project being reviewed. They can be from other projects or quality-
assurance groups, or they can be professional testers. This mode of operation
provides a greater degree of independence in conducting the review in that
there is no conflict of interest between the design and review roles. On the
other hand, it is frequently difficult for peers to be critical of each other, espe-
cially in situations where a reviewer might eventually work for the person
being reviewed.

These general guidelines should be followed when conducting a review:

1. Select the review team. The members of the review team should be selected in
advance of the review process.

2. Train the review team members. The individuals who will be conducting the
review should be trained in how to conduct the review. At a minimum, this
means reviewing the checklist and explaining the objective and intent of each
question. It is also advisable to train the people in the interpersonal relation-
ships involved in conducting a review so that the review can be held in a 
non-threatening environment.

3. Notify the project team. The project team should be notified several days in
advance of the review as to when the review will occur and the responsibility
of the project team during the review. Obviously, if the project team conducts
the review, this task is less important, but it is still necessary to formally sched-
ule the review so that all members will be present.

4. Allot adequate time. The review should be conducted in a formal, businesslike
manner, as efficiently as possible, but should not be rushed. Sufficient time
should be allocated to probe and investigate areas of concern. Even when the
same people conduct the review that designed the system, the interpersonal
relationships and synergistic effect of a review can produce many positive
effects if sufficient time is allocated to enable appropriate interaction.

Step 3: Verification Testing 321



5. Document the review facts. All the factual findings of the review should be
recorded. Normally, this can be done on the review checklist unless the com-
ments are lengthy or supporting evidence is required. In any case, facts should
be referenced to the specific checklist questions that uncovered them.

6. Review the facts with the project team. The correctness of the facts should be
substantiated with all individuals involved, and the review should not proceed
until this is done. It is better to do this at the end of the review for important
findings than intermittently during the review process.

7. Develop review recommendations. Based on the facts, the review team should
offer their recommendations to correct any problem situation. These recommen-
dations are an important part of the review process.

8. Review recommendations with the project team. The project team should be
the first to receive the recommendations and have an opportunity to accept,
modify, or reject the recommendations.

9. Prepare a formal report. A report documenting the findings, the recommenda-
tions, and the action taken or to be taken on the recommendations should be
prepared. This report may or may not be sent to higher levels of management,
depending on the review ground rules established by the organization. How-
ever, it is important to have a formal record of the review process, what it
found, and the actions taken on recommendations.

One or more reviews may occur during the design phase. The number of reviews will
depend on the importance of the project and the time span of the design phase. A pro-
gram for a two-point design phase review is shown in Work Papers 9-5 and 9-6. This pro-
vides for the first review at the end of the business system design (Work Paper 9-5) that
part of the design where it is determined how the business problem will be solved. The
second review point would occur after the computer system design (Work Paper 9-6) is
complete. Note that the questions in the two review checklists are taken from an actual
organization’s review process, and therefore may not be applicable to all organizations.
Normally, the review process needs to be customized based on the design methodology,
information services policies and procedures, and the criteria found to be causing prob-
lems in the organization.

Inspecting Design Deliverables

Inspection is a process by which completed but untested design products are evalu-
ated as to whether the specified changes were installed correctly. To accomplish this,
inspectors examine the unchanged product, the change specifications, and the
changed product to determine the outcome. They look for three types of defects: errors,
meaning the change has not been made correctly; missing, meaning something that
should have been changed, but was not changed; and extra, meaning something not
intended was changed or added.

The inspection team reviews the product after each inspector has reviewed it individ-
ually. The team then reaches a consensus on the errors, missing, and extra defects. The
author (the person implementing the project change) is given those defect descriptions

322 Chapter 9



so that the product can be changed prior to dynamic testing. After the changes are made,
they are re-inspected to verify correctness; then dynamic testing can commence. The pur-
pose of inspections is twofold: to conduct an examination by peers, which normally
improves the quality of work because the synergy of a team is applied to the solution;
and to remove defects.

The following items can enhance the benefits of formal inspections:

■■ Training. Use inspections to train new staff members in the department’s stan-
dards and procedures.

■■ Product quality. Do not inspect obviously poor products; that is, the inspectors
should not do the developers’ work. Developers should not submit a product
for inspection if they are not satisfied with the quality of the product.

Work Paper 9-7 is a quality control checklist for this task.

Task 3: Test During the Programming Phase

Building an information system (i.e., programming) is purely an IT-related function,
with little need for user involvement, except where questions arise about design spec-
ifications and/or requirements. 

Wherever possible, changes requested by users should be discouraged through
more complete design reviews, or postponed until the system is placed into operation.
If changes cannot be postponed, they should be implemented through the regular
development process and (preferably) tested before changing the original program
specifications.

The complexity of performing the programming phase depends on the thorough-
ness of the design phase and the tool used to generate code. Well-defined and measur-
able design specifications greatly simplify the programming task. On the other hand,
the failure to make decisions during the early phases necessitates those decisions being
made during the programming phase. Unfortunately, if not made earlier, these deci-
sions may be made by the wrong individual—the programmer.

Testing during the programming phase may be static or dynamic. During most of the
phase, programs are being specified, designed, and coded. In this phase, the resultant
code may not be executable, and therefore may require different test tools. The efficiency
gained from early testing is just as appropriate to the programming phase as it is to other
phases. For example, problems detected during program design can be corrected more
economically than if they are detected while testing the executable program.

NOTE The importance of testing programs will vary based on the means of

code generation. The more automated code generation becomes, the less

emphasis needs to be placed on programming phase testing. Because many

organizations use a variety of methods for code generation, this verification

task is designed to incorporate all the programming phase components needed.

The user of this test process must adjust this task according to the method

used to generate code.

Step 3: Verification Testing 323



The programming phase consists of three segments: The program specifications are
written from the design specifications; a programmer con- verts the program specifi-
cations into machine-executable instructions; and then the programmer verifies that
these instructions meet the program specifications.

The programming equivalent in home construction is the building of the house by
masons, carpenters, plumbers, and electricians. These are the craftsmen who take the
design specifications and materials and convert them into the desired product. How-
ever, just as aids are available to the programmer, aids are also available to the con-
struction worker. For example, preconstructed roof trusses and other parts of the house
can be purchased. The more pieces that can be produced automatically, the greater the
probability of a successfully built home.

The programming phase in the construction of a system produces a large volume of
deliverables. During this phase, the number of items to be tested increases signifi-
cantly. Therefore, it becomes important to understand the deliverables, their risk, and
which segments of the deliverables need to be tested.

The IT project leader should be responsible for testing during the programming
phase. The primary objective for this testing is to ensure that the design specifications
have been correctly implemented. Program testing is not concerned with achieving the
user’s needs, but rather that the developed structure satisfies the design specifications
and works. Much of the testing will be conducted by the programmer. Testing at this
point is highly technical, and it normally requires someone with programming experi-
ence. These tests should be complete prior to interconnecting the entire application and
testing the application system.

This verification task describes a test process to use during programming. Desk
debugging and peer reviews are recommended as effective test methods during the pro-
gramming phase. This relatively low-cost test approach has proven to be effective in
detecting problems and can be used at any point during the programming activity. The
task includes a complete test program addressing all of the programming phase con-
cerns, as follows:

1. Program testing will consist exclusively of dynamic testing as opposed to

including static testing. Static testing using techniques such as desk debugging
and peer reviews is much more effective in uncovering defects than is dynamic
testing. The concern is that the proper testing technique will not be used for the
needed test objective.

2. Program testing will be too costly. Programmers have a tendency to identify
defects, assume there are no more, and then correct those defects and retest.
This has proven to be a time-consuming and costly approach to testing. Using
static methods to remove defects and dynamic testing to verify functionality 
is a much more efficient method of program testing. 

3. Programs will be released for string, system, and acceptance testing before

they are fully debugged. The shortest and most economical testing is to
remove all the defects at one level of testing before moving to the next level.
For example, it is much more economical to continue program testing to
remove program defects than to identify those defects in string testing.

324 Chapter 9



Desk Debugging the Program

Desk debugging enables the programmer to evaluate the completeness and correctness
of the program prior to conducting more expensive testing. In addition, desk debug-
ging can occur at any point in the programming process, including both program
design and coding. Desk debugging can be as extensive or as minimal as desired. The
amount of desk debugging performed will depend on the following:

Wait time until the next program deliverable is received

Implementation schedule

Testing resources

Efficiency of test tools

Departmental policy

Desk debugging can be syntactical, structural, or functional.

Syntactical Desk Debugging

Program specifications and program statements must be developed in accordance with
departmental methodology and compiler requirements. The programmer can check
the appropriate syntax of the documentation and statements to ensure they are written
in compliance with the rules. Syntactical checking asks questions such as these:

■■ Is the job identification correct?

■■ Are program statements appropriately identified?

■■ Are program statements constructed using the appropriate structure?

■■ Are data elements properly identified?

■■ Do the program statements use the proper data structure; for example, do
mathematical instructions work on mathematical fields?

■■ Are the data structures adequate to accommodate the data values that will be
used in those structures?

Structural Desk Debugging

Structural problems account for a significant number of defects in most application
systems. These defects also mask functional defects so that their detection becomes
more difficult. The types of questions to be asked during structural desk debugging
include these:

■■ Are all instructions entered?

■■ Are all data definitions used in the instructions defined?

■■ Are all defined data elements used?

■■ Do all branches go to the correct routine entrance point?

■■ Are all internal tables and other limits structured so that when the limit is
exceeded processing can continue?

Step 3: Verification Testing 325



Functional Desk Debugging

The functions are the requirements that the program is to perform. The questions to be
asked about the function when desk debugging include the following:

■■ Will the program perform the specified function in the manner indicated?

■■ Are any of the functions mutually exclusive?

■■ Will the system detect inaccurate or unreasonable data?

■■ Will functional data be accumulated properly from run to run?

Performing Programming Phase Test Factor Analysis

The depth of testing in the programming phase depends on the adequacy of the system
at the end of the design phase. The more confidence the test team has in the adequacy
of the application at the end of the design phase, the less concern they will have dur-
ing the programming phase. During requirements and design testing, the concerns
over the test factors may change based on test results. In the programming phase, the
test team should identify the concerns of most interest, and then develop the test
process to address those concerns. In identifying these concerns, the test team must
take into account changes that have occurred in the system specifications since the last
test was conducted. The objectives that the test team members should continually con-
sider when testing during the programming phase include the following:

■■ Are the systems maintainable?

■■ Have the system specifications been implemented properly?

■■ Do the programs comply with information services standards and procedures
as well as good practice?

■■ Is there a sufficient test plan to evaluate the executable programs?

■■ Are the programs adequately documented?

The test concerns to be considered during this subtask are as follows:

■■ Data integrity controls implemented. Specific controls need to be implemented
in a manner that will achieve the desired processing precision. Improperly
implemented controls may not achieve the established level of control toler-
ance, and because of the widespread misunderstanding of the purpose of con-
trols (i.e., reduced risk), simplistic solutions might be implemented where
complex controls are needed to achieve the control objectives.

■■ Authorization rules implemented. Authorization rules need to be imple-
mented in a manner that makes it difficult to circumvent them. For example,
when authorization limits are set, people should not be able to circumvent
these limits by entering numerous items under the prescribed limit. Therefore,
authorization rules must not only consider the enforcement of the rules, but
also take into account the more common methods to circumvent those rules.

■■ File integrity controls implemented. File integrity controls should be imple-
mented in a manner that minimizes the probability of loss of file integrity, and

326 Chapter 9



they should both prevent the loss of integrity and detect that loss, should it
occur, on a timely basis.

■■ Audit trail implemented. The audit trail needs to be implemented in a manner
that facilitates retrieval of audit trail information. If the audit trail contains
needed information, but it is too costly or time-consuming to use, its value
diminishes significantly. The implementation considerations include the amount
of information retained, sequencing for ease of retrieval of that information,
cross-referencing of information for retrieval purposes, as well as the length of
time that the audit trail information needs to be retained.

■■ Contingency plan written. The contingency plan is a set of detailed procedures
in step-by-step format outlining those tasks to be executed in the event of prob-
lems. The plan should describe the preparatory tasks so that the necessary data
and other resources are available when the contingency plan needs to be acti-
vated. The design contingency approach is of little value until it is documented
and in the hands of the people who need to use it.

■■ System to achieve service level designed. The desired service level can only
become a reality when the procedures and methods are established. One proce-
dure that should be set up is the monitoring of the level of service to ensure
that it meets specifications. The inclusion of monitoring routines provides assur-
ance over an extended period of time that service levels will be achieved, or if
not, that fact will be detected early so corrective action can be taken.

■■ Security procedures implemented. Security is the combination of employee
awareness and training, plus the necessary security tools and techniques. The
procedures ensuring that these two parts are available and working together
must be developed during the programming phase.

■■ Program complies with methodology. Procedures should be implemented that
ensure compliance with developmental standards, policies, procedures, and
methods. If noncompliance is detected, appropriate measures must be taken to
either obtain a variance from the methodology or modify the system or design
so that compliance is achieved. Although methodology does not necessarily
satisfy user objectives, it is necessary to satisfy information services design
objectives.

■■ Program conforms to design.

■■ Correctness. Changing conditions cause many information services project
personnel to ignore project objectives during the program phase. The argu-
ment is that there are sufficient changes so that monitoring compliance to sys-
tem objectives is meaningless. The test team should discourage this thinking
and continually monitor the implementation of objectives. If objectives have
not been met, either they should be changed or the system changed to bring
it into compliance with the functional specifications of the application.

■■ Ease of use. The implementation of system specs may negate some of the
ease-of-use design aspects unless those aspects are specifically defined. 
Programming is a translation of design specifications and it may fail to
achieve the ease-of-use intent. Programming must achieve this ease-of-use
design spec as it does other functional specifications.

Step 3: Verification Testing 327



■■ Portability. The portability of programs depends on the language selected
and how that language is used. The specifications should indicate the do’s
and don’ts of programming for portability, and the coding should conform
to those design specifications. If portability is a major concern and the pro-
gram specifications fail to define portability coding adequately, the pro-
grammer should make every effort to write in as straightforward a method
as possible.

■■ Coupling. The design specifications should indicate parameters passing to
and from other application systems. It is normally good practice for the pro-
grammer to verify that the system’s specifications are up-to-date prior to
coding intersystem functions. This ensures not only that the programs con-
form to the design, but that the specifications of interconnected applications
have not changed since the design was documented.

■■ Performance. The creation of the program provides the first operational
opportunity for users to assess whether the system can achieve the desired
performance level. At this point, the instructions to perform the require-
ments have been defined and can be evaluated. An early assessment of
potential performance provides an opportunity to make performance
adjustments if necessary.

■■ Program is maintainable. The method of program design and coding may
have a greater significance for maintainability than the design specifications
themselves. The rules of maintainable code should be partially defined by
departmental standards, and partially defined by system specifications. In
addition, the programmer should use judgment and experience in developing
highly maintainable code.

■■ Operating procedures developed. Procedures should be developed during
programming to operate the application system. During the next phase, the
executable programs will be operated, and the necessary instructions should be
developed prior to that phase of the SDLC. The operating procedures should
be consistent with the application system operational requirements.

A detailed test process is illustrated in Work Paper 9-8 for each of the 15 identified
programming phase test concerns. The test process includes test criteria, recom-
mended test processes, techniques, and tools. The team conducting the test is urged to
use judgment in determining the extent of tests and the applicability of the recom-
mended techniques and tools to the application being tested. Work Paper 9-9 is a qual-
ity control checklist for this task.

Conducting a Peer Review

The peer review provides a vehicle for knowledgeable people (peers) to contribute to the
construction of the computer program by informally but effectively reviewing the func-
tioning of the program in a non-threatening environment. The peer review provides a
static analysis that evaluates both the structure and the functioning of the program. The
peer review can detect syntactical errors, but more through personal observation than as
a direct result of the walkthrough.

328 Chapter 9



Peer reviews can also be formal. Whether the formal or informal version is used,
management should approve the peer review concept. Formal peer reviews are an
integral task in the programming process, whereas informal peer reviews are called for
at the discretion of the lead programmer.

The peer review team should consist of between three and six members. It is impor-
tant to have at least three members on the peer review team to obtain sufficiently var-
ied opinion and to keep discussion going. Individuals who should be considered for
the peer review team include the following:

Computer programmers (at least two)

Job control specialists

Computer operator

Control clerk

Programming supervisor

Program peer reviews are performed by executing the following tasks.

Establishing Peer Review Ground Rules

This need not be done for every peer review, but it is important to have good ground
rules. Among the ground rules that need to be decided are the following:

■■ Areas included and excluded from the peer review; for example, whether effi-
ciency of programs will be included

■■ Whether reports will be issued

■■ Method for selecting peer review team leader

■■ Location of conducting the peer review

■■ Method for selecting a peer review

Selecting the Peer Review Team

The members of the peer review team should be selected sufficiently in advance so that
they can arrange their schedules to allocate sufficient time and acquire training for the
peer review exercise.

Training Team Members

If an individual on the team has not participated in the program peer review previ-
ously, that individual should be trained in the process. Training includes an under-
standing of the peer review ground rules, preferably some training in interpersonal
relationships such as how to interview and work with people in a peer review process,
and training in the intent of the standards and program methodologies.

Selecting a Review Method

The team leader should select the review method. The review itself consists of two
parts. The first part is a general explanation of the objectives and functioning of the

Step 3: Verification Testing 329



program. The second part is the review of the program(s) using the selected method.
Four methods can be used to conduct the peer review:

1. Flowchart. The program is explained from a flowchart of the program logic. This
is most effective when the flowchart is produced directly from the source code.

2. Source code. The review examines each line of source code in order to under-
stand the program.

3. Sample transactions. The lead programmer explains the programs by explain-
ing the processing that occurs on a representative sample of transactions.

4. Program specifications. The program specifications are reviewed as a means of
understanding the program.

Conducting the Peer Review

The project lead programmer normally oversees the peer review. The peer review com-
mences by having the lead programmer briefly review the ground rules, explain the
program’s objectives, and then lead the team through the program processing. The
review team is free to question and comment on any aspect of the project program-
mer’s explanations and to make recommendations and suggestions about the pro-
gram. Generally, the peer review is conducted in a democratic manner. The role of the
team leader is to ensure that the team’s questions and comments are in order, ensure
the team members’ rights to ask questions, to make recommendations, or to stop inter-
rogation on a specific point if, in the opinion of the inspection team leader, there is no
benefit from continuing discussion.

Drawing Conclusions

At the end of the formal peer review, the lead programmer indicates that he or she has
no more comments to make and turns the meeting over to the peer review team leader.
The peer review team leader now takes control of the meeting and summarizes the fac-
tual information drawn from the review and presents the review team’s recommenda-
tions. Ideally, this is done as a group activity, but some peer review teams, especially
when the process is formalized, may want some time alone to discuss among them-
selves what they have heard and what they are going to recommend. The findings and
recommendations are then presented to the project team for their consideration.

Preparing Reports

In the formal peer review process, reports may be prepared documenting the results.
However, this is optional and not an essential part of the peer review process.

Check Procedures

Three quality control checklists are provided for this chapter. Testers should complete
Work Paper 9-2 at the end of the requirements phase, Work Paper 9-7 at the end of the
design phase, and Work Paper 9-9 at the end of the programming phase. The checklists
are designed so that “Yes” responses indicate that the verification technique was per-
formed correctly and “No” responses warrant further investigation.

330 Chapter 9



Output

The only output from Task 1 is a report indicating requirements deficiencies. These will
indicate where requirements are not accurate and/or complete. It is important that this
report be prepared prior to completing the requirements checkpoint.

In Task 2, both the design review and the design deliverables inspection process will
produce a defects list. Because the review is more general in nature, it may include some
recommendations and areas of concern. Because inspections are more specific and tied to
standards, these defects are usually variances from standards and are not debatable.

One of three categories of results can be produced from each design deliverables
inspection:

No defects found

Minor work required

Major rework required

After all the steps in Task 2 have been performed, there should be only one deliver-
able: the moderator’s certification of the product, releasing the product to the next
phase of the process to make the organization software compliant.

Two outputs should occur from Task 3. The first is a fully debugged program, after
you have used static testing to uncover and remove defects. The second is a list of the
defects uncovered during testing. Note that if the organization has a quality assurance
activity, that list of defects should be forwarded to them, so that they may address weak-
nesses in processes to eliminate reoccurrence of the same defects in other programs. In
the formal peer review process in Task 3, reports may be prepared documenting the
results. However, this is optional and not an essential part of the peer review process.

Guidelines

The walkthrough test tool and risk matrix are two of the more effective test tools for the
requirements phase. The use of these tools will help determine whether the require-
ments phase test factors have been adequately addressed. These recommendations are
not meant to exclude from use the other test tools applicable to the requirements phase,
but rather to suggest and explain in detail two of the more effective tools for this phase.

Many of the available test tools for systems design are relatively new and unproven.
Some of the more promising techniques require design specifications to be recorded in
predetermined formats. Although the long-run potential for design phase testing is
very promising, few proven design phase test tools currently exist.

Two design phase test tools that are receiving widespread acceptance are scoring
and design reviews. Scoring is a tool designed to identify the risk associated with an
automated application. The design review concept involves a formal assessment of the
completeness of the process followed during the design phase. These two recom-
mended test tools complement each other. Scoring is a process of identifying the sys-
tem attributes that correlate to risk and then determining the extent to which those
attributes are present or absent in the system being scored. The result of scoring is a

Step 3: Verification Testing 331



determination of the degree of risk in the application system, and thus establishes the
extent to which testing is needed. The design review then becomes the vehicle for testing
the design specifications. The higher the risk, the more detailed the design review should
be; for minimal-risk systems, the design review could be limited or even nonexistent.

Two test tools have proven themselves over the years in programming phase test-
ing: desk debugging and peer review. These two tools are closely related and comple-
ment each other. Desk debugging is performed by the individual programmer prior to
peer reviews, which are normally performed by other members of the information ser-
vices department. A combination of the two tools is effective in detecting both struc-
tural and functional defects.

Summary

This chapter covers three tasks for performing verification during three phases of sys-
tem development. Task 1 provides a process for assessing the accuracy and complete-
ness of requirements. The cost of uncovering and correcting requirement deficiencies
at this phase of development is significantly less than during acceptance testing. Esti-
mates indicate that it would cost at least ten times as much to correct a requirement
deficiency in acceptance testing than during this phase. If testers can increase the accu-
racy and completeness of requirements at this point of development, the test effort
during the design phase can emphasize structural concerns and implementation con-
cerns as opposed to identifying improper requirements at later test phases.

Task 2 describes a process for testers to evaluate the accuracy and completeness of
the design process. Once verified as accurate and complete, the design can be moved
to the build phase to create the code that will produce the needed results from the user-
provided input.

Task 3 describes static testing during the build/programming phase. The method of
generating computer code varies significantly from organization to organization, and
from project to project.

The programming phase testing approach outlined in this task is designed to cover
all methods of code generation. However, all of the techniques should be used when
code is generated through statement languages. When code generators are used from
design specifications, the program testing will be minimal. Some of these program-
ming testing techniques may be incorporated in design phase testing. After the static
verification testing is done, the testing emphasis shifts to dynamic testing.

332 Chapter 9



WORK PAPER 9-1 Requirements Test Phase Process

TEST FACTOR: Requirements Comply with Methodology

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the applicable Confirm with those individuals responsible for Compliance Confirmation/
organization’s policies and developing the policies and procedures that all the examination
procedures been identified? applicable policies have been identified.

2. Do the requirements comply with Review requirement to ensure compliance. Compliance Fact finding
these policies and procedures?

3. Have the requirements been Examine requirements to ensure all needed Compliance Checklist
documented in accordance with documentation is complete.
the requirements methodology?

4. Is the cost/benefit analysis Examine cost/benefit analysis to ensure it was Compliance Checklist
prepared in accordance with the prepared in accordance with procedures.
appropriate procedures?

5. Has the requirements phase met Review the deliverables from requirements and Compliance Checklist
the intent of the requirements assess if they meet the intent of the methodology.
methodology?

6. Is the requirements phase Verify that the project is appropriately staffed. Compliance Peer review
staffed according to procedures?

7. Will all of the applicable policies, Confirm with the appropriate parties the effective Compliance Fact finding
procedures, and requirements dates of existing policies, procedures, and
be in effect at the time the regulations.
system goes in operation?

8. Will there be new standards, Confirm with the appropriate parties the effective Compliance Fact finding
policies, and procedures in dates of new standards, policies, and procedures.
effect at the time the system

goes operational?

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Functional Specifications Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Can the data required by the Confirm with the people who would generate the Requirements Fact finding
application be collected with the data that it can be generated with the desired
desired degree of reliability? degree of reliability.

2. Can the data be collected within Confirm with the people generating the data that it Requirements Fact finding
the time period specified? can be collected within the required time frame.

3. Have the user requirements Confirm with the user that the requirements in Requirements Checklist
been defined in writing? writing are complete.

4. Are the requirements stated in Examine the reasonableness of the criteria for Requirements Walkthroughs
measurable terms? measuring successful completion of the

requirements.

5. Has the project solution Examine the system specifications to confirm they Requirements Walkthroughs
addressed the user satisfy the user’s stated objectives.
requirements?

6. Could test data be developed to Verify that the requirements are stated in enough Requirements Test data
test the achievement of the detail that they could generate test data to verify
objectives? compliance.

7. Have procedures been specified Examine the specifications that indicate a Requirements Confirmation/
to evaluate the implemented post-installation review will occur. examination
system to ensure the
requirements are achieved?

8. Do the measurable objectives Examine to verify that the system objectives cover Requirements Confirmation/
apply to both the manual and both the manual and automated segments of the examination
automated segments of the application.

application system?



WORK PAPER 9-1 (continued)

TEST FACTOR: Usability Specifications Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the user functions been Confirm with the user that all user functions are Manual Confirmation/
identified? defined in requirements. support examination

2. Have the skill levels of the users Examine requirements documentation describing Manual Confirmation/
been identified? user skill level. support examination

3. Have the expected levels of Examine requirements documentation describing Manual Confirmation/
supervision been identified? expected level of supervision. support examination

4. Has the time span for user Confirm with the user that the stated time span for Manual Confirmation/
functions been defined? processing is reasonable. support examination

5. Will the counsel of an industrial Confirm that the industrial psychologist’s services Manual Confirmation/
psychologist be used in will be used. support examination
designing user functions?

6. Have clerical personnel been Confirm with clerical personnel that their input has Manual Confirmation/
interviewed during the been obtained. support examination
requirements phase to identify
their concerns?

7. Have tradeoffs between Examine reasonableness of identified tradeoffs. Manual Design reviews
computer and people processing support
been identified?

8. Have the defined user Confirm that users have examined their Manual Confirmation/
responsibilities been presented responsibilities. support examination
to the user personnel for

comment?

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Maintenance Specifications Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the expected life of the Confirm with the user that the stated project life is Compliance Confirmation/
project been defined? reasonable. examination

2. Has the expected frequency of Confirm with the user that the expected frequency Compliance Confirmation/
change been defined? of change is reasonable. examination

3. Has the importance of keeping Confirm with the user that the stated importance of Compliance Confirmation/
the system up to date functional updates is correct. examination
functionally been defined?

4. Has the importance of keeping Confirm with IT management that the importance Compliance Confirmation/
the system up to date of technological updates is correct. examination
technologically been defined?

5. Has it been decided who will Confirm with IT management who will perform Compliance Confirmation/
perform maintenance on the maintenance. examination
project?

6. Are the areas of greatest Examine documentation for areas of expected Compliance Peer review
expected change identified? change.

7. Has the method of introducing Examine project change procedures. Compliance Checklist
change during development
been identified?

8. Have provisions been included Examine the completeness of project maintenance Compliance Peer review
to properly document the documentation.
application for maintenance
purposes?



WORK PAPER 9-1 (continued)

TEST FACTOR: Portability Needs Determined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Are significant hardware Confirm with computer operations expected Operations Confirmation/
changes expected during the life hardware changes. examination
of the project?

2. Are significant software changes Confirm with computer operations expected Operations Confirmation/
expected during the life of the software changes. examination
project?

3. Will the application system be Confirm with the user the locations where the Compliance Confirmation/
run in multiple locations? application will be operated. examination

4. If an online application, will Examine terminal hardware requirements. Compliance Confirmation/
different types of terminals be examination
used?

5. Is the proposed solution Review requirements to identify hardware Compliance Inspections
dependent on specific restrictions.
hardware?

6. Is the proposed solution Review requirements to identify software Compliance Inspections
dependent on specific software? restrictions.

7. Will the application be run in Confirm with the user the countries in which the Compliance Confirmation/
other countries? application will be run. examination

8. Have the portability requirements Examine the requirements documentation for Compliance Inspections

been documented? portability requirements.

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Systems Interface Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have data to be received from Confirm with the project team that interfaced Intersystems Confirmation/
other applications been applications have been identified. examination
identified?

2. Have data going to other Confirm with the project team that interfaced Intersystems Confirmation/
applications been identified? applications have been identified. examination

3. Has the reliability of interfaced Confirm with other applications the reasonableness Control Fact finding
data been defined? of reliability requirements.

4. Has the timing of transmitting Confirm with other applications the reasonableness Control Fact finding
data been defined? of timing requirements.

5. Has the timing of data being Confirm with other applications the reasonableness Control Fact finding
received been defined? of timing requirements.

6. Has the method of interfacing Examine documentation to ensure the completeness Intersystems Walkthroughs
been defined? of interface methods.

7. Have the interface requirements Verify completeness of the interface requirements Intersystems Walkthroughs
been documented? documentation.

8. Have future needs of interfaced Confirm with interfaced projects the need to Intersystems Fact finding
systems been taken into consider future requirements.

consideration?



WORK PAPER 9-1 (continued)

TEST FACTOR: Performance Criteria Established

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Will hardware and software be Examine the reasonableness of the competitive Compliance Acceptance test
obtained through competitive bidding procedures. criteria
bidding?

2. Have cost-effectiveness criteria Examine the cost-effectiveness criteria. Compliance Confirmation/
been defined? examination

3. Has the cost-effectiveness for Examine the calculation and confirm that it has Compliance Checklist
this application system been been prepared in accordance with the procedures.
calculated in accordance with
the procedures?

4. Are the cost-effectiveness Confirm with the user that the procedures are Compliance Confirmation/
procedures applicable to this applicable to this application. examination
application?

5. Could application characteristics Confirm with the user that there are no unusual Compliance Confirmation/
cause the actual cost to vary characteristics that could cause the cost to vary examination
significantly from the significantly.
projections?

6. Are there application Confirm with the user that there are no Compliance Confirmation/
characteristics that could cause characteristics that would cause the actual benefits examination
the benefits to vary significantly to vary significantly from the projected benefits.
from the projected benefits?

7. Is the expected life of the project Confirm with the user the reasonable life for the Compliance Confirmation/
reasonable? project. examination

8. Does a design phase schedule Examine the completeness of the design phase Compliance Design review
exist that identifies tasks, work program.
people, budgets, and costs?

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Operational Needs Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the volume of transactions Confirm with user that the volume of transactions Compliance Confirmation/
been identified? is correct. examination

2. Has the timing of processing Confirm with user that the timing is reasonable. Compliance Confirmation/
been determined? examination

3. Has the frequency of processing Confirm with user that the frequency is reasonable. Compliance Confirmation/
been determined? examination

4. Has the number of documents Confirm with user that the storage requirements Compliance Confirmation/
that need to be stored online are correct. examination
been determined?

5. Will communication capabilities Confirm with user that the communication needs Compliance Confirmation/
be required for processing? are correct. examination

6. Will special processing Review documentation to identify special Operations Peer review
capabilities such as optical processing needs.
scanners be required?

7. Will computer operations be Review documentation to identify special operating Operations Peer review
expected to perform special requirements.
tasks, such as data entry?

8. Has it been confirmed with Confirm with computer operations that they have Operations Confirmation/
computer operations that they been advised of project requirements. examination
havebeen advised of project 

requirements?



WORK PAPER 9-1 (continued)

TEST FACTOR: Tolerances Established

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the significant financial Confirm with the accounting department that the Control Confirmation/
fields been identified? indicated financial fields are the key financial fields examination

for the application system.

2. Has responsibility for the Examine system documentation indicating Control Inspections
accuracy and completeness of individual responsible for each key financial field.
each financial field been assigned?

3. Have the accuracy and Assess the completeness of the identified risks. Requirements Walkthroughs
completeness risks been
identified?

4. Has the individual responsible Review the system documentation to determine Control Confirmation/
for each field stated the required that the stated accuracy precision is recorded. examination
precision for financial accuracy?

5. Has the accounting cutoff Confirm with the user that the projected cutoff Control Confirmation/
method been determined? procedure is realistic. examination

6. Have procedures been established Examine the reasonableness of the procedures to Control Walkthroughs
to ensure that all of the transactions ensure the timely recording of transactions.
will be entered on a timely basis?

7. Has a procedure been specified Review the reasonableness of the procedures to Control Walkthroughs
to monitor the accuracy of monitor financial accuracy.
financial information?

8. Are rules established on Review the reasonableness of the procedures to Error Inspections
handling inaccurate and handle inaccurate and incomplete data. handling

incomplete data?

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Authorization Rules Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have all of the key transactions Confirm with the user that all of the key Security Confirmation/
been identified? transactions are identified. examination

2. Have the rules for authorizing Verify that the authorization rules comply with Control Confirmation/
each of the key transactions organizational policies and procedures. examination &
been determined? Peer review

3. Are the authorization rules Review the reasonableness of the authorization Requirements Walkthroughs
consistent with the value of the rules in relationship to the resources controlled. and Peer
resources controlled by the review
transaction?

4. Have the individuals who can Verify that the individuals have been granted that Control Confirmation/
authorize each transaction been specific authorization by management. examination &
identified? Peer review

5. Have specifications been determined Review the documentation to verify the Requirements Inspection
requiring the name of the individual specifications require the system to maintain
authorizing the transaction to be records on who authorized each transaction.
carried with the transaction?

6. Have the transactions that will be Confirm with the user that all of the transactions Security Confirmation/
automatically generated by the that will be computer generated have been examination
system been identified? identified.

7. Have the rules for authorizing Verify that these authorization rules are consistent Control Confirmation/
computer-generated transactions with the organization’s policies and procedures. examination
been identified?

8. Have procedures to monitor the Review the reasonableness of the procedures that Requirements Walkthroughs
reasonableness of computer- will monitor computer-generated transactions.
generated transactions been 
specified?



WORK PAPER 9-1 (continued)

TEST FACTOR: File Integrity Requirements

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have key computer files been Confirm with the user that the identified files are Requirements Confirmation/
identified? the key files. examination

2. Has the composition of the data Confirm with the user that the major data fields Requirements Confirmation/
on each of the key files been have been identified. examination
identified?

3. Have the key control fields been Confirm with the user that the identified key fields Requirements Confirmation/
identified? are the key control fields. examination

4. Has the method of internal file Verify the reasonableness of the method to ensure Control Walkthroughs
integrity for each of the key the integrity of the key fields within the automated
fields been determined? system.

5. In a multiuser system, has one Determine the reasonableness of assigning Control Fact finding
user been assigned data integrity responsibility to the named individual.
responsibility?

6. Has a decision been made as Confirm with the organization’s comptroller the Control Confirmation/
to whether the integrity of importance of the key fields with which examination
the field warrants an external, independent external control totals are not
independently maintained maintained.
control total?

7. Has the method of maintaining Examine the reasonableness of the method for Control Fact finding
independent control totals on the maintaining independent control totals on key
key fields been determined? fields.

8. Have tolerances been established Confirm the reasonableness of the integrity Control Confirmation/
on the degree of reliability expected tolerances with the organization’s comptroller. examination

from file integrity controls?

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Reconstruction Requirements Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Does the organization’s record Review the applicability of the record retention Control Walkthroughs
retention policy include policy to automated applications.
automated applications?

2. Have the criteria for Review the reasonableness of the reconstruction Requirements Fact finding
reconstructing transaction criteria with the application user.
processing been determined?

3. Have the criteria for Verify the reasonableness of reconstruction Requirements Fact finding
reconstructing computer files procedures with the manager of computer
been determined? operations.

4. Is requirements documentation Verify the completeness and adequacy of Requirements Inspections
adequate and in compliance requirements documentation.
with standards?

5. Have the criteria for reconstructing Confirm the reasonableness of the processing Requirements Confirmation/
processing from a point of known reconstruction requirements with the manager of examination
integrity been determined? computer operations.

6. Has the project stated a Verify that the system specifications include this Control Confirmation/
requirement to trace transactions requirement. examination
to application control totals?

7. Has the project stated a Verify that the system specifications include this Control Confirmation/
requirement specifying that requirement. examination
control totals must be supportable
by identifying all the transactions
comprising that control total?

8. Has the retention period for all of Confirm that the retention periods are in Requirements Inspections
the reconstruction information accordance with the organization’s record retention
been specified? policy.



WORK PAPER 9-1 (continued)

TEST FACTOR: Impact of Failure Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the dollar loss of an application Examine the reasonableness of the dollar loss. Recovery Fact finding
system failure been defined?

2. Has the dollar loss calculation Examine the reasonableness of the loss amounts at Recovery Fact finding
for a failure been extended to various time intervals.
show the loss at different time
intervals, such as one hour, eight
hours, one day, one week, etc.?

3. Is the proposed system Confirm with independent sources the reliability Recovery Confirmation/
technology reliable and proven and track record of the recommended hardware examination
in practice? and software.

4. Has a decision been made as to Confirm the correctness of the decision with the Recovery Confirmation/
whether it is necessary to system user. examination
recover this application in the
event of a system failure?

5. Are alternate processing procedures Confirm with the user the need for alternate Recovery Confirmation/
needed in the event that the processing procedures. examination
system becomes unoperational?

6. If alternate processing Confirm with the user the reasonableness of those Recovery Confirmation/
procedures are needed, have alternate processing procedures. examination
they been specified?

7. Has a procedure been identified Confirm with the user the reasonableness of the Recovery Confirmation/
for notifying users in the event of notification procedure. examination
a system failure?

8. Has the desired percent of up- Confirm with the user the reasonableness of the 
time for the system been specified? up-time. 

(continues)



WORK PAPER 9-1 (continued)

TEST FACTOR: Desired Service Level Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the response time for each Confirm with the user that the response times Operations Confirmation/
transaction been identified? are reasonable. examination

2. Has a schedule been established Confirm with computer operations that there is Operations Confirmation/
indicating which part of the system sufficient capacity to meet these service levels. examination
is run on which day?

3. Do all vendor contracts indicate Review contractual specifications to ensure they Operations Confirmation/
maintenance support for key include maintenance. examination
hardware and software?

4. Have processing tolerances been Confirm with the user that these service level Operations Confirmation/
established for each part of the tolerances are correct. examination
system?

5. Can computer operations process Confirm with the manager of computer Operations Confirmation/
the requirements within the operations the reasonableness of the examination
expected tolerances? tolerances.

6. Has the priority of each part of system Confirm with the user the reasonableness of the Operations Confirmation/
processing been decided to deter- priorities. examination
mine which segment runs first in the
event computer time is limited?

7. Has the priority of each application Confirm with a member of executive Operations Confirmation/
been established in relationship to management the reasonableness of the examination
other applications to determine application system priority.
priority of processing after a failure 
and in the event of limited computer 
time?

8. Has the volume of processing require- Confirm with the manager of operations there Operations Confirmation/
ments been projected for a reason- will be sufficient capacity to meet these examination

able period of time in the future? increased volumes.



WORK PAPER 9-1 (continued)

TEST FACTOR: Access Defined

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the application resources Confirm with the user that the identified resources Security Risk matrix &
been identified? are complete. Confirmation/

examination

2. Have the users of those Confirm with the individual responsible for those Security Risk matrix &
resources been identified? resources that the users are authorized. Confirmation/

examination

3. Have the individuals responsible Confirm with user management that these are the Security Risk matrix &
for those resources been individuals responsible for those resources. Confirmation/
identified? examination

4. Has a profile been established Examine the completeness of the user profile. Security Risk matrix &
matching resources with the Peer review
users authorized to access those
resources?

5. Have procedures been identified Confirm with the manager of computer operations Security Confirmation/
to enforce the user profile? that the procedures are workable. examination

6. Has the importance of each Confirm with the individual responsible that the Security Confirmation/
resource been identified? security classifications are correct. examination

7. Has a procedure been Evaluate the reasonableness of the monitoring Control Fact finding
established for monitoring procedures.
access violations?

8. Has a process been established Confirm with management that they intend to Control Confirmation/

to punish access violators? enforce violation procedures. examination



WORK PAPER 9-2 Quality Control Checklist

YES NO N/A COMMENTS

1. Are the defined requirements testable?

2. Does the user agree the defined 
requirements are correct?

3. Do the developers understand the 
requirements?

4. Do the stated requirements meet the 
stated business objectives for the 
project?

5. Have the project risks been identified?

6. Was a reasonable process followed in 
defining the requirements?

7. Are project control requirements 
adequate to minimize project risks?

8. Was a project requirements 
walkthrough conducted?

348 Chapter 9



WORK PAPER 9-3 Computer Applications Risk Scoring Form1

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

System Scope and Complexity

Organizational breadth

a) Important functions Must meet important Meets limited conflicting No significant conflicting
conflicting needs of requirements of needs, serves primarily
several organizational cooperative organizational one organizational unit.
units. units.

b) Unrelated Dependent upon data Dependent upon data Virtually all input data
organizational units flowing from many from a few organizational comes from a small group
deeply involved organizational units not units with a common interest; of sections under unified

under unified direction. if not unified control. control.

Information services breadth

a) Number of transaction More than 25 6 to 25 Fewer than 6
types

b) Number of related More than 6 4 to 6 Fewer than 4
record segments

c) Output reports More than 20 10 to 20 Fewer than 10

Margin of error

a) Necessity for Very demanding Realistically demanding Comfortable margin
everything to work
perfectly, for “split-
second timing” for
great cooperation
(perhaps including
external parties), etc.

Technical complexity

a) Number of programs More than 35 20 to 35 Fewer than 20
including sort/merge

1Risk scoring method developed by the General Accounting Office. (continues)



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

b) Programming More than 20 10 to 20 Fewer than 10
approach (number of
module/functions
interacting within an
update/file
maintenance program)

c) Size of largest More than 60K 25K to 60K Fewer than 25K
program

d) Adaptability of Low, due to monolithic Can support problems Relatively high; program
program to change program design. with adequate talent and straightforward, modular,

effort. roomy, relatively
unpatched, well-
documented, etc.

e) Relationship to Pushes equipment Within capacities. Substantial unused
equipment in use capacity near limits. capacity.

f) Reliance on online Heavy, including direct Remote-batch processing None or limited to file
data entry, automatic entry of transactions and under remote operations inquiry.
document reading, or other changes into the control.
other advanced master files.
techniques

Pioneering aspects

Extent to which the More than a few relatively Few untried systems No untried system
system applies new, untried equipment or components and their components; no
difficult, and unproven system software functions are moderately pioneering system
techniques on a broad components or system important; few, if any, objectives or techniques.
scale or in a new techniques or objectives, pioneering system
situation, thus placing at least one of which is objectives and techniques.
great demands on the crucial.
non-IS departments,
systems and programming
groups, IS operations personnel,
customers, or vendors, etc.



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

System stability

a) Age of system (since Less than 1 year 1 to 2 years Over 2 years
inception or last big
change)

b) Frequency of More than 4 per year 2 to 4 per year Fewer than 2 per year
significant change

c) Extent of total change Affecting more than 25% Affecting 10 to 25% of Affecting less than 10% of
in last year of programs. programs. programs.

d) User approval of Cursory, essentially Reasonably informed as to Formal, written approval,
specifications uninformed. general but not detailed based on informed

specifications; approval judgment and written,
apt to be informal. reasonably precise

specifications.

Satisfaction of user

requirements

a) Completeness Incomplete, significant Occasional problems but No significant data omitted
number of items not normally no great or processed in wrong
processed in proper difficulties. period.
period.

b) Accuracy Considerable error Occasional problems but Errors not numerous or of
problem, with items in normally not great consequence.
suspense or improperly difficulties.
handled.

c) Promptness in terms Reports and documents Reports and documents Reports and documents
of needs delayed so as to be not always available when produced soon enough to

almost useless; forced to desired; present timetable meet operational needs.
rely on informal records. inconvenient but tolerable.

(continues)



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

d) Accessibility of details Great difficulty in obtaining Complete details available Details readily available.
(to answer inquiries, details of transactions or monthly; in interim, details
review for balances except with available with some
reasonableness, make much delay. difficulty and delay.
corrections, etc.)

e) Reference to source Great difficulty in locating Audit trail excellent; some Audit trail excellent; filing
documents (audit trail) documents promptly. problems with filing and and storage good.

storage.

f) Conformity with Actual procedures and Limited tests indicate that Limited tests indicate
established system operations differ in actual procedures and actual procedures and
specifications important respects. operations differ in only operations produce

minor respects and desired results.
operations produce
desired results.

Source data origin and

approval

a) People, procedures, Situation leaves much to Situation satisfactory, but Situation satisfactory.
knowledge, discipline, be desired. could stand some
division of duties, etc. improvement.
in departments that
originate and/or
approve data

b) Data control None or relatively Control procedures based Control procedures
procedures outside ineffective; e.g., use of on noncritical fields; include critical fields; good
the information noncritical fields, loose reasonably effective liaison tie-in with IT department;
services organization liaison with IT department, with IT department. especially good on

little concern with rejected rejected items.
items.

c) Error rate Over 7% of transactions 4–7% of transactions Less than 4% of
rejected after leaving rejected after leaving transactions rejected after
source data department. source data department. leaving source data

department.



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

d) Error backing Many 30-day-old items. Mostly 10–15-day-old Items primarily less than 7
items. days old.

Input data control (within

IT department)

a) Relationship with Loose liaison with external Reasonably effective Good tie-in with external
external controls control units; little concern liaison with external data control units for both valid

with rejected items; batch control units; good control and rejected items; batch
totals not part of input over new items, but less totals received as part of
procedures; only use satisfactory control over input process.
controls like item counts; rejected items; batch
no control totals of any totals received, but
kind. generated by computer.

b) Selection of critical Control based on Control based on a Control established on
control fields noncritical fields. mixture of critical and critical fields.

noncritical fields, with
effective supplementary
checks.

c) Controls over key Control based on batch Control based on Control based on
transcription totals. transmittal sheets; batch transmittal sheets; batch

totals and key verification totals maintained on data
of critical fields not batch logs; key verification of all
controlled. critical fields; written

“sign-off” procedures.

Data validation

a) Edit tests Alphanumeric tests. Range and alphanumeric Range, alphanumeric, and
tests. check-digit tests.

b) Sophistication Simple, based on edit of Simple editing, plus some Simple editing, plus
one field at a time. editing based on the extensive edit tests based

interrelationship of two on the interrelationship of
fields. two or more fields.

(continues)



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

c) Application to critical A considerable amount of A few critical fields are Editing performed on
data critical data is not edited. edited only indirectly. critical fields.

d) Error balancing, Error rejected by system Number and value of Error carried in suspense
retrieval, and and eliminated from rejected items carried in account in total and in
correction procedures controls; treated as new suspense account without detail until removed by

items when reintroduced. electronically maintained correction.
details.

Computer processing

control procedure

a) Controls within Informal operating Written operating Operations are based 
machine room instructions. procedures. on a schedule and use 

up-to-date instructions.

b) Manual and electronic Tape library controls by Tape library controls by Programmed label check
safeguards against serial number; no serial number; applied to serial number,
incorrect processing programmed checks. programmed checks expiration date, and the
of files applied to file identification.

identification.

c) Recording of run-to- Run-to-run totals not used. Run-to-run totals printed Run-to-run totals printed
run debit, credit, and and compared manually. and compared by
balance totals for both program.
transaction
processing and
master field records

d) Documentation status Poor or no standards; Adequate practices not Excellent standards
uneven adherence; not uniformly adhered to; closely adhered to and
part of system and documentation done “after carried out as part of
program development. the fact.” system and program

development.

e) System test practices Some transaction paths Each transaction path Each transaction path
not tested. tested individually. tested in combination with

all other transactions.



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

Output control

a) Quantitative controls Virtually nonexistent. Hard to tie back meaning- Tied back to input
fully to input controls. controls.

b) Qualitative controls Documents and reports Documents and reports Documents and reports
accepted virtually receive limited review. tested in detail, in addition
without review. to receiving a “common

sense” review of
reasonable data limits.

c) Distribution controls No routine report Routine procedures for Written procedures
distribution procedures. distribution limited to list of requiring that control log

users and frequency of indicate receipt by user,
report delivery. time of accounting for

each copy, etc.

Online processing controls

a) Data transmission The front-end control The front-end control The front-end control
controls, including program does not validate program checks terminal program validates
error detection, error operator identification and operator identification terminal/operator
recovery, and data codes or message codes and message identification codes plus
security sequence number, and sequence number, sends transaction authorization

does not send acknowledgment to codes and message
acknowledgment to origin, and provides a sequence number and
origin. transaction log. count, corrects errors,

sends acknowledgment
to origin, and provides log
of transactions plus copies
of updated master file
records.

(continues)



WORK PAPER 9-3 (continued)

SIGNIFICANT INDICATIVE OF INDICATIVE OF INDICATIVE OF
CHARACTERISTICS HIGH RISK MEDIUM RISK LOW RISK COMMENTS

b) Data validation Neither the front-end The application program The application program
controls, including control nor the application checks approval codes for validates approval codes
error detection and processing program key transaction types only, for all transactions, and
correction checks for authorization but check digits are not check digits are used with

approval codes; no check used with identification identification keys; data
digits are used with keys; extensive data relationship tests are used
identification keys; little relationship tests extensively; erroneous
use of extensive data are used; erroneous transactions are noted in
relationship tests; transactions are sent back error suspense file when
erroneous transactions are to terminal with a note, sent back to terminal 
rejected without analysis butno suspense entry with note.
or suspense entry. is made.

c) Information services Application program Application program Stored validation range
controls, including produces a total number produces a summary values are used to validate
error detection, of transactions processed; record of all debit and transaction fields;
transaction processing, no master file processing credit transactions application program
master file processing, controls; file recovery processed; no master file summarizes all
and file recovery provisions limited to processing controls; file transactions processed by
provisions periodic copy of recovery provisions limited type, with credit and debit

master file. to transaction log and values for each terminal,
periodic copy of master file. and uses a master file

control trailer record that
is balanced by program
routine; end-of-processing
file recovery provisions
include transaction log of
active master file records.



WORK PAPER 9-4 Design Phase Test Process

TEST FACTOR: Data Integrity Controls Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Are controls established over Review the adequacy of the transaction origination Control Risk matrix &
accuracy and completeness accuracy and completeness control. Checklist
during the transaction origination
process?

2. Are input transactions controlled, Review the adequacy of the input controls to Control Risk matrix &
such as through a sequential ensure that all input is entered. Checklist
input number, to ensure that all
transactions are entered?

3. Are communication controls Review the adequacy of transmission accuracy and Control Risk matrix &
established to ensure the completeness controls. Checklist
accurate and complete
transmission of data?

4. For key entry transactions, such Verify the adequacy of the batch control total Requirements Control flow
as cash receipts, are batch procedures. analysis
control totals prepared?

5. For key entry input transactions, Verify the adequacy of the batch numbering Requirements Control flow
such as purchase orders, are procedures. analysis
batch numbers prepared to
ensure that batches of input are
not lost?

6. Are check digits or equivalent Verify that key fields use procedures that ensure Requirements Error guessing
controls used on key control the accurate entry of that information. & Design-
fields, such as product number, based
to ensure the accurate entry of functional

product number? testing

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Data Integrity Controls Designed (continued)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. Is each field subject to extensive Examine the type and scope of data validation Error Acceptance test
data validation checks? checks for each key field to determine that they are handling criteria, Error

adequate. guessing.
Checklist, &
Data dictionary

8. Are input numbers, batch Verify that the controls established at the time of Control Inspections
numbers, and batch totals manual input preparation are verified by the
verified by the data validation computer program.
programs to ensure the accurate
and complete input of
transactions?



WORK PAPER 9-4 (continued)

TEST FACTOR: Authorization Rules Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the method for authorizing Review the documentation to ensure authorization Security Checklist &
each transaction been rules are complete. Inspections
documented?

2. For those documents whose Determine that for transactions whose entry itself Security Checklist, Error
authorization is dependent upon indicates authorization, that those transactions can guessing, &
the source of origination as only originate from the properly authorized source. Inspections
opposed to a signature, can that
source of origination be verified
by the application system?

3. In a multiuser system, has Determine the adequacy of the assigned Control Inspections &
responsibility for authorization authorization responsibilities in a multiuser system. Fact finding
been assigned to a single
individual?

4. Is the authorization method Review the reasonableness of the authorization Requirements Cause effect
consistent with the value of the method in relationship to the resources being graphing,
resources being authorized? controlled. Walkthroughs,

& Scoring

5. If passwords are used for Review the adequacy of the password protection Control Error guessing
authorization, are procedures procedures.
adequate to protect passwords?

6. If passwords are used, will they Determine the reasonableness of the frequency for Control Error guessing
be changed at reasonable changing passwords.
frequencies?

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Authorization Rules Designed (continued)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. Are the authorization rules Examine the documentation for verifying Security Checklist, Risk
verified by the automated authorization rules. matrix, &
segment of the application? Inspections

8. Are procedures established to Examine the reasonableness of the procedure to Control Error guessing
report authorization violations to report authorization violations to management. & Inspections
management?



WORK PAPER 9-4 (continued)

TEST FACTOR: File Integrity Controls Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the fields been identified Confirm with users that there are sufficient file Control Error guessing
that will be used to verify file integrity checks based upon the importance of Confirmation/
integrity? data. examination

2. Are procedures established to Examine the documentation indicating the file Requirements Inspections
verify the integrity of key files? integrity verification procedures to determine they

are adequate.

3. Are procedures established to Confirm with the user that the file integrity Requirements Confirmation/
verify the integrity of files on a verification frequency is adequate to protect the examination
regular basis? integrity of the file.

4. Are procedures established to Examine the specifications and procedures for Control Inspections
report file integrity variances to reporting file integrity variances to management.
management?

5. For key files, such as cash Verify for key files that independent control total Control Checkpoint &
receipts, have procedures been procedures are adequate. Inspections
establishment to maintain
independent control totals?

6. Have procedures been Verify the adequacy of the reconciliation Control Cause-effect
established to reconcile procedures. graphing,
independent control totals to the Checklist, &
totals produced by the Desk checking
automated segment?

7. Will the independent control Confirm with the user that the frequency of Requirements Confirmation/
totals be reconciled regularly to independent reconciliation is adequate. examination
the automated control totals?

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: File Integrity Controls Designed (continued)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

8. Are simple accounting proofs Review the adequacy of the methods to ensure that Error Boundary value
performed regularly to ensure updating is performed correctly. handling analysis &
that the updating procedures are Desk checking
properly performed?



WORK PAPER 9-4 (continued)

TEST FACTOR: Audit Trail Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the detailed specifications Review the completeness of the documentation in Requirements Walkthroughs
been documented for each relationship to the audit trail objectives.
audit trail objective?

2. Have the data fields and records Review the reasonableness of the included data Requirements Walkthroughs
for each audit trail been defined? fields to satisfy the audit trail objective.

3. Has the length of time to save Verify that the length of time is consistent with the Control Confirmation/
each audit trail been defined? organization’s record retention policy. examination &

Fact finding

4. Have the instructions been defined Review the completeness of the specifications to Requirements Checklist &
for utilizing the audit trail? instruct people in using the audit trail. Data flow

analysis

5. Does the audit trail include Review the audit trail specifications to verify that Requirements Flowchart &
both the manual and automated both the manual and automated segments are Tracing
segments of the system? included.

6. Is the audit trail stored in a Confirm with audit trail users that the form and Requirements Confirmation/
sequence and format making the sequence are consistent with the use they would examination &
retrieval and use easy? make of the audit trail. Fact finding

7. Will sufficient generations of the Examine the adequacy of the off-site facility. Requirements Inspections
audit trail be stored away from the
primary site so that if the primary 
site is destroyed processing can be
reconstructed?

8. Have procedures been established Assess the adequacy of the audit trail destruction Requirements Checklist &
to delete audit trails in the procedures. Error guessing
prescribed manner at the
completion of their usefulness?

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Contingency Plan Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has responsibility for the Verify that the assigned individual has the sufficient Operations Fact finding
preparation of a contingency skills and time to prepare a contingency plan.
plan been assigned?

2. Does the contingency plan Confirm with the computer operations manager that Operations Error guessing
define all of the causes of failure? the list of potential failures is complete. & 

Confirmation/
examination

3. Does the contingency plan Review the completeness of the assigned Operations Checklist
define responsibilities during the responsibilities.
contingency period?

4. Does the contingency plan Confirm with the computer operations manager that Operations Confirmation/
identify contingency resources? the assigned resources will be available in the examination

event of a failure.

5. Does the contingency plan Confirm with a member of executive management Recovery Confirmation/
predetermine the operating that the recovery priorities are reasonable. examination
priorities after a problem?

6. Are all the parties involved in a Review the list of contingency plan participants for Recovery Checklist
failure included in the development completeness.
of the contingency plan?

7. Are procedures established to Review the adequacy of the contingency plan test Recovery Checklist &
test the contingency plan? procedures. Disaster test

8. Will the contingency plan be Review the schedule for developing the Recovery Inspections
developed at the time the contingency plan to ensure it will be complete

application goes operational? when the system goes operational.



WORK PAPER 9-4 (continued)

TEST FACTOR: Method to Achieve Service Level Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Can the system design achieve Either confirm the reasonableness with computer Execution Confirmation/
the desired service level? operations personnel or run a simulation of the examination &

system to verify service levels. Modeling

2. Do peak period volumes impact Develop a simulation to test service levels based Execution Modeling
upon the desired service level? upon maximum processed volumes.

3. Can user personnel manually Develop a model to demonstrate the amount of Execution Modeling
handle their part of peak volume time required to perform the manual part of
periods? processing.

4. Will expected errors impact upon Determine the expected number of errors and Execution Checklist, Error
service levels? include that in the system simulation. guessing,

Inspections, &
Modeling

5. Has the cost of failing to achieve Confirm with users that the cost of failure to meet Execution Confirmation/
service levels been determined? service levels has been calculated. examination

6. Are desired and projected Examine the requests for system changes and Execution Inspections &
service levels recalculated as the determine their impact on the service level. Modeling
system is changed?

7. Are procedures established to Review the adequacy of the monitoring procedure. Execution Checklist &
monitor the desired service level? Inspections

8. Will sufficient computer Confirm with the computer operations manager that Operations Confirmation/
resources be installed to meet computer resources will be increased in proportion examination &
the service levels as the volumes to increased volumes of data. Fact finding

increase?

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Access Procedures Designed

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have advanced security Confirm with the individual responsible for data Security Confirmation/
techniques such as security that advanced security measures have been examination
cryptography been considered? been considered and implemented where necessary.

2. Have operating software features Confirm with system programmers that a systematic Security Risk matrix &
been evaluated for security purposes process was used to evaluate systems software Confirmation/
and implemented where necessary? features needed for security. examination

3. Have procedures been designed Confirm with the data security officer the adequacy Security Risk matrix &
to protect the issuance and of password protection procedures. Confirmation/
maintenance of passwords? examination

4. Are procedures defined to Review the adequacy of the procedures to monitor Control Checklist &
monitor security violations? security violations. Fact finding

5. Does senior management intend Confirm with senior management their intent to Control Confirmation/
to prosecute security violators? monitor security and prosecute violators. examination

6. Have the security needs of each Review the completeness and adequacy of the Control Risk matrix &
application resource been defined? security for each application resource. Scoring

7. Has one individual been Confirm that the individual appointed has sufficient Security Checklist &
assigned the responsibility for skill and time to monitor security. Confirmation/
security of the application? examination

8. Is the system designed to Confirm with the user the completeness of the Security Cause-effect
protect sensitive data? design to protect sensitive data. graphing,

Correctness
proof, 
Inspections, & 

Scoring



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Complies with Methodology

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the appropriate methodology Confirm with the responsible party that the Compliance Correctness
specifications been determined? specifications are correct. proof, Error

guessing, &
Confirmation/
examination

2. Has the required level of compliance Verify that the project complies with the Compliance Design reviews
to the methodology been achieved? methodology.

3. Will the standards, policies, etc. Confirm with the involved parties that they will Compliance Confirmation/
be monitored during monitor compliance to the methodology. examination &
implementation? Fact finding

4. Has the cost of compliance been Review with the involved parties the cost/benefit of Compliance Fact finding
determined so that it can be compliance.
measured against the benefit,
sanction, etc.?

5. Are procedures established to Review the adequacy of the specified method of Compliance Fact finding
substantiate compliance to the substantiating compliance.
methodology?

6. Will the methodology be in use Confirm with IT management the applicability Compliance Confirmation/
when the system becomes of using all or part of the methodology based on examination
operational? the application’s expected implementation date.

7. Have deviations from the Verify variances from the methodology are Compliance Design 
methodology been documented approved. reviews & 
and approved? Confirmation/

examination

8. Is design documentation adequate Verify the completeness and adequacy of design Compliance Design reviews
and in compliance with standards? documentation.

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Conforms to Requirements

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the systems design group Examine all of the program change requests to Requirements Confirmation/
made changes to the application verify they have been approved by the user. examination

system without gaining user
approval?

2. Is there a formal change request Examine the adequacy and compliance to the Control Checklist &
procedure that must be followed program change procedure. Inspections
to make all system changes?

3. Are the objectives of the system Determine the effect of the approved system Requirements Inspections &
reevaluated and changed where changes on the objectives, and determine if the Walkthroughs
necessary based on each objectives have been changed accordingly.
approved change request?

4. Does the user continually Confirm with the user that the objectives are Requirements Acceptance 
reevaluate the application updated based on changing business conditions. test criteria,
system objectives in regard to Confirmation/
changing business conditions? examination, &

Fact finding

5. Are user personnel heavily Confirm with the information services project Requirements Confirmation/
involved in the design of the personnel that the user is heavily involved in the examination &
application system? system design. Fact finding

6. If user management changes, Verify that the design specifications achieve the Requirements Acceptance 
does the new management intent of the application requirements. test criteria,
reconfirm the system objectives? Confirmation/

examination



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Conforms to Requirements (continued)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. If the objectives are changed, is Verify that the criteria to measure the objectives Requirements Acceptance
the means of measuring those are reasonable. test criteria, 
objectives changed accordingly? Cause-effect 

graphing,
Design-based
functional
testing,
Executable
specs, &
Symbolic
execution

8. Do the design specifications Verify that the design specifications achieve the Requirements Correctness
achieve the intent of the intent of the application requirements. proof, Data 
requirements? flow analysis,

Design-based
functional
testing, Desk
checking,
Executable
specs, &
Symbolic
execution

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Facilitates Use

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the people tasks been defined? Examine the manual processing documentation. Manual Inspections
support

2. Are the tasks realistic based on Review the application system processing. Manual Peer review
the skill level of the people? support

3. Is the timing of the tasks realistic? Calculate the adequacy of manual turnaround time. Requirements Modeling

4. Will the information needed to Confirm with users the expected availability of Requirements Confirmation/
do the people tasks be available? needed information. examination

5. Is the workload reasonable Estimate the time required to complete assigned Requirements Modeling
based on the expected staffing? tasks.

6. Have the people involved been Confirm with users their independence in systems Manual Confirmation/
presented their tasks for comment? design. support examination

7. Could some of the people tasks Review the application system processing. Requirements Cause-effect
be better performed on the graphing &
computer? Error guessing

8. Will adequate instruction manuals Review the design specifications for preparation of Manual Checklist
be prepared for these tasks? instruction manuals. support



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Is Maintainable

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Is system design logically Review the application design structure. Compliance Peer review
constructed?

2. Are data attributes fully defined? Examine the data documentation for completeness. Compliance Inspections

3. Is computer logic presented in Review the application system logic. Compliance Peer review
an easy-to-follow manner?

4. Are changes to the system Trace changes to the system specifications. Compliance Inspections
incorporated into the design
documentation?

5. Have areas of expected high Review the maintainability of logic in areas of Compliance Fact finding
frequency of change been expected high change.
designed to facilitate maintenance?

6. Are business functions designed Review the application design structure. Compliance Inspections
using a standalone concept?

7. Is design documentation Examine the design documentation for usability. Compliance Inspections
complete and usable?

8. Are maintenance specialists Confirm with maintenance specialists that they Compliance Confirmation/

involved in the design process? are involved in the design process. examination

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Is Portable

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Does the design avoid Review hardware specifications for special features. Operations Inspections
specialized hardware features?

2. Does the design avoid Review software specifications for special features. Operations Inspections
specialized software features?

3. Will the system be coded in a Examine coding rules for the project. Operations Fact finding
common computer language?

4. Will the system be restricted to Examine coding rules for the project. Operations Fact finding
common features of the
language?

5. Does the system avoid the use Review software specifications for specialized Operations Inspections
of specialized software software.
packages?

6. Are data values restricted to Review data documentation for type of data Operations Inspections
normal data structures? structure used.

7. Does documentation avoid Review documentation for use of specialized Operations Inspections
specialized jargon? jargon.

8. Have the portability Review the adequacy of the portability Operations Inspections
implementation considerations documentation.

been documented?



WORK PAPER 9-4 (continued)

TEST FACTOR: Interface Design Complete

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the transactions to be Examine interfaced input data documentation. Intersystems Checklist
received from other applications
been defined?

2. Have the transactions going to Examine interfaced output data documentation. Intersystems Checklist
other applications been defined?

3. Has the timing of interfaced Review system specifications for definition of Intersystems Flowchart
transactions been defined? timing.

4. Is the timing of interfaced Confirm with interfaced application personnel that Operations Confirmation/
transactions realistic? timing is reasonable. examination

5. Has the media for transferring Review system specifications for documentation of Operations Inspections
data to interfaced applications media.
been defined?

6. Are common data definitions Compare common data definitions of interfaced Control Fact finding
used on interfaced data? applications.

7. Are common value attributes Compare common value attributes of interfaced Control Fact finding
used on interfaced data? applications.

8. Has interface documentation Confirm with interfaced projects that Intersystems Confirmation/
been exchanged with interfaced documentation has been exchanged. examination

applications?

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Achieves Criteria

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the systems development Confirm with the user that the new system costs Execution Acceptance test
and acceptance criteria costs and acceptance criteria are reasonable. criteria &
been recalculated based on the Confirmation/
systems design? examination

2. Have the criteria for developing Confirm with the user that the manual effort has Execution Acceptance test
the manual processing segments been defined and the cost confirmed. criteria &
been confirmed? Confirmation/

examination

3. Has the cost of operating the Confirm with computer operations that the Execution Acceptance 
computer programs been operational costs are reasonable. test criteria &
confirmed based on the systems Confirmation/
design? examination

4. Have the costs to operate the Confirm with the user that the cost to operate the Execution Acceptance 
manual segments of the system manual segments of the application are test criteria &
been confirmed? reasonable. Confirmation/

examination

5. Have the benefits of the system Confirm with the user the reasonableness of the Execution Acceptance 
been confirmed based upon the benefits. test criteria &
systems design? Confirmation/

examination

6. Has the useful life of the system Confirm with the user the reasonableness of the Execution Acceptance 
been confirmed based upon the expected life of the application. test criteria &
systems design? Confirmation/

examination



WORK PAPER 9-4 (continued)

TEST FACTOR: Design Achieves Criteria (continued)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. Has the cost-effectiveness of the Confirm with the organization’s accountants that Execution Confirmation/
new system been recalculated if the cost is correct. examination
changes in the factors have
occurred?

8. Does the cost-effectiveness after Confirm with senior management that the system Execution Confirmation/
design warrant the continuance design is still cost-effective. examination
of the system?

(continues)



WORK PAPER 9-4 (continued)

TEST FACTOR: Needs Communicated to Operations

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have special hardware needs Review specifications for special hardware needs. Operations Inspections
been defined?

2. Have special software needs Review specifications for special software needs. Operations Inspections
been defined?

3. Have operations timing Review specifications for operations timing Operations Inspections
specifications been defined? specifications.

4. Have system volumes been Confirm with users the reasonableness of Compliance Confirmation/
projected over an extended time projections. examination
period?

5. Have operations capacity Review specifications to determine whether the Operations Checklist
requirements been specified? capacity requirements are reasonable.

6. Have computer test requirements Examine test specifications for reasonableness. Operations Fact finding
been specified?

7. Have supplies/forms been Review specifications to verify that all supplies/ Operations Fact finding
specified? forms have been identified.

8. Has computer operations been Confirm with computer operations their awareness Operations Confirmation/
notified of the anticipated of operation requirements. examination
workload and other requirements?



Step 3: Verification Testing 377

WORK PAPER 9-5 Business System Design Review Checklist2

YES NO N/A COMMENTS

Systems Overview

1. Is there a brief description of interfaces with 
other systems?

2. Is there an outline of the major functional
requirements of the system?

3. Are the major functions defined into discrete 
steps with no boundary overlapping?

4. Have manual and automatic steps been defined?

5. Has the definition of what data is required to
perform each step been indicated along with a
description of how the data is obtained?

System Description

6. Has a system structure chart been developed,
showing the logical breakdown into subsystems
and interfaces with other systems?

7. Have the major inputs and outputs been defined 
as well as the functional processing required to
produce the output?

8. Is there a narrative description of the major
functions of the system?

9. Have subsystem functional flow diagrams been
developed showing the inputs, processing, and
outputs relevant to the subsystem?

10. Has subsystem narrative description been
developed?

11. Do the functional outlines follow the logical
structure of the system?

12. Are they hierarchical in nature—that is, by 
function and by steps within function?

Design Input and Output Data—Data Structure

13. Has the data been grouped into logical 
categories (i.e., customer product, accounting, 
marketing sales, etc.)?

14. Has the data been categorized as follows:
a) Static
b) Historical data likely to be changed
c) Transaction-related

15. Have standard data names (if possible) been 
used?

16. Has the hierarchical relationship among data
elements been defined and described?

2Based on case study included in Effective Methods of EDP Quality Assurance.

(continues)



WORK PAPER 9-5 (continued)

YES NO N/A COMMENTS

Design Output Documents

17. Are there headings?

18. Do the headings include report titles, 
department, date, page number, etc.?

19. Are the output documents adaptable to current
filing equipment?

20. Are processing dates, system identification, 
titles, and page numbers shown?

21. Has consideration been given to output devices?

22. Is each data column identified?

23. Where subtotals are produced (e.g., product 
within customer) are they labeled by control 
break?

Design Input Elements

24. Are the data elements clearly indicated?

25. Has the source of the data been defined
(department and individual)?

26. Have input requirements been documented?

27. Is the purpose of the input document clear?

28. Is the sequence indicated?

Design Computer Processing

29. Has each function been described using 
functional terminology (e.g., if salary exceeds 
maximum, print message)?

30. Has validity checking been defined with 
reference to the data element dictionary?

31. In cases where the same data may be coming 
from several sources, have the sources been 
identified as to priorities for selection by the 
system?

32. Has processing been classified according to type 
of function (e.g., transaction, calculation, 
editing, etc.)?

Design Noncomputer Processing

33. Has the preparation of input been described?

34. Has the distribution of output been described?

35. Has an error correction procedure been 
described?

Organizational Controls

36. Have organizational controls been established?

378 Chapter 9



WORK PAPER 9-5 (continued)

YES NO N/A COMMENTS

37. Have controls been established across 
department lines?

38. Have the control fields been designed?

39. Are there control validation procedures prior to
proceeding to the next step?

Overall System Controls

40. Have controls been designed to reconcile data
received by the computer center?

41. Have controls for error correction and reentry 
been designed?

42. Have controls been designed that can be
reconciled to those of another system?

Input Controls

43. Have some or all of the following criteria been 
used for establishing input controls?

a) Sequence numbering
b) Prepunched cards
c) Turnaround documents
d) Batch numbering
e) Input type
f) Predetermined totals
g) Self-checking numbers
h) Field length checks
i) Limit checks
j) Reasonability checks
k) Existence/nonexistence checks

44. Do controls and totals exist for:

a) Each value column
b) Cross-foot totals
c) Counts of input transactions, errors, 

accepted transactions
d) Input transactions, old master, new master

45. Are the results of all updates listed for each
transaction showing the before and after 
condition?

46. As the result of an update, are the number of 
adds, deletes, and changes processed shown?

47. If relationship tests have been used, are they
grouped and defined?

48. Have control total records been utilized to 
verify that all records have been processed
between runs?

(continues)

Step 3: Verification Testing 379



WORK PAPER 9-5 (continued)

YES NO N/A COMMENTS

Output Controls

49. Have output controls been established for all
control fields?

50. Is there a separate output control on errors 
rejected by the system?

System Test Plan

51. Have acceptance criteria been identified?

52. Has a tentative user acceptance strategy been
developed?

53. Have test data requirements been defined?

54. Have data element dictionary forms been
completed?

55. Have organizational changes been defined?

56. Have new organizational charts or new 
positions been required?

57. If required, have areas for special user 
procedures been identified?

58. Has a timetable for operating the system been
developed?

59. Were separate timetables developed for 
different cycles (weekly, monthly)?

60. Has the documentation been gathered and
organized?

61. Has a financial analysis been performed?

Plan User Procedures—Conversion Design

62. Have the scope, objectives, and constraints 
been developed?

63. Has a plan for user procedures and conversion
phases been completed?

64. Has the plan been broken down into 
approximate work units (days) to serve as a 
basis for a schedule for the other phases?

65. Have the resources and responsibilities been
arranged?

66. Have schedules been prepared for the next
phases?

67. Have appropriate budgets for the next phases 
been prepared?

68. Has a project authorization been properly 
prepared for remaining phases?

380 Chapter 9



WORK PAPER 9-6 Computer Systems Design Review Checklist3

YES NO N/A COMMENTS

Develop Outline Design

1. Has a detailed review of the business system
design resulted in requiring additional 
information or changes?

2. Have these revisions been reviewed by the user?

3. Have existing sources of data been identified?

4. Has a data management alternative been
considered because of the nature of the system?

5. Have the data elements been grouped by 
category?

6. Have the record layout forms been used for 
listing the data elements?

7. Has the file description form been used to show 
the characteristics of each file?

8. Have the access methods been determined?

9. Has use been made of blocking factors to 
reduce accesses for a sequential file?

10. If a database has been used, has the 
relationship between segments (views of the 
database) been included?

11. If new data elements have been required, have 
they been included as part of the data 
dictionary?

12. Has the description of processing been 
translated into system flowcharts showing 
programs and their relationships, as well as 
reports?

13. Has the processing been isolated by frequency 
as well as function?

14. Does each file requiring updating have an
associated, unique transaction file?

15. Does each main file have a separate validation 
and update function?

16. Have the following been addressed in order to
reduce excessive passing of files:

a) Sort verbs (statements)
b) Input procedure
c) Output procedure
d) Random updating

17. Has a matrix been prepared showing which
programs create, access, and update each file?

Step 3: Verification Testing 381

3ibid. (continues)



WORK PAPER 9-6 (continued)

YES NO N/A COMMENTS

18. Has a separate section been set up for each
program in the system showing:

a) Cover page showing the program name,
systems and/or subsystem name, run 
number, and a brief description of the 
program

b) Input/output diagram
c) Processing description

19. Does the processing description contain a brief
outline of the processing that the program is 
going to perform?

20. Has the content and format of each output 
been defined?

21. Has the content and format of each input 
been defined?

22. Have data items been verified against to the 
rules specified in the data dictionary?

23. Have transactions that update master files been
assigned record types?

Hardware/Software Configuration

24. Does the hardware configuration show the 
following:

a) CPU
b) Minimum core storage
c) Number and type of peripherals
d) Special hardware
e) Numbers of tapes and/or disk packs
f) Terminals, minicomputers, microfilm, 

microfiche, optical scanning, etc.

25. Has the following software been defined:

a) Operating system
b) Telecommunications
c) Database management

26. If telecommunications equipment is involved, 
has a communications analyst been consulted 
regarding type, number, speed, etc.?

File Conversion

27. Have the file conversion requirements been 
specified?

28. Have program specifications for the file 
conversion programs been completed?

29. Can the main program(s) be utilized to 
perform the file conversion?

30. Has a schedule been established?

382 Chapter 9



WORK PAPER 9-6 (continued)

YES NO N/A COMMENTS

Design System Tests

31. Has the user’s role for testing been defined?

32. Have responsibilities and schedules for preparing
test data been agreed to by the user?

33. Has the input medium been agreed to?

34. Is special hardware/software required, and if 
so, will programmers and/or users require 
additional training?

35. Have turnaround requirements been defined?

36. Have testing priorities been established?

37. If an online system, has an investigation of 
required space as opposed to available space 
been made?

38. Has an analysis of the impact upon interfacing
systems been made and have arrangements 
been made for acquiring required information 
and data?

39. Have testing control procedures been 
established?

40. Has the possibility of utilizing existing code 
been investigated?

41. Has a system test plan been prepared?

42. Has the user prepared the system test data as
defined by the conditions to be tested in the
system test plan?

43. Has computer operations been consulted 
regarding keypunching and/or verification?

Revise and Complete Design

44. Have all required forms from previous phases as
well as previous task activities in this phase 
been completed?

45. Has the processing description for program
specifications been categorized by function?

46. For validation routines, have the editing rules 
been specified for:

a) Field format and content (data element
description)

b) Interfield relationships
c) Intrafield relationships
d) Interrecord relationships
e) Sequence
f) Duplicates
g) Control reconciliation

(continues)

Step 3: Verification Testing 383



WORK PAPER 9-6 (continued)

YES NO N/A COMMENTS

47. Have the rejection criteria been indicated for 
each type of error situation, as follows:

a) Warning message but transaction is accepted
b) Use of the default value
c) Outright rejection of record within a 

transaction set
d) Rejection of an entire transaction
e) Rejection of a batch of transactions
f) Program abort

48. Have the following validation techniques been
included in the specifications:

a) Validation of entire transaction before any
processing

b) Validation to continue regardless of the 
number of errors on the transaction unless 
a run abort occurs

c) Provide information regarding an error so 
the user can identify the source and 
determine the cause

49. Has a procedure been developed for correction 
of rejected input either by deletion, reversal, 
or reentry?

50. Do the specifications for each report (output)
define:

a) The origin of each item, including the rules 
for the selection of optional items

b) The rules governing calculations
c) The rules for printing and/or print 

suppression

51. Have the following been defined for each
intermediate (work) file:

a) Origins or alternative origins for each element
b) Calculations
c) Rules governing record types, sequence,

optional records, as well as inter- and
intrarecord relationships

52. Have the following audit controls been built in
where applicable:

a) Record counts (in and out)
b) Editing of all source input
c) Hash totals on selected fields
d) Sequence checking of input files
e) Data checking
f) Listing of errors and review
g) Control records

384 Chapter 9



WORK PAPER 9-6 (continued)

YES NO N/A COMMENTS

Determine Tentative Operational Requirements

53. Has the impact of the system upon existing
computer resources been evaluated?

54. Have the computer processing requirements 
been discussed with computer operations?

55. Have backup procedures been developed?

Online Systems

56. Have testing plans been discussed with computer
operations to ensure that required resources 
(core, disk space) for “sessions” will be available?

57. Have terminal types been discussed with
appropriate technical support personnel?

58. Have IMS considerations (if applicable) been
coordinated with computer operations, 
technical support, and DBA representatives?

59. Has a user training program been developed?

60. Have run schedules been prepared to provide
computer operations with the basic information
necessary to schedule computer usage?

61. Have run flowcharts including narrative (where
required) been prepared?

62. Have “first cut” estimates of region sizes, run 
times, etc. been provided on the flowcharts or 
some other documentations?

63. Have restart procedures been described for 
each step of the job?

64. Have restart procedures been appended to 
the security and backup section of the 
documentation?

Plan Program Design

65. Has all relevant documentation for each 
program been gathered?

66. Has the sequence in which programs are to be
developed been defined in accordance to the
system test plan?

67. Has the number of user and project personnel
(including outside vendors) required been
ascertained?

68. Has computer time required for program 
testing (compiles, test runs) been estimated?

69. Have data preparation requirements been 
discussed with computer operations regarding 
data entry?

(continues)

Step 3: Verification Testing 385



WORK PAPER 9-6 (continued)

YES NO N/A COMMENTS

70. Has a development cost worksheet been 
prepared for the next phase or phases?

71. Have personnel been assigned and project 
work schedules been prepared?

72. Has the project schedule and budget been
reviewed and updated?

Prepare Project Authorization

73. Has a project authorization form been
completed?

386 Chapter 9



WORK PAPER 9-7 Quality Control Checklist

YES NO N/A COMMENTS

1. Is the test team knowledgeable in the
design process?

2. Are the testers experienced in using design 
tools?

3. Have the testers received all of the design
phase deliverables needed to perform this
test?

4. Do the users agree that the design is
realistic?

5. Does the project team believe that the
design is realistic?

6. Have the testers identified the success
factors, both positive and negative, that
can affect the success of the design?

7. Have the testers used those factors in
scoring the probability of success?

8. Do the testers understand the 15 design-
related test factors?

9. Have the testers analyzed those design test
factors to evaluate their potential impact
on the success of the design?

10. Do the testers understand the design
review process?

11. Has a review team been established that
represents all parties with a vested interest in 
the success of the design?

12. Does management support using the
design review process?

13. Is the design review process conducted
at an appropriate time?

14. Were the items identified in the design
review process reasonable?

15. Does the project team agree that the
identified items need to be addressed?

16. Does management support performing
inspections on project rework?

17. Has appropriate time been allotted in the
project scheduling for performing
inspections?

18. Have the individuals responsible for
project rework been educated in the
importance of participating in the
inspection process?

(continues)

Step 3: Verification Testing 387



WORK PAPER 9-7 (continued)

YES NO N/A COMMENTS

19. Does management view inspections as an
integral part of the process rather than as
an audit to identify participants’
performance?

20. Has the inspection process been planned?

21. Have the inspectors been identified and
assigned their specific roles?

22. Have the inspectors been trained to
perform their role?

23. Have the inspectors been given the
necessary materials to perform the review?

24. Have the inspectors been given adequate
time to complete both the preparation and 
the review meeting inspection process?

25. Did the individual inspectors adequately
prepare for the inspection?

26. Did the individual inspectors prepare a
defect list?

27. Was the inspection scheduled at a time
convenient for all inspectors?

28. Did all inspectors come to the inspection
meeting?

29. Did all inspectors agree on the final list of
defects?

30. Have the inspectors agreed upon one of
the three acceptable inspection dispositions
(i.e., certification, reexamination, or 
reinspection)?

31. Were the defects identified during the
review meeting recorded and given to the
author?

32. Has the author agreed to make the
necessary corrections?

33. Has a reasonable process been developed
to determine that those defects have been
corrected satisfactorily?

34. Has a final moderator certification been
issued for the product/deliverable
inspected?

388 Chapter 9



WORK PAPER 9-8 Initial Supplier Capability Assessment

TEST FACTOR: Data Integrity Controls Implemented

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have procedures been written Examine the usefulness of data error messages. Manual Correctness
indicating how to record support proof,
transactions for entry into the Exhaustive
automated system? testing, &

Flowchart

2. Have data validation checks Review the completeness of the data validation Requirements Compiler-
been implemented to ensure that checks. based analysis,
input complies with system Data dictionary,
specifications? & Inspections

3. Have anticipation controls been Examine the extensiveness of anticipation controls Error Correctness
installed, where appropriate, to to identify potential problems. handling proof, Error
ensure that valid, but guessing, &
unreasonable, data is noted for Inspections
manual investigation?

4. Are errors properly identified Examine the completeness of the data entry Error Exhaustive
and explained so that follow-up procedures. handling testing
action can be readily 
conducted?

5. Have procedures been Examine the reasonableness of the procedures to Error Cause-effect
established to take corrective take corrective action on identified errors. handling graphing
action on data errors?

6. Are procedures established to Verify that the procedures will ensure that errors are Error Correctness
ensure that errors are corrected corrected on a timely basis. handling proof &
on a timely basis? Flowchart

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Data Integrity Controls Implemented

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. Are run-to-run controls installed Examine the reasonableness of the procedures that Requirements Control flow
to ensure the completeness and ensure accuracy and completeness of transactions analysis & Data
accuracy of transactions as they as they flow through the system. flow analysis
move from point to point in the
system?

8. Have procedures been Verify the adequacy of the procedures to ensure Control Correctness
implemented to ensure that that controls established during data origination are proof &
complete and accurate input is verified during processing. Exhaustive
recorded? testing



WORK PAPER 9-8 (continued)

TEST FACTOR: Authorization Rules Implemented

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the authorization methods Evaluate the reasonableness of the authorization Security Fact finding
been divided between manual method selected.
and automated?

2. Have procedures been prepared Review the adequacy of the manual authorization Security Inspections
to specify the manual procedures.
authorization process for each 
transaction?

3. Have the methods been Examine the program specifications to determine Requirements Inspections
implemented for authorizing that authorization method has been properly 
transactions in the automated implemented.
segment of the system?

4. Have procedures been established Examine the reasonableness of the violation Control Checklist &
to indicate violations of manual procedures for manual authorization. Fact finding
authorization procedures?

5. Have procedures been Examine the adequacy of the automated Requirements Walkthroughs
established to identify and act authorization violation procedures.
upon violations of automated 
authorization procedures?

6. Do the implemented authoriza- Verify compliance of implemented authorization Requirements Inspections
tion methods conform to the methods to the defined authorization rules.
authorization rules defined in the
requirements phase?

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Authorization Rules Implemented

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. Have procedures been imple- Verify that the system authenticates the source of Security Inspections
mented to verify the source of transaction where that source itself authorizes the
transactions where the source transaction.
becomes the basis for authoriz-
ing the transaction?

8. Does the system maintain a Verify that procedures are implemented to identify Requirements Inspections
record of who authorized each the authorizer of each transaction.

transaction?



WORK PAPER 9-8 (continued)

TEST FACTOR: File Integrity Controls Implemented

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has someone been appointed Verify that the assigned individual has the Control Fact finding
accountable for the integrity of necessary skills and time available.
each file?

2. Have the file integrity controls been Compare the implemented controls to the integrity Requirements Inspections
implemented in accordance with requirements established during the requirements
the file integrity requirements? phase.

3. Have procedures been established Examine the adequacy of the procedures to report Error Walkthroughs
to notify the appropriate individual file integrity problems. handling
of file integrity problems?

4. Are procedures established to Review the reasonableness of the file integrity Requirements Walkthroughs
verify the integrity of files on a verification frequency.
regular basis?

5. Are there subsets of the file that Confirm with the user that all file subsets are Control Error 
should have integrity controls? appropriately safeguarded through integrity guessing & 

controls. Confirmation/
examination

6. Are procedures written for the Verify the reasonableness and timeliness of Control Walkthroughs
regular reconciliation between procedures to reconcile automated controls to 
automated file controls and manually manually maintained controls.
maintained control totals?

7. Are interfile integrity controls Confirm with the user that all applicable file Control Confirmation/
maintained where applicable? relationships are reconciled as a means of verifying examination

file integrity.

8. Are sensitive transactions subject Verify with legal counsel that sensitive transaction Control Confirmation/
to special authorization controls? authorization controls are adequate. examination

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Implement Audit Trail

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the audit trail relationship Examine the completeness of the audit trail from Requirements Walkthroughs
from source record to control source document to control total.
total been documented?

2. Has the audit trail from the Examine the completeness of the audit trail from Requirements Walkthroughs
control total to the supporting the control total to the source document.
source transaction been
documented?

3. Have all the defined fields been Verify that the audit trail records include all of the Requirements Walkthroughs
included in the audit trail? defined audit trail fields.

4. Does the implemented audit trail Verify that the implemented audit trail is in Requirements Inspections
satisfy the defined reconstruction compliance with the reconstruction requirements
requirements? phase.

5. Have procedures been defined Verify that an audit trail test plan has been devised. Requirements Fact finding
to test the audit trail?

6. Are procedures defined to store Examine the reasonableness of the procedures that Recovery Cause-effect
part of the audit trail off-site? require application audit trail records to be stored graphing &

off-site. Peer review

7. Does the implemented audit trail Review the completeness of the transaction Requirements Exhaustive
permit reconstruction of reconstruction process. testing &
transaction processing? Inspections

8. Does the audit trail contain the Confirm with the computer operations manager that Requirements Confirmation/
needed information to restore the audit trail information is complete. examination
a failure?



WORK PAPER 9-8 (continued)

TEST FACTOR: Write Contingency Plan

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Does the contingency plan identify Confirm with the operations manager that all the Recovery Confirmation/
the people involved in recovering appropriate people are identified in the examination
processing after a failure? contingency plan.

2. Has the contingency plan been Examine the evidence indicating the operations Recovery Confirmation/
approved by the operations manager approves of the plan. examination
manager?

3. Does the plan identify all the Confirm with the operations manager that all the Recovery Confirmation/
resources needed for recovery? needed resources are identified. examination

4. Does the contingency plan Review the reasonableness of the priority with Recovery Error guessing
include the priority for restarting senior management. & Fact finding
operations after a failure?

5. Does the recovery plan specify Confirm that an alternate site is available for Recovery Confirmation/
an alternate processing site? backup processing. examination

6. Does the contingency plan Review the reasonableness of the security plan Recovery Inspections
provide for security during a with the security officer.
recovery period?

7. Has a plan been developed to Examine the completeness of the test plan. Operations Inspections
test the contingency plan?

8. Has the role of outside parties, Confirm with outside parties that they can supply Operations Confirmation/
such as the hardware vendor, the support indicated in the contingency plan. examination
been included in the test plan
and confirmed with those

outside parties?

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Design System to Achieve Service Level

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Do the implemented programs Verify the performance criteria of the programs Stress Instrumentation
perform in accordance with the during testing.
desired service level?

2. Does the system performance Verify the performance of the system during testing. Stress Instrumentation
achieve the desired level of service?

3. Have the training programs been Examine the completeness of the training Execution Checklist &
prepared for the people who will programs. Inspections
use the application system?

4. Is the support software available Confirm with computer operations personnel that Operations Confirmation/
and does it meet service-level the support software is available and does meet examination
requirements? performance criteria.

5. Is the support hardware Confirm with computer operations personnel that Operations Confirmation/
available and does it provide the support hardware is available and does meet examination
sufficient capacity? the capacity requirements.

6. Is sufficient hardware and Confirm with computer operations that sufficient Operations Confirmation/
software on order to meet hardware and software is on order to meet examination
anticipated future volumes? anticipated future volumes.

7. Has a test plan been defined Examine the completeness of the test plan. Execution Checklist &
to verify that service-level Inspections
performance criteria can be met?

8. Can the required input be Confirm with the individuals preparing input that Execution Confirmation/
delivered to processing in time they can prepare input in time to meet production examination

to meet production schedules? schedules.



WORK PAPER 9-8 (continued)

TEST FACTOR: Implement Security Procedures

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Is the required security hardware Confirm with the security officer that the needed Security Confirmation/
available? security hardware is available. examination

2. Is the required security software Confirm with the security officer that the needed Security Confirmation/
available? security software is available. examination

3. Has a procedure been established Examine the completeness and adequacy of the Security Exhaustive
to disseminate and maintain password dissemination and maintenance plan. testing
passwords?

4. Have the involved personnel been Examine the adequacy and completeness of the Security Exhaustive
trained in security procedures? security training procedures. testing

5. Has a procedure been established Examine the completeness and adequacy of the Control Exhaustive
to monitor violations? test violation procedure. testing

6. Has management been instructed Confirm with management that they have been Control Confirmation/
on the procedure for punishing adequately instructed on how to implement security examination
security violators? prosecution procedures.

7. Have procedures been established Verify with the security officer the adequacy of the Security Risk matrix &
to protect the programs, program procedures to protect the system documentation Confirmation/
listings, data documentation, and and program. examination
other systems documentation 
defining how the system works?

8. Has one individual been Verify that the accountable individual has the Security Fact finding
appointed accountable for necessary skills and the time available.
security of the application when

it becomes operational?

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Comply with Methodology

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have the organization’s policies Examine the programs to ensure that they comply Compliance Inspections
and procedures been with the necessary organization policies and
incorporated into the application procedures.
programs?

2. Have the organization’s Examine the programs to ensure that they comply Compliance Inspections
information services policies and with the necessary information services policies 
procedures been incorporated and procedures.
into the application programs?

3. Have the organization’s Examine the programs to ensure that they comply Compliance Inspections
accounting policies and with the necessary accounting policies and
procedures been incorporated procedures.
into the application programs?

4. Have the governmental Examine the programs to ensure that they comply Compliance Inspections
regulations been incorporated with the necessary government regulations.
into the application program?

5. Have the industry standards Examine the programs to ensure that they comply Compliance Inspections
been incorporated into the with the necessary industry standards.
application programs?

6. Have the organization’s user Examine the programs to ensure that they comply Compliance Inspections
department policies and with the user department’s policies and
procedures been incorporated procedures.
into the application programs?



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Comply with Methodology

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

7. Are the policies, procedures, and Confirm with the appropriate party that the Compliance Confirmation/
regulations used as a basis for regulations used for specifications are current. examination
system specifications up-to-date?

8. Are there anticipated changes to Confirm with the involved parties the probability Compliance Confirmation/
the policies, standards, or of changes to the policies, standards, or regulations examination
regulations between this phase prior to the system becoming operational.
and the time the system will
become operational?

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Conform to Design (Correctness)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Have changes in user Confirm with user management that the stated Requirements Confirmation/
management affected their objectives are still desired. examination
support of system objectives?

2. Does the program implementation Compare program results to stated objectives. Requirements Design reviews
comply with stated objectives?

3. Will the implemented systems Verify that the implemented systems will produce Requirements Correctness
produce correct results? correct results. proof

4. Have the desired reports been Confirm that the reports produced by the Requirements Design reviews
produced? application program comply with user-defined

specifications.

5. Does the system input achieve Confirm with the user that the input to the system Requirements Design reviews
the desired data consistency and achieves the desired consistency and reliability
reliability objectives? objectives.

6. Are the manuals explaining how Confirm with the user the adequacy of the output Requirements Checklist &
to use the computer outputs use manuals. Confirmation/
adequate? examination

7. Are the input manuals and Confirm with the input preparers that the manuals Requirements Checklist &
procedures adequate to ensure appear adequate to produce valid input. Confirmation/
the preparation of valid input? examination

8. Has the user involvement in the Confirm with the project personnel that the user Requirements Checklist &
developmental process participation has been adequate. Confirmation/
continued through the examination

programming phase?



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Conform to Design (Ease of Use)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Do the application documents Verify that the implemented ease of use segment of Compliance Design reviews
conform to design specifications? the application conforms to design.

2. Have easy-to-use instructions Examine the usability of the people interface Manual Checklist
been prepared for interfacing instructions. support
with the automated application?

3. Have provisions been made to Verify that provisions are implemented to assist Manual Checklist &
provide assistance to input clerks? input clerks in the proper entry of data. support Walkthroughs

4. Are the training sessions Examine the course content to verify the Manual Walkthroughs
planned to train personnel on appropriateness of the material. support
how to interact with the
computer system?

5. Are the output documents Verify the ease of use of the output documents. Requirements Checklist &
implemented for ease of use? Walkthroughs

6. Is the information in output Verify that the information in output documents Requirements Inspections
documents prioritized? is prioritized.

7. Are the input documents Verify the ease of use of the input documents. Requirements Checklist &
implemented for ease of use? Walkthroughs

8. Do clerical personnel accept the Confirm with clerical personnel their acceptance Manual Confirmation/
application system as usable? of the usability of the application. support examination

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Are Maintainable

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Do the programs conform to the Verify that the programs conform to the Compliance Inspections
maintenance specifications? maintenance specifications.

2. Is the program documentation Review the documentation for completeness and Compliance Compiler-
complete and usable? usability. based analysis

& Inspections

3. Do the programs contain a Review the programs to determine they contain a Compliance Inspections
reasonable number of reasonable number of explanatory statements.
explanatory statements?

4. Is each processing segment of Verify that each processing segment of the Compliance Inspections
the program clearly identified? program is adequately identified.

5. Do the programs avoid complex Review programs for complex programming logic. Compliance Checklist &
program logic wherever possible? Inspections

6. Are the expected high-frequency Determine ease of maintenance of high-change Compliance Peer review
change areas coded to facilitate areas.
maintenance?

7. Have the programs been Review programs to determine their maintainability. Compliance Peer review
reviewed from an ease-of-
maintenance perspective?

8. Are changes introduced during Review changes and verify that they have been Compliance Design 
programming incorporated into incorporated into the design documentation. reviews & 
the design documentation? Confirmation/

examination



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Conform to Design (Portable)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Does the system avoid the use Review application for vendor-specific hardware Operations Inspections
of any vendor-specific hardware restrictions.
features?

2. Does the system avoid the use Review application for vendor-specific software Operations Inspections
of any vendor-specific software restrictions.
features?

3. Are the programs written using Review programs for use of uncommon Compliance Inspections
the common program language programming statements.
statements?

4. Are all portability restrictions Determine the completeness of the portability Compliance Inspections
documented? documentation.

5. Are all operating characteristics Determine the completeness of operating Compliance Inspections
documented? characteristics documentation.

6. Does program documentation Review documentation for use of technical jargon. Compliance Inspections
avoid technical jargon?

7. Are the data values used in the Review data values to determine they are machine Compliance Checklist,
program machine independent? independent. Confirmation/

examination &
Fact finding

8. Are the data files machine Review data files to determine they are machine Compliance Checklist,
independent? independent. Confirmation/

examination &

Fact finding

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Conform to Design (Coupling)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Are common record layouts Verify that common record layouts are used by Intersystems Inspections
used for interfaced programs? interfaced applications.

2. Are the values in the data fields Verify that common data values are used by Intersystems Inspections
common to interfaced programs? interfaced applications.

3. Do the interfaced systems use Verify that common file structures are used by Intersystems Inspections
the same file structure? interfaced applications.

4. Have the interfaced segments Verify that the interface segments of the application Intersystems Correctness
been implemented as designed? are implemented as designed. proof, Desk

checking, &
Inspections

5. Have changes to the interfaced Confirm that changes affecting interfaced Intersystems Exhaustive
system been coordinated with applications are coordinated with those testing &
any affected application? applications. Confirmation/

examination

6. Is the program/interface properly Verify that the interface document is complete. Intersystems Error guessing
documented? & Inspections

7. Is the data transfer media Verify that common media is used for interfaced Operations Confirmation/
common to interfaced application files. examination &
applications? Fact finding

8. Can the required timing for the Verify that the data transfer timing between Intersystems Error guessing
transfer of data be achieved? interfaced applications is reasonable. & Fact finding



WORK PAPER 9-8 (continued)

TEST FACTOR: Develop Operating Procedures

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the size of the largest Review programs to determine their maximum Operations Inspections
program been identified? size.

2. Have changes made during Review changes to ascertain if they affect Operations Inspections
programming affected operations.
operations?

3. Have any deviations from Review application for operation design variations Operations Error guessing
designed operations been and confirm operations have  been notified of
communicated to computer these changes.
operations?

4. Have operations documentation Review the completeness of operations Compliance Design reviews
been prepared? documentation.

5. Have special forms and other Determine if needed media has been ordered. Operations Confirmation/
needed media been ordered? examination &

Fact finding

6. Have data media retention Review the adequacy of data retention Compliance Inspections
procedures been prepared? procedures.

7. Has needed computer time for Examine the computer schedule to ascertain if Operations Fact finding
tests been scheduled? needed test time has been scheduled.

8. Have off-site storage needs been Determine the reasonableness of off-site storage Operations Fact finding

defined? requirements.

(continues)



WORK PAPER 9-8 (continued)

TEST FACTOR: Programs Achieve Criteria (Performance)

ASSESSMENT

Very Ade- Ade- Inade- TEST TEST
TEST CRITERIA quate quate quate N/A RECOMMENDED TEST TECHNIQUE TOOL

1. Has the cost to design and test Examine the projected budget to verify that actual Execution Fact finding
the system approximated the costs approximate budget costs.
cost estimate?

2. Does the operational cost as Use the data from the job accounting system to Execution Fact finding
represented by information substantiate that the actual test operational costs
services approximate the approximate the projected operational costs.
projected operational costs?

3. Are the costs monitored during Confirm with the information services manager Compliance Confirmation/
the developmental process? that project costs are monitored. examination

4. Will changes made during the Confirm with the project manager that changes Execution Confirmation/
programming phase affect during the program phase will not affect examination &
anticipated system costs? operational costs. Fact finding

5. Are the projected benefits still Confirm with user management that projected Execution Confirmation/
reasonable? benefits are still reasonable. examination &

Fact finding

6. Is the projected life of the project Confirm with user management that the expected Execution Confirmation/
still reasonable? life of the project is still reasonable. examination

7. Is the project on schedule? Compare the current status versus projected status Execution Fact finding
in the schedule.

8. Are there any expected changes Confirm with the project leader whether there Execution Error 
in the test or conversion phases would be any changes during the test or guessing & 
that would impact the projected conversion phase that could affect the projected Confirmation/

return on investment? return on investment. examination



WORK PAPER 9-9 Quality Control Checklist

YES NO N/A COMMENTS

1. Is verifying and validating programs considered
to be a responsibility of the programmer?

2. Does the programmer understand the
difference between static and dynamic testing?

3. Will the program be subject to static testing
as the primary means to remove defects?

4. Does the programmer understand the process 
that will generate the program code?

5. Does the programmer understand and use
desk debugging?

6. Does the programmer understand the
15 programming concerns, and will they
be incorporated into testing?

7. Is the program tested using either the peer
review technique or code inspections?

8. Will the program be subject to full testing
prior to moving to a higher-level testing
(e.g., string testing)?

9. Are all of the uncovered defects recorded
in detail?

10. Are all of the uncovered defects corrected prior
to moving to the next level of testing?

Step 3: Verification Testing 407





409

This step provides the opportunity to evaluate a system in an executable mode.
Although the previous verification steps ensure that the system will function as speci-
fied, it is not until the software is executed as a system that there is complete assurance
it will function properly.

Testing tradeoffs can be made between the various phases of the life cycle. The more
verification testing is performed during the requirements, design, and program phases,
the less validation testing that needs to be performed. On the other hand, when only
minimal verification testing is performed during the early phases, extensive validation
testing may be needed during the test phase.

Overview

Although testers primarily use system documentation to conduct verification testing,
they use test data and test scripts to conduct validation testing. Validation testing
attempts to simulate the system’s operational environment. Validation testing is effec-
tive only when the test environment is equivalent to the production environment.

There are two types of validation testing. The first is the test that the developers
implemented to software as specified. At a minimum, this is unit testing and integra-
tion testing of the units. The second type of testing tests that the developed software
system can operate in a production environment. That is, it tests that the system’s var-
ious components can be integrated effectively. Although this second type of testing
may be conducted by software developers, the preferred method is to use independent
testers. This second type of dynamic testing is covered in Chapter 12.

Step 4: Validation 
Testing

C H A P T E R

10



Objective

The objective of this step is to determine whether a software system performs correctly
in an executable mode. The software is executed in a test environment in approximately
the same mode as it would be in an operational environment. The test should be exe-
cuted in as many different ways as necessary to address the 15 concerns described in
this test process, with any deviation from the expected results recorded. Depending on
the severity of the problems, uncovered changes may need to be made to the software
before it is placed in a production status. If the problems are extensive, it may be neces-
sary to stop testing completely and return the software to the developers.

Concerns

Validation testing presents testers with the following concerns:

■■ Software not in a testable mode. The previous testing steps will not have been
performed adequately to remove most of the defects and/or the necessary
functions will not have been installed, or correctly installed in the software.
Thus, testing will become bogged down in identifying problems that should
have been identified earlier.

■■ Inadequate time/resources. Because of delays in development or failure to ade-
quately budget sufficient time and resources for testing, the testers will not
have the time or resources necessary to effectively test the software. In many IT
organizations management relies on testing to ensure that the software is ready
for production prior to being placed in production. When adequate time or
resources are unavailable, management may still rely on the testers when they
are unable to perform their test as expected.

■■ Significant problems will not be uncovered during testing. Unless testing is
planned and executed adequately, problems that can cause serious operational
difficulties may not be uncovered. This can happen because testers at this step
spend too much time uncovering defects rather than evaluating the software’s
operational performance.

Workbench

Figure 10-1 illustrates the workbench for executing tests and recording results. This
shows that the testers use a test environment at this point in the testing life cycle. The
more closely this environment resembles the actual operational environment, the more
effective the testing becomes. If test data was not created earlier in the testing process, it
needs to be created as part of this step. Tests are then executed and the results recorded.
The test report should indicate what works and what does not work. The test report
should also give the tester’s opinion regarding whether he or she believes the software
is ready for operation at the conclusion of this test step.

410 Chapter 10



Figure 10-1 Workbench to execute dynamic tests and record results.

Input

Validation testing an application system has few new inputs. Many aspects of the devel-
opmental process are unavailable for evaluation during the test phase. Therefore, the
testing during this phase must rely on the adequacy of the work performed during the
earlier phases. The deliverables that are available during the validation testing include:

System test plan (may include a unit test plan)

Test data and/or test scripts

Results of previous verification tests

Inputs from third-party sources, such as computer operators

Part II of this book discussed the test environment. Ensuring that the test environ-
ment is representative of the operational environment is of critical importance to sys-
tem testing and the integration testing of software systems to other systems on the
operational environment. The test environment is less important for developer-con-
ducted unit testing and testing of the integration of units. For that type of testing, what
is important is that the test data include real-world test criteria.

The test environment should include the tools to perform testing effectively. For exam-
ple, it is difficult to conduct regression testing unless the test environment includes the
capture/playback tool. Likewise, it is difficult to create large amounts of test data with-
out a tool that can help generate test conditions. Whereas verification testing is primarily
a manual function, validation testing normally requires one or more software test tools. 

DO CHECK

Tests
Execute

Correctly?

REWORK

Build Test
Data/Scripts

Task 1

Execute
Tests

Task 2

Record
Test Results

Task 3

Operational
Test

Environment

Test
Plan

Test
Program
Library

System/Program
Documentation

Test
Report

Step 4: Validation Testing 411



Do Procedures

This step involves the following three tasks:

1. Build the test data.

2. Execute tests.

3. Record test results.

Task 1: Build the Test Data

The concept of test data is a simple one: to enable testers to create representative pro-
cessing conditions. The complex part of creating test data is determining which trans-
actions to include. Experience shows that it is uneconomical to test every condition in
an application system. Experience further shows that most testing exercises fewer than
one-half of the computer instructions. Therefore, optimizing testing through selecting
the most important test transactions is the key aspect of the test data test tool.

Several of the test tools are structured methods for designing test data. For example,
correctness proof, data flow analysis, and control flow analysis are all designed to
develop extensive sets of test data. Unfortunately, although extremely effective, these
tools require significant time and effort to implement, and few organizations allocate suf-
ficient budgets. Thus, IT personnel are often not trained sufficiently to use these tools.

Sources of Test Data/Test Scripts

Effective validation testing requires you to gather all the test data/scripts that repre-
sent the type of processing that will occur in an operational environment. You can
determine some of these transactions by studying the software development docu-
mentation; other test transactions may not be obvious from the documentation and
require experienced testers to ensure that the data is accurate and complete.

Test data/scripts can come from any of the following sources:

■■ System documentation. Testers can use test data and scripts to test a system’s
documented specifications. For example, if the documentation indicates that a
customer cannot exceed a preset credit limit, the testers could create test data
that would validate that a customer cannot purchase items if they exceed their
credit limit.

■■ Use cases. The testers should obtain from the users of the application the type
of transactions they will be using. These are frequently referred to as use cases.
In other words, there are test transactions that test that the software will work
to process transactions by the users as they use the software.

■■ Test generators. Test generators, as the name implies, can create test conditions
for use by testers. However, the type of test data that can be generated depends
on the capability of the test data generator. The concern over test generators is
that most do not have the capability to generate data that tests interrelation-
ships such as pay grade and pay dollars.

412 Chapter 10



■■ Production data. Testers can use production files themselves, or they can
extract specific data from them.

■■ Databases. Testers need databases for testing many software applications. They
can use copies of databases or live databases that have features that will block
data from being updated as a result of processing test data.

■■ Operational profiles. Testers, in conjunction with the stakeholders of the soft-
ware system, can analyze the type of processing that occurs in an operational
environment. This is particularly useful when testing error conditions or when
stress- or load-testing the system.

■■ Individually created test data/scripts. Testers can create their own data/scripts
based on their knowledge of where errors are most likely to occur.

Testing File Design

To design an adequate file of test data, testers must be familiar with the IT depart-
ment’s standards and other relevant policies, include their provisions in the simulated
transactions and procedures, and supply input and output formats for all types of
transactions to be processed. To gain this knowledge, testers should review and ana-
lyze system flowcharts, operating instructions, and other documentation. This knowl-
edge can alert the test team to possible system weaknesses for which unique test
transactions should be designed.

To be effective, a test file should include transactions with a wide range of valid and
invalid data—valid data for testing normal processing operations and invalid data for
testing programmed controls.

Only one test transaction should be processed against each master record. This per-
mits an isolated evaluation of specific program controls by ensuring that test results
will not be influenced by other test transactions processed against the same master
record. General types of conditions to test include the following:

■■ Tests of normally occurring transactions. To test a computer system’s ability
to accurately process valid data, a test file should include transactions that 
normally occur. For example, in a payroll system, transactions would include
the calculations of regular pay, overtime pay, and some other type of premium
pay (such as shift pay), as well as setting up master records for newly hired
employees and updating existing master records for other employees.

■■ Tests using invalid data. Testing for the existence or effectiveness of pro-
grammed controls requires the use of invalid data. Examples of tests for caus-
ing invalid data to be rejected or “flagged” include the following:

■■ Entering alphabetic characters when numeric characters are expected, and
vice versa.

■■ Using invalid account or identification numbers.

■■ Using incomplete or extraneous data in a specific data field or omitting it
entirely.

Step 4: Validation Testing 413



■■ Entering negative amounts when only positive amounts are valid, and vice
versa.

■■ Entering illogical conditions in data fields that should be related logically.

■■ Entering a transaction code or amount that does not match the code or
amount established by operating procedures or controlling tables.

■■ Entering transactions or conditions that will violate limits established by
law or by standard operating procedures.

■■ Tests to violate established edit checks. Based on the system’s documentation,
an auditor should be able to determine which edit routines are included in the
computer programs to be tested. He or she should then create test transactions
to violate these edits to see whether they, in fact, exist.

Defining Design Goals

Before processing test data, the test team must determine the expected results. Any dif-
ference between actual and predetermined results indicates a weakness in the system.
The test team should determine the effect of the weakness on the accuracy of master
file data and on the reliability of reports and other computer products.

One of the test tools described earlier in this book was a function/test matrix. This
matrix lists the software functions along one side and the test objectives on the other.
Completing this matrix would help create a file of test conditions that would accom-
plish the test objectives for each of the software functions. Another objective of the test
file is to ensure that the desired test coverage occurred. Coverage might include
requirements coverage as well as branch coverage.

Entering Test Data

After the types of test transactions have been determined, the test data should be
entered into the system using the same method as users. To test both input and com-
puter processing, testers should ensure that all the data required for transaction pro-
cessing is entered. For example, if users enter data by completing a data entry
template, the tester should use that template as well.

Applying Test Files Against Programs 
That Update Master Records

There are two basic approaches to test programs for updating databases and/or pro-
duction files. In the first approach, copies of actual master records and/or simulated
master records are used to set up a separate master file. In the second approach, special
routines used during testing will stop testers from updating production records. 

To use the first approach, the test team must have a part of the organization’s mas-
ter file copied to create a test master file. From a printout of this file, the team selects
records suitable for the test. The tester then updates the test file with both valid and
invalid data by using the organization’s transaction-processing programs. Testers can

414 Chapter 10



simulate master records by preparing source documents and processing them with the
program the organization uses to add new records to its master file. Procedures for
using simulated records as test data are the same as those for copied records. An
advantage of using simulated records is that they can be tailored for particular condi-
tions and they eliminate the need to locate and copy suitable organization records. This
advantage is usually offset when many records are needed because their creation can
be complex and time-consuming when compared to the relatively simple procedure of
copying a part of the organization’s master file.

Often, the most practical approach is to use a test master file that is a combination of
copied and simulated master records. In this approach, copied records are used when-
ever possible and simulated records are used only when necessary to test conditions
not found in the copied records.

By using copied and simulated master records in a separate test file, testers avoid
the complications and dangers of running test data in a regular processing run against
the current master file. A disadvantage of copied and simulated records is that com-
puter programs must be loaded and equipment set up and operated for audit purposes
only, thus involving additional cost.

Creating and Using Test Data

The following is the recommended process for creating and using test data:

1. Identify test resources. Testing using test data can be as extensive or limited
a process as desired. Unfortunately, many programmers approach the creation
of test data from a “we’ll do the best job possible” perspective and then begin
developing test transactions. When time expires, testing is complete. The rec-
ommended approach suggests that the amount of resources allocated for creat-
ing test data should be determined and then a process developed that creates
the most important test data in the allotted time for creating test data.

2. Identify test conditions. Testers should use a function/test matrix to identify
the conditions to test. 

3. Rank test conditions. If resources are limited, the maximum use of those
resources will be obtained by testing the most important test conditions. The
objective of ranking is to identify high-priority test conditions that should be
tested first.

Ranking does not mean that low-ranked test conditions will not be tested.
Ranking can be used for two purposes: first, to determine which conditions
should be tested first; and second, and equally important, to determine the
amount of resources allocated to each of the test conditions. For example, if
testing the FICA deduction was a relatively low-ranked condition, only one test
transaction might be created to test that condition, while for the higher-ranked
test conditions several test transactions may be created.

4. Select conditions for testing. Based on the ranking, the conditions to be tested
should be selected. At this point, the conditions should be very specific. For
example, “testing FICA” is a reasonable condition to identify and rank, but for

Step 4: Validation Testing 415



creating specific test conditions it is too general. Three test situations might be
identified—such as employees whose year-to-date earnings exceed the maxi-
mum FICA deduction; an employee whose current-period earnings will exceed
the difference between the year-to-date earnings and the maximum deduction;
and an employee whose year-to-date earnings are more than one pay period
amount below the maximum FICA deductions. Each test situation should be
documented in a testing matrix. This is a detailed version of the testing matrix
that was started during the requirements phase.

5. Determine correct results of processing. The correct processing results for
each test situation should be determined. Each test situation should be identi-
fied by a unique number, and then a log made of the correct results for each
test condition. If a system is available to automatically check each test situation,
special forms may be needed as this information may need to be converted to
machine-readable media.

The correct time to determine the correct processing results is before the test
transactions have been created. This step helps determine the reasonableness
and usefulness of test transactions. The process can also show if there are ways
to extend the effectiveness of test transactions, and whether the same condition
has been tested by another transaction.

6. Create test transactions. The method of creating the machine-readable transac-
tion varies based on the application and the testing rules. The most common
methods of creating test transactions include the following:

■■ Key entry

■■ Test-data generators

■■ User-prepared input forms

■■ Production data

7. Document test conditions. Both the test situations and the results of testing
should be documented.

8. Conduct test. Testers should run the executable system using the test condi-
tions or a simulated production environment.

9. Verify and correct test results. The results of testing should be verified and any
necessary corrections to the programs performed. Problems detected as a result
of testing can be attributable not only to system defects, but to test data defects.
Testers should be aware of both situations.

Payroll Application Example

In making two reviews of automated civilian payroll systems, the U.S. General Account-
ing Office used test files to test the agencies’ computer programs for processing pay and
leave data. This case shows their test file development approach.

First, all available documentation was reviewed for the manual and automated
parts of each system. To understand the manual operations, they interviewed payroll

416 Chapter 10



supervisors and clerks, reviewed laws and regulations relating to pay and leave, and
familiarized themselves with standard payroll operating procedures. For the auto-
mated part of each system they interviewed system designers and programmers and
reviewed system and program documentation and operating procedures.

After acquiring a working knowledge of each system, they decided to test computer
programs used to update payroll master records and those used to calculate biweekly
pay and leave entitlements. Although they were concerned primarily with these par-
ticular programs, they decided that other programs used in the normal biweekly pay-
roll processing cycle (such as programs for producing pay and leave history reports,
leave records, and savings bond reports) should also be tested to see how they would
handle test data.

They then designed a test file of simulated pay and leave transactions to test the
effectiveness of internal controls, compliance with applicable laws and regulations,
and the adequacy of standard payroll operating procedures. The test file included
transactions made up of both valid and invalid data. These transactions were based on
specified procedures and regulations and were designed to check the effectiveness of
internal controls in each installation’s payroll processing. They used one transaction
for each master record chosen.

The best method of obtaining suitable payroll master records for the test, they
decided, would be to use copies of actual master records, supplemented with simu-
lated records tailored for test conditions not found in the copied records.

Accordingly, they obtained a duplicate of each agency’s payroll master file and had
a section of it printed in readable copy. From this printout, they selected a specific mas-
ter record to go with each test transaction. When none of the copied records appearing
on the printout fit the specifics of a particular transaction, they made up a simulated
master record by preparing source documents and processing them with the program
used by each installation to add records for new employees to its master file. They then
added the simulated records to the copied records to create the test master file.

They next prepared working papers on which were entered, for each test transac-
tion, the control number assigned to the transaction, the type of input document to be
used, and the nature and purpose of the test. They predetermined the correct end
results for all test transactions and recorded these results in the working papers for
comparison with actual results.

With some help from payroll office personnel, they next coded the test transactions
onto source documents. The data was then key entered and key verified. They then
processed the test data against actual agency payroll programs and compared the test
results with the predetermined results to see whether there were any differences.

They found both systems accepted and processed several invalid test transactions that
should have been rejected or flagged by programmed computer controls. Alternative
manual controls were either nonexistent or less than fully effective because they could be
bypassed or compromised through fraud, neglect, or inadvertent error. They recom-
mended that the systems’ automated controls be strengthened to ensure accurate pay-
rolls and protect the government from improper payments.

A copy of their work papers outlining the test conditions is illustrated in Figure 10-2.

Step 4: Validation Testing 417



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

1. Leave a mandatory To determine whether the system will x x
field blank on a new accept a master record with essential data
employee’s master missing. If missing data will cause an
record. incorrect payment, the master record

should be rejected with appropriate warn-
ing; if missing data is for administrative
purposes only, the condition should be
flagged by an error message.

2. Enter erroneous To determine whether the system will x x
codes, such as char- accept invalid data into employees’ mas-
ity, life insurance, ter records. The program should print
union dues, marital error messages to identify invalid data
status, etc. (Note: and reject further processing of such
One erroneous code transactions.
per master record.)

3. Enter an invalid To determine whether the system will x x
annual leave cate- accept an invalid annual leave category.
gory. Federal regulations have established an-

nual leave categories as 4, 6, or 8, de-
pending on the amount of creditable 
service.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 Typical payroll transactions to include in a test file.



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

4. Change a field in an To determine whether it is possible to x x
inactive master rec- change fields in inactive master records
ord. and whether adequate controls exist over

such changes. Processing of inactive
records should be separated from the
normal processing of active records to
eliminate the possibility of unearned sala-
ry payments or the manipulation of rec-
ords for persons who are not in a pay
status.

5. Change an employ- To determine whether the system will
ee’s annual leave reject invalid updates. The annual leave
category before it is category is based on the amount of cred-
due to be changed. itable service an employee has, computed

from the employee’s service computation
date. Employees with less than 3 years of
service are in category 4; employees with
3 to 15 years of service are in category 6;
employees with more than 15 years of
service are in category 8. The program
should reject any attempt to change a
leave category before it is due to be
changed.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

6. Promote a general To determine whether the system rejects x x
schedule (GS) em- an invalid transaction. Federal regula-
ployee above grade 5 tions state that GS employees above
before one year in grade 5 must be in grade at least one
grade has passed. year before they can be promoted.

7. Give a GS employee To determine how the system handles this x
a within-grade salary transaction. Federal regulations state that
increase before one a GS employee must be in grade at least
year in grade has one year before being eligible for a
passed. within-grade salary increase. The system

should “flag” the transaction as being a
quality step increase (which has the same
effect as within-grade increase but can
occur without the employee’s having
been in grade for one year).

8. Change an employ- To determine whether the system accepts x x
ee’s grade or annual incompatible data. The program should have
salary so that the salary and grade controls that will reject
grade/step and transactions of this type from further processing.
annual salary rate
are incompatible.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

9. Change an employee’s To determine whether the annual leave x
service computation category is correctly changed, with a
date to indicate that message printed to indicate the change.
the leave category is If the leave category is not automatically
due to change. changed, a message should be printed.

10. Pay an inactive To determine whether the system will x x
employee. compute pay for an inactive employee (an

employee who has been separated but
whose record is maintained in the same
master file used for active employees).

11. Pay a nonexistent To determine whether the system will x x
employee. compute pay for an employee with no

record in the master file.

12. Input two time and To determine whether the system will x x
attendance cards for compute pay twice for the same 
the same employee. employee.

13. Pay a GS employee To determine whether the system rejects x x
for 80 hours of work WB entitlements for GS employees.
on a second-shift
entitlement for a
wage board (WB)
employee.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

14. Pay a GS employee Same as above. x x
for 80 hours work on
a third-shift entitle-
ment for a WB
employee.

15. Pay a WB employee To determine whether the system rejects x x
for 80 hours work on GS entitlements for WB employees.
a night-shift differ-
ential entitlement for
a GS employee.

16. Pay a WB employee To verify the accuracy of premium (over- x
for 20 hours of over- time) pay computation. Overtime pay is 1
time. and 1/2 times regular pay.

17. Pay a GS employee Same as above. Premium = 10 percent. x
for 20 hours of night-
differential pay.

18. Pay a WB employee Same as above. Premium = 7 1/2 per- x
for 80 hours on cent.
second shift.

19. Pay a WB employee for Same as above. Premium = 10 percent. x
80 hours on third shift.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

20. Pay a GS employee for Same as above. Holiday pay is double x
8 hours of holiday pay. regular pay.

21. Pay a WB employee Same as above. x
for 8 hours of holiday 
pay.

22. Pay a GS employee Same as above. Sunday premium is 25 x
for 8 hours of Sun- percent of regular pay if Sunday is a reg-
day pay (for Sunday ularly scheduled workday.
work that is not
overtime work).

23. Pay a WB employee Same as above. x
for 8 hours of Sun-
day pay.

24. Pay GS employees Same as above. x
for 10 hours of envi-
ronmental pay at the
following premiums:
a) 4 percent
b) 8 percent
c) 25 percent
d) 50 percent

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

25. Pay WB employees Same as above. x
for 10 hours of envi-
ronmental pay at the
following premiums:
a) 4 percent
b) 8 percent
c) 25 percent
d) 50 percent

26. Pay a GS-1, 2, 3, 4, To verify accuracy of premium pay x
5, 6, or 7 employee computation. For GS employees whose
for 10 hours of over- basic pay rate does not exceed the salary
time. of a GS-10/1, the overtime rate is 1 and

1/2 times the basic pay rate. 

27. Pay a GS-10, 11, 12, Same as above. For a GS employee x
or 13 employee for whose basic pay rate is equal to or
10 hours of over- exceeds the rate of a GS-10/1, the over-
time. time rate is one and 1/2 times the hourly

rate for a GS-10/1. 
R

e
je

ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

28. Pay a GS-14 To test maximum salary limitation. Addi- x x
employee enough tional pay, such as overtime, night differ-
overtime pay to ential, holiday and Sunday pay, may be
exceed the maxi- paid to the extent that it does not cause
mum salary the aggregate pay for a biweekly period
limitation. to exceed the rate of a GS-15/10. The

program should cut back pay to this
maximum.

29. Pay a GS-14 Same as above. Program should not cut x
employee enough back environmental pay because it is not
environmental pay subject to the maximum salary limitation.
to exceed the maxi-
mum salary
limitation.

30. Pay a WB employee Same as above. Program should not cut x
enough premium pay because WB employees have no
pay to exceed the maximum salary limitation.
maximum salary
limitation.

31. Pay a GS employee To determine whether the system will pay x x
for one hour of holi- less than the two-hour minimum of holi-
day pay. day pay. 

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

32. Pay a WB employee Same as above. x x
for one hour of
holiday pay.

33. Pay a GS employee To determine whether the system limits x x
for 40 hours of Sun- Sunday pay to 32 hours maximum
day pay. allowed. 

34. Pay a WB employee To verify the accuracy of premium pay. x
for 80 hours on Federal regulations state that overtime pay for
second shift and 10 an employee regularly working the second or
hours for overtime third shift will be computed at 1 and 1/2 times
into the third shift. the second or third shift rate, respectively. 

35. Pay a WB employee for Same as above. x
80 hours on third shift
and 10 hours for over-
time into the first shift.

36. Charge a full-time To determine whether sick and annual x
employee for 80 leave will accrue when a full-time employee
hours of leave with- charges 80 hours of LWOP. The sick leave 
out pay (LWOP). credit should be reduced by 4 hours, and the 

annual leave credit should be reduced by 
4, 6, or 8 hours, depending on the annual 
leave category.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

37. Charge a full-time To determine whether excess annual x x x
employee for more leave is charged to LWOP. (The system
annual leave than should automatically reduce employee’s
the employee has. pay for LWOP.)

38. Charge a full-time To determine whether excess sick leave is x x x
employee for more charged to annual leave or LWOP. (The
sick leave than the system should automatically adjust leave
employee has. records and reduce pay for LWOP, if

required.)

39. Charge a full-time To determine whether the system will cut x x
employee for 99 back to the maximum of 80 hours for
hours of annual regular pay in a pay period.
leave (19 hours
more than a regular
biweekly period).

40. Charge a full-time Same as above. x x
employee for 99
hours of sick leave.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

41. Charge a full-time Same as above. Total hours of work and x x
employee for 80 leave cannot exceed 80 in a pay period.
hours of regular pay
and 80 hours of
annual leave in the
same pay period.

42. Charge a full-time To determine whether the system flags x
employee for military leave in excess of 120 hours.
enough hours of Federal regulations state that an
military leave to employee cannot charge more than 120
exceed 120 hours hours to military leave in a pay year.
total. Because there are certain exceptions,

the system should alert payroll clerks to the 
excess and should not reject or cut back 
the transaction.

43. Make a lump-sum To determine whether the system approp- x x
annual leave payment riately excludes excess annual leave in a
to a separated employ- lump-sum leave payment.
ee in excess of annual 
leave balance.

R
e

je
ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



HOW A SYSTEM WITH EFFECTIVE CONTROLS 

WILL HANDLE THE TRANSACTION

TEST

TRANSACTION PURPOSE

44. Pay a GS part-time To determine whether the system cor- x
employee for 32 rectly accrues annual and sick leave for
hours of regular part-time employees. For each 20 hours
pay. worked, a part-time employee receives

one hour of sick leave. If in leave cate-
gory 4, an employee needs 20 hours of
work to earn one hour of annual leave; if
in leave category 6, the employee needs
15 hours worked to earn one hour of
annual leave; and if in leave category 8,
the employee needs 10 hours worked to
earn one hour of annual leave.

45. Make a lump-sum To determine whether the system will x x
annual leave pay- make a lump-sum annual leave payment
ment to an active to an active employee. These payments
employee. should be made only to separated

employees.
R

e
je

ct

P
ri

n
t 

e
rr

o
r

m
e

ss
a
g
e

R
e

je
ct

 i
n

 c
e

rt
a
in

ci
rc

u
m

st
a
n

ce
s

C
u

t 
b

a
ck

 t
o

 a
ll

o
w

-

a
b

le
 m

a
xi

m
u

m

P
ro

ce
ss

 w
it

h
o

u
t

cu
tb

a
ck

A
u

to
m

a
ti

ca
ll

y

co
m

p
u

te
 c

o
rr

e
ct

a
m

o
u

n
t

A
u

to
m

a
ti

ca
ll

y

a
d

ju
st

 l
e

a
ve

re
co

rd
s

Figure 10-2 (continued)



Creating Test Data for Stress/Load Testing

The objective of stress/load testing is to verify that the system can perform properly
when internal program or system limitations have been exceeded. This may require
that large volumes of transactions be entered during testing.

The following are the recommended steps for determining the test data needed for
stress/load testing:

1. Identify input data used by the program. A preferred method to identify limi-
tations is to evaluate the data. Each data element should be reviewed to deter-
mine if it poses a system limitation. This is an easier method than attempting to
evaluate the programs. The method is also helpful in differentiating between
system and program limitations. Another advantage is that data may need to
be evaluated only once, rather than evaluating numerous individual programs.

2. Identify data created by the program. These would be data elements that are
not input into the system but are included in internal or output data records. If
testers know the input and output data, they can easily identify newly created
data elements.

3. Challenge each data element for potential limitations. Testers should ask the
following questions about each data element. A Yes answer to any of the ques-
tions means a limitation has been identified.

■■ Can the data value in a field exceed the size of this data element? 

■■ Is the value in a data field accumulated? 

■■ Is data temporarily stored in the computer? 

■■ Is the information in a data element stored in the program until a following
transaction is entered? 

■■ If a data element represents an accounting entity, does the number used to
identify the accounting entity in itself provide a future limitation, such as
using a one-character field to identify sales districts? 

4. Document limitations. Documentation forms the basis for volume testing. Each
limitation must now be evaluated to determine the extent of testing required.

5. Perform volume testing. The testing follows the nine steps outlined in the ear-
lier section, “Creating and Using Test Data.”

Creating Test Scripts

Several characteristics of scripting are different from batch test data development.
These differences include the following:

■■ Data entry procedures required. The test procedures take on greater significance
in scripting. The person using the script needs to know the details of how to
enter the transaction via the terminal. This may be more complex than simply
creating a test condition.

430 Chapter 10



■■ Use of software packages. Scripting is a very difficult and complex task to
do manually, particularly when the script has to be repeated multiple times.
Therefore, most testers use a capture/playback type of software package,
which enables the capture of transactions as they are entered via terminal, and
then repeats them as the scripts are reused. There are many of these on the
market, although they are aimed primarily at the IBM mainframe.

■■ Sequencing of events. Scripts require the sequencing of transactions. In batch
systems, sequencing is frequently handled by sorting during systems execution;
however, with scripts, the sequence must be predefined.

■■ Stop procedures. Batch testing continues until the batch is complete or process-
ing abnormally terminates. Scripting may be able to continue, but the results
would be meaningless; therefore, the script has to indicate when to stop, or if
specific conditions occur, where to go in the script to resume testing.

To develop, use, and maintain test scripts, testers should perform the following five
steps:

1. Determine testing levels.

2. Develop test scripts.

3. Execute test scripts.

4. Analyze the results.

5. Maintain test scripts.

Determining Testing Levels

There are five levels of testing for scripts, as follows:

■■ Unit scripting. Develops a script to test a specific unit/module.

■■ Pseudo-concurrency scripting. Develops scripts to test when two or more
users are accessing the same file at the same time.

■■ Integration scripting. Determines that various modules can be properly linked.

■■ Regression scripting. Determines that the unchanged portions of systems
remain unchanged when the system is changed. (Note: This is usually per-
formed with the information captured on capture/playback software systems.)

■■ Stress/performance scripting. Determines whether the system will perform
correctly when it is stressed to its capacity.

Developing Test Scripts

Typically, the capture/playback tool is used to develop test scripts. The development
of a script involves a number of considerations, as follows:

Step 4: Validation Testing 431



Programs to be tested

Operating environment

Script components

Script organization

Terminal entry of scripts

Automated entry of script transactions

Manual entry of script transactions

Transaction edits

Transactions navigation

Transaction sources

Files involved

Terminal input and output

Online operating environment

Date setup

File initialization

Screen initialization

Secured initialization

File restores

Password options

Update options

Processing inquiries

Program libraries

File states/contents

Security considerations

Start and stop considerations

Logon procedures

Logoff procedures

Setup options

Menu navigation

Exit procedures

Re-prompting options

API communications

Single versus multiple terminals

Date and time dependencies

Inquiries versus updates

Unit test organization

Pseudo-concurrent test organization

Integration test organization

Regression test organization

432 Chapter 10

Testers can use Work Paper 10-1 as an aid to developing test scripts. Table 10-1 sum-
marizes the development strategies.

Table 10-1 Script Development Strategies

TEST SINGLE MULTIPLE SINGLE MULTIPLE
LEVEL TRANSACTION TRANSACTIONS TERMINAL TERMINALS

Unit X X

Concurrent X X

Integration X X

Regression X X

Stress X X



Executing Test Scripts

Testers can execute test scripts either manually or by using the capture/playback tools.
Considerations to incorporate when using capture/playback tools include the following:

Environmental setup

Program libraries

File states/contents

Date and time

Multiple terminal arrival modes

Serial (cross-terminal) dependencies

Processing options

Stall detection

Synchronization of different types of input data

Volume of inputs

Arrival rate of input

NOTE Be reluctant to use scripting extensively unless a software tool drives

the script.

Analyzing the Results

After executing test scripts, testers must compare the actual results with the expected
results. Much of this should have been done during the execution of the script, using
the operator instructions provided. Note that if a capture/playback software tool is
used, analysis will be more extensive after execution. The analysis should include the
following:

■■ System components

■■ Terminal outputs (screens)

■■ File contents

■■ Environment variables, such as

■■ Status of logs

■■ Performance data (stress results)

■■ Onscreen outputs

■■ Order of outputs processing

■■ Compliance of screens to specifications

■■ Ability to process actions

■■ Ability to browse through data

Step 4: Validation Testing 433



Maintaining Test Scripts

Once developed, test scripts need to be maintained so that they can be used through-
out development. The following areas should be incorporated into the script mainte-
nance procedure:

Identifiers for each script

Purpose of scripts

Program/units tested by this script

Version of development data that was used to prepare script

Test cases included in script

Task 2: Execute Tests

Effective validation testing should be based on the test plan created much earlier in the
life cycle. The test phase testing is a culmination of the previous work preparing for this
phase. Without this preparation, tests may be uneconomical and ineffective.

The following describes some of the methods of testing an application system.
Testers can use Work Paper 10-2 to track their progress.

■■ Manual, regression, and functional testing (reliability). Manual testing ensures
that the people interacting with the automated system can perform their func-
tions correctly. Regression testing verifies that what is being installed does not
affect any portion of the application already installed or other applications inter-
faced by the new application. Functional testing verifies that the system require-
ments can be performed correctly when subjected to a variety of circumstances
and repeated transactions.

■■ Functional and regression testing (coupling). The test phase should verify
that the application being tested can correctly communicate with interrelated
application systems. Both functional and regression testing are recommended.
Functional testing verifies that any new function properly interconnects, while
regression testing verifies that unchanged segments of the application system
that interconnect with other applications still function properly.

■■ Compliance testing

■■ Authorization. Testing should verify that the authorization rules have been
properly implemented and complied with. Test conditions should include
unauthorized transactions or processes to ensure that they are rejected, as
well as ensuring authorized transactions are accepted.

■■ Performance. Performance criteria are established during the requirements
phase. These criteria should be updated if the requirements change during
later phases of the life cycle. Many of the criteria can be evaluated during
the test phase, and those that can be tested should be tested. However, it
may be necessary to wait until the system is placed into production to ver-
ify that all of the criteria have been achieved.

434 Chapter 10



■■ Security. Testers should evaluate the adequacy of the security procedures
by attempting to violate them. For example, an unauthorized individual
should attempt to access or modify data.

■■ Functional testing

■■ File integrity. Testers should verify the controls over the file integrity. For
example, if integrity depends on the proper functioning of an independent
control total, that function should be tested along with the automated seg-
ment of the application system. In addition, sufficient updates of the file
should be performed so that the integrity controls can be tested during sev-
eral iterations of executing the application system.

■■ Audit trail. Testers should test the audit trail function to ensure that a
source transaction can be traced to a control total, that the transaction sup-
porting a control total can be identified, and that the processing of a single
transaction or the entire system can be reconstructed using audit trail infor-
mation. It is normally advisable to list part of the audit trail file to ensure
that it is complete based on the test transactions entered.

■■ Correctness. Functional correctness testing verifies that the application
functions in accordance with user-specified requirements. Because IT per-
sonnel normally concentrate their testing on verifying that the mainline
requirements function properly, you may wish to emphasize the other test
concerns during validation testing, or emphasize improperly entered trans-
actions to test the data validation and error detection functions.

■■ Recovery testing (continuity of testing). If processing must continue during
periods when the automated system is not operational, alternate processing
procedures should be tested. In addition, the users of application systems
should be involved in a complete recovery test so that not only the automated
system is tested, but the procedures for performing the manual aspects of
recovery are tested. This may involve intentionally causing the system to fail
so that the recovery procedures can be tested.

■■ Stress testing (service level). The application under stress to verify that the
system can handle high-volume processing. Stress testing should attempt to
find those levels of processing at which the system can no longer function
effectively. In online systems, this may be determined by the volume of transac-
tions, whereas in batch systems the size of the batch or large volumes of certain
types of transactions can test internal tables or sort capabilities.

■■ Testing complies with methodology. Testing should be performed in accor-
dance with the organization’s testing policies and procedures. The methodology
should specify the type of test plan required, the recommended test techniques
and tools, as well as the type of documentation required. The methodology
should also specify the method of determining whether the test is successful.

■■ Manual support testing (ease of use). The ultimate success of the system is
determined by whether people can use it. Because this is difficult to evaluate
prior to validation testing, it is important that the system is evaluated in as
realistic a test environment as possible.

Step 4: Validation Testing 435



■■ Inspections (maintainability). Modifications made during the system’s devel-
opment life cycle provide one method of testing the maintainability of the
application system. Fortunately, these changes are made by the developers
who are intimately familiar with the application system. The completed system
should be inspected by an independent group, preferably systems maintenance
specialists. System development standards should be devised with maintain-
ability in mind.

■■ Disaster testing (portability). Disaster testing simulates problems in the origi-
nal environment so that an alternative processing environment can be tested.
Although it is not possible to simulate all environments into which an applica-
tion system may be moved, knowing that it can transfer between two different
environments provides a high probability that other moves will not cause
major complications.

■■ Operations testing (ease of operations). Testing in this phase should be con-
ducted by the normal operations staff. Project development personnel should
not be permitted to coach or assist during the test process. It is only through
having normal operation personnel conduct the test that the completeness of
instructions and the ease with which the system can be operated can be prop-
erly evaluated.

Task 3: Record Test Results

Testers must document the results of testing so that they know what was and was not
achieved. The following attributes should be developed for each test case:

■■ Condition. Tells what is.

■■ Criteria. Tells what should be.

These two attributes are the basis for a finding. If a comparison between the
two gives little or no practical consequence, no finding exists.

■■ Effect. Tells why the difference between what is and what should be is 
significant.

■■ Cause. Tells the reasons for the deviation.

A well-developed problem statement includes each of these attributes. When one or
more of these attributes is missing, questions almost always arise, such as:

■■ Condition. What is the problem?

■■ Criteria. Why is the current state inadequate?

■■ Effect. How significant is it?

■■ Cause. What could have caused the problem?

Documenting a statement of a user problem involves three tasks, which are explained
in the following sections.

436 Chapter 10



Documenting the Deviation

Problem statements derive from a process of comparison. Essentially, the user compares
“what is” with “what should be.” When a deviation is identified between what actually
exists and what the user thinks is correct or proper, the first essential step toward devel-
opment of a problem statement has occurred. It is difficult to visualize any type of prob-
lem that is not in some way characterized by this deviation. The “what is” can be called
the statement of condition. The “what should be” can be called the criteria. These con-
cepts are the first two, and most basic, attributes of a problem statement.

Documenting deviation means to describe conditions as they currently exist and cri-
teria that represent what the user wants. The actual deviation is the difference, or gap,
between “what is” and “what is desired.”

The statement of condition uncovers and documents facts as they exist. What is a fact?
If somebody tells you something happened, is that “something” a fact? Or is it only a fact
if someone told you it’s a fact? The description of the statement of condition does, of
course, depend largely on the nature and extent of the evidence or support that is exam-
ined and noted. For those facts making up the statement of condition, the IT professional
will obviously take pains to ensure that the information is accurate, well-supported, and
worded as clearly and precisely as possible.

The statement of condition should document as many of the following attributes as
appropriate for the problem:

Activities involved

Procedures used to perform work

Outputs/deliverables

Inputs

Users/customers served

Deficiencies noted

The criterion is the user’s statement of what is desired. It can be stated in either neg-
ative or positive terms. For example, it could indicate the need to reduce the com-
plaints or delays as well as desired processing turnaround time.

Often, “should be” relates primarily to commonsense or general reasonableness, and
the statement of condition virtually speaks for itself. These situations must be carefully
distinguished from personal whims or subjective, fanciful notions. There is no room for
such subjectivity in defining what is desired.

As much as possible, the criteria should directly relate to the statement of condition.
For example, if volumes are expected to increase, the number of users served has
changed, or the user processes have changed, they should be expressed in the same
terms as used in documenting the statement of condition.

Work Paper 10-3 provides space to describe the problem and document the state-
ment of condition and the statement of criteria. Note that an additional section could
be added to Work Paper 10-3 to describe the deviation. However, if the statement of
condition and statement of criteria are properly worded, the deviation should be read-
ily determinable.

Step 4: Validation Testing 437



Documenting the Effect

Whereas the legitimacy of a problem statement may stand or fall on criteria, the atten-
tion that the problem statement receives after it is reported depends largely on its sig-
nificance. Significance is judged by effect.

Efficiency and economy are useful measures of effect and frequently can be stated in
quantitative terms such as dollars, time, units of production, number of procedures and
processes, or transactions. Whereas past effects cannot be ascertained, potential future
effects may be determined. Sometimes effects are intangible but are nevertheless of major
significance.

Effect is frequently considered almost simultaneously with the first two attributes
(condition and criteria) of the problem. Reviewers may suspect a bad effect even before
they have clearly formulated these other attributes in their minds. After the statement
of condition is identified, reviewers may search for a firm criterion against which to
measure the suspected effect. They may hypothesize several alternative criteria, which
are believed to be suitable based on experiences in similar situations. They may con-
clude that the effects under each hypothesis are so divergent or unreasonable that what
is really needed is a firmer criterion—say, a formal policy in an area where no policy
presently exists. The presentation of the problem statement may revolve around this
missing criterion, although suspicions as to effect may have been the initial path.

The reviewer should attempt to quantify the effect of a problem wherever practical.
Although the effect can be stated in narrative or qualitative terms, that frequently does
not convey the appropriate message to management; for example, statements such as
“Service will be delayed,” or “Extra computer time will be required” do not really tell
what is happening to the organization.

Documenting the Cause

In some cases, the cause may be obvious from the facts presented. In other instances,
investigation is required to identify the origin of the problem.

Most findings involve one or more of the following causes:

■■ Nonconformity with standards, procedures, or guidelines

■■ Nonconformity with published instructions, directives, policies, or procedures
from a higher authority

■■ Nonconformity with business practices generally accepted as sound

■■ Employment of inefficient or uneconomical practices

The determination of the cause of a condition usually requires the scientific
approach, which encompasses the following steps:

1. Define the problem (the condition that results in the finding).

2. Identify the flow of work and/or information leading to the condition.

3. Identify the procedures used in producing the condition.

438 Chapter 10



4. Identify the people involved.

5. Re-create the circumstances to identify the cause of a condition.

Document the cause for the problem on Work Paper 10-3.

Check Procedures

Work Paper 10-4 is a quality-control checklist for this step. Yes responses indicate good
test practices, and No responses warrant additional investigation. A Comments col-
umn is provided to explain No responses and to record the results of investigation. 

Output

Validation testing has the following three outputs:

The test transactions to validate the software system

The results from executing those transactions

Variances from the expected results

Guidelines

Validation testing is the last line of defense against defects entering the operational
environment. If no testing has occurred prior to the test phase, it is unreasonable to
expect testing at this point to remove all the defects. Experience has shown that it is dif-
ficult for the test phase to be more than 80 percent effective in reducing defects. Obvi-
ously, the fewer the number of defects that enter the test phase, the fewer the number
of defects that get into the production environment.

At the end of the test phase, the application system is placed into production. The
test phase provides the last opportunity for the user to ensure that the system functions
properly. For this reason, the user should be heavily involved in testing the application
system.

The IT department has an opportunity to evaluate the application system during the
program phase. During this phase, they determine whether the system functions
according to the requirements. The test step is best performed by a group other than
the project team. This is not to say that the project team should not be involved or help,
but rather that the team should not be the dominant party in the test phase. If the same
individual were responsible for both the program phase testing and the test phase test-
ing, there would be no need to have two different phases. If information services
assume test responsibility during the program phase, and the user accepts it during the
test phase, the two phases complement one another.

Step 4: Validation Testing 439



An independent test group should be given the responsibility to test the system to
determine whether the system performs according to its needs. Because of communi-
cation problems, differences may exist between the specifications to which the system
was built and the requirements that the user expected. Ideally, the test team will have
been developing test conditions from the requirements phase, and during the test
phase should uncover any remaining defects in the application system.

Summary

This chapter described how to dynamically test application software. Validation test-
ing should not focus on removing defects, but rather on whether the system can per-
form as specified in operational mode. Because full testing is impractical, validation
testing must concentrate on those operational aspects most important to the user. The
next step is to analyze the results of testing and report the results.

440 Chapter 10



Step 4: Validation Testing 441

WORK PAPER 10-1 Developing Test Scripts

Test Entered Expected Operator

Item By Sequence Action Result Instructions



WORK PAPER 10-2 Test Phase Test Process

TEST FACTOR: Manual, Regressional, and Functional Testing (Reliability)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Has data that does not conform to individual Verify that data validation programs reject data not conforming
data element specifications been tested? to data element specifications.

2. Have tests been performed to reject data Verify that the system rejects data relationships
relationships not conforming to system that do not conform to system specifications.
specifications?

3. Have invalid identifiers been tested? Verify that program rejects invalid identifiers.

4. Have tests been conducted to verify that Confirm that the system detects missing sequence numbers.
missing sequence numbers will be detected?

5. Have tests been conducted to verify that Verify that the system will detect inaccurate batch totals.
inaccurate batch totals will be detected?

6. Have tests been conducted to determine Verify that the programs will defect data missing from
that data missing from a batch or missing batches and scheduled data that does not arrive on time.
scheduled data will be detected?

7. Have tests been conducted to verify that the Conduct regression test to ensure that unchanged portions
unchanged parts of the system are not of the program are not affected by invalid data.
affected by invalid data?

8. Are the results obtained from the recovery Verify the correctness of the results obtained from the
process correct? recovery process.



WORK PAPER 10-2 (continued)

TEST FACTOR: Compliance Testing (Authorization)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Do manual procedures ensure that the Test manual procedures to verify that authorization procedures
proper authorization is received? are followed.

2. Have automated authorization rules Verify that programs enforce automated authorization rules.
been tested?

3. Have the current authorization names and Confirm that the actual identifiers for authorization are
identifiers been included as part of the test? included in the programs.

4. Have unauthorized transactions been entered Verify that the authorization programs reject Security
into the system to determine if they will be unauthorized transactions.
rejected?

5. If multiple authorization is required, Verify that multiple authorization procedures
do the procedures function properly? perform properly.

6. If authorizers are limited in the size of Verify that the system can identify potential violations of 
transactions they can testing authorize, have authorization limits caused by entering multiple transactions
multiple transactions below that limit been below the limit.
entered to determine if the system checks 
against limit violations?

7. Have the procedures to change the name Verify that the procedure to change the authorization
or identifier of individuals authorized to rules of a program performs properly.
change a transaction been tested?

8. Have the procedures to report authorization Verify that the authorization reports are properly
violations to management been tested? prepared and delivered.

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Functional Testing (File Integrity)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Have the file balancing controls been tested? Verify that the procedures to balance the files function properly.

2. Have the independently maintained control Verify that the independently maintained control totals can
totals been tested? confirm the automated file control totals.

3. Have integrity procedures been tested to Verify that the new control totals properly reflect the
ensure that updates are properly recorded? updated transactions.

4. Have tests been performed to ensure that Cause a program to fail to determine if it affects the
integrity can be retained after a program failure? file integrity.

5. Has erroneous data been entered to determine Enter erroneous data to determine that it cannot affect the
if it can destroy the file integrity? integrity of the file totals.

6. Have the manual procedures to develop Verify that the manual procedures can be properly performed
independent control totals been tested? to produce correct independent control totals.

7. If multiple files contain the same data, will all Change a data element in one file that is redundant in several
like elements of data be changed concurrently files to verify that the other files will be changed accordingly.
to ensure the integrity of all computer files?

8. Have nil and one record file conditions Run system with one and no records on each file.
been tested?



WORK PAPER 10-2 (continued)

TEST FACTOR: Functional Testing (Audit Trail)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Has a test been conducted to verify that source Verify that a given source transaction can be traced to the 
documents can be traced to control totals? appropriate control total.

2. Has a test been conducted to verify that all Determine for a control total that all the supporting transactions
of the supporting data for a control total can be identified.
can be identified?

3. Can the processing of a single transaction Verify that the processing of a single transaction can be 
be reconstructed? reconstructed.

4. Has a test been conducted to verify that Examine the audit trail to verify that it contains the appropriate
the audit trail contains the appropriate information.
information?

5. Will the audit trail be saved for the Verify that a audit trail is marked to be saved for  the appropriate
appropriate time period? time period.

6. Have tests been conducted to determine Verify that by using the audit trail procedures people can
that people can reconstruct processing reconstruct processing.
from the audit trail procedures?

7. Have tests been conducted to verify that Determine the cost of using the audit trail. 
the audit trail is economical to use?

8. Does the audit trail satisfy review Verify with the auditors that the audit trail is satisfactory

requirements? for their purpose.

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Recovery Testing (Continuity of Processing)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Has a simulated disaster been created to Simulate a disaster to verify that recovery can occur after 
test recovery procedures? a disaster.

2. Can people perform the recovery operation Verify that a recovery can be performed directly from the 
from the recovery procedures? recovery procedures.

3. Has a test been designed to determine recovery Conduct a recovery test to determine that it can be performed
can occur within the desired frame? within the required time frame.

4. Have operation personnel been Confirm with operation personnel that they have received
trained in recovery procedures? appropriate recovery training.

5. Has each type of system failure been tested? Verify that the system can recover from each of the various
types of system failures.

6. Have the manual backup procedures been Simulate a system disaster to verify that the manual procedures
tested using full volume for system failures? are adequate.

7. Have the manual procedures been tested for Verify that the system users can properly enter data
entering data received during downtime into that has been accumulated during system failures.
the system after the integrity of the system  
has been restored?

8. Can alternate processing procedures be Require the manual alternate processing procedures
performed using the manual procedures? to be performed exclusively from the procedures.



WORK PAPER 10-2 (continued)

TEST FACTOR: Stress Testing (Service Level)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Have the limits of all internal tables and other Confirm with the project leader that all the project limits
restrictions been documented? are documented.

2. Have each of the documented units been Verify that the application limits have been tested.
tested?

3. Have programmed procedures been included Confirm that when more transactions are entered than the 
so that transactions that cannot be system can handle they are stored for later processing.
processed within current capacity are 
retained for later processing?

4. Has the input portion of the system Verify that excessive input will not result in system problems.
been subject to stress testing?

5. Has the manual segment of the system been Verify that when people get more transactions than
subject to stress testing? they can process, no transactions will be lost.

6. Have communication systems Verify that when communication systems are required to process
been stress tested? more transactions than their capability, transactions are not lost.

7. Have procedures been written outlining the Evaluate the reasonableness of the excess capacity
process to be followed when the system procedures.
volume exceeds capacity?

8. Have tests using backup personnel been Test the functioning of the system when operated by backup 
performed to verify that the system can personnel.
process normal volumes without the 

regular staff present?

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Compliance Test (Performance)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Can systems be operated at expected volumes Verify that the systems can be operated with anticipated
with the anticipated manual support? manual support.

2. Can transactions be processed at expected Verify that the transaction processing costs are within expected
volumes for the expected cost? tolerances.

3. Has the test phase been conducted within Verify from the accounting reports that the test phase has
the test budget? been performed within budget.

4. Have problems been encountered in testing Confirm with the project leader that uncovered problems will
that will affect the cost-effectiveness of the not significantly affect the cost effectiveness of the system.
system?

5. Does the test phase indicate that the expected Confirm with user management that the expected
benefits will be received? benefit should be received.

6. Will projected changes to hardware and Confirm with computer operations whether projected changes
software significantly reduce operational to hardware and software will significantly reduce operations
or maintenance costs? and maintenance costs.

7. Does a test phase schedule exist that identifies Examine the completeness of the test phase work  program.
tasks, people, budgets, and costs?

8. Is the technology used for implementation Confirm with an independent source the soundness of the 
sound? implementation technology.



WORK PAPER 10-2 (continued)

TEST FACTOR: Compliance Testing (Security)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Do the identified security risks have Examine the completeness of the protection against the 
adequate protection? identified security risks.

2. Have tests been conducted to violate Attempt to violate physical security.
physical security?

3. Have tests been conducted to violate Attempt to violate access security. 
access security?

4. Have tests been conducted to determine if Attempt to violate access security.
computer resources can be used without
authorization?

5. Have tests been conducted to determine if Conduct security violations during nonworking hours.
security procedures are adequate during 
off hours?

6. Are repetitive tests conducted to Conduct repetitive security violations.
attempt to violate security by
continual attempts?

7. Are tests conducted to obtain access to Attempt to gain access to program and system documentation.
program and system documentation?

8. Are employees adequately trained in Verify that employees know and follow security
security procedures? procedures.

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Test Complies with Methodology

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Does testing verify that the system processing Verify that the operational system results comply with the
is in compliance with the organization’s organization’s policies and procedures.
policies and procedures?

2. Does testing verify that the system processing Verify that the operational system results comply with the 
is in compliance with the information services information services policies and procedures.
processing policies and procedures?

3. Does testing verify that the system processing Verify that the operational system results comply with the 
is in compliance with the accounting accounting policies and procedures.
policies and procedures?

4. Does testing verify that the system processing Verify that the operational system results comply with the 
is in compliance with governmental governmental regulations.
regulations?

5. Does testing verify that the system processing Verify that the operational system results comply with the 
is in compliance with industry standards? industry standards.

6. Does testing verify that the system processing Verify that the operational system results comply with the 
is in compliance with the user procedures? user department policies and procedures.

7. Did testing procedures conform to the Verify that the test plan was fully implemented.
test plan?

8. Has the testing verified that sensitive data Confirm with the user the completeness of the test
is adequately protected? to verify sensitive data is protected.



WORK PAPER 10-2 (continued)

TEST FACTOR: Functional Testing (Correctness)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Do the normal transaction origination Verify that the transaction origination procedures perform
procedures function in accordance with in accordance with systems requirements.
specifications?

2. Do the input procedures function in Verify that the input procedures perform in accordance
accordance with specifications? with systems requirements.

3. Do the processing procedures function in Verify that the processing procedures perform in accordance
accordance with specifications? with systems requirements.

4. Do the storage retention procedures function Verify that the storage retention procedures perform in
in accordance with specifications? accordance with systems requirements.

5. Do the output procedures function Verify that the output procedures perform in accordance with 
in accordance with specifications? systems requirements.

6. Do the error-handling procedures function Verify that the error-handling procedures perform in accordance
in accordance with specifications? with systems requirements.

7. Do the manual procedures function in Verify that the manual procedures perform in accordance
accordance with specifications? with systems requirements.

8. Do the data retention procedures function Verify that the data retention procedures perform in accordance
in accordance with specifications? with systems requirements.

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Manual Support Testing (Ease of Use)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Do the clerical personnel understand the Confirm with clerical personnel that they understand
procedures? the procedures.

2. Are the reference documents easy to use? Examine results of using reference documents.

3. Can input documents be completed correctly? Examine processing for correctness.

4. Are output documents used properly? Examine correctness of use of output documents.

5. Is manual processing completed within the Identify time span for manual processing.
expected time frame?

6. Do the outputs indicate which actions should Examine outputs for priority of use indications.
be taken first?

7. Are documents clearly identified regarding Examine documents for clarity of identification.
recipients and use?

8. Are the clerical personnel satisfied with the Confirm with clerical personnel the ease of use of

ease of use of the system? the system.



WORK PAPER 10-2 (continued)

TEST FACTOR: Inspections (Maintainability)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Do the programs contain nonentrant code? Determine all program statements are entrant.

2. Are the programs executable? Examine the reasonableness of program processing results.

3. Can program errors be quickly located? Introduce an error into the program.

4. Does the program conform to Verify the executable version of the program conforms to 
the documentation? the program documentation.

5. Is a history of program changes available? Examine the completeness of the history of program changes.

6. Are test criteria prepared so that they can Examine the usability of test data for maintenance.
be used for maintenance?

7. Are self-checking test results prepared for Examine the usability of expected test results for maintenance.
use during maintenance?

8. Are all errors detected during testing Verify that errors detected during testing have been corrected.
corrected?

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Disaster Testing (Portability)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Have alternate processing sites and/or Confirm that alternate site requirements have been
requirements been identified? identified.

2. Are data files readable at the new facilities? Execute data files at the new facilities.

3. Are programs executable at the new facilities? Execute programs at the new facilities.

4. Are operating instructions usable at the new Request that normal operators execute system at the new
facilities? facilities.

5. Are outputs usable at the new facilities? Examine usability of outputs produced using the new facilities.

6. Is execution time acceptable at the new Monitor execution time at the new facility.
facilities?

7. Are programs recompilable at the new Recompile programs at the new facility.
facilities?

8. Are the user procedures usable at the new Request users to operate system at the new facilities.
facilities?



WORK PAPER 10-2 (continued)

TEST FACTOR: Functional and Regression Testing (Coupling)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Are inputs from other appliance systems Verify correctness of computerized data.
correct?

2. Are outputs going to other applications Verify correctness of computerized data.
correct?

3. Does input from other applications conform Verify actual input conforms to specifications.
to specifications documents?

4. Does output going to other applications Verify actual output conforms to specifications.
conform to specifications documents?

5. Does input from other applications impact Perform appropriate regression testing.
nonrelated functions?

6. Can the intersystem requirements be Monitor time span of processing for adherence to 
processed within time frame specifications? specifications.

7. Are intersystem operation instructions correct? Verify intersystem operation instructions are correct.

8. Are the retention dates on intersystem files Confirm that intersystem file retention dates are correct.
correct?

(continues)



WORK PAPER 10-2 (continued)

TEST FACTOR: Operations Test (Ease of Operations)

ASSESSMENT

Very Ade- Ade- Inade-

TEST CRITERIA quate quate quate N/A RECOMMENDED TEST

1. Are operating instructions in the Verify documented instructions conform to standards.
proper format?

2. Have operators been instructed in how to Confirm with operators completeness of instructions.
operate the new applications?

3. Has a trouble call-in list been prepared? Examine call-in list.

4. Are operating instructions complete? Determine operator instructions are complete.

5. Has appropriate operations and Examine schedule for reasonable allocation of time.
test time been scheduled?

6. Are data retention procedures prepared? Verify completeness of retention procedures.

7. Have normal operators successfully Verify that operators can operate the system by only
executed the application? using operator instructions.

8. Have operator recommendations Verify that operator recommendations have been adequately
for improvements been reviewed? reviewed.



WORK PAPER 10-3 Test Problem Documentation

Name of Software Tested

Problem
Description

Actual Results 

Expected Results

Effect of Deviation

Cause of Problem

Location of Problem

Recommended
Action

Step 4: Validation Testing 457



458 Chapter 10

WORK PAPER 10-4 Quality Control Checklist

YES NO N/A COMMENTS

1. Has an appropriate test environment been
established to perform the dynamic test of
the application software?

2. Are the testers trained in the test tools that
will be used during this step?

3. Has adequate time been allocated for this
step?

4. Have adequate resources been assigned to
this step?

5. Have the methods for creating test data
been appropriate for this system?

6. Has sufficient test data been developed to
adequately test the application software?

7. Have all the testing techniques that were 
indicated in the test plan been scheduled 
for execution during this step?

8. Have the expected results from testing
been determined?

9. Has a process been established to
determine variance/deviation between
expected results and actual results?

10. Have both the expected and actual results
been documented when there’s a deviation
between the two?

11. Has the potential impact of any deviation
been determined?

12. Has a process been established to ensure
that appropriate action/resolution will be
taken on all identified test problems?



459

Testers should write two types of reports: interim reports and final reports. Interim test
reports are necessary for both testers and management; testers need to know testing
defect identification and correction status, and management needs to know the status
of the overall project effort and the risks the organization faces as a consequence.

This chapter builds on the material presented so far in this book. In earlier steps, the
test objectives are decomposed into a test plan, which eventually is decomposed into
specific tests; tests are executed, and then the results are rolled up into test reports. The
test results are compared against the expected results and experience with similar soft-
ware systems. Reports are then prepared to provide the information that the user of the
software system needs to make effective business decisions.

Overview

The user of the software system is responsible for deciding whether the software system
should be used as presented and, if so, which precautions must be taken to ensure high-
quality results. It is the testers who provide the information on which those decisions
will be based. Thus, the testers are responsible not only for testing, but to consolidate and
present data in a format that is conducive to good business decision making.

Step 5: Analyzing and 
Reporting Test Results

C H A P T E R

11



The project team is responsible for reporting the project’s status. However, experi-
ence has shown that project teams tend to be overly optimistic about their ability to
complete projects on time and within budget. Testers can provide management with an
independent assessment of the status of the project.

By maintaining a status report of their activities, testers can report regularly to man-
agement what works and what does not work. Not working may mean a variety of sta-
tuses, including not tested, partially working, and not working at all.

Reporting on how the system will perform in operation uses the results of accep-
tance testing. Management may be interested in knowing only that the software sys-
tem is acceptable to the system users. Math-oriented management may want statistical
reliability measurements, in addition to user acceptance. Reliability assessment would
include statistical measurements such as the expected mean time between failures.

Whether to place a software system in production is a user management decision,
although testers can offer factual data about the status of the system together with their
opinion regarding that decision.

Concerns

Testers should have the following concerns about the development and delivery of test
reports:

■■ Test results will not be available when needed.

■■ Test information is inadequate.

■■ Test status is not delivered to the right people.

Workbench

Figure 11-1 shows the workbench for reporting test results. To report the results of test-
ing, testers need not only the data collected during testing, but also the plans and the
expected processing results. Tasks 1 and 2, which report the project’s status and interim
test results, should be performed on a regular basis. In the early stages of testing,
reports may be prepared only monthly, but during the later stages of testing the reports
should become more frequent.

The type and number of final reports will vary based on the scope of the project and
the number of software systems involved. There may be a final report for each soft-
ware system or a single report if all of the software systems are placed into production
concurrently.

460 Chapter 11



Figure 11-1 Workbench for reporting test results.

Input

This section describes the three types of input needed to answer management’s ques-
tions about the status of the software system.

Test Plan and Project Plan

Testers need both the test plan and the project plan, both of which should be viewed as
contracts. The project plan is the project’s contract with management for work to be
performed, and the test plan is a contract indicating what the testers will do to deter-
mine whether the software is complete and correct. It is against these two plans that
testers will report status.

Expected Processing Results

Testers report the status of actual results against expected results. To make these
reports, the testers need to know what results are expected. For software systems, the
expected results are the business results.

Data Collected during Testing

This section explains the four categories of data to be collected during testing.

DO CHECK

Do Reports
Fairly Represent

Status?

REWORK

Report
Project
Status

Task 1

Report
Interim Test

Results

Task 2

Report Final
Test Results

Task 3

Test
Plans

Expected
Processing

Results

Data Collected
During Testing
(Test Results)

Test
Report

Step 5: Analyzing and Reporting Test Results 461



Test Results Data

The test results data includes but is limited to the following:

■■ Test factors. The factors incorporated in the plan, the validation of which
becomes the test objective.

■■ Business objectives. The validation that specific business objectives have 
been met.

■■ Interface objectives. The validation that data/objects can be correctly passed
among software components.

■■ Functions/subfunctions. Identifiable software components normally associ-
ated with the requirements for the software.

■■ Units. The smallest identifiable software components.

■■ Platform. The hardware and software environment in which the software sys-
tem will operate.

Test Transactions, Test Suites, and Test Events

These are the test products produced by the test team to perform testing. They include
but are not limited to the following:

■■ Test transactions/events. The type of tests that will be conducted during the
execution of tests, which will be based on software requirements.

■■ Inspections. A verification of process deliverables against their specifications.

■■ Reviews. A verification that the process deliverables/phases are meeting the
user’s true needs.

Defects

This category includes a description of the individual defects uncovered during test-
ing. Work Paper 11-1 can be used for recording and monitoring defects. This descrip-
tion includes but is not limited to the following:

Data the defect uncovered

The name of the defect

The location of the defect

The severity of the defect

The type of defect

How the defect was uncovered

The results of later investigations should be added to this information—for example,
where the defect originated, when it was corrected, and when it was entered for retest.

462 Chapter 11



Efficiency

Two types of efficiency can be evaluated during testing: software system and test. As
the system is being developed, a process decomposes requirements into lower and
lower levels. These levels normally include high- and low-level requirements, external
and internal design, and the construction or build phase. While these phases are in
progress, the testers decompose the requirements through a series of test phases,
which are described in Steps 3 and 4 of the seven-step process.

Conducting testing is normally the reverse of the test development process. In other
words, testing begins at the lowest level and the results are rolled up to the highest level.
The final test report determines whether the requirements were met. Documenting, ana-
lyzing, and rolling up test results depend partially on the process of decomposing test-
ing through a detailed level. The roll-up is the exact reverse of the test strategy and
tactics.

Storing Data Collected During Testing

A database should be established in which to store the results collected during testing.
I also suggest that the database be available online through a client/server system so
that individuals with a vested interest in the status of the project have ready access.

The most common test report is a simple spreadsheet that indicates the project com-
ponent for which status is requested, the test that will be performed to determine the
status of that component, and the results of testing at any point in time. Interim report
examples illustrated in Task 2 of this chapter show how to use such a spreadsheet.

Do Procedures

Three tasks are involved in reporting test results. They are described here as individual
steps because each is a standalone effort. For example, reporting the status of the pro-
ject is an activity independent of other test reports. Testers could issue interim and final
test reports without reporting or knowing the status of the project. However, Tasks 2
and 3 are more closely linked. Interim test results will normally be used in developing
the final test report. On the other hand, some testers prepare only interim reports and
others only final reports.

The three tasks and their associated reports detailed in this chapter are repre-
sentative of what testers could report. Testers should not limit themselves to these
reports but rather use their creativity to develop others appropriate to the project and
the organization.

What is important about test reports is that they supply management with the infor-
mation it needs to make decisions. Reporting extraneous information is a waste of the
tester’s time, and not reporting information needed by management is an ineffective use
of testing. Testers are encouraged early in the project to consult with management to
learn the types of reports they should prepare during and at the conclusion of testing.

Step 5: Analyzing and Reporting Test Results 463



Task 1: Report Software Status

This task offers an approach for reporting project status information. These reports
enable senior IT management to easily determine the status of the project, and can be
issued as needed.

The two levels of project status reports are as follows:

■■ Summary status report. This report provides a general view of all project com-
ponents. It is used to determine which projects need immediate attention and
which are on schedule with no apparent problems.

■■ Project status report. This report shows detailed information about a specific
project component, allowing the reader to see up-to-date information about
schedules, budgets, and project resources. Each report should be limited to 
one page so that only vital statistics are included.

Both reports are designed to present information clearly and quickly. Colorful graph-
ics can be used to highlight status information. Senior management does not have time
to read and interpret lengthy status reports from all project teams in the organization.
Therefore, this step describes a process that enables management to quickly and easily
assess the status of all projects.

NOTE An individual software system that needs rework is referred to as a

project.

The best way to produce “user-friendly” reports is to incorporate simple graphics and
color-coding. For example, projects represented in green would be those with no appar-
ent problems, projects in yellow would indicate potentially problematic situations, and
projects in red would indicate those needing management’s immediate attention.

This step describes reporting on three status conditions for each project: implemen-
tation, schedule, and budgets. The number of status conditions should be kept to as
few as possible; four is still manageable. Some organizations list quality as the fourth,
beginning with system testing in later development phases.

In addition to serving as the input to project status reports, the data collected can be
used for internal benchmarking, in which case the collective data from all projects is used
to determine the mean level of performance for all enterprise projects. This benchmark is
used for comparison purposes, to make judgments on the performance of individual
projects.

Prior to effectively implementing a project reporting process, two inputs must be in
place.

■■ Measurement units. IT must have established reliable measurement units that
can be validated. Management must be willing to use this quantitative data as
an integral part of the decision-making process. All those involved in IT pro-
jects must be trained in collecting and using this data.

■■ Process requirements. Process requirements for a project reporting system 
must include functional, quality, and constraint attributes. Functional attributes

464 Chapter 11



describe the results the process is to produce; quality attributes define the 
particular attributes that should be included in the software requirement; and
constraint attributes include tester skill levels, budget, and schedule.

The following sections describe the six subtasks for this task.

Establishing a Measurement Team

The measurement team should include individuals who:

■■ Have a working knowledge of quality and productivity measurements

■■ Are knowledgeable in the implementation of statistical process control tools

■■ Have a working understanding of benchmarking techniques

■■ Know of the organization’s goals and objectives

■■ Are respected by their peers and management

Representatives should come from management and personnel responsible for soft-
ware development and maintenance. For an IT organization of fewer than 50 people,
the measurement team should be between three and five members.

Creating an Inventory of Existing Project Measurements

An inventory of existing measurements should be performed in accordance with a
plan. If problems arise during the inventory, the plan and the inventory process should
be modified accordingly. The formal inventory is a systematic and independent review
of all existing measurements and metrics. All identified data must be validated to
determine if they are valid and reliable.

The inventory process should start with an introductory meeting of the participants.
The objective of this meeting is to review the inventory plan with management and rep-
resentatives of the projects. A sample agenda for the introductory meeting would be to:

1. Introduce all members.

2. Review the scope and objectives of the inventory process.

3. Summarize the inventory processes to be used, including work papers and
data repositories.

4. Establish communications channels.

5. Confirm the inventory schedule with major target dates.

Creating an inventory involves the following activities:

1. Review all measurements.

2. Document all findings. 

3. Conduct interviews to determine what and how measurement data is captured
and processed.

Step 5: Analyzing and Reporting Test Results 465



Developing a Consistent Set of Project Metrics

To enable senior management to quickly access the status of each project, it is critical to
develop a list of consistent measurements spanning all project lines. Initially, this can
be challenging, but with cooperation and some negotiating, you can establish a rea-
sonable list of measurements. Organizations with development and maintenance stan-
dards will have an easier time completing this step.

Defining Process Requirements

The objective of this step is to use the management criteria and measurement data
developed in Steps 2 and 3 to define the process requirements for the management pro-
ject reporting system. Major criteria of this specification include the following:

■■ A description of desired output reports

■■ A description of common measurements

■■ The source of common measurements and associated software tools to capture
the data

■■ A determination of how the data will be stored (centralized and/or segregated)

Developing and Implementing the Process

The objective of this step is to document the work process used to output the reports of
the project data. The implementation will involve the following activities:

1. Document the workflow of the data capture and reporting process.

2. Procure software tools to capture, analyze, and report the data.

3. Develop and test system and user documentation.

4. Beta-test the process using a small- to medium-sized project.

5. Resolve all management and project problems.

6. Conduct training sessions for management and project personnel on how to
use the process and interrelate the reports.

7. Roll out the process across all project lines.

Monitoring the Process

Monitoring the reporting process is very important because software tools are con-
stantly being upgraded and manual supporting activities sometimes break down. The
more successful the system, the better the chance that management will want to use it
and perhaps expand the reporting criteria.

The two primary reports from this step are Summary Status and Project Status.

Summary Status Report

The Summary Status report (see Figure 11-2) provides general information about all
projects and is divided into the following four sections:

466 Chapter 11



Figure 11-2 A Summary Status report.

■■ Report date information. The information in the report is listed as current as of
the date in the top-left corner. The date the report was produced appears in the
top-right corner.

■■ Project information. Project information appears in a column on the left side of
the report. Each cell contains the project’s name, manager, phase, and sponsor.

■■ Timeline information. Timeline information appears in a chart that displays a
project’s status over an 18-month period. It shows project status by measuring
technical, budgeting, and scheduling considerations. The year and month
(abbreviated with initials) appear along the top of the chart to indicate the
month-by-month status of each project.

Technical (T), scheduling (S), and budget (B) information also appears in the
chart, and is specific to each project. These three considerations measure the
status of each project:

■■ Technical status (T) shows the degree to which the project is expected to
function within the defined technical and/or business requirements.

■■ Scheduling status (S) shows the degree to which the project is adhering to 
the current approved schedule.

■■ Budgeting status (B) shows the degree to which the project is adhering to the
current approved budget. Expenditures for the budget include funds,
human resources, and other resources.

Date: 05/31/XX

20XX 20XX

Project Cat J   F   M   A   M   J   J   A   S   O  N  D  J   F  M   A   M   J

Customer Billing        ● ● ◆ ◆ ● Tgt. 3/XX

Mgr.: C. Jones S       

T       

● ● ◆ ◆ ●

Phase: Planning B       ● ● ■ ◆ ●

Sponsor: G. Smith

2.

1.

Payroll T ● ● ● Tgt. 10/XX

Mgr.: N. Kerr S ● ● ●

Phase: Assessment B ● ● ●

Sponsor: B. Savage

3. Invoicing T ● ● ● ● ◆ Tgt. 12/XX

Mgr.: C. Boot S ● ● ● ◆ ◆

Phase: Installation B ● ● ● ◆ ◆

Sponsor: G. Smith

Legend Category Codes Code: Good
(green)

Cautious
(yellow)

Alert
(red)T = Technical Status

● ◆ ■S = Schedule Status
B = Budget Status

Step 5: Analyzing and Reporting Test Results 467



■■ Legend information. The report legend, which is located along the bottom of
the page, defines the colors and symbols used in the report, including category
and color codes. The following colors could be used to help to quickly identify
project status:

■■ A green circle could mean there are no major problems and that the project
is expected to remain on schedule.

■■ A yellow circle could indicate potentially serious deviation from project
progression.

■■ A red circle could mean a serious problem has occurred and will have a
negative effect on project progression.

Project Status Report

The Project Status report (see Figure 11-3) provides information related to a specific
project component. The design of the report and use of color in your report enables the
reader to quickly and easily access project information. It is divided into the following
six sections:

■■ Vital project information. Vital project information appears along the top of
the report. This information includes:

■■ Date the report is issued

■■ Name of the executive sponsoring the project

■■ Name of project manager

■■ Official name of project

■■ Quick-status box containing a color-coded circle indicating the overall 
status of the project

■■ General Information. This section of the report appears inside a rectangular
box that contains general information about the project. The work request
number and a brief description of the project appear in the top half of the 
box. The lower half of the box shows the phase of the project (e.g., planning,
requirements, development, and implementation), as well as important project
dates and figures, which include:

■■ Project start date, determined by official approval, sponsorship, and project
management

■■ Original target date for project completion

■■ Current target date for project completion

■■ Phase start date of the current phase

■■ Original target date for completion of the current phase

■■ Current target date for completion of the current phase

■■ Original budget allotted for the project

■■ Current budget allotted for the project

■■ Expenses to date for the project

468 Chapter 11



Figure 11-3 A Project Status report.

■■ Project/Activities. The Project/Activities chart measures the status according
to the phase of the project.

Future activities for the project are indicated by a bar, which extends to the
expected date of project completion, or the current target date, identified by the
abbreviation Tgt.

■■ Essential Elements. The Essential Elements section indicates the current status
of the project by comparing it to the previous status of the project. The chart
could use the color-coded circles and list considerations that allow the reader 
to quickly gather project statistics. These considerations ask:

■■ Is the project on schedule?

■■ Do the current project results meet the performance requirements?

■■ Are the project costs within the projected budget?

■■ Are the project costs over budget?

■■ What is the dollar amount of the project budget overrun?

Date: 05/31/XX Quick Status
Sponsor: B. Savage
Manager: N. Kerr

General Information VR#6219 Project Target Date:  10/31/XX

Description:

CURRENT PHASE:

Project Start Date: 03/01/XX
Original Target Date: 08/31/XX

Planning

Current Target Date: 08/31/XX

Phase Start Date: 03/01/XX
Original Target Date: 12/31/XX
Current Target Date: 12/31/XX

Original Budget: $5,000,000
Current Budget: $6,000,000
Expenses to Date: $1,000,000

20XX 20XX 20XX

Project/Activities M   A   M   J   J   A   S   O   N   D | J   F   M   A   M   J   J   A   S   O   N   D  | J   F   M   A   M   J   J

1.  Planning                • • • Tgt 8/XX

2.  Requirements Tgt 12/XX

3.  Development Tgt 10/XX

4.  Implementation Tgt 10/XX

Prev. Essential Elements Pres.

• Project On Schedule •

• Meets Performance Requirements •

• Project Within Costs: •

°      - Overrun Amount:   $ °

°      - Scope Change Cost:   $ °

° Total Variance:   $ °

20XX BUDGET

2000000
1500000
1000000
500000

0

M
ill

io
n

s

M
ar

A
p

r

M
ay Ju

n Ju
l

A
u
g

S
e
p

O
ct

N
o
v

D
e
c

         Budget         Actual              Rev Budget

KEY ■■

This project requires a detailed analysis of all systems to identify any areas that need improvement. All programs must then be 
modified accordingly.

• = Good; on schedule; no 

major problems

 = Potentially serious 

deviation from plan; 

attention warranted

= Situation impacting project 

objectives; serious deviation 

from plan

Step 5: Analyzing and Reporting Test Results 469



These questions can be answered by comparing the previous report results 
(on the left side of the chart) to the current report results (on the right side of
the chart).

This section of the report also includes a graph that compares projected costs 
to actual costs. The projected cost line appears in one color; the actual cost line
appears in another. The dollar amounts appear on the left side of the graph,
and the time line appears along the bottom of the graph. This graph shows 
you whether the project is adhering to the current approved budget.

■■ Legend information. The report legend, which is located along the bottom of
the page, defines the colors and symbols used in the report, including category
and color codes.

■■ Project highlights information. The project highlights appear in a rectangular
box located at the bottom of the report. This section may also contain com-
ments explaining specific project developments.

Task 2: Report Interim Test Results

The test process should produce a continuous series of reports that describe the status
of testing. The frequency of the test reports should be at the discretion of the team and
based on the extensiveness of the test process. 

This section describes ten interim reports. Testers can use all ten or select specific
ones to meet their individual needs. However, I recommend that if available test data
permits at the end of the testing phase, all ten test reports be prepared and incorpo-
rated into the final test report.

Function/Test Matrix

The function/test matrix shows which tests must be performed to validate the soft-
ware functions, and in what sequence to perform the tests. It will also be used to deter-
mine the status of testing.

Many organizations use a spreadsheet package to maintain test results. The inter-
section of the test and the function can be color-coded or coded with a number or sym-
bol to indicate the following:

■■ 1 = Test is needed but not performed.

■■ 2 = Test is currently being performed.

■■ 3 = Minor defect noted.

■■ 4 = Major defect noted.

■■ 5 = Test is complete and function is defect-free for the criteria included in 
this test.

Testers should complete Work Paper 11-1 each time they uncover a defect. This infor-
mation should be maintained electronically so that test managers and/or software
users can review it. The information collected about each defect can be as simple or as

470 Chapter 11



complex as desired. For simplification purposes, it is suggested that the following
guidelines be used:

■■ Defect naming. Name defects according to the phase in which the defect most
likely occurred, such as a requirements defect, design defect, documentation
defect, and so forth.

■■ Defect severity. Use three categories of severity, as follows:

Critical. The defect(s) would stop the software system from operating.

Major. The defect(s) would cause incorrect output to be produced.

Minor. The defect(s) would be a problem but would not cause improper
output to be produced, such as a system documentation error.

■■ Defect type. Use the following three categories:

Missing. A specification was not included in the software.

Wrong. A specification was improperly implemented in the software.

Extra. An element in the software was not requested by a specification.

The information from Work Paper 11-1 should be used to produce the function/test
matrix, as shown in Table 11-1.

The report is designed to show the results of performing a specific test on a function.
Therefore, no interpretation can be made about the results of the entire software sys-
tem, only about the results of individual tests. However, if all the tests for a specific
function are successful, testers can assume that function works. Nevertheless, “work-
ing” means that it has met the criteria in the test plan.

Functional Testing Status Report

The purpose of this report is to show the percentage of functions, including the func-
tions that have been fully tested, the functions that have been tested but contain errors,
and the functions that have not been tested. 

A sample of this test report is illustrated in Figure 11-4. It shows that approximately
45 percent of the functions tested have uncorrected errors, 35 percent were fully tested,
and 10 percent were not tested.

Table 11-1 Function/Test Matrix

TEST 1 2 3 4 5 6 7 8 9 10

Function

A X X X X

B X X X

C X X X

D X X

E X X X X

Step 5: Analyzing and Reporting Test Results 471



Figure 11-4 A Functional Testing Status report.

The report is designed to show the status of the software system to the test manager
and/or customers. How the status is interpreted will depend heavily on the point in the
test process at which the report was prepared. As the implementation date approaches, a
high number of functions tested with uncorrected errors and functions not tested should
raise concerns about meeting the implementation date.

Functions Working Timeline Report

The purpose of this report is to show the status of testing and the probability that the
software will be ready on the projected date.

Figure 11-5 shows an example of a Functions Working Timeline report. This report
assumes a September implementation date and shows from January through Septem-
ber the percent of functions that should be working correctly at any point in time. The
“Actual” line shows that the project is doing better than anticipated.

If the actual performance is better than planned, the probability of meeting the
implementation date is high. On the other hand, if the actual percent of functions
working is less than planned, both the test manager and development team should be
concerned and may want to extend the implementation date or add resources to test-
ing and/or development.

Expected Versus Actual Defects Uncovered Timeline Report

The purpose of this report is to show whether the number of defects is higher or lower
than expected. This assumes that the organization has sufficient historical data to 

100

90

80

70

60

50

40

30

20

10

Functions
fully

tested

Functions tested
with

uncorrected errors

Functions
not tested

Percent

472 Chapter 11



project defect rates. It also assumes that the development process is sufficiently stable
so that the defect rates are relatively consistent.

The example chart for the Expected versus Actual Defects Uncovered Timeline report
in Figure 11-6 shows a project beginning in January with a September implementation
date. For this project, almost 500 defects are expected; the expected line shows the cumu-
lative anticipated rate for uncovering those defects. The “Actual” line shows that a
higher number of defects than expected have been uncovered early in the project.

Generally, an actual defect rate varies from the expected rate because of special cir-
cumstances, and investigation is warranted. The cause may be the result of an inexpe-
rienced project team. Even when the actual defects are significantly less than expected,
testers should be concerned because it may mean that the tests have not been effective
and a large number of undetected defects remain in the software.

Defects Uncovered Versus Corrected Gap Timeline Report

The purpose of this report is to list the backlog of detected but uncorrected defects. It
requires recording defects as they are detected, and then again when they have been
successfully corrected.

The example in Figure 11-7 shows a project beginning in January with a projected
September implementation date. One line on the chart shows the cumulative number
of defects uncovered during testing, and the second line shows the cumulative number
of defects corrected by the development team, which have been retested to demon-
strate that correctness. The gap represents the number of uncovered but uncorrected
defects at any point in time.

Figure 11-5 A Functions Working Timeline report.

100

90

80

70

60

50

40

30

20

10

Percent

January
20xx

June
20xx

September
20xx

Pl
an

ne
d

Actual

Implementation
Date

Step 5: Analyzing and Reporting Test Results 473



Figure 11-6 An Expected versus Actual Defects Uncovered Timeline report.

Figure 11-7 A Defects Uncovered versus Corrected Gap Time Line report.

500

450

400

350

300

250

200

150

100

50

0

Number

January
20xx

June
20xx

September
20xx

Implementation
Date

Unco
rre

cte
d

Corrected

GAP

500

450

400

350

300

250

200

150

100

50

0

Number

January
20xx

June
20xx

September
20xx

Implementation
Date

Ex
pec

te
d

A
ct

ua
l

474 Chapter 11



The ideal project would have a very small gap between these two timelines. If the
gap becomes wide, it indicates that the backlog of uncorrected defects is growing, and
that the probability the development team will be able to correct them prior to imple-
mentation date is decreasing. The development team must manage this gap to ensure
that it remains narrow.

Average Age of Uncorrected Defects by Type Report

The purpose of this report is to show the breakdown of the gap presented in Figure 11-7
by defect type—that is, the actual number of defects by the three severity categories.

The Average Age of Uncorrected Defects by Type report example shows the three
severity categories aged according to the average number of days since the defect was
detected. For example, it shows that the average critical defect is about 3 days old, the
average major defect is about 10 days old, and the average minor defect is about 20
days old. The calculation is to accumulate the total number of days each defect has
been waiting to be corrected, divided by the number of defects. Average days should
be working days.

Figure 11-8 shows a desirable result, demonstrating that critical defects are being cor-
rected faster than major defects, which are being corrected faster than minor defects.
Organizations should have guidelines for how long defects at each level should be main-
tained before being corrected. Action should be taken accordingly based on actual age.

Defect Distribution Report

The purpose of this report is to explain how defects are distributed among the modules/
units being tested. It lists the total cumulative defects for each module being tested at
any point in time.

Figure 11-8 An Average Age of Uncorrected Defects by Type report.

30

25

20

15

10

5

0

Critical Major Minor

Age in Days

Step 5: Analyzing and Reporting Test Results 475



The sample Defect Distribution report, shown in Figure 11-9, shows eight units along
with the number of defects for each. The report could be enhanced to show the extent
of testing that has occurred on the modules (for example, by color-coding the number
of tests or by incorporating the number of tests into the bar as a number).

This report can help identify modules that have an excessive defect rate. A variation
of the report could list the cumulative defects by test—for example, defects uncovered
in test 1, the cumulative defects uncovered by the end of test 2, the cumulative defects
uncovered by test 3, and so forth. Frequently, modules that have abnormally high
defect rates are those that have ineffective architecture and, thus, are candidates to be
rewritten rather than for additional testing.

Normalized Defect Distribution Report

The purpose of this report is to normalize the defect distribution presented in Figure 11-9.
The normalization can be by function points or lines of code. This will enable testers to
compare the defect density among the modules/units.

The Normalized Defect Distribution report example in Figure 11-10 shows the same
eight modules presented in Figure 11-9. However, in this example, the defect rates have
been normalized to defects per 100 function points or defects per 1,000 lines of code, to
enable the reader of the report to compare defect rates among the modules. This was
not possible in Figure 11-9, because there was no size consideration. Again, a variation
that shows the number of tests can be helpful in drawing conclusions.

Figure 11-9 A Defect Distribution report.

100

90

80

70

60

50

40

30

20

10

Number of Defects

A B C D E F G H

Module/Unit

476 Chapter 11



Figure 11-10 A Normalized Defect Distribution report.

This report can help identify modules that have excessive defect rates. A variation of
the report could show the cumulative defects by test: for example, the defects uncov-
ered in test 1, the cumulative defects uncovered by the end of test 2, the cumulative
defects uncovered by test 3, and so forth. Frequently, modules that have abnormally
high defect rates are those that have ineffective architecture and, thus, are candidates
for rewrite rather than additional testing.

Testing Action Report

This is a summary action report prepared by the test team. The information contained
in the report should be listed as necessary to the test manager and/or the development
manager so that they can properly direct the team toward a successful implementation
date.

The Testing Action report example (see Figure 11-11) lists four pieces of information
helpful to most test managers: total number of tests behind schedule, uncorrected crit-
ical defects, major uncorrected defects more than five days old, and the number of
uncovered defects not corrected.

These items are examples of what could be included in the Testing Action report.
Most are included in the other reports, but this report is a summation, or a substitute,
for the other reports.

The test manager should carefully monitor the status of testing and take action when
testing falls behind schedule.

100

90

80

70

60

50

40

30

20

10

Number of Defects

A B C D E F G H

Module/Unit

Step 5: Analyzing and Reporting Test Results 477



Figure 11-11 A Testing Action report.

Interim Test Report

As testers complete an individual project they should issue an Interim Test report. The
report should discuss the scope of the test, the results, what works and does not work,
and recommendations (see Figure 11-12).

Any report about testing should indicate the test’s scope; otherwise, the reader will
assume that exhaustive testing has occurred, which is never the case. Testing is a risk-
oriented activity in which resources should be expended to minimize the major risks.
Exhaustive testing is not possible, practical, or economical. Thus, testing is never
designed to ensure that there are no defects remaining in the software, and the scope
will explain what the testers accomplished.

The recommendations section is a critical part of the report, because the reader is
usually removed from the project being tested and the technical recommendations pro-
vided by the testers can help with the reader’s business decision. For example, testers
may indicate that there is a 50/50 probability that the system will terminate abnor-
mally in production because of dating problems. A business decision might then be
made to put the software into operation, but develop effective backup recovery proce-
dures in case the termination occurs.

Task 3: Report Final Test Results

A final report should be prepared at the conclusion of each test activity. The report
should summarize the information from the following reports:

Tests Behind Schedule:

Uncorrected Critical Defects:

Major Uncorrected Defects More Than 5 Days Old:

Number of Uncovered Defects Not Corrected:

478 Chapter 11



Figure 11-12 An Interim Test report.

■■ Individual Project report

■■ Integration Test report

■■ System Test report

■■ Acceptance Test report

A final test report is designed to document the results of testing as defined in the test
plan. Without a well-developed test plan, it is difficult to develop a meaningful test
report. It is designed to accomplish three objectives: to define the scope of testing (nor-
mally a brief recap of the test plan), to present the results of testing, and to draw conclu-
sions and make recommendations. The test report may be a combination of electronic
and hard copy data. For example, if the function/test matrix is maintained electronically,
there is no reason to print it because the paper report will summarize that data, draw the
appropriate conclusions, and present recommendations.

The test report has one immediate and two long-term purposes. The immediate pur-
pose is to enable customers to determine whether the system is ready for production
(and if not, to assess the potential consequences and initiate appropriate actions to mini-
mize those consequences). The first of the two long-term uses is for the project develop-
ment team to trace problems in the event the application malfunctions in production. By

1. Scope of Test

This section indicates which functions were and were not tested.

2. Test Results

This section indicates the results of testing, including any variance between what is
and what should be.

3. What Works/What Does Not Work

This section defines the functions that work and do not work and the interfaces
that work and do not work.

4. Recommendations

This section recommends actions that should be taken to:

a. Fix functions/interfaces that do not work.

b. Make additional improvements.

Step 5: Analyzing and Reporting Test Results 479



Figure 11-13 A System Test report.

knowing which functions have been correctly tested and which functions still contain
defects, testers can take corrective action. The second long-term purpose is to enable
testers to analyze the rework process and make changes to prevent defects from occur-
ring in the future.

Individual Project Test Report

This report focuses on individual projects. When different testers test individual pro-
jects, they should prepare a report on their results. Refer to Figure 11-12 for a sample
report format.

Integration Test Report

Integration testing tests the interfaces between individual projects. A good test plan
will identify the interfaces and institute test conditions that will validate interfaces
between software systems. Given this, the integration report follows the same format
as the Individual Project Test report, except that the conditions tested are the interfaces
between software systems.

System Test Report

Chapter 8 presented a system test plan standard that identified the objectives of test-
ing, what was to be tested, how it was to be tested, and when tests should occur. The
System Test report should present the results of executing that test plan (see Figure
11-13). If test data is maintained electronically, it need only be referenced, not included
in the report.

480 Chapter 11

1. General Information

1.1 Summary. Summarize both the general functions of the software tested
and the test analysis performed.

1.2 Environment. Identify the software sponsor, developer, user organization,
and the computer center where the software is to be installed. Assess the
manner in which the test environment may be different from the
operation environment, and the effects of this difference on the tests.

1.3 References. List applicable references, such as:
a. Project request (authorization).
b. Previously published documents on the project.
c. Documentation concerning related projects.

2. Test Results and Findings

Identify and present the results and findings of each test separately in paragraphs
2.1 through 2.n.



Step 5: Analyzing and Reporting Test Results 481

2.1 Test (identify)

2.1.1 Validation tests. Compare the data input and output results,
including the output of internally generated data, of this test with
the data input and output requirements. State the findings.

2.1.2 Verification tests. Compare what is shown on the document to
what should be shown.

2.n Test (identify). Present the results and findings of the second and
succeeding tests in a manner similar to that of paragraph 2.1.

3. Software Function Findings

Identify and describe the findings on each function separately in paragraphs 3.1
through 3.n.

3.1 Function (identify)

3.1.1 Performance. Describe briefly the function. Describe the software
capabilities designed to satisfy this function. State the findings as
to the demonstrated capabilities from one or more tests.

3.1.2 Limits. Describe the range of data values tested. Identify the
deficiencies, limitations, and constraints detected in the software
during the testing with respect to this function.

3.n Function (identify). Present the findings on the second and succeeding
functions in a manner similar to that of paragraph 3.1.

4. Analysis Summary

4.1 Capabilities. Describe the capabilities of the software as demonstrated by
the tests. Where tests were to demonstrate fulfillment of one or more
specific performance requirements, compare the results with these
requirements. Compare the effects any differences in the test
environment versus the operational environment may have had on this
test demonstration of capabilities.

4.2 Deficiencies. Describe the deficiencies of the software as demonstrated
by the tests. Describe the impact of each deficiency on the performance
of the software. Describe the cumulative or overall impact on
performance of all detected deficiencies.

4.3 Risks. Describe the business risks if the software is placed in production.

4.4 Recommendations and estimates. For each deficiency, provide any
estimates of time and effort required for its correction, and any
recommendations as to:
a. The urgency of each correction.
b. Parties responsible for corrections.
c. How the corrections should be made.

4.5 Option. State the readiness for implementation of the software.

Figure 11-13 (continued)



Acceptance Test Report

Testing has two primary objectives. The first is to ensure that the system as implemented
meets the software requirements. The second objective is to ensure that the software sys-
tem can operate in the real-world user environment, which includes people with varying
skills, attitudes, time pressures, business conditions, and so forth. This final report
should address these issues. See Chapter 12 for conducting and reporting the results of
acceptance testing.

Check Procedures

Work Paper 11-2 is a questionnaire that enables testers to verify that they have performed
the test reporting processes correctly. The checklist is divided into three parts: Quality
Control over Writing the Status Report, Quality Control for Developing Interim Test
Result Reports, and Control over Writing Final Test Reports. Work Paper 11-3 is a ques-
tionnaire that will guide testers to writing effective reports.

Output

This step should produce the following three categories of reports:

■■ Project status reports. These reports are designed both for the project team and
senior management. Senior management includes information services man-
agement, user/customer management, and executive management. These
reports provide a check and balance against the status reports submitted by 
the project team, and any discrepancies between the two reports should be 
reconciled.

■■ Interim test reports. These reports describe the status of testing. They are
designed so that the test team can track its progress in completing the test plan.
They are also important for the project implementers, as the test reports will
identify defects requiring corrective action. Other staff members may wish to
access the reports to evaluate the project’s status.

■■ Final test reports. These reports are designed for staff members who need to
make decisions regarding the implementation of developed software. The
reports should indicate whether the software is complete and correct, and if
not, which functions are not working.

Guidelines

Testers can use the data from individual project reports to develop a baseline for the
enterprise based on mean scores of the reporting criteria. Rather than comparing quality,
productivity, budget, defects, or other categories of metrics to external organizations,

482 Chapter 11



valuable management information can be made available. From this baseline, individual
projects can be compared. Information from projects consistently scoring above the
enterprise baseline can be used to improve those projects that are marginal or fall below
the enterprise baseline.

Testers should heed the following guidelines when preparing reports:

1. Use Work Papers 11-2 and 11-3 to ensure reports are written effectively.

2. Allow project team members to review report drafts and make comments
before reports are finalized.

3. Don’t include names or assign blame.

4. Stress quality.

5. Limit the report to two or three pages stressing important items and include
other information in appendixes.

6. Eliminate small problems from the report and give these directly to the project
people.

7. Deliver the report to the project leader by hand.

8. Offer to have the testers work with the project team to explain their findings
and recommendations.

Summary

The emphasis of this chapter has been on summarizing, analyzing, and reporting test
results. Once the decision to implement software has been made, the next step (as dis-
cussed in Chapter 12) is to determine whether the system meets the real needs of the
users regardless of system requirements and specifications.

Step 5: Analyzing and Reporting Test Results 483



WORK PAPER 11-1 Defect Reporting

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Software/System Name of software being tested.
Tested

Date Date on which the test occurred.

Defect Found The name and type of a single defect found in the software being tested.

Location Found The individual unit or system module in which the defect was found.

Severity of Defect Critical means the system cannot run without correction; major means the defect will
impact the accuracy of operation; minor means it will not impact the operation.

Type of Defect Whether the defect represents something missing, something wrong, or something 
extra.

Test Data/Script Which test was used to uncover the defect.
Locating Defect

Origin of Defect/ The phase in which the defect occurred.
Phase of 
Development

Date Corrected The date on which the defect was corrected.

Retest Date The date on which the testers were scheduled to validate whether the defect had 
been corrected.

Result of Retest Whether the software system functions correctly and the defect no longer exists; or if 
additional correction and testing will be required.

484 Chapter 11



WORK PAPER 11-1 (continued)

Software/System Tested:

Date:

Defect Found:

Location Found:

Severity of Defect: ❑ Critical

❑ Major

❑ Minor

Type of Defect: ❑ Missing

❑ Wrong

❑ Extra

Test Data/Script Locating Defect:

Origin of Defect/Phase of Development:

Date Corrected: 

Retest Date: 

Result of Retest:

Step 5: Analyzing and Reporting Test Results 485



WORK PAPER 11-2 Report Writing Quality Control Checklist

YES NO N/A COMMENTS

Part 1: Quality Control over Writing
Status Reports

1. Has management been involved in
defining the information to be used in
the decision-making process?

2. Have the existing units of measure been
validated?

3. Are software tools in place for collecting
and maintaining a database to support
the project reporting process?

4. Has the completed requirements
document been signed off by
management and project personnel?

5. Have management and project
personnel been trained in collecting
quantitative data and using the reports?

Part 2: Quality Control for Developing
Interim Test Result Reports

1. Do the report writers have the expected
results from testing?

2. Is there a method of reporting
uncovered defects?

3. Is there a method of reporting the status
of defects?

4. Is there a method to relate the defects to
the function that is defective?

5. Have the testers consulted with
management to determine what type of
reports are wanted?

6. Have the following reports been prepared?
• Function Test/Matrix 
• Functional Testing Status 
• Function Working Timeline
• Expected vs. Actual Defects

Uncovered Timeline
• Defects Uncovered vs. Corrected Gap 

Timeline
• Average Age of Uncorrected Defects

by Type
• Defect Distribution 
• Normalized Defect Distribution 
• Testing Action 

486 Chapter 11



WORK PAPER 11-2 (continued)

YES NO N/A COMMENTS

7. Do the reports appear reasonable to
those involved in testing?

8. Have the reports been delivered to the
person desiring the report?

9. Have the reports been delivered on a
timely basis?

Part 3: Control over Writing Final
Test Reports

1. Have reports been issued for the final
results of individual project testing?

2. Have reports been issued for the final
results of integration testing?

3. Has a summary report been issued on
the overall results of testing?

4. Did these reports identify the scope of
testing?

5. Did these reports indicate what works
and what doesn’t?

6. Do these reports provide 
recommendations on actions to 
take if appropriate?

7. Do these reports provide an opinion to
management on whether the software
system should be placed into the
production?

Step 5: Analyzing and Reporting Test Results 487



WORK PAPER 11-3 Guidelines for Writing Test Reports

YES NO N/A COMMENTS

Reporting Complete

1. Does it give all necessary information?

2. Is it written with the reader in mind, and
does it answer all his or her questions?

3. Is there a plan for a beginning, middle,
and end?

4. Are specific illustrations, cases, or
examples used to best advantage?

5. Are irrelevant ideas and duplications
excluded?

6. Are the beginning and the ending of the
report effective?

Clarity

7. Are the ideas presented in the best
order?

8. Does each paragraph contain only one
main idea?

9. Is a new sentence started for each main idea?

10. Are the thoughts tied together so the
reader can follow from one to another
without getting lost?

11. Are most sentences active? Are the verbs
mostly action verbs?

12. Is the language adapted to the readers; are
the words the simplest to carry the thought?

13. Is underlining used for emphasis, or
parentheses for casual mention?

14. Will your words impart exact meaning
to the reader?

Concise

15. Does report contain only essential facts?

16. Are most of the sentences kept short?

17. Are most paragraphs kept short?

18. Are unneeded words eliminated?

19. Are short words used for long ones?

20. Are roundabout and unnecessary
phrases eliminated?

21. Is the practice followed of using
pronouns instead of repeating nouns?

22. Is everything said in the fewest possible
words?

488 Chapter 11



WORK PAPER 11-3 (continued)

YES NO N/A COMMENTS

Correct

23. Is the information accurate?

24. Do the statements conform to policy?

25. Is the writing free from errors in
grammar, spelling, and punctuation?

Tone

26. Is the tone natural? Is conversational
language used?

27. Is it personal? Are the “we” and “you”
appropriately emphasized?

28. Is it friendly, courteous, and helpful?

29. Is it free from words that arouse
antagonism?

30. Is it free from stilted, hackneyed, or
technical words and phrases?

Effectiveness

31. Is there variety in the arrangement of
words, sentences, and pages so that it is
interesting to read?

32. Was it given the “ear” test?

Conclusion

33. Is the report satisfactory and ready for
publication?

Step 5: Analyzing and Reporting Test Results 489





491

Acceptance testing is formal testing conducted to determine whether a software sys-
tem satisfies its acceptance criteria and to enable the buyer to determine whether to
accept the system. Software acceptance testing at delivery is usually the final opportu-
nity for the buyer to examine the software and to seek redress from the developer for
insufficient or incorrect software. Frequently, the software acceptance test period is the
only time the buyer is involved in acceptance and the only opportunity the buyer has
to identify deficiencies in a critical software system. (The term critical implies economic
or social catastrophe, such as loss of life; as used in this chapter, it implies the strategic
importance to an organization’s long-term economic welfare.) The buyer is thus
exposed to the considerable risk that a needed system will never operate reliably
(because of inadequate quality control during development). To reduce the risk of
problems arising at delivery or during operation, the buyer must become involved
with software acceptance early in the acquisition process.

Overview

At the conclusion of Step 5, developers and testers have tested the system and reported
their conclusions. If the report follows the proposed format, it will list not only
strengths and weaknesses but also recommendations. The customer/users of the soft-
ware have one of three decisions to make:

1. The software system is usable as is and can be placed into a production state.

Step 6: Acceptance and
Operational Testing

C H A P T E R

12



2. The software has some deficiencies; when corrected, the software can be placed
into an operational state.

3. The software is severely deficient and it may or may not ever be placed into an
operational state depending on the type of deficiencies, the alternatives avail-
able to the customer/users, and the cost to correct the deficiencies.

The user may or may not want to conduct acceptance testing before making one of
these three decisions. If the decision is to conduct acceptance testing, acceptance test-
ing would occur and the results of the acceptance testing plus the tester’s report would
be input to making one of the preceding three decisions.

The tested software system at the conclusion of Step 5 should be ready to move to an
operational state. This does not mean that all the requirements are implemented, or
that it does not include defects, but rather, it’s at a decision point regarding placing the
software into operation. This decision point occurs for both the initial version of the
software system as well as changed versions of the software system. Normally, moving
the initial version into an operational state is more complex than moving a changed
version into an operational state.

Testers need to be heavily involved in ensuring that the software as tested can be
moved effectively into an operational state. The activities performed vary based on the
risks associated with placing the software into production.

Acceptance testing is designed to determine whether the software is “fit” for the
user to use. The concept of fit is important in both design and testing. Design must
attempt to build the application to fit into the user’s business process; the test process
must ensure a prescribed degree of fit. Testing that concentrates on structure and
requirements may fail to assess fit, and thus fail to test the value of the automated
application to the business. The four components of fit are as follows:

■■ Data. The reliability, timeliness, consistency, and usefulness of the data
included in the automated application

■■ People. The skills, training, aptitude, and desire to properly use and interact
with the automated application

■■ Structure. The proper development of application systems to optimize technol-
ogy and satisfy requirements

■■ Rules. The procedures to follow in processing the data

The system must fit into these four components of the business environment. If any
of the components fails to fit properly, the success of the application system will be
diminished. Therefore, testing must ensure that all the components are adequately pre-
pared and/or developed, and that the four components fit together to provide the best
possible solution to the business problem.

Objective

The objective of acceptance testing is to determine throughout the development cycle
that all aspects of the development process meet user needs. There are many ways to

492 Chapter 12



accomplish this. The user may require that the implementation plan be subject to an
independent review, of which the user may choose to be a part or just input acceptance
criteria into the process.

Acceptance testing should not only occur at the end of the development process but
as an ongoing activity that tests both interim and final products, so that unnecessary
time is not expended making corrections that prove unacceptable to the system user.

The overall objective of testing for software changes is to ensure that the changed
application functions properly in the operating environment. This includes both the
manual and automated segments of the computerized application. The specific objec-
tives of this aspect of testing include the following:

Develop tests to detect problems prior to placing the change into production.

Correct problems prior to placing the change in production.

Test the completeness of training material.

Involve users in the testing of software changes.

Concerns

When considering acceptance testing, users must be aware of the following concerns:

■■ Acceptance testing must be integrated into the overall development process. 

■■ Cost and time for acceptance testing will not be available. 

■■ The implementers of the project plan will be unaware of the acceptance criteria. 

■■ The users will not have the skill sets needed to perform acceptance testing. 

Typically, the user/customers conduct acceptance testing only for the initial release
of the software system. However, if extensive changes are made to the software sys-
tem, the customer/user may repeat this task before a new version of the software is
placed into an operational state.

Pre-operational testing involves ensuring that the software that operated effectively
and efficiently in the test environment still operates efficiently and effectively in the
production environment. Post-operational testing is involved in testing changes made
to the new system that will create new operational versions of the software system.

Placing the initial version of the software into an operational state may involve all
three tasks because the movement of the software into an operational state identifies
defects that must be corrected. When new versions are created that incorporate
changes in the software, normally just pre-operational and post-operational testing
need to be performed.

The installation phase testing does not verify the functioning of the application sys-
tem, but rather the process that places that application system into a production status.
The process is attempting to validate the following:

■■ Proper programs are placed into the production status.

■■ Needed data is properly prepared and available.

Step 6: Acceptance and Operational Testing 493



■■ Operating and user instructions are prepared and used.

■■ An effective test of the installation phase cannot be performed until the results
expected from the phase have been identified. The results should be predeter-
mined and then tests performed to validate that what is expected has hap-
pened. For example, a control total of records updated for installation might be
determined, and then an installation phase test would be performed to validate
that the detailed records in the file support the control total.

IT management should be concerned about the implementation of the testing and
training objectives. These concerns need to be addressed during the development and
execution of the testing and training for software changes. The first step in addressing
control concerns is identifying the concerns that affect these software changes:

■■ Will the testing process be planned? Inadequate testing is synonymous with
unplanned testing. Unless the test is planned, there is no assurance that the
results will meet change specifications.

■■ Will the training process be planned? People rarely decide on the spur of the
moment to hold a training class or develop training material. What tends to
happen is that training is given one on one after problems begin to occur. This
is a costly method of training.

■■ Will system problems be detected during testing? Even the best training plans
rarely uncover all the potential system problems. What is hoped is that the seri-
ous problems will be detected during testing.

■■ Will training problems be detected during testing? How people will react to
production situations is more difficult to predict than how computerized appli-
cations will perform. Thus, the objective in training should be to prepare peo-
ple for all possible situations.

■■ Will already-detected testing and training problems be corrected prior to the

implementation of the change? An unforgivable error is to detect a problem
and then fail to correct it before serious problems occur. Appropriate records
should be maintained and controls implemented so that detected errors are
immediately acted on.

Workbench

The acceptance testing workbench begins with software that has been system tested
for the system specifications. The tasks performed in this step lead to an acceptance
decision, which does not necessarily mean that the software works as desired by the
user, or that all problems have been corrected; it means that the software user is will-
ing to accept and use the software in its current state. The acceptance test workbench is
illustrated in Figure 12-1.

494 Chapter 12



Figure 12-1 Acceptance testing workbench.

DO CHECK

REWORK

Acceptance
Testing

Task 1

Pre-Operational
Testing

Task 2

Post-Operational
Testing

Task 3

Test
Report

Development
Staff Reports

Operational
Decisions(s)

Task
Performed
Correctly?

Step 6: Acceptance and Operational Testing 495

Input Procedures

The three inputs to Task 1 are as follows:

Interim work products

Tested software

Unresolved defect list 

Task 2, the installation phase, is the process of getting a new system operational. The
process may involve any or all of the following areas:

Changing old data to a new format

Creating new data

Installing new and/or change programs

Updating computer instructions

Installing new user instructions

The installation process may be difficult to execute within the time constraints. For
example, many system installations are performed over a weekend. If the installation
cannot be successfully completed within this two-day period, the organization may



face serious operational problems Monday morning. For this reason, many organiza-
tions have adopted a fail-safe method. They pick a deadline by which the new system
must be successfully installed; if it is not, they revert back and use the old system.

Much of the test process will be evaluating and working with installation phase
deliverables. The more common deliverables produced during the installation phase
include the following:

Installation plan

Installation flowchart

Installation program listings and documentations (assuming special installation
programs are required)

Test results from testing special installation programs

Documents requesting movement of programs into the production library and
removal of current programs from that library

New operator instructions

New user instructions and procedures

Results of installation process

Testers need four inputs to adequately perform testing on a changed version of soft-
ware, as follows:

Change documentation

Current test data/test plan

Changed version of software

Prior test results

Task 1: Acceptance Testing

Software acceptance is an incremental process of approving or rejecting software sys-
tems during development or maintenance, according to how well the software satisfies
predefined criteria. In this chapter, for the purpose of software acceptance, the activi-
ties of software maintenance are assumed to share the properties of software develop-
ment. “Development” and “developer” include “maintenance” and “maintainer.”

Acceptance decisions occur at pre-specified times when processes, support tools,
interim documentation, segments of the software, and finally the total software system
must meet predefined criteria for acceptance. Subsequent changes to the software may
affect previously accepted elements. The final acceptance decision occurs with verifi-
cation that the delivered documentation is adequate and consistent with the executable
system and that the complete software system meets all buyer requirements. This deci-
sion is usually based on software acceptance testing. Formal final software acceptance
testing must occur at the end of the development process. It consists of tests to deter-
mine whether the developed system meets predetermined functionality, performance,
quality, and interface criteria. Criteria for security or safety may be mandated legally or
by the nature of the system.

496 Chapter 12



Defining the Acceptance Criteria

The user must assign the criteria the software must meet to be deemed acceptable.
(Note: Ideally, this is included in the software requirements specifications.) In prepara-
tion for developing the acceptance criteria, the user should do the following:

■■ Acquire full knowledge of the application for which the system is intended.

■■ Become fully acquainted with the application as it is currently implemented by
the user’s organization.

■■ Understand the risks and benefits of the development methodology that is to
be used in correcting the software system.

■■ Fully understand the consequences of adding new functions to enhance the
system.

Acceptance requirements that a system must meet can be divided into these four
categories:

■■ Functionality. Internal consistency of documents and code and between stages;
traceability of functionality; adequate verification of logic; functional evalua-
tion and testing; preservation of functionality in the operating environment.

■■ Performance. Feasibility analysis of performance requirements; correct 
simulation and instrumentation tools; performance analysis in the operating
environment.

■■ Interface quality. Interface documentation; interface complexity; interface and
integration test plans; interface ergonomics; operational environment interface
testing.

■■ Overall software quality. Quantification of quality measures; criteria for 
acceptance of all software products; adequacy of documentation and software
system development standards; quality criteria for operational testing.

Assessing the criticality of a system is important in determining quantitative accep-
tance criteria. By definition, all safety criteria are critical; and by law, certain security
requirements are critical. Some typical factors affecting criticality include the following:

Importance of the system to organization or industry

Consequence of failure

Complexity of the project

Technology risk

Complexity of the user environment

For specific software systems, users must examine their projects’ characteristics and
criticality to develop expanded lists of acceptance criteria for those software systems.
Some of the criteria may change according to the phase of correction for which criteria
are being defined. For example, for requirements, the “testability” quality may mean
that test cases can be developed automatically.

Step 6: Acceptance and Operational Testing 497



The user must also establish acceptance criteria for individual elements of a prod-
uct. These criteria should be the acceptable numeric values or ranges of values. The
buyer should compare the established acceptable values against the number of prob-
lems presented at acceptance time. For example, if the number of inconsistent require-
ments exceeds the acceptance criteria, the requirements document should be rejected.
At that time, the established procedures for iteration and change control go into effect.

Work Paper 12-1 is designed to document the acceptance criteria. It should be pre-
pared for each hardware or software project within the overall project. Acceptance cri-
teria requirements should be listed and uniquely numbered for control purposes. After
defining the acceptance criteria, a determination should be made as to whether meet-
ing the criteria is critical to the success of the system. 

Developing an Acceptance Plan

The first step to achieve software acceptance is the simultaneous development of a
software acceptance plan, general project plans, and software requirements to ensure
that user needs are represented correctly and completely. This simultaneous develop-
ment will provide an overview of the acceptance activities, to ensure that resources for
them are included in the project plans. Note that the initial plan may not be complete
and may contain estimates that will need to be changed as more complete project infor-
mation becomes available.

After the initial software acceptance plan has been prepared, reviewed, and approved,
the acceptance manager is responsible for implementing the plan and for ensuring 
that the plan’s objectives are met. It may have to be revised before this assurance is
warranted.

Table 12-1 lists examples of information that should be included in a software accep-
tance plan. 

Table 12-1 Acceptance Plan Contents

Project Type of system; life cycle methodology; user community of 
Description delivered system; major tasks system must satisfy; major

external interfaces of the system; expected normal usage;
potential misuse; risks; constraints; standards and practices.

User Organization and responsibilities for acceptance activities; 
Responsibilities resource and schedule requirements; facility requirements;

requirements for automated support, special data, training;
standards, practices, and conventions; updates and reviews of
acceptance plans and related products.

Administrative Anomaly reports; change control; recordkeeping; 
Procedures communication between developer and manager organizations.

Acceptance Objectives for entire project; summary of acceptance criteria; 
Description major acceptance activities and reviews; information

requirements; types of acceptance decisions; responsibility 
for acceptance decisions.

498 Chapter 12



The plan must include the techniques and tools that will be utilized in acceptance test-
ing. Normally, testers will use the organization’s current testing tools, which should be
oriented toward specific testing techniques.

Two categories of testing techniques can be used in acceptance testing: structural
and functional. (Again, acceptance testing must be viewed in its broadest context; it
should not be the minimal testing that some users perform after the information sys-
tem professionals have concluded their testing.)

The functional testing techniques help ensure that the requirements/specifications
are properly satisfied by the software system. Functional testing is not concerned with
how processing occurs, but with the results of processes.

Structural testing ensures sufficient checking of the implementation of the function
by finding test data that will force sufficient coverage of the structured presence in the
implemented software. It evaluates all aspects of this structure to verify that the struc-
ture is sound.

Executing the Acceptance Plan

The objective of this step is to determine whether the acceptance criteria have been met
in a delivered product. This can be accomplished through reviews, which involve look-
ing at interim products and partially developed deliverables at various points through-
out the developmental process. It can also involve testing the executable software
system. The determination of which (or both) of these techniques to use will depend on
the criticality of the software, the size of the software program, the resources involved,
and the time period over which the software is being developed.

Software acceptance criteria should be specified in the formal project plan. The plan
identifies products to be tested, the specific pass/fail criteria, the reviews, and the
types of testing that will occur throughout the entire life cycle.

Acceptance decisions need a framework in which to operate; items such as contracts,
acceptance criteria, and formal mechanisms are part of this framework. Software accep-
tance must state or refer to specific criteria that products must meet to be accepted. A prin-
cipal means of reaching acceptance in the development of critical software systems is to
hold a periodic review of interim software documentation and other software products.

A disciplined acceptance program for software of any type may include reviews as
a formal mechanism. When the acceptance decision requires change, another review
becomes necessary to ensure that the required changes have been properly configured
and implemented, and that any affected segments are acceptable. For large or compli-
cated projects, several reviews may be necessary during the development of a single
product.

Some software acceptance activities may include testing pieces of the software; for-
mal software acceptance testing occurs at the point in the development life cycle when
the user accepts or rejects the software. This means a contractual requirement between
the user and the project team has been met. Rejection normally means additional work
must be done on the system to render it acceptable to the user. Final software accep-
tance testing is the last opportunity for the user to examine the software for functional,
interface, performance, and quality features prior to the final acceptance review. The
system at this time must include the delivered software, all user documentation, and
final versions of other software deliverables.

Step 6: Acceptance and Operational Testing 499



Developing Test Cases (Use Cases) Based 
on How Software Will Be Used

Incomplete, incorrect, and missing test cases can cause incomplete and erroneous test
results, which, at minimum, means that rework is necessary, and at worst, means that
a flawed system is developed. It is necessary to ensure that all required test cases are
identified so that all system functionality requirements are tested.

A use case is a description of how a user (or another system) uses the system being
designed to perform a given task. A system is described by the sum of its use cases.
Each instance or scenario of a use case will correspond to one test case. Incorporating
the use case technique into the development life cycle will address the effects of incom-
plete, incorrect, and missing test cases. Use cases represent an easy-to-use approach
applicable to both conventional and object-oriented system developments.

Use cases provide a powerful means of communication between customer, devel-
opers, testers, and other project personnel. Test cases can be developed with system
users and designers as the use cases are being developed. Having the test cases this
early in the project provides a baseline for the early planning of acceptance testing.
Another advantage to having test cases early on is that if a packaged software solution
is indicated, the customer can use them to evaluate purchased software earlier in the
development cycle. Using the use case approach will ensure not only meeting require-
ments but also expectations.

Building a System Boundary Diagram

A system boundary diagram depicts the interfaces between the software being tested
and the individuals, systems, and other interfaces. These interfaces or external agents
in this work practice will be referred to as “actors.” The purpose of the system bound-
ary diagram is to establish the scope of the system and to identify the actors (i.e., the
interfaces) that need to be developed.

An example of a system boundary diagram for an automatic automated teller
machine for an organization called “Best Bank” is illustrated in Figure 12-2.

Work Paper 12-2 is designed to document a system boundary diagram for the soft-
ware under test. For that software each system boundary needs to be defined. System
boundaries can include the following:

Individuals/groups that manually interface with the software.

Other systems that interface with the software.

Libraries.

Objects within object-oriented systems.

Each system boundary should be described. For each boundary, an actor must be
identified.

Two aspects of actor definition are required. The first is the actor description, and the
second is the name of an individual or group who can play the role of the actor (i.e., rep-
resent that boundary interface). For example, in Figure 12-2 the security alarm system is
identified as an interface. The actor is the security alarm company. The name of a person
in the security alarm company or the name of someone who can represent the security

500 Chapter 12



alarm company must be identified. Note that in some instances the actor and the indi-
vidual may be the same, such as the ATM system administrator listed in Figure 12-2.

Defining Use Cases

An individual use case consists of the following:

Preconditions that set the stage for the series of events that should occur for the
use case

Post-conditions that state the expected outcomes of the preceding process

Sequential narrative of the execution of the use case

Use cases are used to do the following:

Manage (and trace) requirements

Identify classes and objects (OO)

Design and code (non-OO)

Develop application documentation

Develop training

Develop test cases

The use case definition is done by the actor. The actor represents the system bound-
ary interface and prepares all the use cases for that system boundary interface. Note
that this can be done by a single individual or a team of individuals.

Work Paper 12-3 is used for defining a use case. An example of a completed Work
Paper 12-3 for an ATM system is illustrated in Figure 12-3. This example is for an ATM
system. The case is a bank customer making a withdrawal from their checking account
on an ATM.

Figure 12-2 System boundary diagram for an automated teller machine (ATM) example.

Bank
Customer

Security Alarm
System

ATM Service
Technician

ATM System
Administrator

ATM Control
System

BEST BANK

ATM

Step 6: Acceptance and Operational Testing 501



Use Case Definition

Last Updated By: Last Updated On:

Use Case Name: Withdraw From Checking UC ID: ATM-01

Actor: Bank Customer

Objective: To allow a bank customer to obtain cash and have the withdrawal taken from their
checking account.

Preconditions: Bank customer must have an ATM cash card, valid account, valid PIN and their
available checking account balance must be greater than, or equal to, withdrawal amount. ATM
in idle mode with greeting displayed (main menu).

Results (Postconditions): The cash amount dispensed must be equal to the withdrawal amount.
The ATM must print a receipt and eject the cash card. The checking account is debited by amount
dispensed.

Detailed Description

Action

1. Customer inserts ATM cash Card.

2. Customer enters PIN.

3. Customer selects Withdraw From
Checking transacton.

4. Customer enters withdrawal amount.

5. Customer takes cash.

6. Customer indicates not to continue.

7. Customer takes card and receipt.

Model (System) Response

1. ATM reads cash card and prompts  
customer to enter PIN.

2. ATM validates PIN and displays menu 
with a list of transactions that can be 
selected.

3. ATM validates account and prompts
customer for withdrawal amount.

4. ATM validates account balance is greater
than, or equal to, withdrawal amount. ATM
dispenses cash equal to withdrawal amount
and prompts customer to take cash.

5. ATM asks customer whether they want to
continue.

6. ATM prints receipt, ejects cash, prompts
customer to take card, sends debit
message to ATM Control System, returns to
idle mode and displays main menu.

Exceptions:
If ATM cannot read cash card, then ATM ejects cash card.

If incorrect PIN is entered, then customer is given two additional chances to enter correct PIN.
If correct PIN not entered on third try, then ATM keeps cash card and informs customer that they
must retrieve card from bank personnel during business hours.

If account is not valid, ATM ejects card and informs customer that they must contact bank
personnel during business hours regarding their invalid account.
If account balance is less than withdrawal amount, ATM informs customer that the withdrawal
amount exceeds their account balance and to reenter a withdrawal amount that does not exceed
account balance. If amount reentered still exceeds account balance, ATM ejects card, informs
customer that amount requested still exceeds account balance and bank policy does not permit
exceptions.

Alternative Courses:
At any time after reaching the main menu and before finishing a transaction, including before
selecting a transaction, the customer may press the cancel key. If the cancel key is pressed, the
specified transaction (if there is one) is canceled, the customer’s cash card is returned, the ATM
returns to idle mode and the main menu is displayed.

Original Author: Larry Creel Original Date: 9-25-X

Figure 12-3 Example of completed Work Paper 12-3 (use case definition) for an ATM system.



Developing Test Cases

A test case is a set of test inputs, execution conditions, and expected results developed
for a particular test objective. There should be a one-to-one relationship between use
case definitions and test cases. There needs to be at least two test cases for each use
case: one for successful execution of the use case and one for an unsuccessful execution
of a test case. However, there may be numerous test cases for each use case.

Additional test cases are derived from the exceptions and alternative courses of the
use case. Note that additional detail may need to be added to support the actual test-
ing of all the possible scenarios of the use case.

The use case description is the input into Work Paper 12-4. The actor who prepared
the use case description also prepares the test case work paper. There will be at least
two test conditions for each use case description and normally many more. The actor
tries to determine all of the possible scenarios that occur for each use case. Figure 12-4
is an example of a test case work paper designed to test the function “withdrawal from
checking from an ATM.” Note that this is Action 3 from Figure 12-3. Work Paper 12-1
becomes the input for Work Paper 12-4, as shown in Figure 12-5.

At the conclusion of acceptance testing, a decision must be made for each acceptance
criterion as to whether it has been achieved. 

Reaching an Acceptance Decision

Final acceptance of software based on acceptance testing usually means that the soft-
ware project has been completed, with the exception of any caveats or contingencies.
Final acceptance for the software occurs, and the developer has no further develop-
ment obligations (except, of course, for maintenance, which is a separate issue).

Typical acceptance decisions include the following:

■■ Required changes are accepted before progressing to the next activity.

■■ Some changes must be made and accepted before further development of that
section of the product; other changes may be made and accepted at the next
major review.

■■ Progress may continue and changes may be accepted at the next review.

■■ No changes are required and progress may continue.

The goal is to achieve and accept “perfect” software, but usually some criteria will
not be completely satisfied for each product, in which case the user may choose to
accept less-than-perfect software.

Task 2: Pre-Operational Testing

If the decision is made to place the software system into an operational state, pre-
operational testing should occur. This is testing performed to validate that the 
developed/acquired system will operate as intended in the production environment.
Much of this testing involves ensuring that the configuration management system has,
in effect, the right configuration items in the production environment. The testing also
includes high-level integration testing which validates whether the tested software
system effectively and efficiently integrates with other systems and other parts of the
production environment.

Step 6: Acceptance and Operational Testing 503



Test Case Worksheet

Test Case ID: T-ATM-01 Original Author: Larry Creel Last Updated By:

Parent Use Case ID: ATM-01 Original Date: 9-26-XX Last Updated On:

Test Objective: To test the function Withdraw From Checking, the associated exceptions and alternative courses.

TEST INPUT PASS

ITEM CONDI- OPERATOR SPECIFI- OUTPUT SPECIFICATIONS OR 

NO. TION ACTION CATIONS (EXPECTED RESULTS) FAIL COMMENTS

1 Successful 1-Insert card. 1-ATM can read 1-ATM reads card and prompts customer Re-execute 
withdrawal. 2-Enter PIN. card. to enter PIN. test and use

3-Select Withdraw From 2-Valid account. 2-ATM validates PIN and displays menu with the Continue
Checking transaction. 3-Valid PIN. a list of transactions that can be selected. option
4-Enter withdrawal 4-Account 3-ATM validates account and prompts 
amount. balance greater customer to enter withdrawal amount. Verify correct
5-Take cash. than, or equal 4-ATM validates account balance greater debit 
6-Indicate not to continue. to, withdrawal than, or equal to, withdrawal amount. ATM message
7-Take card and receipt. amount. dispenses cash equal to withdrawal received by

amount and prompts customer to take cash. ATM Control
5-ATM asks customer whether they want to System. 
continue.
6-ATM prints receipt, ejects cash card, 
prompts customer to take card, sends debit 
message to ATM Control System. ATM re-
turns to idle mode and displays Main Menu.

2 Unsuccess- 1-Insert card. 1-ATM cannot 1-ATM ejects card, prompts customer to 
ful with- 2-Take card. read card. take card and displays message “Cash 
drawal due 2-Valid account. Card unreadable. Please contact bank 
to unread- 3-Valid PIN. personnel during business hours.” ATM 
able card. 4-Account bal- returns to idle mode and displays Main 

ance greater than Menu.
or equal to, with-
drawal amount.

Fiigure 12-4 Example of completed Work Paper 12-4 (test case work paper) for an ATM withdrawal.



TEST INPUT PASS

ITEM CONDI- OPERATOR SPECIFI- OUTPUT SPECIFICATIONS OR 

NO. TION ACTION CATIONS (EXPECTED RESULTS) FAIL COMMENTS

3 Unsuccess- 1-Insert Card. 1-ATM can read 1-ATM reads card and prompts customer 
ful with- 2-Enter PIN. card. to enter PIN.
drawal due 3-Reenter PIN. 2-Valid account. 2-ATM does not validate PIN and prompts
to incorrect 4-Reenter PIN. 3-Invalid PIN. customer to reenter PIN.
PIN entered 4-Account 3-ATM does not validate PIN and prompts
three times. balance greater customer to reenter PIN.

than, or equal 4-ATM does not validate PIN, keeps card, 
to, withdrawal displays message “For return of your card, 
amount. please contact bank personnel during 

business hours.” ATM returns to idle mode 
and displays Main Menu.

4 Unsuccess- 1-Insert card. 1-ATM can read 1-ATM reads card and prompts customer 
ful with- 2-Enter PIN. card. to enter PIN.
drawal due 3-Select Withdrawal 2-Invalid 2-ATM validates PIN and displays menu with 
to invalid transaction. account. a list of transactions that can be selected.
account. 4-Enter withdrawal 3-Valid PIN. 3-ATM prompts customer for withdrawal 

amount. 4-Account 4-ATM does not validate account, ejects 
5-Take card. balance card, prompts customer to take card and 

greater than, displays message “Your account is not valid. 
or equal to, Please contact bank personnel during 
withdrawal business hours.” ATM returns to idle mode
amount. and displays Main Menu.

5 Unsuccess- 1-Insert card. 1-ATM can read 1-ATM reads card and prompts customer to 
ful with- 2-Enter PIN. card. enter PIN.
drawal due 3-Select Withdraw From 2-Valid account. 2-ATM validates PIN and displays menu with 
to account Checking transaction. 3-Valid PIN. a list of transactions that can be selected.
balance 4-Enter withdrawal 4-Account 3-ATM prompts customer for withdrawal 
less than amount that is greater balance less amount.

Figure 12-4 (continued)



TEST INPUT PASS

ITEM CONDI- OPERATOR SPECIFI- OUTPUT SPECIFICATIONS OR 

NO. TION ACTION CATIONS (EXPECTED RESULTS) FAIL COMMENTS

withdrawal than account balance. than with- 4-ATM ejects card and displays message 
amount. 5-Reenter withdrawal drawal informing customer that the withdrawal 

amount that is greater amount. amount exceeds their account balance and 
than account balance. to reenter a withdrawal amount that does 
6-Take card. not exceed account balance.

5-ATM ejects card, prompts customer to 
take card and displays message “Amount  
requested still exceeds account balance 
and bank policy does not permit 
exceptions.” ATM returns to idle mode 
and displays Main Menu.

6 Unsuccess- 1-Insert card. 1-ATM can read 1-ATM reads card and prompts customer to 
ful with- 2-Press Cancel key. card. enter PIN.
drawal due 3-Take card. 2-Valid account. 2-ATM ejects card and prompts customer to 
to customer 3-Valid PIN take card. ATM returns to idle mode and 
pressing 4-Account displays Main Menu.
Cancel key balance greater
before than, or equal 
entering to, withdrawal
PIN. amount.

7 Unsuccess- 1-Insert card. 1-ATM can read 1-ATM reads card and prompts customer to 
ful with- 2-Enter PIN. card. enter PIN.
drawal due 3-Press Cancel key. 2-Valid account. 2-ATM validates PIN and displays menu with 
to customer 4-Take card. 3-Valid PIN. a list of transactions that can be selected.
pressing 4-Account 3-ATM ejects card and prompts customer 
Cancel key balance greater to take card. ATM returns to idle mode and 
after enter- than, or equal displays Main Menu.
ing PIN. to, withdrawal

amount.

Figure 12-4 (continued)



TEST INPUT PASS

ITEM CONDI- OPERATOR SPECIFI- OUTPUT SPECIFICATIONS OR 

NO. TION ACTION CATIONS (EXPECTED RESULTS) FAIL COMMENTS

8 Unsuccess- 1-Insert card. 1-ATM can read 1-ATM reads card and prompts customer to 
ful with- 2-Enter PIN. card. enter PIN.
drawal; due 3-Select Withdraw From 2-Valid account. 2-ATM validates PIN and displays menu with 
to customer Checking transaction. 3-Valid PIN. a list of transactions that can be selected.
pressing 4-Press Cancel key. 4-Account 3-ATM validates account and prompts 
Cancel key 5-Take card. balance greater customer to enter withdrawal amount.
after enter- than, or equal to, 4-ATM ejects card and prompts customer to 
ing PIN and withdrawal take card. ATM returns to idle mode and 
selecting amount. displays Main Menu.
Withdrawal
transaction.

Figure 12-4 (continued)



The installation phase is the primary responsibility of the IT department. Specifi-
cally, computer operations personnel have the responsibility for getting the system
into operation. However, the project team and the users may share responsibility for
developing the appropriate data files and user and operator instructions for the appli-
cation system.

As with other aspects of the life cycle, many parties are involved in the installation.
Assigning one of those parties to be responsible for the installation pinpoints both
accountability and action. The recommended party for that responsibility would be a
key individual in computer operations.

However, in some online systems the user operations personnel may have primary
operating responsibilities because they initiate work at terminals, and in that instance,
it may be more appropriate to assign user operations personnel installation responsi-
bility than to assign responsibility to a centralized operations group.

The installation team performs a standalone, one-time process. This enables them to
be independent of the development team so that they can perform their installation
tasks concurrently with the development process. This does not prohibit both teams
from comprising the same individuals.

Most phases in the systems development life cycle are sequential in nature, and the
execution of the installation phase is part of this sequential life cycle process. However,
preparing for the installation can overlap with any or all of the previous phases. This
installation process may encompass requirements, design, programming, and testing, all
of which become the responsibility of the individual in charge of the installation process.

Placing a system under development into an operational status may require a mini-
system to handle the process. The installation phase specifications need to be deter-
mined and the mechanism developed to install the new system. Programming may be
required to convert files from an old format to a new format. Those programs should
be tested prior to executing the actual system conversion. However, because this is a
one-time process the attention to detail and control exhibited in the system being
developed may not exist in the development of the installation system.

508 Chapter 12

Acceptance Critical Test Result

No. Requirement Yes No Accept Reject Comments

1 The system must execute X Payroll will not be 
to end of job during a run in a pro-
payroll production run duction status 
after January 1, 20xx. until this require-

ment has been
met.

2 The results of payroll X Payroll will not be
must be correct even if run in a pro-
there are date problems duction status 
in the report or other until this require-
processing components. ment is met.

Figure 12-5 Acceptance criteria.



Testing New Software Installation

The installation phase poses two difficulties for the test team. First, installation is a
process separate from the rest of the application development. Its function relates not
to satisfying user needs, but to placing a completed and tested application into pro-
duction. In many instances, this test will be performed by a different group than the
one that tested the other portions of the application system. Second, installation nor-
mally occurs in a very short time span. It is not uncommon for an installation to occur
within an hour or several hours. Therefore, tests must be well planned and executed if
they are to be meaningful and helpful to the installation process.

Test results that are not available until hours or days after the installation are worth-
less. It is important that the test results be available prior to the completion of the
installation. The objective of testing is to determine whether the installation is success-
ful; therefore, the results must be available as quickly as possible. In many instances,
this means that the test results must be predetermined before the test starts.

Work Paper 12-5 lists the installation test process. A test program is provided for
each of the installation phase concerns. Each test program describes the criteria that
should be evaluated through testing and the recommended tests, including suggested
test techniques and tools. This generalized installation phase test program may need to
be customized for a specific installation. The individual responsible for the test should
take into account unique application characteristics that may require special testing.

Testing the Changed Software Version

IT management establishes both the software maintenance changes for its department
and the objectives for making the changes. The establishment of clear-cut objectives
helps the software maintenance analyst and operation personnel understand some of
the procedures they are asked to follow. This understanding often results in a better
controlled operation.

The specific objectives of installing the change are as follows:

■■ Put changed application systems into production. Each change should be
incorporated through a new version of a program. The production system
should have the capability to move these versions in and out of production on
prescribed dates. To do this, it is necessary first to uniquely identify each ver-
sion of a program, and second to pinpoint the dates when individual program
versions are to be placed into and taken out of production.

■■ Assess the efficiency of changes. If a change results in extensive time and
effort to do additional checking, or to locate information not provided by the
system, additional changes may be desirable.

■■ Monitor the correctness of the change. People should not assume that testing
will uncover all of the problems. For example, problems may be encountered in
untouched parts of the application. People should be assigned the responsibil-
ity to review output immediately following changes. If this is a normal func-
tion, then those people should be notified that a change has occurred and
should be informed where the change is in the system and what potentially
bad outputs might be expected.

Step 6: Acceptance and Operational Testing 509



■■ Keep systems library up to date. When programs are added to the production
and source library, other versions should be deleted. This will not happen
unless specific action is taken. The application system project team should
ensure that unwanted versions in the source and object code libraries are
deleted when they have fulfilled their purposes.

When the change is put into production, IT management can never be sure what
type of problems may be encountered shortly thereafter. The concerns during the
change process deal with properly and promptly installing the change. It is during the
installation that the results of these change activities become known. Thus, many of the
concerns culminate during the installation of the change.

IT management must identify the concerns so that they can establish the proper con-
trol mechanisms. The most common concerns during the installation of the change
include the following:

Will the change be installed on time? 

Is backup data compatible with the changed system? 

Are recovery procedures compatible with the changed system?

Is the source/object library cluttered with obsolete program versions? 

Will errors in the change be detected?

Will errors in the change be corrected? 

Testing the installation of the changes is divided into three tasks, some of which 
are manual and others heavily automated. Each is explained in detail in the following
subsections. 

Testing the Adequacy of the Restart/Recovery Plan

Restart and recovery are important stages in application systems processing. Restart
means computer operations begin from a point of known integrity. Recovery occurs
when the integrity of the system has been compromised. In a recovery process, the sys-
tems processing must be backed up to a point of known integrity; thereafter, transac-
tions are rerun to the point at which the problem was detected.

Many aspects of system changes affect the recovery process. Among those to evalu-
ate for their impact on recovery are the following:

Addition of a new function

Change of job control

Additional use of utility programs

Change in retention periods

Change in computer programs

Change in operating documentations

Introduction of a new or revised form

The testers should assess each change to determine its impact on the recovery process.
If a program is changed, the tester must ensure that those changes are included in

510 Chapter 12



backup data. Without the latest version of the program, the tester may not be able to cor-
rectly recover computer processing.

If the tester determines that recovery has been affected by the change, that impact on
the recovery plan must be updated. The tester can use Work Paper 12-6 to document the
restart/recovery planning process, and forward it to the person responsible for recovery.

Verifying the Correct Change Has Been Entered into Production

A positive action must be taken to move a changed program from test status to pro-
duction status. This action should be taken by the owner of the software. When the
user department is satisfied with the change, the new program version can be moved
into production.

The production environment should be able to control programs according to pro-
duction date. Each version of a program in production should be labeled according to
when it is to go into and be taken out of production. If there is no known replacement,
the date to take that version out of production is the latest date that can be put into that
field. When a new version has been selected, that date can be changed to the actual date.

A history of changes should be available for each program, to provide a complete
audit trail of everything that has happened to the program since first written. The
change history, together with a notification to operations that a change is ready for pro-
duction, provides the necessary controls during this step.

To verify that the correct change has been placed into production, the tester should
answer the following two questions:

1. Is a change history available? Changes to an application program should be
documented using a work paper similar to Work Paper 12-7. The objective of
this history-of-change form is to show all of the changes made to a program
since its inception. This serves two purposes: First, if problems occur, this audit
trail indicates whether the changes have been made; and second, it discourages
unauthorized changes. In most organizations, changes to programs/systems
are maintained in source code libraries, test libraries, and production libraries.
Work Paper 12-7 is a hardcopy format of the type of information that testers
should be looking for in software libraries.

2. Is there a formal notification of production changes? The procedure to move
a version from testing to production should be formalized. Telephone calls and
other word-of-mouth procedures are not sufficient. The formal process can be
enhanced to prevent the loss of notification forms by using a prenumbered
form. The project leader should prepare the notification of production change
form, which should then be sent to the computer operations department, which
installs the new version. A sample form is illustrated in Work Paper 12-8.

The owner of the software decides when a new version of the software will be
placed into production. This approval gives operations the go-ahead to initiate its pro-
cedures for notifying the appropriate staff that changes are to be installed. The tester
must verify that the appropriate notification has been given, pending the owner’s
approval, and that the information is correct.

Step 6: Acceptance and Operational Testing 511



Verifying Unneeded Versions Have Been Deleted

It may or may not be desirable to delete old versions of programs when a new version is
entered. The most obvious argument against doing so is to maintain a fallback version in
case the new version proves defective. Organizations should establish standards regard-
ing when old versions should be automatically deleted from the library. Some, while not
automating this function, periodically notify the project team that older versions will be
deleted unless the project team takes specific action to have them retained in the library.
Other organizations charge the projects a fee for retaining old versions.

In any case, programs should not be deleted from libraries without authorization.
Some type of form should be prepared to authorize computer operations personnel to
delete programs from a library. This form also provides a history of additions to the
libraries. A source/object library deletions notice form is illustrated in Work Paper
12-9. This form becomes a more effective control if a sequential number is added, so
that its loss is more likely to be detected. The form should be filled out by the software
maintenance project leader and sent to computer operations for action.

The computer operations department should have a process for deleting unneeded
versions of source libraries, test libraries, and production libraries—after receiving
authorization to do so, of course. It is recommended that those authorizations be in writ-
ing from the owner of the item. The type of information needed for deleting programs
from a library is contained in Work Paper 12-9, which also contains instructions for delet-
ing programs.

The objective of the entire correction process is to satisfy the new date need. This is
accomplished by incorporating that need into the application system and running it in
production status. If all parts of the software change process have been properly per-
formed, the production step is mechanical. The program library automatically calls in
the correct version of the program on the proper day. However, if there are special
operator instructions, the operator should be alerted to that change on the appropriate
day. Most information services organizations have procedures for this purpose.

Monitoring Production

Application systems are most vulnerable to problems immediately following the intro-
duction of new versions of a program(s). For this reason, many organizations monitor
the output immediately following the introduction of a new program version. In orga-
nizations that normally monitor output, extra effort or attention may be applied at the
time a changed program version is first run.

The following groups may monitor the output of a new program version:

Application system control group

User personnel

Software maintenance personnel

Computer operations personnel

Regardless of who monitors the output, the software maintenance analyst and user
personnel should provide clues about what to look for. User and software maintenance
personnel must attempt to identify the specific areas where they believe problems might
occur.

512 Chapter 12



The types of clues that could be provided to monitoring personnel include the 
following:

■■ Transactions to investigate. Specific types of transactions, such as certain prod-
uct numbers, that they should monitor

■■ Customers. Specific customers or other identifiers to help them locate prob-
lems on specific pages of reports

■■ Reports. Specific outputs that should be reviewed

■■ Tape files. Data records or files that have been changed that they may need to
examine by extracting information to determine if data was properly recorded

■■ Performance. Anticipated improvements in the effectiveness, efficiency, and
economy of operations that they should review

This process is normally more effective if it is formalized. This means documenting
the type of clues to look for during the monitoring process. A program change monitor
notification form is illustrated in Work Paper 12-10. This form should be completed by
the user and/or software maintenance personnel and then given to the people moni-
toring the transaction. The information contained on the program change monitor
notification form is outlined on the form’s completion instructions sheet. 

Documenting Problems

Individuals detecting problems when they monitor changes in application systems
should formally document them. The formal documentation process can be made even
more effective if the forms are controlled through a numbering sequence. This enables
software maintenance personnel to detect lost problem forms. The individual moni-
toring the process should keep a duplicate copy of the form on hand, in case the copy
sent to the project is lost.

The person monitoring the process should be asked both to document the problem
and to assess the risk associated with that problem. Although this individual may not
be the ideal candidate to make a risk assessment, a preliminary assessment is often
very helpful in determining the seriousness of the problem. If the initial estimate about
the risk is erroneous, it can be corrected at a later time.

The report of a system problem caused by system change, because of the program
change monitor notification, enables the individual to associate the problem with a
specific problem change. This additional piece of information is usually invaluable in
correcting the problem.

A form to record a system problem caused by a system change is illustrated in Work
Paper 12-11. This form should be completed by the individual monitoring the applica-
tion system. The completed form should be given to the software maintenance analyst
for correction. The information contained on the system problem caused by system
change form is described on the form’s completion instructions sheet.

Task 3: Post-Operational Testing

Post-operational testing is used in this book to signify testing changed versions of 
the software system. The process as presented is equally applicable to testing changed

Step 6: Acceptance and Operational Testing 513



versions during development, as well as changed versions after the system has been
placed into an operational state. If the IT organization has well-developed change
management, version control, and an effective configuration management system, the
extensiveness of testing new versions will be significantly reduced. In those instances,
much of the testing from the versions will center on the specific change made to the
software system.

Testing and training are as important to software maintenance as they are to new
systems development. Frequently, even small changes require extensive testing and
training. It is not unusual to spend more time testing a change and training users to
operate a new facility than incorporating the change into the application system. This
task explains the process that should be performed when testing system changes.

Too frequently, software maintenance has been synonymous with “quick and dirty”
programming, which is rarely worth the risk. Frequently, it takes considerable time to
correct problems that could have been prevented by adequate testing and training. If
testing is properly conducted, it should not take longer to do the job right.

IT management has the responsibility for establishing the testing and training pro-
cedures for software changes. Many organizations establish change control procedures
but do not carry them through testing and training. A checklist is provided for man-
agement to review the effectiveness of their testing.

The process outlined in this task is designed to be used two ways. First, it is written as
if changes occur after the software has been placed into production. The second and per-
haps equally important use will be testing changes during the development of software.

Both of these uses of the process for testing changes require some reiteration of pre-
vious steps. For example, the test plan will need to be updated, and the test data will
need to be updated. Because those activities are presented in previous chapters, they
are not reiterated in this task. 

The following five tasks should be performed to effectively test a changed version of
software.

Developing and Updating the Test Plan

The test plan for software maintenance is a shorter, more directed version of a test plan
used for a new application system. Whereas new application testing can take many
weeks or months, software maintenance testing often must be done within a single day
or a few hours. Because of time constraints, many of the steps that might be performed
individually in a new system are combined or condensed into a short time span. This
increases the need for planning so that all aspects of the test can be executed within the
allotted time.

The types of testing will vary based upon the implemented change. For example, if
a report is modified, there is little need to test recovery and backup plans. On the other
hand, if new files are created or processing procedures changed, restart and recovery
should be tested.

The preparation of a test plan is a two-part process. The first part is the determina-
tion of what types of tests should be conducted, and the second part is the plan for how
to conduct them. Both parts are important in software maintenance testing.

514 Chapter 12



Elements to be tested (types of testing) are as follows:

Changed transactions

Changed programs

Operating procedures

Control group procedures

User procedures

Intersystem connections

Job control language

Interface to systems software

Execution of interface to software systems

Security

Backup/recovery procedures

The test plan should list the testing objective, the method of testing, and the desired
result. In addition, regression testing might be used to verify that unchanged segments
have not been unintentionally altered. Intersystem connections should be tested to
ensure that all systems are properly modified to handle the change.

An acceptance test plan is included as Work Paper 12-12. This work paper should be
completed by the software maintenance analyst and countersigned by the individual
responsible for accepting the changed system.

Developing and Updating the Test Data

Data must be prepared for testing all the areas changed during a software maintenance
process. For many applications, the existing test data will be sufficient to test the new
change. However, in many situations new test data will need to be prepared.

In some cases, the preparation of test data can be significantly different for software
maintenance than for new systems. For example, when the system is operational it
may be possible to test the application in a live operational mode, thus eliminating the
need for technical test data, and enabling maintenance software analysts to use the
same input the users of the application prepare. Special accounts can be established to
accumulate test data processed during testing in a production mode. The information
in these accounts can then be eliminated after the test, which negates the effect of enter-
ing test data into a production environment.

It is important to test both what should be accomplished, as well as what can go
wrong. Most tests do a good job of verifying that the specifications have been imple-
mented properly. Where testing frequently is inadequate is in verifying the unantici-
pated conditions. Included in this category are the following:

Transactions with erroneous data

Unauthorized transactions

Transactions entered too early

Transactions entered too late

Step 6: Acceptance and Operational Testing 515



Transactions that do not correspond with master data contained in the application

Grossly erroneous transactions, such as transactions that do not belong to the
application being tested

Transactions with larger values in the fields than anticipated

These types of transactions can be designed by doing a simple risk analysis scenario.
The risk analysis scenario involves brainstorming with key people involved in the
application, such as users, maintenance systems analysts, and auditors. These people
attempt to ask all the questions, such as, “What if this type of error were entered? What
would happen if too large a value were entered in this field?”

The three methods that can be used to develop/update test data are as follows:

■■ Update existing test data. If test files have been created for a previous version,
they can be used for testing a change. However, the test data will need to be
updated to reflect the changes to the software. Note that testers may wish to
use both versions in conducting testing. Version 1 is to test that the unchanged
portions perform now as they did in the previous versions. The new version is
to test the changes. Updating the test data should follow the same processes
used in creating new test data.

■■ Create new test data. The creation of new test data for maintenance follows the
same methods as creating test data for a new software system.

■■ Use production data for testing. Tests are performed using some or all of the
production data for test purposes (date-modified, of course), particularly when
there are no function changes. Using production data for test purposes may
result in the following impediments to effective testing:

■■ Missing test transactions. The transaction types on a production data file
may be limited. For example, if the tester wants to test an override of a 
standard price, that transaction may not occur on the production data file.

■■ Multiple tests of the same transaction. Production data usually represents
the production environment, in which 80 to 90 percent of the transactions
are of approximately the same type. This means that some transaction types
are not tested at all, while others are tested hundreds of times.

■■ Unknown test results. An important part of testing is to validate that cor-
rect results are produced. When testers create test transactions, they have
control over the expected results. When production data is used, however,
testers must manually calculate the correct processing results, perhaps caus-
ing them to misinterpret the intent of the transaction and thereby to misin-
terpret the results.

■■ Lack of ownership. Production data is owned by the production area,
whereas test data created by testers is owned by the testers. Some testers
are more involved and interested in test data they created themselves than
in test data borrowed from another owner.

Although these potential impediments might cause production data testing to be
ineffective, steps can be taken to improve its usefulness. Production data should not be
completely excluded as a source of test data.

516 Chapter 12



Testing the Control Change Process

Listed next are three tasks commonly used to control and record changes. If the staff
performing the corrections does not have such a process, the testers can give them
these subtasks and then request the work papers when complete. Testers should verify
completeness using these three tasks as a guide.

Identifying and Controlling Change

An important aspect of changing a system is identifying which parts of the system will
be affected by that change. The impact may be in any part of the application system,
both manual and computerized, as well as in the supporting software system. Regard-
less of whether affected areas will require changes, at a minimum there should be an
investigation into the extent of the impact.

The types of analytical action helpful in determining the parts affected include the
following:

Review system documentation.

Review program documentation.

Review undocumented changes.

Interview user personnel regarding procedures.

Interview operations personnel regarding procedures.

Interview job control coordinator regarding changes.

Interview systems support personnel if the implementation may require deviations
from standards and/or IT departmental procedures.

This is a very important step in the systems change process, as it controls the change
through a change identification number and through change documentation. The time
and effort spent executing this step is usually returned in the form of more effective
implementation procedures and fewer problems during and after the implementation
of the change. A change control form is presented as Work Paper 12-13.

Documenting Change Needed on Each Data Element

Whereas changes in processing normally affect only a single program or a small num-
ber of interrelated programs, changes to data may affect many applications. Thus,
changes that affect data may have a more significant effect on the organization than
those that affect processing.

Changes can affect data in any of the following ways:

■■ Length. The data element may be lengthened or shortened.

■■ Value. The value or codes used in data elements may be expanded, modified,
or reduced.

■■ Consistency. The value contained in data elements may not be the same in var-
ious applications or databases; thus, it is necessary to improve consistency.

■■ Reliability. The accuracy of the data may be changed.

Step 6: Acceptance and Operational Testing 517



In addition, changes to a data element may require further documentation. Organi-
zations in a database environment need to expend additional effort to ensure that data
documentation is consistent, reliable, and understandable. Much of this effort will be
translated into data documentation.

A form for documenting data changes is presented as Work Paper 12-14. This form
should be used to provide an overview of the data change. In a database environment, a
copy of the data definition form should be attached to the data change form as a control
vehicle.

Documenting Changes Needed in Each Program

The implementation of most changes will require some programming alterations. Even
a change of data attributes often necessitates program changes. Some of these will be
minor in nature, whereas others may be extremely difficult and time-consuming to
implement.

The change required for each program should be documented on a separate form.
This serves several purposes: First, it provides detailed instructions at the individual
program level regarding what is required to change the program; second, it helps
ensure that changes will be made and not lost—it is difficult to overlook a change that
is formally requested; third, and equally important, it provides a detailed audit trail of
changes, in the event problems occur.

Work Paper 12-15 is a form for documenting program changes. It should be completed
even though doing so may require more time than the implementation of the change
itself. The merits of good change documentation have been repeatedly established.

Conducting Testing

Software change testing is normally conducted by both the user and software mainte-
nance test team. The testing is designed to provide the user assurance that the change
has been properly implemented. Another role of the software maintenance test team is
to aid the user in conducting and evaluating the test.

Testing for software maintenance is normally not extensive. In an online environ-
ment, the features would be installed and the user would test them in a regular pro-
duction environment. In a batch environment, special computer runs must be set up to
run the acceptance testing. (Because of the cost, these runs are sometimes eliminated.)

An effective method for conducting software maintenance testing is to prepare a
checklist providing both the administrative and technical data needed to conduct the
test. This ensures that everything is ready at the time the test is to be conducted. A
checklist for conducting a software maintenance acceptance test is illustrated in Work
Paper 12-16. This form should be prepared by the software maintenance analyst as an
aid in helping the user conduct the test. The information contained on the conduct
acceptance test checklist is described on the form’s completion instructions sheet.

Developing and Updating Training Material

Updating training material for users, and training users, is not an integral part of many
software change processes. Therefore, this task description describes a process for

518 Chapter 12



updating training material and performing that training. Where training is not part of
software maintenance, the testers can give the software maintenance analyst these
materials to use in developing training materials. If training is an integral part of the
software maintenance process, the testers can use the material in this task as a guide for
evaluating the completion of updating training materials.

Training is an often-overlooked aspect of software maintenance. Many of the
changes are small; this fosters the belief that training is not needed. Also, the fact that
many changes originate in the user area leads the software maintenance analyst to the
conclusion that the users already know what they want and have trained their staff
accordingly. All these assumptions may be wrong.

The software maintenance analyst should evaluate each change for its impact on the
procedures performed by people. If the change affects those procedures, then training
material should be prepared. However, changes that increase performance and have
no impact on users of the system do not require training unless they affect the opera-
tion of the system. In that case, computer operations personnel would need training.
Training cannot be designed by someone who is unfamiliar with existing training
material. The software maintenance change is incorporated into the application sys-
tem. The training requirements are likewise incorporated into existing training mater-
ial. Therefore, it behooves the application project personnel to maintain an inventory of
training material.

Training Material Inventory Form

Most application systems have limited training materials. The more common types of
training materials include the following:

Orientation to the project narrative

User manuals

Illustrations of completed forms and instructions for completing them

Explanation and action to take on error listings

Explanation of reports and how to use them

Explanation of input data and how to enter it

A form for inventory training material is included as Work Paper 12-17. This form
should be completed and filed with the software maintenance analyst. Whenever a
change is made, the form can be duplicated, and at that point the “needs updating”
column can be completed to indicate whether training material must be changed as a
result of incorporating the maintenance need. The columns to be completed on the
form are explained on the form’s completion instructions sheet. 

Training Plan Work Paper

The training plan work paper is a why, who, what, where, when, and how approach to
training. The individual developing the plan must answer those questions about each
change to determine the scope of training programs. Points to ponder in developing
training programs are as follows:

Step 6: Acceptance and Operational Testing 519



■■ Why conduct training? Do the changes incorporated into the application sys-
tem necessitate training people?

■■ Who should be trained? If training is needed, then it must be determined
which individuals, categories of people, or departments require that training.

■■ What training is required? The training plan must determine the content of the
necessary training material.

■■ Where should training be given? The location of the training session, or dis-
semination of the training material, can affect how and when the material is
presented.

■■ When should training be given? Confusion might ensue if people are trained
too far in advance of the implementation of new procedures. For example, even
training provided a few days prior to the change may cause confusion because
people might be uncertain as to whether to follow the new or the old proce-
dure. In addition, it may be necessary to conduct training both immediately
before and immediately after the change to reinforce the new procedures and
to answer questions immediately after the new procedures are installed.

■■ How should the training material be designed? The objective of training is to
provide people with the tools and procedures necessary to do their job. The
type of change will frequently determine the type of training material to be
developed.

■■ What are the expected training results? The developers of the training plan
should have in mind the behavior changes or skills to be obtained through the
training sessions. They should also determine whether training is effective.

Work Paper 12-18 documents the training plan by providing space to indicate the
preceding types of information. In addition, the responsible individual and the dates
needed for training can also be documented on the form. The information contained on
the training plan work paper is described on the form’s completion instructions sheet. 

Preparing Training Material

The tasks required to perform this step are similar to those used in making a change to
an application system. In most instances, training material will exist, but will need to
be modified because of the change. Changes in the program must be accompanied by
changes in the training material. Individuals responsible for modifying training
should consider the following tasks:

■■ Identifying the impact of the change on people

■■ Determining what type of training must be “unlearned” (people must be
stopped from doing certain tasks)

■■ Determining whether “unlearning” is included in the training material

■■ Making plans to delete outmoded training material

■■ Determining what new learning is needed (this should come from the training
plan)

520 Chapter 12



■■ Determining where in the training material that new learning should be
inserted

■■ Preparing the training material that will teach people the new skills (this
should be specified in the training plan)

■■ Designing that material

■■ Determining the best method of training (this should be documented in the
training plan)

■■ Developing procedures so that the new training material will be incorporated
into the existing training material on the right date, and that other supportive
training will occur at the proper time

An inventory should be maintained of the new/modified training modules. This is
in addition to the training material inventory, which is in hardcopy. The training mod-
ules are designed to be supportive of that training material. This helps determine what
modules need to be altered to achieve the behavior changes/new skills required because
of the change.

Work Paper 12-19 is a training module inventory form. This should be completed 
by the individual responsible for training. The information contained on the form is
described on the form’s completion instructions, and both are found at the end of the
chapter.

Conducting Training

The training task is primarily one of coordination in that it must ensure that everything
needed for training has been prepared. The coordination normally involves these steps:

1. Schedule training dates.

2. Notify the people who should attend. 

3. Obtain training facilities.

4. Obtain instructors.

5. Reproduce the material in sufficient quantity for all those requiring the 
material.

6. Train instructors.

7. Set up the classroom or meeting room.

Many times, training will be provided through manuals or special material deliv-
ered to the involved parties. The type of training should be determined when the train-
ing plan is developed and the material is prepared.

A training checklist should be prepared. A sample checklist for conducting training is
illustrated in Work Paper 12-20. The individual responsible for training should prepare
this checklist for use during the training period to ensure all the needed training is pro-
vided. The information included on the conduct training checklist is described on the
form’s completion instructions sheet. Both forms are found at the end of the chapter.

Step 6: Acceptance and Operational Testing 521



Check Procedures

Work Paper 12-21 is a quality control checklist for Task 1, Work Paper 12-22 is a quality
control checklist for Task 2, and Work Paper 12-23 is a quality control checklist for Task 3.

Output

Two outputs are produced from Task 1 at various times, as follows:

1. Interim product acceptance opinion. An opinion as to whether an interim
product is designed to meet the acceptance criteria.

2. Final acceptance decision. Relates to a specific hardware or software compo-
nent regarding whether it is acceptable for use in production.

There are both interim and final outputs to Task 2. The interim outputs are the various
reports that indicate any problems that arise during installation. Problems may relate to
installation, deletion of programs from the libraries, or production. Whoever performs
these testing tasks should notify the appropriate organization to make adjustments and/
or corrections.

The ongoing monitoring process will also identify problems. These problems may
deal with both the software and/or the users of the software. For example, problems
may occur in the procedures provided to users to interact with the software, or it may
be that the users are inadequately trained to use this software. All of these problems
need to be reported to the appropriate organization.
The output of Task 3 will answer the questions and/or provide the information in the
following subsections.

Is the Automated Application Acceptable?

The automated segment of an application is acceptable if it meets the change specifica-
tion requirements. If it fails to meet those measurable objectives, the system is unac-
ceptable and should be returned for additional modification. This requires setting
measurable objectives, preparing test data, and then evaluating the results of those tests.

The responsibility for determining whether the application is acceptable belongs to
the user. In applications with multiple users, one user may be appointed responsible.
In other instances, all users may test their own segments or they may act as a commit-
tee to verify whether the system is acceptable. The poorest approach is to delegate this
responsibility to the information technology department.

Test results can be verified through manual or automated means. The tediousness
and effort required for manual verification have caused many information technology
professionals to shortcut the testing process. When automated verification is used, the
process is not nearly as time-consuming, and tends to be performed more accurately.

A difficult question to answer in terms of acceptability is whether 100 percent cor-
rectness is required on the change. For example, if 100 items are checked and 99 prove
correct, should the application be rejected because of the one remaining problem? The
answer to this question depends on the importance of that one remaining item.

522 Chapter 12



Users should expect that their systems will operate as specified. However, this may
mean that the user may decide to install the application and then correct the error after
implementation. The user has two options when installing a change known to have an
error. The first is to ignore the problem and live with the results. For example, if a head-
ing is misplaced or misspelled, the user may decide that that type of error, although
annoying, does not affect the user of the output results. The second option is to make
the adjustments manually. For example, if necessary, final totals can be manually cal-
culated and added to the reports. In either case, the situation should be temporary.

Automated Application Segment Failure Notification

Each failure noted during testing of the automated segment of the application system
should be documented. If it is known that the change will not be corrected until after
the application is placed into production, a problem identification form should be com-
pleted to document the problem. However, if the change is to be corrected during the
testing process, then a special form should be used for that purpose.

A form for notifying the software maintenance analyst that a failure has been uncov-
ered in the automated segment of the application is illustrated in Work Paper 12-24.
This form is to be used as a correction vehicle within the test phase, and should be pre-
pared by the individual uncovering the failure. It is then sent to the software mainte-
nance analyst in charge of the change for correction. The information contained on the
automated application segment test failure notification form is described on the form’s
completion instructions sheet. 

Is the Manual Segment Acceptable?

Users must make the same acceptability decisions on the manual segments of the
application system as they make on the automated segments. Many of the manual seg-
ments do not come under the control of the maintenance systems analyst. However,
this does not mean that the correct processing of the total system is not of concern to
the maintenance systems analyst.

The same procedures followed in verifying the automated segment should be fol-
lowed in verifying the manual segment. The one difference is that there are rarely auto-
mated means for verifying manual processing. Verifying manual segments can take as
much—if not more—time than verifying the automated segment. The more common
techniques to verify the correctness of the manual segment include the following:

■■ Observation. The person responsible for verification observes people perform-
ing the tasks. That person usually develops a checklist from the procedures and
then determines whether the individual performs all of the required steps.

■■ Application examination. The people performing the task need to evaluate
whether they can correctly perform the task. For example, in a data entry oper-
ation, the data entry operator may be asked to enter that information in a con-
trolled mode.

■■ Verification. The person responsible for determining that the training is correct
examines the results of processing from the trained people to determine
whether they comply with the expected processing.

Step 6: Acceptance and Operational Testing 523



If the training is not acceptable, the user must decide again whether to delay the
change. In most instances, the user will not delay the implementation of change if there
are only minor problems in training, but instead will attempt to compensate for those
problems during processing. On the other hand, if it becomes apparent that the users
are ill-equipped to use the application, the change should be delayed until the individ-
uals are better trained.

The methods that users can incorporate to overcome minor training deficiencies
include the following:

■■ Restrict personnel. The new types of processing are performed only by people
who have successfully completed the training. Thus, those who need more
skills have time to obtain them before they begin using the new procedures 
or data.

■■ Supervisory review. Supervisors can spend extra time reviewing the work of
people to ensure that the tasks are performed correctly.

■■ Information technology assistance. The software maintenance analysts/
programmers can work with user personnel during an interim period to help
them process the information correctly.

■■ Overtime. Crash training sessions can be held in the evening or on weekends
to bring the people up to the necessary skill level.

Training Failure Notification Form

Training failures should be documented at the same level of detail as are failures of the
computerized segment. However, procedural errors can cause as many serious prob-
lems as can incorrect computer code. Unless these failures are documented, people can
easily overlook the problem and assume someone else will correct it.

Each failure uncovered in training should be documented on a training failure noti-
fication form. This form should be completed by the individual who uncovers the
problem, and then presented to the individual responsible for training for necessary
action. A form that can be used to document training failures is illustrated in Work
Paper 12-25. The information contained on the training failure notification form is
described on the form’s completion instructions sheet. 

Guidelines

Acceptance testing is a critical part of testing. Guidelines to make it effective include
the following:

■■ Incorporate acceptance criteria into the test plan. Although this chapter sug-
gests a separate test plan and acceptance test plan, they can in fact be incorpo-
rated, in which case the test plan will use the acceptance criteria as the test plan
objectives.

524 Chapter 12



■■ Include information systems professionals on the acceptance test team. The
acceptance test team needs information system skills as well as business skills
for the areas affected by the hardware/software being acceptance tested.
Acceptance testers must be able to understand information systems and to
effectively communicate with information systems professionals.

Feedback enables IT management and users to monitor each phase of the software
maintenance process. The feedback information relates to the processes and controls
operational during each phase. During the installation of the change, management is
able to measure the overall success of the software maintenance process. This gathered
data is some of the most valuable. The types of feedback information that have proved
most valuable include the following:

Number of changes installed

Number of changes installed by application

Number of problems encountered with installed changes

Number of old program versions deleted

Number of new program versions installed

Number of conditions monitored

Number of changes not installed on time

The following should help in performing Task 3:

■■ Making test adjustments. Corrections to problems should be implemented in
the application system and then the system should be retested. When a new
change is entered to the application system (even a change made during test-
ing), the maintenance software analyst should not assume that previously
tested segments will work correctly. It is quite possible that the new change 
has caused problems to unchanged portions. Unfortunately, it may mean that
much of the testing already completed may have to be repeated.

■■ Making training adjustments. Identified training adjustments can be made in
numerous ways. The methods selected will obviously depend on the type of
failure uncovered. In some instances, a single individual may have been over-
looked and the training can be presented to that person individually. In other
cases, new training material may have to be prepared and taught.

The procedures described in this section for developing training materials apply
equally to correcting training materials. In addition, if people have been improperly
instructed, steps may have to be taken to inform them of the erroneous training and
then to provide them with the proper training.

Summary

The IT department, both developers and testers, have processes in place to build the
specified system. Developers and/or testers might challenge those specifications as

Step 6: Acceptance and Operational Testing 525



accurate and complete; however, in many organizations, developers implement the
specifications, and testers test to determine whether or not those specifications have
been implemented as specified.

At the conclusion of the IT development and test processes, software can be placed
into an operational state. This step addresses testing after the IT developers and testers
have completed their work processes. This testing may involve the team that devel-
oped and tested the software, or it may be done independently of the software devel-
opers and testers.

The acceptance and operational testing included in this step involves acceptance
testing by the customer/users of the software; pre-operational testing ensures that
when the software system is moved from a test environment to a production environ-
ment that it performs correctly and that when the software system is changed, it is
tested to ensure both the changed and unchanged portions still perform as specified.

At the conclusion of acceptance and operational testing, a decision is made as to
whether the software should be placed into a production state. At that point, testing of
that software system is complete. The remaining step (Step 7) is a post analysis by the
testers to evaluate the effectiveness and efficiency of testing the software system and to
identify areas in which testing could be improved in future projects. 

526 Chapter 12



Step 6: Acceptance and Operational Testing 527

WORK PAPER 12-1 Acceptance Criteria

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Hardware/Software The name of the project being acceptance-tested. This is the name the user/customer
Project calls the project.

Number A sequential number identifying acceptance criteria.

Acceptance A user requirement that will be used to determine whether the corrected 
Requirement hardware/software is acceptable.

Critical Indicate whether the acceptance requirement is critical, meaning that it must be 
met, or noncritical, meaning that it is desirable but not essential.

Test Result Indicates after acceptance testing whether the requirement is acceptable or not
acceptable, meaning that the project is rejected because it does not meet the
requirement.

Comments Clarify the criticality of the requirement; or indicate the meaning of test result
rejection. For example, the software cannot be run; or management will make a 
judgment after acceptance testing as to whether the project can be run.

Hardware/Software Project:

Critical Test Result

Number Acceptance Requirement Yes No Accept Reject Comments



WORK PAPER 12-2 System Boundary Diagram

Software Under Test:

Name of 
System Boundary Individual/Group 

Boundary Description Actor Description Representing Actor

528 Chapter 12



WORK PAPER 12-3 Use Case Definition

Last Updated By: Last Updated On:

Use Case Name: UC ID:

Actor:

Objective:

Preconditions:

Results (Postconditions):

Detailed Description

Action Model (System) Response

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

Exceptions:

Alternative Courses:

Original Author: Original Date:

Step 6: Acceptance and Operational Testing 529



WORK PAPER 12-4 Test Case Work Paper

Test Case ID: Original Author: Last Updated By:

Parent Use Case ID: Original Date: Last Updated On:

Test Objective:

Item Test Operator Input Pass
No. Condition Action Specifications Output Specifications (Expected Results) or Fail Comments



WORK PAPER 12-5 Installation Phase Test Process

ASSESSMENT

TEST CRITERIA Very Adequate Adequate Inadequate N/A RECOMMENDED TEST

1. Have the accuracy and completeness of  the Examine the completeness of, and the results
installation been verified? from, the installation plan.

2. Have data changes been prohibited during Compare old and new versions of important data 
installation? data files.

3. Has the integrity of the production files been Confirm their integrity with the users of the
verified? production files.

4. Does an audit trail exist showing installation activity? Verify the completeness of the audit trail.

5. Will the integrity of the previous system/version be Perform parallel processing.
maintained until the integrity of the new system/
version can be verified?

6. Ensure that a fail-safe installation plan is used for Determine that the option always exists to
installation? revert to the previous system/version.

7. Ensure that adequate security will occur during Review the adequacy of the security procedures. 
installation to prevent compromise?

8. Verify that the defined installation process has Confirm compliance on a sampling basis.
been followed?

9. Verify that the proper system/version is placed into Determine the adequacy of the version control
production on the correct date? procedures.

10. Verify that user personnel can understand and use the Confirm with users during acceptance testing 
documentation provided to use the new system/version? that their user documentation is adequate.

11. Verify that all the needed documentation has been Verify on a sampling basis that specified 
prepared in accordance with documentation standards? documentation exists and meets standards.

12. Ensure that all involved with the installation are aware Confirm with a sample of involved parties their
of the installation dates and their installation knowledge of installation date(s) and 
responsibilities? responsibilities.

13. Ensure that the installation performance will be Examine the monitoring process.
monitored?

14. Ensure that the needed operating procedures are Examine the operating procedures and process 
complete and installed when needed? for placing those procedures into operation.



WORK PAPER 12-6 Restart/Recovery Planning Data

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application System The name by which the application is known.

Ident. Number The application numerical identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Note: Restart/recovery planning data, necessary to modify the recovery
procedures, comprises the remainder of the form.

Impact on Estimated If the change affects the downtime, the entire recovery process may have to be
Total Downtime reevaluated.

Impact on Estimated The number of times the recovery process will probably have to be executed. An
Downtime Frequency important factor in determining backup data and other procedures. If the change

will affect the frequency of downtime, the entire recovery process may have to be
reevaluated.

Change in Downtime The probable loss when a system goes down. May be more important than either
Risk the total downtime or downtime frequency. If the loss is potentially very high,

management must establish strong controls to lessen the downtime risk. If the
change will probably cause a loss, the entire recovery process may have to be
reevaluated.

New Program Versions Each new program version must be included in the recovery plan. This action
for Recovery documents the needed changes.

New Files/Data for Changes in data normally impact the recovery process. This section documents
Recovery those changes.

New Recovery If operating procedures or instructions have to be modified, this section provides
Instructions/Procedures space to document those changes.

Date New Version The date the new programs, files, data, recovery instructions, and procedures must
Operational be included in the recovery process.

Comments Any additional information that may be helpful in modifying the recovery program
to better reflect the changed application system.

532 Chapter 12



WORK PAPER 12-6 (continued)

Application Ident. Change
System: _________________________ Number: ________________ Ident. # _________________

Impact on Estimated Total Downtime

Impact on Estimated Downtime Frequency

Change in Downtime Risk

New Program Versions for Recovery

New Files/Data for Recovery

New Recovery Instructions/Procedures

Date New Version Operational

Comments

Step 6: Acceptance and Operational Testing 533



WORK PAPER 12-7 Program Change History

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application System The name by which the application is known.

Ident. Number The numerical application identifier.

Program Name A brief description of the program or its name.

Ident. Number The program identifier.

Coded by The programmer who originally coded the program.

Maintained by The programmer who now maintains the program.

Date Entered into The date on which the program was first used in production.
Production

Version # The original version number.
Note: Program change history provides an audit trail of changes to a program; and is
contained in the following fields.

Change ID # The sequence number that uniquely identifies the change.

New Version # The program version number used to code the change.

Coded by The name of the programmer who coded the change.

Date Entered into The date on which this version went into production.
Production

Comments Additional information valuable in tracing the history of a change to a program.

534 Chapter 12



WORK PAPER 12-7 (continued)

Application System: Ident. Number 

Program Name: Ident. Number 

Coded by:

Maintained by:

Date Entered into Production: Version #

Program Change History

Change New Date Entered
ID # Version # Coded by into Production Comments

Step 6: Acceptance and Operational Testing 535



WORK PAPER 12-8 Production Change Instructions

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Sent To The name of the person in operations who controls the application system being changed.

Application A number issued sequentially to control the changes to each application system.
Control #

Application The name by which the application is known.
Name

Number The numerical application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Note: The following production change information includes instructions to computer
operations to move programs, job control statements, operator manual procedures, and
other items associated with the change to production status. The specific instructions
provide both for adding and deleting information.

Resource The resource that needs to be added to or deleted from the production environment. The
most common resources involved in a production change include programs, job
statements, and operator manual procedures.

Task Instructs whether to add or delete the resource from the production status. The Add
column indicates that it is to be moved from test status to production status; the Delete
column indicates that it is to be removed from production status.

Effective Dates The date on which the tasks are to be performed.

Comments Additional instructions that help operations personnel perform their assignments. For
example, this column might include the location or the source of new pages for the
operator’s manual.

Prepared By Usually, the name of the project leader.

Date The date on which the form was prepared.

536 Chapter 12



WORK PAPER 12-8 (continued)

Application
Sent To: Control #:

Application Name Change
Number: Ident. #:

Production Change Instructions

Task
Effective

Resource Add Delete Dates Comments

Program #

Program #

Program #

Program #

Job Statements #

Job Statements #

Operator Manual procedure #

Operator Manual procedure #

Other: ____________________

Other: ____________________

Other: ____________________

Prepared By: Date:

Step 6: Acceptance and Operational Testing 537



WORK PAPER 12-9 Deletion Instructions

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Ident. Number The numerical application identifier.

Deletion Control Number A number sequentially issued to control the form.

Sent To Typically, the person in operations responsible for deleting a program from the
application.

Date The date on which the form was prepared.

From Usually, the name of the project leader.

Department The organization or department authorizing the deletion of the program.

Note: Deletion instructions guide operations personnel to delete unwanted
program versions, as follows:

Library The name or number that identifies the library in which the program resides.

Program Version to Delete The program number and version of that program that is to be deleted.

Deletion Date The date on which the program version may be deleted.

Comments Any additional information helpful to operations staff in performing the required
tasks.

Prepared By The name of the person who prepared the form.

Date The date on which the form was prepared.

538 Chapter 12



WORK PAPER 12-9 (continued)

Application Ident. Deletion
Name: _____________________ Number: ____________________ Control #: _________________

Sent To: ___________________________________________________ Date: _____________________

From: ____________________________________________________ Department: _______________

Deletion Instructions

Program Version

Library to Delete Deletion Date Comments

Prepared By: ______________________________________________________________ Date: ________________

Step 6: Acceptance and Operational Testing 539



WORK PAPER 12-10 Form Completion Instructions: Program Change
Monitor Notification

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application System The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Description of Change A description which helps the people monitoring the application gain
perspective on the areas impacted.

Date of Change The date on which the change goes into production. This is the date when the 
monitoring should commence.

Monitoring Guidelines The description of the type of problems to be anticipated. The information should 
be descriptive enough to tell the monitors both what to look for and what action to 
take if they find problems. Obviously, those potential problems which are identified 
are those most likely to occur. However, the monitors should be alert to any type 
of problem that might occur immediately following introduction of a new program 
version. The information about the high-probability items is:

• Area potentially impacted: the report, transactions, or other area in which the 
individuals monitoring should be looking.

• Probable impact: this section describes the type of problems that are most 
likely to occur within the impacted area.

• Action to take if problem occurs: the people to call, correction to make, or any 
other action that the individual uncovering the problem should take.

• Comments: any additional information that might prove helpful to the 
monitors in attempting to identify problems associated with the program 
change.

Prepared By The name of the person who prepared the form, normally the software maintenance 
analyst.

Date The date on which the form was prepared.

540 Chapter 12



WORK PAPER 12-10 (continued)

Application Change 
System: Number: Ident. #

Description of Change Date of Change

Monitoring Guidelines

Area Potentially Action to Take If
Impacted Probable Impact Problem Occurs Comments

Prepared By: __________________________________________________ Date: ____________________________

Step 6: Acceptance and Operational Testing 541



WORK PAPER 12-11 Form Completion Instructions: System Problem Caused
by System Change

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Problem Date The date on which the problem was located.

Problem Time The time the problem was encountered.

Problem Control # A sequential number that controls the form.

Description of Problem A brief narrative description. Normally, examples of the problem are attached to 
the form.

Area of Application This segment is designed to help the software maintenance analyst identify the
Affected source of the problem. If it is one of the problems outlined on the program 

change monitor notification form, the individual completing the form can be very 
specific regarding the affected area. Otherwise, the individual should attempt to 
identify areas such as report writing or input validation where the problem seems 
to originate.

Impact of Problem The individual identifying the problem should attempt to assess the impact of that 
problem on the organization. This information is very valuable in determining 
how fast the problem must be fixed. Ideally, this risk would be expressed in 
quantitative units, such as number of invoices incorrectly processed, dollar loss, 
number of hours lost because of the problems. It is often helpful to divide the 
problem into various time periods. This is because some risks are not immediately 
serious but become serious if they are not corrected by a certain time or date. 
Some suggested time spans included on the form are:

• If not fixed within one hour

• If not fixed within one day

• If not fixed within one week

Recommendation The suggestions from the individual uncovering the problem as to what should be 
done to fix it. This recommendation can either be to correct the errors that have 
occurred and/or to correct the problems in the application system.

Prepared By The name of the person who uncovered the system problem caused by the 
system change.

Date The date on which the form was prepared.

542 Chapter 12



WORK PAPER 12-11 (continued)

Application Change
Name: Number: Ident. #

Problem
Problem Date Problem Time Control #

Description of Problem

Area of Application Affected

Impact of Problem

If not fixed within 1 hour:

If not fixed within 1 day:

If not fixed within 1 week:

Recommendation

Prepared By: _________________________________________________ Date: _____________________________

Step 6: Acceptance and Operational Testing 543



WORK PAPER 12-12 Form Completion Instructions: Acceptance Test Plan

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Individual Responsible The name of the individual or individuals who will be conducting the
for Test test. This normally is the user and the application systems

analyst/programmer.

Test Plan The steps that need to be followed in conducting the test. For the functional, 
regression, stress, and performance types of testing, these test characteristics need 
to be defined:

• Change objective: the description of the objective of the
change that was installed. This should be specific so that
test planning can be based on the characteristics of the
objective.

• Method of testing: the type of test that will be conducted to
verify that the objective is achieved.

• Desired result: the expected result from conducting the test.
If this result is achieved, the implementation can be consid-
ered successful, while failure to meet this result means an
unsuccessful implementation.

Regression Test Plan The tests and procedures to be followed to ensure that unchanged segments of 
the application system have not been inadvertently changed by software
maintenance.

Intersystem Test Plan The tests to be conducted to ensure that data flowing from and to other systems 
will be correctly handled after the change.

Comments Additional information that might prove helpful in conducting or verifying the test 
results.

Individual Who Accepts The name of the individual who should review this test plan because of the
Tested Application responsibility to accept the change after successful testing.

Date The date on which the form was completed.

544 Chapter 12



WORK PAPER 12-12 (continued)

Application Change
Name: Number: Ident. #

Individual Responsible for Test: 

TEST PLAN

Change Objective Method of Testing Desired Results

Regresssion Test Plan

Intersystem Test Plan

Comments

Individual Who Accepts Tested Application Date

Step 6: Acceptance and Operational Testing 545



WORK PAPER 12-13 Change Control Form

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application System The name by which the application system is known.

Application Ident. # The identification number of the application system.

Change Ident. # The control number for the change.

Description of Change The solution and general terms for the change, such as issue a new report, add
an input data edit, or utilize a new processing routine.

Changes Required All impacted areas with instructions for the changes to be made or investigations
to be undertaken regarding the impact of the proposed solution. The type of
items affected include:

• data elements • operations manuals

• programs • user training

• job control language • user manuals

For each of the affected items, the following information should be provided:

• Item affected: the program, data element, job control or other

• Item identification: the program number or other method of identifying the
affected item

Prepared By The name of the person completing the form.

Date The date on which the form was completed.

Application Application Change
System: Ident. #: Ident. #

Description of Change:

Change Overview:

Changes Required

Item Item Identification Comments

Prepared By: Date:

546 Chapter 12



WORK PAPER 12-14 Data Change Form

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application System The name by which the application is known.

Application Ident. # The number used to identify the application system.

Change Ident. # The sequential number used to identify the change.

Data Element Name The name by which the data element is known.

Data Ident. # The number used to uniquely identify the data element. In a data dictionary 
system, this should be the data dictionary data element number.

Record Name The record or records in which the data element is contained.

Record Ident. # The number that describes the record or records in which the data element is 
contained.

File Name The file or files in which the data element is contained.

File Ident. # The numbers that uniquely describe the file or files in which the data element is 
contained.

Assigned To The name of the person, function, or department responsible for making the 
change to the data element and the associated records and files.

Date Required The date by which the change should be made (pending user approval).

Data Change The type of change to be made on the data element.

Description of Change A detailed narrative description (with examples when applicable) explaining the 
type of change that must be made to the data element. When a data dictionary 
is used, the data dictionary form should be attached to the data change form.

Comments Information helpful in implementing the data change.

Prepared By The name of the person who completed the form.

Date The date on which the form was completed.

(continues)

Step 6: Acceptance and Operational Testing 547



WORK PAPER 12-14 (continued)

Application Application Change
System: Ident. #: Ident. #:

Data Element Data
Name: Ident. #:

Record Record
Name: Ident. #:

File File
Name: Ident. #:

Assigned To: Date Required:

Data Change

❏ Add element.

❏ Delete element.

❏ Modify element attributes.

❏ Modify element description.

Description of Change

Comments

Prepared By: Date:

548 Chapter 12



WORK PAPER 12-15 Program Change Form

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application System The name by which the application to be changed is known.

Application Ident. # The identifier that uniquely describes the application system.

Change Ident. # The sequential number used to identify the change.

Program Name The name by which the program to be changed is known.

Number The number that uniquely identifies the program.

Version Number The version number that will be assigned to the altered program.

Date Required The date on which the change is to be implemented, assuming the user 
approves the changes.

Assigned To The name of the person who will make the change in the program.

Description of Change A narrative description of the change to be made to this specific program. It 
should provide examples of programs produced before and after the change.

Source Statement A description of the source statement or statements that should be changed, 
Affected together with the change to be made. The change may be described in terms 

of specifications rather than specific source statements.

Comments Tips and techniques on how best to install the change in the application 
system.

Prepared By The name of the person who completed the form.

Date The date on which the form was completed.

Application Application Change
System: Ident. #: Ident. #:

Program Name: Number: Version #:

Date Assigned
New Version #: Required: To:

Description of Change

Source Statement Affected

Comments

Prepared By: Date:

Step 6: Acceptance and Operational Testing 549



WORK PAPER 12-16 Form Completion Instructions: Acceptance Test
Checklist

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Administrative Data The administrative data relates to the management of the test.

Technical Data The resources needed to conduct the acceptance test and the location of those 
resources. The information that should be documented about the needed resources 
includes:

• Resource needed: the exact resource needed.

• Location: the physical location of that resource. In many 
acceptance tests, the resources are marshalled in a common area to await 
conducting the test.

550 Chapter 12



WORK PAPER 12-16 (continued)

Application Change
Name: Number: Ident. #

Administrative Data

Date of test

Location of test

Time of test

Information services person in charge of test

User person in charge of test

Computer time available

Technical Data

Available

Resource Needed Location Yes No N/A

1. Test transactions

2. Master files/data base

3. Operator instructions

4. Special media/forms

5. Acceptance criteria

6. Input support personnel

7. Output support personnel

8. Control group

9. External control proof

10. Backup/recovery plan

11. Security plan

12. Error message actions

Prepared By: Date:

Step 6: Acceptance and Operational Testing 551



WORK PAPER 12-17 Form Completion Instructions: Training Material
Inventory

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Training Material Name The name or number by which the training material is known.

Training Material Description A brief narrative description of what is contained in the training material.

Needs Updating Columns to be completed whenever a change is installed. The columns 
provide an indication of whether the training material needs updating (Yes 
column) or does not need updating (No column).

Prepared By The name of the individual responsible for maintaining the inventory.

Date The last date on which the inventory was updated.

552 Chapter 12



WORK PAPER 12-17 (continued)

Application Change 
Name: Number: Ident. #

Needs Updating

Training Material Name/Number Training Material Description Yes No

Prepare By: Date:

Step 6: Acceptance and Operational Testing 553



WORK PAPER 12-18 Form Completion Instructions: Training Plan

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Individual Responsible The individual with the overall responsibility for ensuring that all the training
for Training material is prepared, taught, and evaluated prior to the implementation of the 

change.

Training Plan The details of why, who, what, where, when, how, and the results to be derived 
from the training plan. The remainder of the form deals with this plan.

Group Needing The name of the individual, type of person, or department requiring training. The 
Training groups to consider include:

• Transaction origination staff: the people who originate data into the 
application system.

• Data entry clerk: the person who transcribes data to computer media.

• Control group—information services: the group responsible for ensuring that 
all input is received and that output is reasonable.

• Control group—user: the group in the user area responsible for the accuracy, 
completeness, and authorization of data.

• Computer operations: the group responsible for running the application on 
computer hardware.

• Records retention: the group or groups responsible for saving backup data.

• Third-party customers: people with unsatisfied needs or people who are the 
ultimate recipients of reports.

• User management and staff: the group responsible for the application.

• Other: any other involved party requiring training.

Training Approach The why, what, where, when, and how of the training plan.

Desired Results The expected result, behavior change, or skills to be gained from the training 
material.

Training Dates Important dates for implementing the training plan.

Comments Any material helpful in designing, teaching, or evaluating the training material.

Individual Who Accepts The name of the individual or department who must agree that the training is
Training as Sufficient adequate. This individual should also concur with the training plan.

Date The date the training plan was developed.

554 Chapter 12



WORK PAPER 12-18 (continued)

Application Change
Name: Number: Ident. #

Individual Responsible for Training

Training Plan

Group Needing Training Training Approach Desired Result

1. Transaction origination staff

2. Data entry clerk

3. Control group—information
services

4. Control group—user

5. Computer operations

6. Records retention

7. Third-party customers

8. User management and staff

9. Other: ____________

10. Other: ____________

Training Dates

Date training material prepared

Date training can commence

Date training to be completed

Comments

Individual Who Accepts Testing as Sufficient Date

Step 6: Acceptance and Operational Testing 555



WORK PAPER 12-19 Form Completion Instructions: New/Modified Training
Modules

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Training Module The remainder of the information on the form describes the modules.
Inventory

Training Module A brief narrative of the training module. The location of the training material
Description should be identified so that it can be easily obtained.

Description of Change As the training module becomes modified, this column should contain a 
sequential listing of all the changes made. In effect, it is a change history for the
training module.

Training Material The course material included in the training module.

Who Should Be Trained The individual(s) to whom the training module is directed.

Method of Training The recommended way in which the training module should be used.

Prepared By The name of the individual who prepared the module.

Date The date on which it was last updated.

556 Chapter 12



WORK PAPER 12-19 (continued)

Application
Name: Number: Change Ident. #

Training Module Inventory

Method of Training

Training Description Who New
Module of Training Should Be Class- Self- Proced- Super-

Description Change Material Trained Meeting room study ure visor Other

Prepared By: Date:



WORK PAPER 12-20 Form Completion Instructions: Conduct Training
Checklist

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Training Checklist The remainder of the form contains the checklist information, which is:

• Name of individual requiring training: whenever possible, actual names should be 
used, as opposed to groups of people, so records can be maintained as to whether or 
not the people actually took the training.

• Department: the department/organization with which the individual is affiliated.

• Training required: the training modules and/or material to be given the individual.

• Dates: the dates on which the course is to be given or the training material to be 
disseminated to the individual. The schedules dates should be listed, as well as the 
date the individual actually took the course or received the material.

• Location: the location of the course or the location to which the training material 
should be distributed.

• Instructor: the name of the responsible individual should be listed.

• Comments: any other information that would verify that training took place. In 
classroom situations where examinations are given, the space could be used to record 
that grade.

Prepared By The name of the individual preparing the form who should be the one responsible for 
ensuring the training is given.

Date The date on which the form was prepared.

558 Chapter 12



WORK PAPER 12-20 (continued)

Application Change
Name: Number: Ident. #

Training Checklist

Dates

Name of
Individual
Requiring Training Sched- Taken Com-
Training Department Required uled Location Instructor ments

Prepared By: Date:

Step 6: Acceptance and Operational Testing 559



560 Chapter 12

WORK PAPER 12-21 Acceptance Testing Quality Control Checklist

YES NO N/A COMMENTS

1. Has acceptance testing been incorpor-
ated into the test plan?

2. Is acceptance testing viewed as a
project process, rather than as a
single step at the end of testing?

3. Have the appropriate users of the
software or hardware components been
selected to develop the acceptance
criteria for those components?

4. Does the group that defines the accep-
tance criteria represent all uses of the
component to be tested?

5. Do those individuals accept the respon-
sibility of identifying acceptance criteria?

6. Have the acceptance criteria been
identified early enough in the
project so that they can influence
planning and implementation?

7. Has an acceptance test plan been
developed?

8. Does that plan include the components
of acceptance test plan as outlined in
this chapter?

9. Is the acceptance test plan consistent
with the acceptance criteria?

10. Have appropriate interim products
been reviewed by the acceptance
testers before being used for the next
implementation task?

11. Have the appropriate testing techniques
been selected for acceptance testing?

12. Do the acceptance testers have the skill sets
necessary to perform acceptance testing?

13. Have adequate resources for performing
acceptance testing been allocated?

14. Has adequate time to perform acceptance
testing been allocated?

15. Have interim acceptance opinions been
issued?

16. Has the project team reacted positively to the
acceptance testers’ concerns?

17. Has a final acceptance decision been made?



Step 6: Acceptance and Operational Testing 561

WORK PAPER 12-21 (continued)

YES NO N/A COMMENTS

18. Is that decision consistent with the acceptance
criteria that have been met and not met?

19. Have the critical acceptance criteria been
identified?

20. Are the requirements documented in enough
detail that the software interfaces can be
determined?

21. Does both user management and customer
management support use case testing?

22. Has a system boundary diagram been
prepared for the software being tested?

23. Does the system boundary diagram identify all
of the interfaces?

24. Have the individuals responsible for each
interface on the new system boundary
diagram been identified?

25. Do the actors agree to participate in
developing use cases?

26. Has a use case been defined for each system
boundary?

27. Do the users of the software agree that the
use case definitions are complete?

28. Have at least two test cases been prepared for
each use case?

29. Have both a successful and unsuccessful test
condition been identified for each use case?

30. Do the users of the software agree that the
test case work paper identifies all of the
probable scenarios?



562 Chapter 12

WORK PAPER 12-22 Pre-Operational Testing Quality Control Checklist

YES NO N/A COMMENTS

1. Is each change reviewed for its impact upon 
the restart/recovery plan?

2. If a change impacts recovery, is the newly 
estimated downtime calculated?

3. If the change impacts recovery, is the new 
downtime risk estimated?

4. Are the changes that need to be made to the 
recovery process documented?

5. Is the notification of changes to the production 
version of an application
documented?

6. Are changes to application systems controlled 
by an application control change number?

7. Are there procedures to delete unwanted 
program versions from the source, test, and 
object libraries?

8. Are program deletion requests documented so 
that production is authorized to delete 
programs?

9. Are procedures established to ensure that 
program versions will go into production on the 
correct day?

10. If it affects operating procedures, are operators 
notified of the date new versions go into 
production?

11. Are procedures established to monitor 
changed application systems?

12. Do the individuals monitoring the process 
receive notification that an application system 
has been changed?

13. Do the people monitoring changes receive clues 
regarding the areas impacted and the probable 
problems?

14. Do the people monitoring application system 
changes receive guidance on what actions to 
take if problems occur?

15. Are problems that are detected immediately 
following changes documented on a special 
form so they can be traced to a particular 
change?

16. Are the people documenting problems asked 
to document the impact of the problem on the 
organization?



Step 6: Acceptance and Operational Testing 563

WORK PAPER 12-22 (continued)

YES NO N/A COMMENTS

17. Is software change installation data collected 
and documented?

18. Does information services management review 
and use the feedback data?

19. Does information services management 
periodically review the effectiveness of 
installing the software change?



WORK PAPER 12-23 Testing and Training Quality Control Checklist

YES NO N/A COMMENTS

1. Are software maintenance analysts required to
develop a test plan?

2. Must each change be reviewed to determine if 
it has an impact on training?

3. If a change has an impact on training, do
procedures require that a training plan be
established?

4. Is an inventory prepared of training material so 
that it can be updated?

5. Does the training plan make one individual
responsible for training?

6. Does the training plan identify the results 
desired from training?

7. Does the training plan indicate the who, why, 
what, where, when, and how of training?

8. Does the training plan provide a training 
schedule, including dates?

9. Is an individual responsible for determining if
training is acceptable?

10. Are all of the training modules inventoried?

11. Does each training module have a history of the
changes made to the module?

12. Is one individual assigned responsibility for 
testing?

13. Does the test plan list each measurable change
objective and the method of testing that 
objective?

14. Does the training plan list the desired results 
from testing?

15. Does the training plan address regression 
testing?

16. Does the training plan address intersystem 
testing?

17. Is someone responsible for judging whether 
testing is acceptable?

18. Is an acceptance testing checklist prepared to 
determine the necessary resources are ready 
for the test?

564 Chapter 12



WORK PAPER 12-23 (continued)

YES NO N/A COMMENTS

19. Does the acceptance testing checklist include 
the administrative aspects of the test?

20. Is a training checklist prepared which indicates 
which individuals need training?

21. Is a record kept of whether or not individuals
receive training?

22. Is each test failure documented?

23. Is each training failure documented?

24. Are test failures corrected before the change 
goes into production?

25. Are training failures corrected before the change
goes into production?

26. If the change is put into production before
testing/training failures have been corrected, are
alternative measures taken to assure the 
identified errors will not cause problems?

27. Is feedback data identified?

28. Is feedback data collected?

29. Is feedback data regularly reviewed?

30. Are control concerns identified?

31. Does information services management 
periodically review training and testing 
software changes?

Step 6: Acceptance and Operational Testing 565



WORK PAPER 12-24 Form Completion Instructions: Automated Application
Segment Test Failure Notification

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Description of Failure A brief description of the condition that is believed to be unacceptable. In most 
instances, the detailed information would be presented orally, as would the 
documentation supporting the failure. The purpose of the form is to record the 
problem and control the implementation. The information contained in this 
section includes:

• Test Date: the date of the test.

• Failure #: a sequentially increasing number used to control the 
identification and implementation of problems. If a form is lost or mislaid, it 
will be noticed because a failure number will be missing.

• System Change Objective Failed: the measurable change objective that was 
not achieved.

• Description of Failure: a brief description of what is wrong.

Recommended Corrections suggested by the individual uncovering the failure or the software
Correction maintenance analyst after an analysis of the problem. The type of information 

included in the recommendation is:

• Programs Affected: all the programs that contributed to the failure.

• Data Affected: all the data elements, records, or files that contributed or 
were involved in the failure.

• Description of Correction: a brief description of the recommended solution.

Correction Assignments This section is completed by the software maintenance analyst to assign the 
correction of the failure to a specific individual. At a minimum, this should 
include:

• Correction Assigned To: the individual making the correction.

• Date Correction Needed: the date by which the correction should be made.

• Comments: suggestions on how to implement the solution.

Prepared By The name of the individual who uncovered the failure.

Date The date on which the form was prepared.

566 Chapter 12



WORK PAPER 12-24 (continued)

Application Change
Name: Number: Ident. #

Description of Failure

Test Date Failure #

System Change Objective Failed

Desciption of Failure

Recommended Correction

Programs Affected

Data Affected

Description of Correction

Correction Assignments

Correction Assigned To

Date Correction Needed

Comments

Prepared By: Date:

Step 6: Acceptance and Operational Testing 567



WORK PAPER 12-25 Form Completion Instructions: Training Failure
Notification

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Application Name The name by which the application is known.

Number The application identifier.

Change Ident. # The sequence number that uniquely identifies the change.

Description of Failure The details of the training failure need to be described. At a minimum, this 
would include:

• Failure #: a sequentially increasing number used to control the failure 
form.

• Test Date: the date on which the test occurred.

• People Not Adequately Trained: the name of individuals, categories of 
people or departments who could not adequately perform their tasks.

• Failure Caused By Lack of Training: a description of why the training was 
inadequate.

Recommended Suggestions for correcting the failure. This section can be
Correction completed either by the individual uncovering the failure and/or by

the systems analyst. The type of information helpful in correcting the
training failure includes:

• Training Material Needing Revisions: the specific material that should be 
modified to correct the problem.

• New Method of Training Needed: suggestions for varying the training 
method.

• People Needing Training: all of the people that may need new training.

• Description of Correction: a brief explanation of the recommended
solution.

Correction Assignments made by the individual responsible for training. At a
Assignments minimum, each assignment would include:

• Correction Assigned To: name of individual who will make the necessary 
adjustments to training material.

• Training Material Needing Correction: the specific training document(s) 
that need changing.

• Comments: recommendations on how to change the training material.

Prepared By The name of the individual who uncovered the failure.

Date The date on which the failure occurred.

568 Chapter 12



WORK PAPER 12-25 (continued)

Application Change
Name: Number: Ident. #

Description of Failure

Test Date Failure #

People Not Adequately Trained

Failure Caused By Lack of Training

Recommended Correction

Training Materials Needing Revisions

New Method of Training Needed

People Needing Training

Description of Correction

Correction Assignments

Correction Assigned To

Training Material Needing Correction

Comments

Prepared By Date:

Step 6: Acceptance and Operational Testing 569





571

A significant portion of IT resources is expended testing application systems. A reason-
able question for management to ask is, “Are we getting our money’s worth from this
testing?” Unfortunately, many IT functions cannot objectively answer that question.

This chapter describes the more common objectives for measuring testing and then
recommends criteria for performing those measurements. The chapter explains who
should evaluate performance, identifies the common approaches, and then recom-
mends testing metrics for the assessment process.

Overview

Measuring a test’s effectiveness serves two purposes: It evaluates the performance of the
testers and, perhaps more important, enables an IT organization to modify its testing
process. Identifying the ineffective aspects of testing isolates the areas for improvement.
The two evaluation testing objectives of assessing individual performance and improv-
ing the test process are closely related; indeed, the same evaluation criteria can be used
for both purposes. These major evaluation objectives are achieved through the collection
of data about more detailed evaluation objectives. The objective of assessment is to iden-
tify problems so that corrective action can be taken. Therefore, the evaluation will be
looking for the negative aspects of testing. The absence of a negative factor represents a
positive evaluation.

Step 7: Post-Implementation
Analysis

C H A P T E R

13



NOTE The evaluation of the test process is normally based on accumulating

many individual analyses of software systems tested.

Concerns

The major concern that testers should have is that their testing processes will not
improve. Without improvement, testers will continue to make the same errors and per-
form testing inefficiently time after time. Experience in many organizations has shown
that testers make more errors than developers. Thus, testing is an error-prone process.

To improve the test process, the results of testing must be evaluated continually.
Unless the results are recorded and retained, the evaluation will not occur. Without a for-
mal process, and management’s support for the process, testers need to be concerned
that their processes will remain stagnant and not subject to continuous improvement.

Workbench

Figure 13-1 illustrates the workbench for evaluating a test’s effectiveness. The objec-
tives for the assessment should be clearly established; without defined objectives, the
measurement process may not be properly directed.

572 Chapter 13



Figure 13-1 Workbench to evaluate the effectiveness of testing.

DO CHECK

REWORK

Establish
Assessment
Objectives

Task 1

Identify What
to Measure

Task 2

Assign
Measurement
Responsibility

Task 3

Select
Approach to
Evaluation

Task 4

Identify
Needed

Facts

Task 5

Collect
Evaluation

Data

Task 6

Assess
Effectiveness

of Testing

Task 7

Test
Results

More Effective
Testing

Analysis
Correct and
Reasonable

No

Step 7: Post-Implementation Analysis 573



Input

The input to this step should be the results of conducting software tests. The type of
information required includes but is not limited to:

Number of tests conducted

Resources expended in testing

Test tools used

Defects uncovered

Size of software tested

Days to correct defects

Defects not corrected

Defects uncovered during operation that were not uncovered during testing

Developmental phase in which defects were uncovered

Names of defects uncovered

Do Procedures

Once a decision has been made to formally assess the effectiveness of testing, an assess-
ment process is needed. This assessment can be performed by software test, quality
assurance or a team organization to do this step. This assessment process involves the
following seven tasks.

Task 1: Establish Assessment Objectives

Establish the objectives for performing the assessment. If objectives are not defined, the
measurement process may not be properly directed and thus may not be effective.
These objectives include:

■■ Identify test weaknesses. Identify problems within the test process where the
methodology is not effective in identifying system defects.

■■ Identify the need for new test tools. Determine when the existing test tools are
not effective or efficient as a basis for acquiring new or improved testing tools.

■■ Assess project testing. Evaluate the effectiveness of the testing performed by a
project team to reduce defects from the project at an economical cost.

■■ Identify good test practices. Determine which practices used in the test process
are the most effective so that those practices can be used by all projects.

■■ Identify poor test practices. Determine which of the practices used by the pro-
ject team are ineffective so that other projects can be advised not to use those
practices.

574 Chapter 13



■■ Identify economical test practices. Determine the characteristics that make
testing most economical so that the cost-effectiveness of testing can be
improved.

Task 2: Identify What to Measure

Identify the categories of information needed to accomplish the measurement objectives.
The list that follows offers the five characteristics of application system testing that can
be measured:

1. Involvement. Who is involved in testing and to what extent?

2. Extent of testing. What areas are covered by testing and what volume of test-
ing will be performed on those areas?

3. Resources. How much information services resources, both people and com-
puter, will be consumed in a test process?

4. Effectiveness. How much testing is achieved per unit of resource?

5. Assessment. What is the value of the results received from the test process?

Task 3: Assign Measurement Responsibility

Make one group responsible for collecting and assessing testing performance informa-
tion. Without a specific accountable individual, there will be no catalyst to ensure that
the data collection and assessment process occurs. The responsibility for the use of
information services resources resides with IT management. However, they may desire
to delegate the responsibility to assess the effectiveness of the test process to a function
within the department. If the information services departments have a quality assur-
ance function, that delegation should be made to the quality assurance group. Lacking
that function, other candidates for assigning the responsibility include an information
services comptroller, manager of standards, manager of software support, or the plan-
ning manager.

Task 4: Select Evaluation Approach

Evaluate several approaches that can be used in performing the assessment process.
The one that best matches the managerial style should be selected. The following are
the most common approaches to evaluating the effectiveness of testing.

■■ Judgment. The individual responsible for the assessment evaluates the test.
This is normally an arbitrary assessment and one that is difficult to justify.
However, if the individual is well respected and the judgments correlate to
actual results, the process may work effectively.

■■ Compliance with methodology. Testing can be considered a success when it
complies with well-established guidelines and standards, and a process defect
when it does not.

Step 7: Post-Implementation Analysis 575



■■ Problems after test. The effectiveness of the test process can be measured by
the number of problems it causes. If few problems occur, testing can be consid-
ered to be good; if many problems occur, testing can be considered poor.

■■ User reaction. If the user is satisfied with the application system, it can be
assumed testing is good; if the user is unhappy with the performance of the
application system, testing can be judged poor.

■■ Testing metrics. Criteria are identified that show a high positive correlation to
good or bad testing. This correlation or relationship between factors is called a
metric. This process is a scientific mathematical approach to the measurement
of testing.

The metrics approach is recommended because once established it is easy to use and
can be proven to show a high correlation to effective and ineffective practices. A major
advantage to metrics is that the assessment process can be clearly defined, will be
known to those people who are being assessed, and is specific enough so that it is easy
to determine which testing variables need to be adjusted to improve the effectiveness,
efficiency, and/or economy of the test process.

Task 5: Identify Needed Facts

Identify the facts necessary to support the approach selected. The metrics approach
clearly identifies the type of data needed for the assessment process. Using the metrics
described later in this chapter, the needed information includes:

■■ Change characteristics. The frequency, size, and type of change occurring in
each system.

■■ Magnitude of system. A measure used to equate testing information from sys-
tem to system, the size being a factor used to relate testing in one application
system to another.

■■ Cost of process being tested. The cost to develop a system or install a change,
whichever is being tested.

■■ Cost of test. The resources, both people and computer, used to test the new
function.

■■ Defects uncovered by testing. The number of defects uncovered as a result of
the test.

■■ Defects detected by phase. A breakdown of the previous category for each
phase tested to show the effectiveness of the test by system development life
cycle (SDLC) phase.

■■ Defects uncovered after test. The number of defects uncovered after the new
function is placed into production status.

■■ Cost of testing by phase. The amount of resources consumed for testing by
each developmental phase of the SDLC in which testing occurs.

■■ System complaints. Complaints of problems by a third party after the system
goes operational.

576 Chapter 13



■■ Quantification of defects. The potential dollar loss associated with each defect
had it not been detected.

■■ Who conducted the test. The functional unit to which the individuals conduct-
ing the test report.

■■ Quantification of correctness of defect. The cost to correct the application sys-
tem defect.

Task 6: Collect Evaluation Data

Establish a system to collect and store the needed data in a form suitable for assess-
ment. This may require a collection mechanism, a storage mechanism, and a method to
select and summarize the information. Wherever possible, utility programs should be
used for this purpose.

Task 7: Assess the Effectiveness of Testing

Analyze the raw information in order to draw conclusions about the effectiveness of
systems testing. Using this analysis, the appropriate party can take action. The sum-
marized results must be output into a form for presentation that provides an assess-
ment of testing. The judgmental approach normally expresses the assessment in terms
of an opinion of the assessor. The user reaction provides the same type of assessment
and normally includes examples that illustrate good or poor testing performance. The
problems and compliance to standards approaches normally express the assessment in
terms of what has or has not happened; for example, there is a known number of prob-
lems, or X standards have been violated in a test process. Metrics assess testing by
quantitatively showing the effectiveness of the test process.

Using Testing Metrics

Testing metrics are relationships that show a high positive correlation to that which is
being measured. Metrics are used in almost all disciplines as a basis of performing an
assessment of the effectiveness of some process. Some of the more common assess-
ments familiar to most people in other disciplines include:

■■ Blood pressure (medicine). Identifies effectiveness of the heart and can be
used to assess the probability of heart attack and stroke.

■■ Student aptitude test (education). Measures a student’s achievement in high
school studies.

■■ Net profit (accounting). Measures the success of the organization in profiting
within its field or industry.

■■ Accidents per day (safety). Measures the effectiveness of an organization’s
safety program.

A metric is a mathematical number that shows a relationship between two variables.
For example, the SAT score used by many colleges to determine whether to accept a

Step 7: Post-Implementation Analysis 577



student shows the student’s mastery of topics as compared to the total number of top-
ics on the examination. And gross profit is a number showing a relationship between
income and the costs associated to produce that income. 

The metric must then be compared to some norm or standard. For example, some-
one’s blood pressure is compared to the norm for that person’s age and sex. The met-
ric by itself is meaningless until it can be compared to some norm. The net profit metric
is expressed as a percent, such as 10 percent net profit. This does not take on its true
meaning until you know that other companies in that industry are making 20 percent,
10 percent, or 5 percent. Once the norm for the industry is known, then the gross profit
metric takes on more meaning.

The list that follows briefly explains 34 suggested metrics for evaluating application
system testing:

1. User participation (user participation test time divided by total test time).

Metric identifies the user involvement in testing.

2. Instructions coverage (number of instructions exercised versus total number

of instructions). Metric shows the number of instructions in the program that
were executed during the test process.

3. Number of tests (number of tests versus size of system tested). Metric identi-
fies the number of tests required to evaluate a unit of information services
work.

4. Paths coverage (number of paths tested versus total number of paths).

Metric indicates the number of logical paths that were executed during the 
test process.

5. Acceptance criteria tested (acceptance criteria verified versus total acceptance

criteria). Metric identifies the number of user-identified criteria that were eval-
uated during the test process.

6. Test cost (test cost versus total system cost). Metric identifies the amount of
resources used in the development or maintenance process allocated to testing.

7. Cost to locate defect (cost of testing versus the number of defects located in

testing). Metric shows the cost to locate a defect.

8. Achieving budget (anticipated cost of testing versus the actual cost of test-

ing). Metric determines the effectiveness of using test dollars.

9. Detected production errors (number of errors detected in production versus

application system size). Metric determines the effectiveness of system testing
in deleting errors from the application prior to it being placed into production.

10. Defects uncovered in testing (defects located by testing versus total system

defects). Metric shows the percent of defects that were identified as a result of
testing.

11. Effectiveness of test to business (loss due to problems versus total resources

processed by the system). Metric shows the effectiveness of testing in reducing
system losses in relationship to the resources controlled by the system being
tested.

578 Chapter 13



12. Asset value of test (test cost versus assets controlled by system). Metric shows
the relationship between what is spent for testing as a percent versus the assets
controlled by the system being tested.

13. Rerun analysis (rerun hours versus production hours). Metric shows the effec-
tiveness of testing as a relationship to rerun hours associated with undetected
defects.

14. Abnormal termination analysis (installed changes versus number of applica-

tion system abnormal terminations). Metric shows the effectiveness of testing
in reducing system abnormal terminations through maintenance changes.

15. Source code analysis (number of source code statements changed versus the

number of tests). Metrics show the efficiency of testing as a basis of the volume
of work being tested.

16. Test efficiency (number of tests required versus the number of system

errors). Metric shows the efficiency of tests in uncovering errors.

17. Startup failure (number of program changes versus the number of failures

the first time the changed program is run in production). Metric shows the
ability of the test process to eliminate major defects from the application being
tested.

18. System complaints (system complaints versus number of transactions

processed). Metric shows the effectiveness of testing and reducing third-party
complaints.

19. Test automation (cost of manual test effort versus total test cost). Metric shows
the percent of testing performed manually and that performed automatically.

20. Requirements phase testing effectiveness (requirements test cost versus

number of errors detected during requirements phase). Metric shows the
value returned for testing during the requirements phase.

21. Design phase testing effectiveness (design test cost versus number of errors

detected during design phase). Metric shows the value returned for testing
during the design phase.

22. Program phase testing effectiveness (program test cost versus number of

errors detected during program phase). Metric shows the value returned for
testing during the program phase.

23. Test phase testing effectiveness (test cost versus number of errors detected

during test phase). Metric shows the value returned for testing during the test
phase.

24. Installation phase testing effectiveness (installation test cost versus number

of errors detected during installation phase). Metric shows the value returned
for testing during the installation.

25. Maintenance phase testing effectiveness (maintenance test cost versus num-

ber of errors detected during maintenance phase). Metric shows the value
returned for testing during the maintenance phase.

Step 7: Post-Implementation Analysis 579



26. Defects uncovered in test (defects uncovered versus size of systems). Metric
shows the number of defects uncovered through testing based on a unit of work.

27. Untested change problems (number of tested changes versus problems attrib-

utable to those changes). Metric shows the effect of testing system changes.

28. Tested change problems (number of tested changes versus problems attribut-

able to those changes). Metric shows the effect of testing system changes.

29. Loss value of test (loss due to problems versus total resources processed by

system). Metric shows the result of testing in reducing losses as related to the
resources processed by the system.

30. Scale of ten (assessment of testing rated on a scale of ten). Metric shows peo-
ple’s assessment of the effectiveness of testing on a scale on which 1 is poor and
10 is outstanding.

31. Defect removal efficiency (assessment of identifying defects in the phase in

which they occurred). Metric shows the percentage of defects uncovered by the
end of a development phase versus the total number of defects made in that
single phase of development.

32. Defects made by testers (assesses the ability of testers to perform test

processes in a defect-free manner). Metric shows the number of defects made
by testers as a relationship to the size of the project in which they are testing.

33. Achieving schedule (anticipated completion date for testing versus actual

completion date of testing). Metric defines the ability of testers to meet their
completion schedule or checkpoints for the test process.

34. Requirements traceability (monitor requirements throughout the test

process). Metric shows at various points throughout the development process
the percent of requirements moved to the next phase that was correctly imple-
mented, requirements missing in the next phase, requirements implemented
incorrectly in the next phase, and requirements included in the next phase that
were not included in the previous phase.

Check Procedures

Work Paper 13-1 is a quality control checklist for this step. It is designed so that Yes
responses indicate good test practices, and No responses warrant additional investiga-
tion. A Comments column is provided to explain No responses and to record results of
investigation. The N/A column is used when the checklist item is not applicable to the
test situation.

Output

The bottom line of assessment is making application system testing more effective.
This is performed by a careful analysis of the results of testing, and then taking action

580 Chapter 13



to correct identified weaknesses. Facts precede action, and testing in many organiza-
tions has suffered from the lack of facts. Once those facts have been determined, action
should be taken.

The measurement first, action second concept is effective when the measurement process
is specific. The measurement must be able to determine the effect of action. For example,
the metric approach fulfills this requirement in that it shows very specific relationships.
Using this concept if a tester takes action by changing one of the metric variables, he or
she can quickly measure the result of that action.

Changing the variable in one metric can normally be measured by the change in
another metric. For example, if a tester detects a higher number of defects than desir-
able after the system goes operational, he or she should take action. The action taken
might be to increase the number of instructions exercised during testing. Obviously,
this increases test cost with the hopeful objective of reducing undetected defects prior
to operation. If it can be shown that increasing the number of instructions exercised
does, in fact, reduce the number of defects in an operation system, that action can be
considered desirable and should be extended. On the other hand, if increasing the
number of instructions executed does not reduce the number of defects undetected
prior to production, then those resources have not been used effectively and that action
should be eliminated and another action tried.

Using the measurement/action approach, the tester can manipulate the variables
until the desired result is achieved. Without the measurement, management can never
be sure that intuitive or judgmental actions are effective. The measurement/action
approach works and should be followed to improve the test process.

Guidelines

For the process of evaluating test effectiveness to be valuable, testers must recognize
that they make defects in performing the test processes. Testers need to understand the
nature of test defects and be able to name them. For example, a test defect might be
preparing incorrect test data.

Summary

This step concludes the recommended seven-step testing process. The results of this
step will be recommendations to improve the full seven steps within the testing
process. Not only must the seven testing steps be improved, but the steps taken to
improve the effectiveness of testing also require improvement.

The improvement process begins by first adopting the seven-step process, and con-
tinues by customizing the process to your IT organization’s specific needs. The experi-
ence gained will identify opportunities for improvement. Part Four addresses special
testing needs based on the use of specific technologies and approaches.

Step 7: Post-Implementation Analysis 581



582 Chapter 13

WORK PAPER 13-1 Post-Implementation Analysis Quality Control Checklist

YES NO N/A COMMENTS

1. Does management support the concept of
continuous improvement to test processes?

2. Have resources been allocated to improving the 
test processes?

3. Has a single individual been appointed 
responsible for overseeing the improvement of 
test processes?

4. Have the results of testing been accumulated 
over time?

5. Do the results of testing include the types of 
items identified in the input section of this 
chapter?

6. Do testers have adequate tools to summarize, 
analyze, and report the results of previous 
testing?

7. Do the results of that analysis appear 
reasonable?

8. Is the analysis performed on a regular basis?

9. Are the results of the analysis incorporated into 
improved test processes?

10. Is data maintained so there can be a 
determination as to whether those installed 
improvements do in fact improve the test 
processes?



PA R T

Four

Incorporating
Specialized Testing

Responsibilities





585

From a tester’s perspective, the software development methodology used significantly
affects software testing. Suppose, for instance, that one could develop a continuum of
software development methodologies from no methodology to a perfect methodology.
The perfect methodology produces no defects, thus negating the need for testing. In
contrast, with no methodology, one must exhaustively test to provide an opinion as to
whether to place the software in operation.

The reliability of the software development process also depends significantly on
whether the development team complies with the process. In many organizations, com-
pliance with the process is not required. Those organizations use a system development
methodology as a guideline, selecting those components the project staff wants to use
and deleting those components they do not want to use. The benefits of using the sys-
tem development methodology are significantly reduced when the methodologies are
not complied with during development.

How Much Testing Is Enough?

This section covers the following six topics, each of which can affect the amount of test-
ing required for software development:

■■ Methodology types

■■ Defining requirements

■■ Methodology maturity

Software Development
Methodologies 

C H A P T E R

14



■■ Project staff competency

■■ Project staff experience

■■ Configuration-management controls

This section explains why these six components affect the amount of testing required.
Following this discussion, another section allows the tester to assess these six compo-
nents and thus estimate the amount of testing required.

Software Development Methodologies

A software development methodology provides guidelines for how to build software. In
the early days of computing, software project managers had two responsibilities: to
develop a process for building software, and to follow that process to project completion.
Because all project leaders need a software development methodology, standardized
processes were developed. Some organizations create their own software development
methodology, whereas others acquire the methodology for building software from 
suppliers.

This section discusses the following topics:

■■ The “Overview” subsection identifies the challenges a project manager faces,
the guidelines for choosing a methodology, and the project manager’s responsi-
bilities when applying a specific methodology.

■■ The “Methodology Types” subsection concisely describes several common soft-
ware development methodologies.

■■ The “Software Development Life Cycle” subsection covers six common phases in
the software development life cycle (including responsibilities, external develop-
ment services, and documentation within those phases).

Overview

Many software project managers use the development methodology as a guideline
rather than a process that requires strict adherence. If these processes are not followed
as written, the developers have to create the process or parts of the process to build
software.

Therefore, software project managers should follow the developmental methodol-
ogy for these reasons:

■■ To focus the entire effort on building software, not on building a developmental
process

■■ To achieve consistency, which results because all projects use the developmental
methodology

■■ To improve the developmental methodology itself, which is possible only if the
organization gains experience (positive and negative) by following the method-
ology and learning from that experience

586 Chapter 14



When developmental methodologies are used only as guidelines, improvements to
the methodologies are unnecessary. However, when compliance is required, defect-
prone components are quickly replaced by more effective developmental processes.

Thousands of different methodologies are used to build software. No single devel-
opmental methodology has proven to be best. Most work, but some may not fit the
needs of the specific project. This creates a dilemma for the software project manager.

The solution is for an organization to standardize on one or a few development
methodologies. For example, they may have a development methodology for a water-
fall development effort, and another methodology for a prototype effort. Because of
the unique characteristics of specific projects, a standardized methodology may not be
effective for the whole project.

An agile development methodology is widely promoted. Although no definition of an
agile development methodology has been generally accepted, it means flexibility in
using the development methodology. In other words, the users have options when they
are applying an agile development methodology.

Most organizations believe that agile development is effective only in small projects
with a small number of developers. Currently, this is how most agile methodologies
are used. Some, however, believe that agile techniques can be used for larger projects.

Methodology Types

Many different methodologies are available for developing software. The project man-
ager must select the developmental methodology most appropriate to the project needs.
Each methodology has advantages and disadvantages. A concise description of the six
most common developmental methodologies follows.

Waterfall Methodology

The waterfall methodology is the oldest software development methodology. It follows
a logical progression of defining requirements, designing the system, building the sys-
tem, testing the system, and placing the system in operation. It is primarily used for the
development of systems that do batch processing. The waterfall methodology assumes
that at the end of the requirements phase, requirements for development are known.

Prototyping Methodology

The prototyping methodology assumes that the user does not have a rigid definition of
requirements. Prototyping applies in an “I’ll know it when I see it” environment. Pro-
totyping produces an operational methodology of the user’s requirements as currently
defined. The user can then see the system in operation and make changes for another
generation or prototype of the system. The development of prototype versions contin-
ues until the user believes it contains the requirements desired by the user. Most agree
that the prototype should not be put into operation as is, because a prototype method-
ology lacks the necessary controls to ensure correct and high-quality processing.

Rapid Application Development Methodology

The objective of rapid application development (RAD) is a quick turnaround time with
emphasis on requirements definition, which is accomplished by heavy user involvement

Software Development Methodologies 587



throughout all developmental phases. RAD makes extensive use of development tools.
Much of its effectiveness and reduced cycle time is due to rapid movement from one
phase of development to the next.

Spiral Methodology

The spiral methodology focuses on objectives, alternatives, constraints, and risks. The
spiral methodology, like RAD, heavily involves the user. At each part of the spiral devel-
opment, the risks, constraints, and alternative methods are evaluated. The objective is to
use the best possible system from a business perspective, although development may
require a longer development cycle than RAD.

Incremental Methodology 

The objective of the incremental methodology is to develop the system in parts (or
increments). It is effective when single parts of the system can be used immediately
without the full system being developed or when a particular part is critical to the suc-
cess of the overall system, but there’s some uncertainty as to whether that part can be
effectively developed. The incremental method can be effective in reducing the risk of
investing and building an entire system when the outcome is questionable.

The V Methodology

The V methodology is mostly associated with software testing. It develops two processes:
one for building the system, and one for testing the system. The two processes are then
interrelated as a V methodology. The V shows development on one side and testing on
the other side. For example, during the requirements stage of development, the software
acceptance testing side is developed. The V methodology assumes that approximately
one-half of the total development effort will be spent on testing. The V then integrates
testing so that testing is more effective and defects are uncovered earlier in the develop-
mental process.

Software Development Life Cycle

Although no single generally accepted developmental methodology exists, all devel-
opment methodologies share some attributes. The most common shared attributes are
the phases or steps required, the individuals involved in development and their roles
and responsibilities, and the deliverables produced. 

The following example represents a large software development process. Project
managers should have a general understanding of these common attributes. However,
project managers should not expect that all systems can be developed in accordance
with this specific software development life cycle (SDLC) methodology. This method-
ology is for explanatory purposes only. The following SDLC topics are discussed:

■■ Six common phases of the SDLC

■■ Roles and responsibilities

The phases described in this guide are intended to clarify the broad functions or
activities that occur during the development of an automated system. The following six
phases cover activities commonly performed.

588 Chapter 14



Phase 1: Initiation

The initiation phase begins with the recognition of a problem and the identification of a
need. During this phase, the need is validated, and alternative functional concepts to sat-
isfy the need are explored, recommended, and approved. The decision to pursue a solu-
tion must be based on a clear understanding of the problem, a preliminary investigation
of alternative solutions (including non–computer-based solutions), and a comparison of
the expected benefits versus the cost (including design, construction, operation, and
potential risks) of the solution. At this stage, the sensitivity of the data controlled by the
SDLC under consideration should be evaluated.

Phase 2: Definition

In this phase, the functional requirements are defined, and detailed planning for the
development of an operable SDLC is begun. Functional requirements and processes to
be automated are documented and approved by appropriate senior management
before an SDLC development effort is started. Requirements identification is iterative,
as is the analysis of potential risk, and involves those who identify and solve problems.
It is critical that internal control and specific security requirements be identified during
this process. Requirements may be, and commonly are, modified in later phases as a
better understanding of the problem is gained.

Also during the definition phase, a Project Plan is prepared that describes the
unique SDLC methodology to be used during the life of the particular project. It spec-
ifies a strategy for managing SDLC development, certification, and accreditation. It
defines goals and activities for all subsequent phases, and includes resource estimates
during each phase, intermediate milestones, and methods for design, documentation,
problem reporting, and change control. Resource planning for VV&T (verification, val-
idation, and testing) should be included here.

Phase 3: System Design

The activities performed during this phase result in a specification of the problem solu-
tion. The solution provides a specific high-level definition, including information
aggregates, information flows and logical processing steps, and all major interfaces
and their inputs and outputs. The purpose is to refine, resolve deficiencies in, define
additional details in, and package the solution. The design specifications describe the
physical solution (algorithms and data structures) in such a way that it can be imple-
mented in code with little or no need for additional analysis.

Organizations should define and approve security requirements prior to acquiring
or starting formal development of the applications. The VV&T goals are also identified
during this phase, and a plan for achieving these goals is developed. The Project Plan
and Risk Analysis are reviewed and revised as required given the scope and complex-
ity of the solution formulated.

Phase 4: Programming and Testing

This phase results in programs that are ready for testing, evaluation, certification, and
installation. Programming is the process of implementing the detailed design specifi-
cations into code. Completed code then undergoes unit testing, as described in the
revised VV&T Plan (also completed in this phase), and integration and system testing

Software Development Methodologies 589



in Phase 5. User and Maintenance Manuals are prepared during this phase, as is a pre-
liminary Installation Plan that specifies the approach to, and details of, the installation
of the SDLC.

Phase 5: Evaluation and Acceptance

In this phase, integration and system testing of the SDLC occurs. For validation pur-
poses, the system should be executed on test data, and the SDLC field tested in one or
more representative operational sites.

Phase 6: Installation and Operation

The purpose of this final life cycle phase is to:

■■ Implement the approved operational plan, including extension or installation
at other sites.

■■ Continue approved operation.

■■ Budget adequately.

■■ Control all changes and maintain or modify the SDLC during its remaining life.

Problem reporting, change requests, and other change-control mechanisms are used
to facilitate the systematic correction and evolution of the SDLC. In addition, periodic
performance measurement and evaluation activities are performed to ensure that the
system continues to meet its requirements in a cost-effective manner in the context of a
changing system environment. These reviews may be conducted by either the quality
assurance (QA) staff or the audit unit or both.

Roles and Responsibilities

Software project managers must recognize that organizational structures vary signifi-
cantly from organization to organization. The functions covered in this section are
described as “job-title-related” functions so that organizations can look at them as spe-
cific job titles, if they have an equivalent job, or as functions that must be performed
regardless of whether the specific job exists. The list is not meant to be all-inclusive, nor
does it preclude smaller organizations or organizational units from combining partici-
pants or roles.

The rationale for describing the participants is to identify the role of each key 
participant. The project manager should verify that the respective SDLC participants
have each performed his or her appropriate role. The following list describes all the
participants:

■■ Sponsor/user. The sponsor/user is responsible for initially identifying the need
that the SDLC must meet. The sponsor/user must identify various alternative
solutions to the problem and determine the feasibility and cost/benefit of the
various alternatives. The sponsor/user also conducts or oversees a Risk Analy-
sis to assess the potential vulnerabilities of the system or application under
development. The analysis must be continually updated or revised during
the SDLC to ensure the inclusion of appropriate internal controls and security
safeguards. 

590 Chapter 14



The sponsor/user is ultimately responsible for accepting (accrediting) the sys-
tem as complete, meeting its requirements, and being ready for operational
use. Depending on the particular system, the sponsor/user may be located at
various levels in the organization.

■■ Project manager. The project manager is responsible for seeing that a system
is properly designed to meet the sponsor/user’s needs, and is developed on
schedule. The project manager is responsible for seeing that all system docu-
mentation is prepared as the system is being developed. If the system is devel-
oped either in-house or by a contractor, the project manager is responsible for
certifying that the delivered system meets all technical specifications, including
security, and obtaining technical assistance from the IT manager as necessary.

■■ System security specialist (SSS). This individual is responsible, at the program
or operational level, for ensuring that a system complies with the organization’s
computer/system security policy. The SSS approves design reviews to ensure
that 1) the design meets approved security specifications and system tests, and
2) administrative, physical, and technical requirements are adequate prior to
installation of the system.

■■ Internal control specialist (ICS). This individual is responsible, at the opera-
tional level, for seeing that a system complies with the organization’s internal
control policy. The ICS ensures that a system meets basic standards for docu-
mentation, recording of transactions, execution of transactions, separation of
duties, access to resources, and all other internal control requirements.

■■ Contracting officer. The contracting officer is responsible for awarding and
managing vendor contracts to provide part or all of the system development
activity that is not in-house. The contract might also provide for the procure-
ment of system software required by a new application. The contracting officer,
in either case, is responsible for seeing that the vendor or contractor complies
with the terms of the contract and that the deliverables are provided on time.

■■ Information technology (IT) manager. The IT manager is the technical individ-
ual responsible for the automatic data processing (ADP) installations and oper-
ations of an organization’s programs (i.e., they are responsible for the operation
of the data processing center and the management of the systems analysts, 
programmers, and so on). The IT organization may actually develop parts
of the SDLC or may provide technical support to the project manager and
sponsor/user during the system’s life cycle.

■■ Quality assurance (QA) specialist. The operations-level QA staff is responsible
for assuring the sponsor/user that an application system is developed in accor-
dance with the system’s stated objectives, contains the needed internal controls
and security to produce consistently reliable results, and operates in confor-
mance with requirements and data processing procedures. Quality assurance,
as defined in the SDLC matrix, is the function that establishes the responsibili-
ties and methods used to ensure quality in data processing products. The QA
specialist may or may not be personally involved in establishing these respon-
sibilities and methods. 

Software Development Methodologies 591



The QA charter should allow for independent reviews. QA staff should actively
participate in reviewing the development of new systems or applications and the
significant modification of existing systems. (Coordination with security/audit
and VV&T participants is essential to avoid duplication of effort.) In addition,
the QA staff should ensure data integrity of systems. The presence and effective
functioning of the QA staff will determine the nature and extent of audit involve-
ment, in that they commonly perform similar functions.

Defining Requirements

Software projects require that requirements be well defined, both for the system’s ana-
lysts and the users. The objective of this section is to help develop a requirements defi-
nition that meets the needs of the software project. This section explains how to identify
what is a requirement, as well as what is not a requirement.

The following are working definitions of requirements as used in a software project:

■■ Requirement. An attribute or characteristic to be possessed by a product or
service

■■ Requirements definition. A process by which customers and producers reach
an understanding of requirements

■■ Statement of requirements. A specification deliverable produced as a result of
a requirements definition

These definitions identify three unique aspects of requirements. The requirements

definition is the process, a predefined series of tasks that leads to a predefined deliver-
able, which the IT analyst and the customer go through to identify the requirements.
These requirements are then documented in the deliverable known as the statement of

requirements.

Categories

The following four requirements categories provide a structure for discussing require-
ments. These categories do not represent rigid boundaries, and most people will have
legitimate concerns in all four while predominantly concentrating their efforts in one.

■■ Business requirements. The customers for the business requirements are the
business users. Because we’re talking about what the system “must do,” it’s
the business users who are uniquely positioned to define these requirements.
The IT staff, to the extent that they have learned or are learning the business,
can assist in clarifying and defining these requirements; but only active busi-
ness users can own them. The list of requirements includes all of the needs and
wants of the user community. Although the definition of these requirements is
generally presented in a “best-case” scenario, the priority of these requirements
is sorted so that needs are addressed before nice-to-haves.

592 Chapter 14



■■ Implementation requirements. The customers for the implementation require-
ments are IT’s management because they are responsible for providing future
production services to the business community. These are the things that the sys-
tem “must be,” including day-to-day production service levels as well as train-
ing, enhancement, and maintenance activity; and disaster recovery and capacity
planning. Although the business requirements present the best-case scenario,
implementation requirements generally identify the “target-case” scenario. Busi-
ness users often express direct concerns about these implementation specifics.
The strength of this concern is usually directly proportional to the level of imple-
mentation problems associated with other application systems already in use.

■■ Constraint requirements. Constraints are generally the requirements of life
placed on the project from the outside. The customers for these requirements
are management—executive, line business, and information systems—who are
allocating resources to the project effort. Typical constraint requirement exam-
ples include budgets, schedules, and operating environments. These realities
generally force the “worst-case” scenario.

■■ Enterprise-wide requirements. Requirements applicable to all software sys-
tems, such as security.

Attributes

This subsection discusses requirement attributes from three different perspectives: a
systems analyst perspective, a tester perspective, and international industry standards.

Desired Attributes: A Systems Analyst Perspective

Attributes of a requirement do not define what something “should do.” Attributes
define what something “should be.” Desired attributes of a requirement define the
positive properties that a requirement should have, such as the following:

Clear

Complete

Consistent

Correct

Modifiable

Pure

Relevant

Testable

Traceable

Usable

Later, we discuss project-verification strategies that focus on ensuring that require-
ments reasonably embody these attributes.

Software Development Methodologies 593



Requirements Measures: A Tester’s Perspective

Verifying and validating requirements is ultimately a subjective assessment based on
the agreement of all stakeholders. By providing measurement scales that focus on dif-
ferent aspects of requirements quality, the subjective assessments can be made more
objective. Each requirements measure isolates a single aspect of the requirements so
that quantitative assessments can be collected and prioritized.

■■ Criticality. The requirement can be tied directly to an organizational goal or
critical success factor. It’s not just a nice-to-have. Failure to conform to the
requirement would hurt the business.

■■ Measurability. It’s possible to tell whether the requirement is being satisfied.
Reasonable people would not disagree about the level of conformance.

■■ Controllability. It’s possible to differentiate systemic from random variation in
the processes surrounding the requirement. This means that we can identify
future nonconformance and categorize them according to frequency and severity.

■■ Completeness. All items needed for the specification of the requirements of the
solution to the problem have been identified.

■■ Correctness. Each item in the requirements specification is free from error. 

■■ Clearness. Each item in the requirements specification is exact and not vague.
There is a single interpretation of each item in the requirements specification;
the meaning of each item in the requirements specification is understood; the
specification is easy to read.

■■ Consistency. No item in the requirements specification conflicts with another
item in the specification.

■■ Relevance. Each item in the requirements specification is pertinent to the prob-
lem and its solution.

■■ Testability. During program development and acceptance testing, it will be
possible to determine whether the item in the requirements specification has
been satisfied.

■■ Traceability. Each item in the requirements specification can be traced to its ori-
gin in the problem environment.

■■ Pureness. The requirements specification is a statement of the requirements that
must be satisfied by the problem solution, and is not obscured by proposed
solutions to the problem.

■■ Usability. Each item can be understood by its user and contains the information
needed by the user.

■■ Modifiability. The requirements specification is expressed in such a way that
each item can be changed without dramatically affecting other items.

International Standards 

The quality of a requirement can be measured on a continuum. A standard that dictates
that every requirement must be defined to a level that supports statistical process control

594 Chapter 14



would be unreasonable. However, we should strive to define requirements that support
the most rigorous review possible.

Several internationally recognized organizations are currently developing and pub-
lishing standards for the requirements definition process. One standard described is
the Institute of Electrical and Electronics Engineers (IEEE) IEEE1233: Guide for Develop-

ing System Requirements Specification.

The IEEE has several process standards that relate to requirements. Three standards
are explained here:

■■ IEEE 1233 (4.2): Properties of System Requirements Specifications (SRS)

■■ Unique Set. Each requirement is stated only once.

■■ Normalized. Requirements should not overlap; that is, they shall not refer
to other requirements or capabilities of other requirements.

■■ Linked Set. Explicit relationships should be defined among individual
requirements to show how the requirements are related to form a complete
system.

■■ Complete. An SRS should include all the requirements identified by the
customer, as well as those needed for definition of the system.

■■ Consistent. The SRS content should be consistent and noncontradictory in
the level of detail, style of statements, and presentation of material.

■■ Bounded. The boundaries, scope, and context for the set of requirements
should be identified.

■■ Configurable. Versions should be maintained across time and instances of
the SRS.

■■ IEEE 1233 (4.3.1): Organizing Requirements

■■ Identify requirements that are derived from other requirements.

■■ Organize requirements of different levels of detail into their appropriate
levels.

■■ Verify the completeness of the set of requirements.

■■ Identify inconsistencies among requirements.

■■ Clearly identify the capabilities, conditions, and constraints for each
requirement.

■■ Develop a common understanding with the customer of the purpose and
objectives of the set of requirements.

■■ Identify requirements that will complete the SRS.

■■ IEEE 1233 (4.4): Intended Use

■■ During systems design, requirements are allocated to subsystems, hard-
ware, software, operations, and other major components of the system.

■■ During the system build, the SRS is used to write appropriate system verifi-
cation plans for all components.

■■ During implementation, test procedures are defined using the SRS.

Software Development Methodologies 595



Methodology Maturity

Many organizations have developed classification schemes to evaluate the maturity of
a software development methodology. One of the most successful was developed by
the Software Engineering Institute (SEI) under a grant from the U.S. Department of
Defense. The SEI methodology has itself matured over time and is now referred to as
the CMMI (Capability Maturity Model Integrated).

The SEI methodology has four defined levels of maturity and one undefined level.
For the defined levels, SEI has described the “focus” for achieving that particular level
of maturity. 

Note that the undefined level of maturity is level 1, referred to as Initial. There are no
requirements for level 1; everyone who develops software begins at this level. The SEI
defines what must be achieved as levels 2, 3, 4, and 5. The focus of levels 2, 3, 4, and 5
follows:

■■ Level 2: Managed. Provide more consistency and less variability in software
systems by initiating good project-management processes.

■■ Level 3: Defined. At this level, the organization’s attempts to minimize process
variability and maximize the effectiveness and efficiency of developed soft-
ware. At level 3, the processes are standardized, and a high level of compliance
to process is required. 

■■ Level 4: Quantitatively managed. At this level, the processes are mature
enough that they can produce reliable and quantitative data. Therefore, man-
agement can rely on the quantitative data produced by the developmental
processes, and therefore can take action on the quantitative data.

■■ Level 5: Optimizing. At this level, the IT organization can build software at
the cost it says it can build it for, and implement it by the scheduled imple-
mentation date. Having this level of processing sophistication enables the
organization to innovate new and unique ways to build software more effec-
tively and efficiently.

Table 14-1 shows the process areas for each level that need to be developed and
deployed before that level can be considered mature. For example, level 2 requires con-
figuration management, level 3 risk management, level 4 quantitative project manage-
ment, and level 5 causal analysis and resolution. Note that it is not necessary to have
all process areas fully proficient to be evaluated as being at a particular maturity level.

NOTE The SEI model is continually maturing; for an updated version, visit

www.sei.cmu.edu.

The methodology also is not meant to imply that the process areas only begin at the
level at which they are defined. For example, validation or dynamic testing would be
performed at levels 1 and 2. It is listed at level 3 to indicate that a process area such as

596 Chapter 14



validation itself is a mature process that can be relied on. Validation at levels 1 and 2
would not be expected to be nearly as effective as validation at level 3.

Another example is quantitative project management occurring at level 4. This does
not mean that project managers do not use quantitative data until level 4. Exactly the
opposite is true. At level 1, project managers use quantitative data for budgeting and
scheduling. What it does mean is that the processes are not mature enough to produce
reliable and valid data for use in managing projects. If project managers rely exclu-
sively on the quantitative data produced at levels 1 and 2, they probably will make
many erroneous project decisions.

Table 14-1 CMMI SS Version 1.1 Staged Representation: Process Areas by Maturity Level

LEVEL FOCUS PROCESS AREA

5 Continuous Organizational Innovation 
Optimizing Process Improvement and Deployment

Causal Analysis and Resolution

4 Quantitative Organizational Process Performance
Quantitatively Management Quantitative Project Management
Managed

3 Process Requirements Development
Defined Standardization Technical Solution

Product Integration
Verification
Validation
Organizational Process Focus
Organizational Process Definition
Organizational Training
Integrated Project Management
Risk Management
Integrated Teaming
Integrated Supplier Management
Decision Analysis and Resolution
Organizational Environment

for Integration

2 Basic Project Requirements Management
Managed Management Project Planning

Project Monitoring and Control
Supplier Agreement Management
Measurement and Analysis
Process and Product Quality Assurance
Configuration Management

1 No Requirements; 
Initial No Specific Process Areas

Software Development Methodologies 597



Competencies Required

Project management is the application of skills, tools, and techniques to meet success-
fully or exceed the objectives of a project in the specified time frame at a specified cost.
It aims to meet the needs of the client. Another view is that software development
refers to the definition, planning, control, and conclusion of a project.

To understand competencies needed to effectively develop software, examine the
skills associated with successful software project managers as defined by the Software
Quality Institute. The Quality Assurance Institute has also defined skills specifically
needed by software developers and skills specifically needed by software testers. This
section has divided all these skills into the following five categories:

■■ Process-Selection Skills

Assessing processes

Awareness of process standards

Defining the product 

Evaluating alternative processes

Managing requirements

Managing subcontractors

Performing the initial assessment

Selecting methods and tools

Tailoring processes

Tracking product quality

Understanding development activities

■■ Project-Management Skills

Building a work breakdown structure

Documenting plans

Estimating cost

Estimating effort

Managing risks

Monitoring development

Scheduling

Selecting metrics

Selecting project-management tools

Tracking processes

Tracking project progress

598 Chapter 14



■■ People-Management Skills

Appraising performance

Handling intellectual property

Holding effective meetings

Interaction and communication

Leadership

Managing change

Negotiating successfully

Planning careers

Presenting effectively

Recruiting

Selecting a team

Team building

■■ Building Software Skills

Understanding development methodologies

Initiating software projects

Defining software requirements

Designing systems

Building systems

Developing user documentation and training

Installing software systems

Changing software systems

■■ Testing Software Systems

Developing software testing principles and concepts

Building the test environment

Managing the test project

Test planning

Executing the test plan

Monitoring test status, analysis, and reporting

Testing user acceptance 

Testing software developed by outside organizations

Testing software controls and the adequacy of security procedures

Testing new technologies

Software Development Methodologies 599



Staff Experience

The project staff is defined as the stakeholders who have a vested interest in the success
of the project. Primarily this includes the software development staff and the user staff.

A good process used by an untrained individual may not work; and if it does work,
it might not be nearly as efficient or effective as that process when used by someone
with experience. For example, if you were trained in how to change a tire on your car,
you could perform that process effectively and efficiently. However, if you’ve not been
trained, you may have difficulty finding the jack, the tire, and other tools necessary for
the tire-change process. An experienced tire changer may be able to change a tire in 10
minutes; the inexperienced tire changer may take an hour, even though the process is
mature and fully defined in the owner’s manual. 

Experienced user staff should be knowledgeable in the software development
methodology and their role and responsibilities in the building of software systems.
Development project staff members need to be experienced in the business of the users
and the processes and tools used to build the software.

No single method can fully assess experience. Some criteria to evaluate experience
are as follows:

Number of software systems built

Training courses attended

Like work performed through many development cycles

Years of experience

Professional certifications

Configuration-Management Controls

Configuration management (CM) is one of the components of software project manage-
ment that differentiates software project management from general project management.
There are similarities in controlling change, but CM involves much more. It includes
maintaining an inventory of the items included in the total project configuration.

Basic CM Requirements

Project managers must implement an internal CM system for the control of all config-
uration documentation, physical media, and physical parts representing or comprising
the product. For software, the system must address the evolving developmental con-
figuration and support environments (engineering, implementation, and test) used to
generate and test the product. The product manager’s CM system must consist of the
following elements:

Configuration identification

Configuration control

Configuration-status accounting

Configuration audits

600 Chapter 14



Configuration Identification

Configuration identification (CI) includes the following:

■■ Selection of CIs

■■ Determination of the types of configuration documentation required for each CI

■■ Issuance of numbers and other identifiers affixed to the CIs

■■ Technical documentation that comprises the CIs’ configuration documentation

As a part of the configuration identification process, the project manager must deter-
mine the documentation that will be used to establish the configuration baseline(s)
required by the contract.

The project manager must also identify the developmental configuration for each CI.

Configuration Control

The project manager must apply internal configuration-control measures to the configu-
ration documentation for each CI. The project manager must apply configuration-control
measures to each baselined CI, and its configuration documentation, in accordance with
this standard. The configuration process must:

■■ Ensure effective control of all CIs and their approved configuration 
documentation

■■ Provide effective means, as applicable, for the following:

■■ Proposing changes to CIs.

■■ Requesting deviations or waivers pertaining to such items.

A waiver is a written authorization to accept an item, which during manu-
facture, or after having been submitted for inspection or acceptance, is
found to depart from specified requirements, but nevertheless is considered
suitable for use “as is” or after repair by an approved method.

■■ Preparing notices of revision.

■■ Preparing specification-change notices.

■■ Ensure implementation of approved changes

Configuration-Status Accounting

The project manager must implement a configuration-status accounting (CSA) system.
As a minimum, the CSA system must:

■■ Identify the current approved configuration documentation and identification
number associated with each CI.

■■ Record and report the status of proposed engineering changes from initiation
to final approval or contractual implementation.

■■ Record and report the results of configuration audits to include the status and
final disposition of identified discrepancies.

■■ Record and report the status of all critical and major requests for deviations
and waivers that affect the configuration of a CI.

Software Development Methodologies 601



■■ Record and report implementation status of authorized changes.

■■ Provide the traceability of all changes from the original base-lined configura-
tion documentation of each CI.

■■ Report the affectivity and installation status of configuration changes to all CIs
at all locations.

Configuration Audits

Configuration audits should be performed before establishing a product baseline for
the item. A configuration audit verifies that the information in the CM system is com-
plete and in compliance with the CM standards.

Planning

The project manager must plan a CM process in accordance with the requirements of
this standard, tailored appropriately for the particular CI(s), their scope and complex-
ity, and the contracted phase(s) of the life cycle. Planning must be consistent with the
objectives of a continuous improvement process, which includes the analysis of neces-
sary means to prevent reoccurrence. The project manager’s CM planning must include
the following:

■■ The objectives of the CM process and of each applicable CM element

■■ The CM organization and organizational relationships

■■ Responsibilities and authority of CM managers

■■ CM resources, such as tools, techniques, and methodologies

■■ Coordination with internal and external organizations.

■■ CM policies, processes, procedures, methods, records, reports, and forms

Data Distribution and Access

The project manager must assign distribution codes in accordance with organizational
standards. Access to data must be limited in accordance with the applicable distribu-
tion codes and by data rights, security requirements, and data status level.

CM Administration

The following subsections cover the administrative activities performed to fulfill the
CM responsibilities.

Project Leader’s CM Plan

The project leader’s CM plan must be in accordance with the IT standards and describe
the processes, methods, and procedures to be used to manage the functional and phys-
ical characteristics of the assigned CI(s). The project leader must:

602 Chapter 14



■■ Develop the project leader’s CM plan

■■ Submit the plan and changes to the IT organization CM board

■■ Implement the activities required by this standard in accordance with the
approved plan

Work Breakdown Structure

The project leader must ensure traceability of CIs to the Work Breakdown Structure
(WBS) elements.

Technical Reviews

The project leader must ensure that the CM representatives participate in all technical
reviews conducted in accordance with IT standards. The role of CM in the technical
review process requires that you do the following:

■■ Evaluate the adequacy of the type and content of the configuration 
documentation.

■■ Ascertain that the configuration documentation is under internal configuration
control.

■■ Determine whether problems and action items identified at the review will be
addressed by the project manager.

Configuration Identification

The following tasks are those configuration-identification activities performed to fulfill
the CM responsibilities.

The purpose of configuration identification is to incrementally establish and main-
tain a definitive basis for control and status accounting for a CI throughout its life cycle.
To accomplish configuration identification, the project leader must, for both hardware
and software:

■■ Select CIs.

■■ Select configuration documentation to be used to define configuration baselines
for each CI.

■■ Establish a release system for configuration documentation.

■■ Define and document interfaces.

■■ Enter each item of configuration documentation and computer software source
code into a controlled developmental configuration.

■■ Establish the functional, allocated, and product baselines at the appropriate
points in the system or CI life cycle, upon contractual implementation of the
applicable configuration documentation, and in accordance with contract
requirements.

Software Development Methodologies 603



■■ Assign identifiers to CIs and their component parts and associated configura-
tion documentation, including revision and version numbers where appropri-
ate. Assign serial and lot numbers, as necessary, to establish the CI for each
configuration of each item of hardware and software.

■■ Ensure that the marking and labeling of items and documentation with their
applicable identifiers enables correlation between the item, configuration docu-
mentation, and other associated data.

■■ Ensure that applicable identifiers are embedded in the source and object code.

CI Selection

The project leader must select CIs. Any item requiring logistics support or designated
for separate procurement is a CI. However, all CIs associated with any given develop-
ment project are not necessarily designated as CIs at the same point in time. Computer
hardware will be treated as CIs. Computer software will be treated as CIs throughout
the life of the process regardless of how the software will be stored.

Document Library

The project leader must establish a documentation library and implement procedures
for controlling the documents residing within the documentation library.

Software Development Library

The project leader shall establish a software development library and implement pro-
cedures for controlling the software residing within the software development library.

Configuration Baselines

CM establishes baselines to enable project leaders to measure change(s) from the pro-
gressive definition and documentation of the requirements, and design information
describing the various CIs designation for a system.

Initial Release

Configuration documentation is first released to the involved stakeholders for their
review and use. The initial release includes the incorporation of related information
into the configuration-status accounting information system.

Software Marking and Labeling

The marking and labeling of software will be as follows:

■■ Software identifier and version (and computer program identification number
where applicable) will be embedded in the source code header.

■■ Each software medium used must be marked and labeled. For example, for
magnetic disk media containing copies of tested software entities, each
medium must be marked with a label that lists cross-references to applicable
software identifiers of the entities it contains.

604 Chapter 14



■■ Media copy numbers must distinguish each copy of the software media from
its identical copies. Each time a new version of the software is issued, new copy
numbers, starting from 1, must be assigned.

Interface Requirements

The interface requirements for the system and its configuration items must be identi-
fied as a part of the system process. Those interface requirements must be controlled by
the configuration-control board during the development of the system.

Configuration Control

Configuration control is the systematic proposal, justification, evaluation, coordination,
and approval or disapproval of proposed changes. The implementation of all approved
changes must be controlled. Each approved and implemented change will result in a
new baseline being established.

The project leader must implement a configuration-control function that ensures the
following:

■■ Regulation of the flow of proposed changes

■■ Documentation of the complete impact of the proposed changes

■■ Release only of approved configuration changes into configuration identifica-
tions and their related configuration documentation

Configuration control begins with the establishment of a functional baseline and
continues as further configuration baselines are established. Configuration control
continues throughout the life cycle of the configuration identification.

Measuring the Impact of the Software
Development Process

It is important for testers to measure the impact that using the software development
methodology has on the resources and time needed to test effectively. If testers believe

that a proposed test schedule and budget is inadequate, that might not result in increased
resources or time. However, when testers know that inadequate time or resources have
been allocated to testing, they can redirect the test effort to the high-risk components of
the software.

Work Paper 14-1 is an assessment worksheet for evaluating the six components of
software development that affect software testing. Be aware, however, that there are
more than six components that affect testing. However, statistics show that if you pick a
limited number of the “right” components, they will pull other components in the same
direction. What this means is that the assessment questions for staff competency do not
cover all the required competencies. However, if these are the right components of staff
competency, the staff should also have the other related components at the same time.

Software Development Methodologies 605



When answering the items on Work Paper 14-1, respond with either Yes or No. A Yes
response means that the item is there and has shown some positive results. For exam-
ple, an item in the competency of project staff asks whether the staff has competency in
following and using the testing process. To answer Yes, a testing process must be in
place. One or more individuals on the project staff must be competent in using that test-
ing process, and experience in using the process has demonstrated that it is effective.

For each of the five components that affect the software development methodology,
there are five questions. At this point, complete Work Paper 14-1 and answer the 30
questions on that work paper.

Upon completion of the self-assessment on Work Paper 14-1, post the results to
Work Paper 14-2 (“Analysis Footprint of the Impact of the Software Development
Methodology on Testing”). Total the number of Yes responses for each component. Put
a dot on the line (for each of the six components) that represents the total number of Yes
responses for that component. For example, if you answered Yes three times for the
type of software development processes, place a dot on line number 3 for the type of
process.

After you have posted all six scores to Work Paper 14-2, connect the six dots. You now
have the footprint of the impact of the software development methodology on testing.

The footprint shows which of the components have the most impact on software
testing. Impact is represented by the items that could not be answered Yes. In the exam-
ple of posting the type of process, three Yes answers were presumed. The impact
would be the two No responses.

Ideally, the footprint would be the number 5 line. Any time the footprint is not pushed
out to the 5 ring, there is a negative impact from the components of the software devel-
opment methodology. 

Noting a negative impact, the software testing group has two options. One is to
eliminate the item with the “No” response; the second is to minimize the negative
impact. For example, if the project team does not have anyone competent in software
testing, that can be addressed by adding someone to the team who has testing compe-
tency. The second way to address a weakness is to increase the amount of testing
resources or extend the schedule.

Summary

This chapter had two major objectives: to explain to testers how attributes of the soft-
ware development methodology can impact the resources and schedule needed for
effective and efficient software testing and to provide an instrument to measure that
impact so testers could make necessary adjustments to resources and schedules. Note
that after the self-assessment is has been completed, an experienced tester must ana-
lyze the results of that self-assessment and make realistic adjustments to the budgeted
testing resources and schedule. 

606 Chapter 14



WORK PAPER 14-1 Self-Assessment of the Components of Software
Development That Impact Testing

YES NO

Type of Development Process

1. Has a process been developed that identifies the criteria that will be used to
select the most appropriate type of software development methodology for
the software project being developed?

2. Does the developmental methodology selected have quality-control
processes integrated into the development methodology?

3. Does the development methodology have both entrance and exit criteria?

4. Will management require compliance to the developmental methodology
selected?

5. Does the developmental methodology selected have the appropriate
management checkpoints so that go/no go decisions can be made at those
checkpoints?

Specifying Requirements

1. Is there a standard for requirements that definitively defines the attributes
of a requirement?

2. If so, is that standard consistent with good practices and industry standards
for requirement definition?

3. Are there enterprise-wide requirements, such as security, privacy, and
control, that will be incorporated into all software projects?

4. Is there a process that will trace requirements from the requirements phase
through implementation of the software project?

5. Is there a process in place that states that the requirements-definition phase
of software development will not be complete until someone attests that the
requirements are testable?

Maturity of the IT Processes

1. Does your organization have all of the processes specified for CMMI level 2?

2. Does your organization have all of the processes specified for CMMI level 3?

3. Does your organization have all of the processes specified for CMMI level 4?

4. Does your organization have all of the processes specified for CMMI level 5?

5. Does your organization have a process in place that will continuously
improve the processes specified in the CMMI maturity methodology?

Competency of the Project Staff

1. Is the project staff competent in selecting the software development
methodology used for building a specific software system?

2. Is the project staff competent in software testing?

3. Is the project staff competent in the procedures to be followed in
developing software?

4. Is the software project staff competent in managing people?

5. Is the software project staff competent in managing projects?

(continues)

Software Development Methodologies 607



WORK PAPER 14-1 (continued)

YES NO

Experience of the Project Staff

1. Is the project staff experienced and knowledgeable in the business of
the user?

2. Is the user associated with the project competent in the methodology
used by the IT organization to develop software?

3. Will the users be involved throughout the entire software development
methodology as needed, and will they be involved when needed?

4. Is the project staff experienced in using the selected software
development methodology?

5. Have one or more members of the project staff been recognized for their
experience and competency by being awarded a professional certification?

Configuration-Management Controls

1. Does the configuration management consist of these four elements:
Configuration identification
Configuration control
Configuration-status accounting
Configuration audits

2. Are there internal configuration-control measures to control each
configuration item?

3. Has a configuration-management plan been developed (or will one be)
for the software project being developed?

4. Does the configuration-management system include a version control?

5. Does the configuration-management system restrict access to 
authorized individuals to protect data rights, security requirements, 

and data-status level?

608 Chapter 14



WORK PAPER 14-2 Analysis Footprint of the Impact of the Software
Development Methodology on Testing

5

4

3

2

1

Staff
Competency

Staff
Experience

Configuration
Management

Type of
Process

Requirements

Process
Maturity

Software Development Methodologies 609





611

The success of a client/server program depends heavily on both the readiness of an
organization to use the technology effectively and its ability to provide clients the
information and capabilities that meet their needs. If an organization is not ready to
move to client/server technology, it is far better to work on changing the organization
to a ready status than on installing client/server technology. Preparing the organiza-
tion for client/server technology is an important component of a successful program,
regardless of whether it is an organization-wide client/server technology or just a
small program. If the organization is ready, the client/server approach should be eval-
uated prior to testing the client systems.

Overview

Figure 15-1 shows a simplified client/server architecture. There are many possible varia-
tions of the client/server architecture, but for illustration purposes, this is representative.

In this example, application software resides on the client workstations. The applica-
tion server handles processing requests. The back-end processing (typically a mainframe
or super-minicomputer) handles processing such as batch transactions that are accumu-
lated and processed together at one time on a regular basis. The important distinction to
note is that application software resides on the client workstation.

Testing Client/Server 
Systems

C H A P T E R

15



Figure 15-1 Client/server architecture.

Figure 15-1 shows the key distinction between workstations connected to the main-
frame and workstations that contain the software used for client processing. This dis-
tinction represents a major change in processing control. For this reason, client/server
testing must first evaluate the organization’s readiness to make this control change, and
then evaluate the key components of the client/server system prior to conducting tests.
This chapter will provide the material on assessing readiness and key components. The
actual testing of client/server systems will be achieved using the seven-step testing
process.

Concerns

The concerns about client/server systems reside in the area of control. The testers need
to determine that adequate controls are in place to ensure accurate, complete, timely,
and secure processing of client/server software systems. The testers must address the
following five concerns:

1. Organizational readiness. The culture is adequately prepared to process data
using client/server technology. Readiness must be evaluated in the areas of
management, client installation, and server support.

Client Workstations

Application Server

Programs
transactions and
requests to the

database.

Back-end Processing

Existing systems
that process
transactions,

perform batch
processing, and

database processing.

Platform-
independent GUI
processing.

612 Chapter 15



2. Client installation. The concern is that the appropriate hardware and software
will be in place to enable processing that will meet client needs.

3. Security. There is a need for protection of both the hardware, including resi-
dence software, and the data that is processed using that hardware and soft-
ware. Security must address threats from employees, outsiders, and acts of
nature.

4. Client data. Controls must be in place to ensure that everything is not lost,
incorrectly processed, or processed differently on a client workstation than in
other areas of the organization.

5. Client/server standards. Standards must exist to ensure that all client worksta-
tions operate under the same set of rules.

Workbench

Figure 15-2 provides a workbench for testing client/server systems. This workbench
can be used in steps as the client/server system is developed or concurrently after the
client/server system has been developed. The workbench shows four steps, as well as
the quality control procedures necessary to ensure that those four steps are performed
correctly. The output will be any identified weaknesses uncovered during testing.

Figure 15-2 Workbench for testing client/server systems.

DO CHECK

Process

Performed

Correctly

REWORK

Assess
Readiness

Task 1

Assess Key
Components

Task 2

Test
System

Task 3

Client/Server
System

Test
Report

Testing Client/Server Systems 613



Input

The input to this test process will be the client/server system. This will include the
server technology and capabilities, the communication network, and the client work-
stations that will be incorporated into the test. Because both the client and the server
components will include software capabilities, the materials should provide a descrip-
tion of the client software, and any test results on that client software should be input
to this test process.

Do Procedures

Testing client/server software involves the following three tasks:

■■ Assess readiness

■■ Assess key components

■■ Assess client needs

Task 1: Assess Readiness

Client/server programs should have sponsors. Ideally, these are the directors of infor-
mation technology and the impacted user management. It is the responsibility of the
sponsors to ensure that the organization is ready for client/server technology. How-
ever, those charged with installing the new technology should provide the sponsor
with a readiness assessment. That assessment is the objective of this chapter.

The readiness assessment proposed in this chapter is a modification of the readiness
approach pioneered by Dr. Howard Rubin of Rubin and Associates. There are eight
dimensions to the readiness assessment, as follows:

1. Motivation. The level of commitment by the organization to using
client/server technology to drive improvements in quality, productivity, and
customer satisfaction.

2. Investment. The amount of monies approved/budgeted for expenditures in
the client/server program.

3. Client/server skills. The ability of the client/server installation team to incor-
porate the client/server technology concepts and principles into the users’ 
programs.

4. User education. Awareness by the individuals involved in any aspect of the
client/server program in principles and concepts. These people need to under-
stand how technology is used in the affected business processes.

5. Culture. The willingness of the organization to innovate. In other words, is the
organization willing to try new concepts and new approaches, or is it more
comfortable using existing approaches and technology?

614 Chapter 15



6. Client/server support staff. The adequacy of resources to support the
client/server program.

7. Client/server aids/tools. The availability of client/server aids and tools to per-
form and support the client/server program.

8. Software development process maturity. The ability of a software development
process to produce high-quality (defect-free) software on a consistent basis.

The following section addresses how to measure process maturity. The other dimen-
sions are more organization-dependent and require the judgment of a team of knowl-
edgeable people in the organization.

Software Development Process Maturity Levels

Figure 15-3 illustrates the five software development process maturity levels, which
have the following general characteristics:

1. Ad hoc. The software development process is loosely defined, and the project
leader can deviate from the process whenever he or she chooses.

2. Repeatable. The organization has achieved a stable process with a repeatable
level of quality by initiating rigorous requirements, effective project manage-
ment, cost, schedules, and change control.

3. Consistent. The organization has defined the process as a basis for consistent
implementation. Developers can depend on the quality of the deliverables.

4. Measured. The organization has initiated comprehensive process measurements
and analysis. This is when the most significant quality improvements begin.

5. Optimized. The organization now has a foundation for continuing improve-
ment and optimization of the process.

These levels have been selected because they:

■■ Reasonably represent the actual historical phases of evolutionary improvement
of real software organizations.

■■ Represent a measure of improvement that is reasonable to achieve from the
prior level.

■■ Suggest interim improvement goals and progress measurements.

■■ Make obvious a set of immediate improvement priorities once an organiza-
tion’s status in this framework is known.

Although there are many other elements to these maturity level transitions, the pri-
mary objective is to achieve a controlled and measured process as the foundation for
continuing improvement.

Testing Client/Server Systems 615



Figure 15-3 Software development process maturity levels.

This software development process maturity structure is intended for use with an
assessment methodology and a management system. Assessment helps an organiza-
tion identify its specific maturity status, and the management system establishes a
structure for implementing the priority improvement actions. Once its position in this
maturity structure is defined, the organization can concentrate on those items that will
help it advance to the next level. When, for example, a software organization does not
have an effective project-planning system, it may be difficult or even impossible to
introduce advanced methods and technology. Poor project planning generally leads
to unrealistic schedules, inadequate resources, and frequent crises. In such circum-
stances, new methods are usually ignored and priority is given to coding and testing.

The Ad Hoc Process (Level 1)

The ad hoc process level is unpredictable and often very chaotic. At this stage, the orga-
nization typically operates without formalized procedures, cost estimates, and project
plans. Tools are neither well integrated with the process nor uniformly applied. Change
control is lax, and there is little senior management exposure or understanding of the
problems and issues. Because many problems are deferred or even forgotten, software
installation and maintenance often present serious problems.

Although organizations at this level may have formal procedures for planning and
tracking their work, there is no management mechanism to ensure that they are used.
The best test is to observe how such an organization behaves in a crisis. If it abandons
established procedures and essentially reverts to coding and testing, it is likely to be at
the ad hoc process level. After all, if the techniques and methods are appropriate, then
they should be used in a crisis; if they are not appropriate in a crisis, they should not be
used at all.

OPTIMIZED

MEASURED

CONSISTENT

REPEATABLE

AD HOC

Basic 

Management 

Control

Process

Definition

Process

Measurement

Process

Control

616 Chapter 15



One key reason why organizations behave in this fashion is that they have not expe-
rienced the benefits of a mature process and, thus, do not understand the consequences
of their chaotic behavior. Because many effective software actions (such as design and
code inspections or test data analysis) do not appear to directly support shipping the
product, they seem expendable.

Driving an automobile is an appropriate analogy. Few drivers with any experience
will continue driving for very long when the engine warning light comes on, regard-
less of their rush. Similarly, most drivers starting on a new journey will, regardless of
their hurry, pause to consult a map. They have learned the difference between speed
and progress. Without a sound plan and a thoughtful analysis of the problems, man-
agement may be unaware of ineffective software development.

Organizations at the ad hoc process level can improve their performance by institut-
ing basic project controls. The most important are project management, management
oversight, quality assurance, and change control. The fundamental role of the project
management system is to ensure effective control of commitments. This requires ade-
quate preparation, clear responsibility, a public declaration, and a dedication to perfor-
mance. For software, project management starts with an understanding of the job’s
magnitude. In any but the simplest projects, a plan must then be developed to deter-
mine the best schedule and the anticipated resources required. In the absence of such an
orderly plan, no commitment can be better than an educated guess.

A suitably disciplined software development organization must have senior man-
agement oversight. This includes review and approval of all major development plans
prior to their official commitment. Also, a quarterly review should be conducted of
facility-wide process compliance, installed quality performance, schedule tracking,
cost trends, computing service, and quality and productivity goals by project. The lack
of such reviews typically results in uneven and generally inadequate implementation
of the process as well as frequent over-commitments and cost surprises.

A quality assurance group is charged with assuring management that software
work is done the way it is supposed to be done. To be effective, the assurance organi-
zation must have an independent reporting line to senior management and sufficient
resources to monitor performance of all key planning, implementation, and verifica-
tion activities. This generally requires an organization of about 3 percent to 6 percent
the size of the software organization.

Change control for software is fundamental to business and financial control as well
as to technical stability. To develop quality software on a predictable schedule, require-
ments must be established and maintained with reasonable stability throughout the
development cycle. While requirements changes are often needed, historical evidence
demonstrates that many can be deferred and incorporated later. Design and code
changes must be made to correct problems found in development and testing, but
these must be carefully introduced. If changes are not controlled, then orderly design,
implementation, and testing are impossible and no quality plan can be effective.

The Repeatable Process (Level 2)

The repeatable process has one important strength that the ad hoc process does not: It
provides control over the way the organization establishes its plans and commitments.
This control provides such an improvement over the ad hoc process level that the people

Testing Client/Server Systems 617



in the organization tend to believe they have mastered the software problem. They have
achieved a degree of statistical control through learning to make and meet their estimates
and plans. This strength stems from using work processes that, when followed, produce
consistent results. Organizations at the repeatable process level thus face major risks
when they are presented with new challenges. The following are some examples of the
changes that represent the highest risk at this level:

■■ Unless they are introduced with great care, new tools and methods can nega-
tively affect the testing process.

■■ When the organization must develop a new kind of product, it is entering new
territory. For example, a software group that has experience developing compil-
ers will likely have design, scheduling, and estimating problems when assigned
to write a real-time control program. Similarly, a group that has developed small,
self-contained programs will not understand the interface and integration issues
involved in large-scale projects. These changes may eliminate the lessons learned
through experience.

■■ Major organizational changes can also be highly disruptive. At the repeatable
process level, a new manager has no orderly basis for understanding the orga-
nization’s operation, and new team members must learn the ropes through
word of mouth.

The key actions required to advance from the repeatable process to the next stage, the
consistent process, are to establish a process group, establish a development process
architecture, and introduce a family of software engineering methods and technologies.

The procedure for establishing a software development process architecture, or devel-
opment life cycle, that describes the technical and management activities required for
proper execution of the development process must be attuned to the specific needs of the
organization. It will vary depending on the size and importance of the project as well as
the technical nature of the work itself. The architecture is a structural decomposition of
the development cycle into tasks, each of which has a defined set of prerequisites, func-
tional descriptions, verification procedures, and task completion specifications. The
decomposition continues until each defined task is performed by an individual or single
management unit.

If they are not already in place, introduce a family of software engineering methods
and technologies. These include design and code inspections, formal design methods,
library control systems, and comprehensive testing methods. Prototyping should also
be considered, together with the adoption of modern implementation languages.

The Consistent Process (Level 3)

With the consistent process, the organization has achieved the foundation for major
and continuing progress. For example, the software teams, when faced with a crisis,
will likely continue to use the process that has been defined. The foundation has now
been established for examining the process and deciding how to improve it. As pow-
erful as the process is, it is still only qualitative; there is little data to indicate how much
was accomplished or how effective the process is. There is considerable debate about
the value of software process measurements and the best ones to use. This uncertainty
generally stems from a lack of process definition and the consequent confusion about

618 Chapter 15



the specific items to be measured. With a consistent process, measurements can be
focused on specific tasks. The process architecture is thus an essential prerequisite to
effective measurement.

The following key steps are required to advance from the consistent process level to
the measured process level:

1. Establish a minimum basic set of process measurements to identify the quality
and cost parameters of each process step. The objective is to quantify the rela-
tive costs and benefits of each major process activity.

2. Establish a process database and the resources to manage and maintain it. Cost
and productivity data should be maintained centrally to guard against loss, to
make it available for all projects, and to facilitate process quality and produc-
tivity analysis.

3. Provide sufficient process resources to gather and maintain this process data
and to advise project members on its use. Assign skilled professionals to moni-
tor the quality of the data before entry in the database and to provide guidance
on analysis methods and interpretation.

4. Assess the relative quality of each product and inform management where
quality targets are not being met. An independent quality assurance group
should assess the quality actions of each project and track its progress against
its quality plan. When this progress is compared with the historical experience
on similar projects, an informed assessment can generally be made.

The Measured Process (Level 4)

In advancing from the ad hoc process through the repeatable and consistent processes
to the measured process, software organizations should expect to make substantial
quality improvements. The greatest potential problem with the measured process is
the cost of gathering data. There are an enormous number of potentially valuable mea-
sures of the software process, but such data is expensive to gather and to maintain.

Approach data gathering with care, therefore, and precisely define each piece of
data in advance. Productivity data is essentially meaningless unless explicitly defined.
For example, the simple measure of lines of source code per expended development
month can vary by 100 times or more, depending on the interpretation of the parame-
ters. Lines of code need to be defined to get consistent counts. For example, if one line
brings in a routine with one hundred lines of code, should that be counted as one line
of code or one hundred lines of code?

When different groups gather data but do not use identical definitions, the results
are not comparable, even if it makes sense to compare them. The tendency with such
data is to use it to compare several groups and to criticize those with the lowest rank-
ing. This is an unfortunate misapplication of process data. It is rare that two projects
are comparable by any simple measures. The variations in task complexity caused by
different product types can exceed five to one. Similarly, the cost per line of code of
small modifications is often two to three times that for new programs. The degree of
requirements change can make an enormous difference, as can the design status of the
base program in the case of enhancements.

Testing Client/Server Systems 619



Process data must not be used to compare projects or individuals. Its purpose is to
illuminate the product being developed and to provide an informed basis for improv-
ing the process. When such data is used by management to evaluate individuals or
teams, the reliability of the data itself will deteriorate.

The two fundamental requirements for advancing from the measured process to the
next level are:

1. Support automatic gathering of process data. All data is subject to error and
omission, some data cannot be gathered by hand, and the accuracy of manually
gathered data is often poor.

2. Use process data both to analyze and to modify the process to prevent problems
and improve efficiency.

The Optimized Process (Level 5)

In varying degrees, process optimization goes on at all levels of process maturity. With
the step from the measured to the optimized process, however, there is a paradigm
shift. Up to this point, software development managers have largely focused on their
products and will typically gather and analyze only data that directly relates to prod-
uct improvement. In the optimized process, the data is available to tune the process
itself. With a little experience, management will soon see that process optimization can
produce major quality and productivity benefits.

For example, many types of errors can be identified and fixed far more economically
by design or code inspections than by testing. Unfortunately, there is only limited pub-
lished data available on the costs of finding and fixing defects. However, from experi-
ence, I have developed a useful guideline: It takes about 1 to 4 working hours to find
and fix a bug through inspections, and about 15 to 20 working hours to find and fix a
bug in function or system testing. To the extent that organizations find that these num-
bers apply to their situations, they should consider placing less reliance on testing as
their primary way to find and fix bugs.

However, some kinds of errors are either uneconomical to detect or almost impossi-
ble to find except by machine. Examples are errors involving spelling and syntax, inter-
faces, performance, human factors, and error recovery. It would be unwise to eliminate
testing completely because it provides a useful check against human frailties.

The data that is available with the optimized process provides a new perspective on
testing. For most projects, a little analysis shows that two distinct activities are involved:
removing defects and assessing program quality. To reduce the cost of removing
defects, testing techniques such as inspections, desk debugging, and code analyzers
should be emphasized. The role of functional and system testing should then be
changed to one of gathering quality data on the programs. This involves studying each
bug to see if it is an isolated problem or if it indicates design problems that require more
comprehensive analysis.

With the optimized process, the organization has the means to identify the weakest
elements of the process and to fix them. At this point in process improvement, data is
available to justify the application of technology to various critical tasks, and numeri-
cal evidence is available on the effectiveness with which the process has been applied

620 Chapter 15



to any given product. An organization should then no longer need reams of paper to
describe what is happening because simple yield curves and statistical plots can pro-
vide clear and concise indicators. It would then be possible to ensure the process and
hence have confidence in the quality of the resulting products.

Conducting the Client/Server Readiness Assessment

To perform the client/server readiness assessment, you need to evaluate your organi-
zation in the eight readiness dimensions, as described in Task 1. You may want to
assemble a representative group of individuals from your organization to develop the
assessment and use Work Paper 15-1 to assist them in performing the assessment.

You should rate each readiness dimension in one of the following four categories:

1. High. The readiness assessment team is satisfied that the readiness in this
dimension will not inhibit the successful implementation of client/server 
technology.

2. Medium. The readiness assessment team believes that the readiness in this
dimension will not be a significant factor in causing the client/server technol-
ogy to fail. While additional readiness would be desirable, it is not considered
an inhibitor to installing client/server technology.

3. Low. While there is some readiness for client/server technology, there are seri-
ous reservations that the readiness in this dimension will have a negative
impact on the implementation of client/server technology.

4. None. No readiness at all in this area. Without at least low readiness in all eight
dimensions, the probability of client/server technology being successful is
extremely low.

Work Paper 15-2 can be used to record the results of the client/server technology
readiness assessment.

Preparing a Client/Server Readiness Footprint Chart

A footprint chart is a means of graphically illustrating readiness. The end result will be
a footprint that indicates the degree of readiness. The chart is completed by perform-
ing the following two steps:

1. Record the point on the dimension line that corresponds to the readiness rating
provided on Work Paper 15-2. For example, if the motivation dimension was
scored medium, place a dot on the medium circle where it intersects with the
motivation dimension line.

2. Connect all of the points and color the inside of the readiness lines connecting
the eight readiness points.

The shaded area of the footprint chart is the client/server readiness footprint. It will
graphically show whether your organization is ready for client/server technology. Use
Work Paper 15-3 for your client/server readiness footprint chart.

Testing Client/Server Systems 621



Task 2: Assess Key Components

Experience shows that if the key or driving components of technology are in place and
working, they will provide most of the assurance necessary for effective processing.
Four key components are identified for client/server technology:

1. Client installations are done correctly.

2. Adequate security is provided for the client/server system.

3. Client data is adequately protected.

4. Client/server standards are in place and working.

These four key components need to be assessed prior to conducting the detailed
testing. Experience has shown that if these key components are not in place and work-
ing, the correctness and accuracy of ongoing processing may be degraded even though
the software works effectively.

A detailed checklist is provided to assist testers in evaluating these four compo-
nents. The checklists are used most effectively if they are answered after an assessment
of the four key areas is completed. The questions are designed to be answered by the
testers and not to be asked of the people developing the key component areas.

Task 3: Assess Client Needs

Assessing client needs in a client/server system is a challenge because of the number
of clients. In some organizations, clients will be homogenous, whereas in other organi-
zations, they will be diverse and not in direct communication with one another. The
tester’s challenge is that a client/server system that meets the needs of some clients
might not meet the needs of all clients. Thus, testers need some assurance that the
client/server system incorporates the needs of the all clients.

The tester has two major challenges in evaluating the needs of the clients:

■■ Can the system do what the client needs?

■■ Can the client produce results consistent with other clients and other systems?

The tester has two options in validating whether the client/server system will meet
the processing needs of the clients. The first is to test how the developers of the system
documented the clients’ needs. Two distinct methods might be used. The first is that
the client/server system is developed for the clients. In other words, the clients were
not the driving force in developing this system, but rather management determined
the type of processing the clients needed to perform their job effectively and efficiently.
The second method is when the client/server system is built based on the requests of
the clients.

If the clients have specified their needs, it would be beneficial to conduct a review of
the documented requirements for accuracy and completeness. The methods for con-
ducting reviews were described in Chapter 9. The review process should be conducted
by clients serving on the review committee.

622 Chapter 15



If the system was developed for the clients, then the testers might want to validate
that that system will meet the true needs of the clients. In many client/server systems,
the clients are clerical in job function but most likely knowledgeable in what is needed
to meet the needs of their customers/users. Through visiting a representative number
of clients should prove beneficial to testers in determining whether or not the system
will, in fact, meet the true needs of the clients.

Ensuring that the deliverables produced by the clients will be consistent with deliv-
erables from other clients and other systems is a more complex task. However, it is an
extremely important task. For example, in one organization, one or more clients pro-
duced accounting data that was inconsistent with the data produced by the accounting
department. This was because the client did not understand the cut-offs used by the
accounting department. The cut-off might mean that an order placed in November but
completed in December should not be considered in November sales.

The following are some of the client/server characteristics that testers should eval-
uate to determine whether they meet the client needs:

■■ Data formats. The format in which the client receives data is a format that is
usable by the client. This is particularly important when the client will be using
other software systems to ensure that the data formats are usable by those
other systems.

■■ Completeness of data. Clients may need more data to correctly perform the
processing desired. For example, in our accounting cutoff discussion, it is
important that the client would know in which accounting period the data
belongs. In addition, there may be data needed by the user that is not provided
by the client/server system.

■■ Understandable documentation. The client needs to have documentation,
both written and onscreen, that is readily understandable. For example, abbre-
viations should be clearly defined in the accompanying written documentation.

■■ Written for the competency of the client’s users. Many software developers
develop software for people at higher competency levels than the typical users
of their systems. This can occur if the system is complex to use, or assumes
knowledge and background information not typical of the clients that will use
the system.

■■ Easy to use. Surveys have shown that only a small portion of most software
systems is used because of the difficulty in learning how to use all components
of the system. If a processing component is not easy to use, there is a high prob-
ability that the client will not use those parts of the system correctly.

■■ Sufficient help routines. Periodically, clients will be involved in a processing
situation for which they do not know how to respond. If the client/server sys-
tem has “help” routines available, the probability that the client can work
through those difficult situations is increased.

Testing Client/Server Systems 623



Check Procedures

Work Paper 15-4 is a quality control checklist for this client/server test process. It is
designed so that Yes responses indicate good test practices, and No responses warrant
additional investigation. A Comments column is provided to explain No responses
and to record results of investigation. The N/A column is used when the checklist item
is not applicable to the test situation.

Output

The only output from this system is the test report indicating what works and what
does not work. The report should also contain recommendations by the test team for
improvements, where appropriate.

Guidelines

The testing described in this chapter is best performed in two phases. The first phase—
Tasks 1, 2, and 3—is best executed during the development of the client/server system.
Task 4 can then be used after the client/server system has been developed and is ready
for operational testing.

Summary

This chapter provided a process for testing client/server systems. The materials con-
tained in this chapter are designed to supplement the seven-step process described in
Part Three of this book. Readiness assessment and key component assessment (Tasks 1
and 2) supplement the seven-step process (specifically Step 2, test planning). The next
chapter discusses a specialized test process for systems developed using the rapid
application development method.

624 Chapter 15



Testing Client/Server Systems 625

WORK PAPER 15-1 Client/Server Readiness Assessment

YES NO N/A COMMENTS

Installing Client System

1. Has a personal computer installation package
been developed? (If this item has a No
response, the remaining items in the
checklist can be skipped.)

2. Is the installation procedure available to any
personal computer user in the organization?

3. Does the personal computer installation
program provide for locating the personal
computer?

4. Does the program provide for surge
protection for power supplies?

5. Does the installation program provide for
necessary physical protection?

6. Does the installation program identify
needed supplies and accessories?

7. Does the installation program provide for
acquiring needed computer media?

8. Does the installation program address
storing computer media?

9. Does the installation program address storage
area for printer supplies, books, and so on?

10. Does the installation program address noise
from printers, including providing mats and
acoustical covers?

11. Does the installation program address 
con- verting data from paper to computer
media?

12. Does the installation program arrange for
off-site storage area?

13. Does the installation program arrange for
personal computer servicing?

14. Does the installation program arrange for a
backup processing facility?

15. Does the installation program arrange for
consulting services if needed?

16. Are users taught how to install personal
computers through classes or step-by-step
procedures?

17. Do installation procedures take into account
specific organizational requirements, such as
accounting for computer usage?

(continues)



626 Chapter 15

WORK PAPER 15-1 (continued)

YES NO N/A COMMENTS

18. Is the installation process customized
depending on the phase of maturity of
personal computer usage?

19. Has a means been established to measure
the success of the installation process?

20. Have potential installation impediments been
identified and counterstrategies adopted
where appropriate?

21. Has the organization determined their
strategy in the event that the installation of
standard personal computer is unsatisfactory
to the user?

22. Has the needed client software been
supplied?

23. Has the needed client software been tested?

Client/Server Security

1. Has the organization issued a security policy
for personal computers?

2. Have standards and procedures been
developed to ensure effective compliance
with that policy?

3. Are procedures established to record
personal computer violations?

4. Have the risks associated with personal
computers been identified?

5. Has the magnitude of each risk been
identified?

6. Has the personal security group identified
the type of available countermeasures for the
personal computer security threats?

7. Has an awareness program been developed
to encourage support of security in a
personal computer environment?

8. Have training programs been developed for
personal computer users in security
procedures and methods?

9. Does the audit function conduct regular
audits to evaluate personal computer
security and identify potential vulnerabilities
in that security?

10. Does senior management take an active role
in supporting the personal computer security
program?



Testing Client/Server Systems 627

WORK PAPER 15-1 (continued)

YES NO N/A COMMENTS

11. Have security procedures been developed for
operators of personal computers?

12. Are the security programs at the central
computer site and coordinated?

13. Has one individual at the central site been
appointed responsible for overseeing security
of the personal computer program?

14. Have operating managers/personal
computer users been made responsible for
security over their personal computer
facilities?

15. Is the effectiveness of the total personal
computer security program regularly
evaluated?

16. Has one individual been appointed
responsible for the security of personal
computers for the organization?

Client Data

1. Has a policy been established on sharing
data with users?

2. Is data recognized as a corporate resource as
opposed to the property of a single
department or individual?

3. Have the requirements for sharing been
defined?

4. Have profiles been established indicating
what user wants which data?

5. Have the individuals responsible for that data
approved use by the proposed users of the
data?

6. Has a usage profile been developed that
identifies whether data is to be uploaded
and downloaded?

7. Has the user use profile been defined to the
appropriate levels to provide the needed
security?

8. Have security standards been established for
protecting data at personal computer sites?

9. Has the personal computer user been made
accountable and responsible for the security
of the data at the personal computer site?

(continues)



628 Chapter 15

WORK PAPER 15-1 (continued)

YES NO N/A COMMENTS

10. Does the user’s manager share this security
responsibility?

11. Have adequate safeguards at the central site
been established to prevent unauthorized
access to data?

12. Have adequate safeguards at the central site
been established to prevent unauthorized
modification to data?

13. Are logs maintained that keep records of
what data is transferred to and from personal
computer sites?

14. Do the communication programs provide for
error handling?

15. Are the remote users trained in accessing
and protecting corporate data?

16. Have the appropriate facilities been
developed to reformat files?

17. Are appropriate safeguards taken to protect
diskettes at remote sites containing
corporate data?

18. Is the security protection required for data at
the remote site known to the personal
computer user?

19. Are violations of data security/control
procedures recorded?

20. Is someone in the organization accountable
for ensuring that data is made available to
those users who need it? (In many
organizations this individual is referred to as
the data administrator.)

Client/Server Standards

1. Are standards based on a hierarchy of
policies, standards, procedures, and
guidelines?

2. Has the organization issued a personal
computer policy?

3. Have the standards been issued to evaluate
compliance with the organization’s personal
computer policy?

4. Have policies been developed for users of
personal computers that are supportive of
the organization’s overall personal computer
policy?



Testing Client/Server Systems 629

WORK PAPER 15-1 (continued)

YES NO N/A COMMENTS

5. Have personal computer policies been
developed for the following areas:

a. Continuity of processing

b. Reconstruction

c. Accuracy

d. Security

e. Compliance

f. File integrity

g. Data

6. Are all standards tied directly to personal
computer policies?

7. Has the concept of ownership been
employed in the development of standards?

8. Can the benefit of each standard be
demonstrated to the users of the standards?

9. Are the standards written in playscript?

10. Have quality control self-assessment tools
been issued to personal computer users to
help them comply with the standards?

11. Has a standards notebook been prepared?

12. Is the standards notebook divided by area of
responsibility?

13. Are the standards explained to users in the 
form of a training class or users-group 
meeting?

14. Does a representative group of users have an
opportunity to review and comment on
standards before they are issued?

15. Are guidelines issued where appropriate?

16. Is the standards program consistent with the
objectives of the phase of maturity of the
personal computer in the organization?



630 Chapter 15

WORK PAPER 15-2 Client/Server Readiness Results

READINESS DIMENSION READINESS RATING

# NAME DESCRIPTION HIGH MEDIUM LOW NONE



WORK PAPER 15-3 Client/Server Readiness Footprint Chart

Testing Client/Server Systems 631

Process

Maturity

User Education

Investment

Client/Server

Support Staff

Client/Server

Skills

Client/Server

Aids and Tools

Motivation

Culture

NONE

LOW

MED

HIGH



632 Chapter 15

WORK PAPER 15-4 Client/Server Systems Quality Control Checklist

YES NO N/A COMMENTS

1. Does the test team in total have team members
who understand client/server technology?

2. Have the test team members acquired
knowledge of client/server system to be tested?

3. Has the readiness of the organization who
installs client/server technology been evaluated?

4. If the organization is not deemed ready to install
client/server technology, have the appropriate
steps been taken to achieve a readiness status
prior to installing the client/server system?

5. Has an adequate plan been developed and
implemented to ensure proper installation of
client technology?

6. Are the communication lines adequate to enable
efficient client/server processing?

7. Has the server component of the system been
developed adequately so that it can support
client processing?

8. Are security procedures adequate to protect
client hardware and software?

9. Are security procedures adequate to prevent
processing compromise by employees, external
personnel, and acts of nature?

10. Are procedures in place to adequately protect
client data?

11. Are procedures in place to ensure that clients
can only access data for which they have been
authorized?

12. Are standards in place for managing
client/server systems?

13. Does management support and enforce those
standards?



633

Rapid application development (RAD) is an effective software development paradigm
that provides a systematic and automatable means of developing a software system
under circumstances where initial requirements are not well known or where require-
ments change frequently during development. Providing high software quality assur-
ance requires sufficient software testing. The unique nature of evolutionary, iterative
development is not well suited for classical testing methodologies; therefore, the need
exists for a testing methodology tailored for this developing paradigm. Part of the tai-
lored testing methodology is ensuring RAD is the right development methodology for
the system being developed.

Overview

This chapter describes a testing strategy for RAD: spiral testing. This document shows
key RAD characteristics impinging on testing and the value of spiral testing to support
evolutionary, iterative RAD. This testing strategy assumes the RAD system 

■■ is iterative.

■■ is evolutionary.

■■ contains RAD language with a defined grammar.

■■ provides reusable components capability (library and retrieval).

Rapid Application 
Development Testing

C H A P T E R

16



■■ uses implementation code from reusable components written in a high-level
language.

■■ contains a sophisticated support environment.

These characteristics will keep the RAD paradigm sufficiently general to discuss
testing concerns. Because program verification and validation are the most costly
activities in current development, any changes to RAD to simplify testing will acceler-
ate the development process and increase RAD’s appeal.

Objective

The RAD testing methodology described in this test process s designed to take maxi-
mum advantage of the iterative nature of RAD. It also should focus on the require-
ments-capturing purpose of developing. Thus, a RAD-based testing technique starts
by capturing the testing information resident in the RAD process in a form suitable for
thoroughly testing the RAD system. Testers must know both the assumptions and the
requirements the designers are trying to meet so that a test series can be built to verify
the system. Remember, the test personnel are not usually the design personnel, nor
should they be; therefore, RAD-based testing must provide tools and methods to ana-
lyze system requirements and capture requirement changes.

Concerns

This section describes the four concerns testers should have about RAD-based testing.

Testing Iterations

The iterative nature of software development implies that the system must track revi-
sion histories and maintain version control of alternate RAD versions. The user’s
response to a demonstration may require that the RAD fall back to a previous iteration
for change, or the developer might wish to demonstrate several iteration alternatives
for user comment (one of which, or portions of several being selected). Requirements
may be added, changed, or deleted. Test goals must easily change to fit modified
requirements. Ideally, the developing environment will capture this modification
explicitly, along with the accompanying purpose of the modification. Any testing tools
developed must take these modifications into account to test the proper version and to
appropriately consider the requirements and purpose germane to that version for test
development. The tool should also exploit change as a likely source of errors. A tool
that helps testers compare changes from one iteration to the next, along with system
dependencies potentially affected by changes, helps test development considerably.

634 Chapter 16



Testing Components

The use of reusable components raises reliability concerns. Have the components been
unit tested, and if so, to what degree? Have they been used in previous implementa-
tions, and if so, which ones? What testing has been conducted on the previous imple-
mentations as well as the individual components? The testing methodology must
consider how information on past component testing can be recorded and referenced
to determine what unit testing might still be needed and what integration testing
strategies might best check the components in their instantiated context.

Testing Performance

One necessary testing component is a set of test conditions. Requirements-based and
functional testing base test conditions on some stated form of behavior or required per-
formance standard, such as formal specifications or a requirements document. The
development methodology does not provide a separate performance standard. The
testing methodology must establish an objective standard of the intended behavior of
the RAD under consideration. Every program must have an objective performance
standard. The developing system must then, in some fashion, provide the tester and
his or her tools with access to a system functionality description and system require-
ments to allow rapid, complete, and consistent derivation from the RAD. This access to
functionality descriptions and requirements has the added benefit of helping develop
scripts for demonstrations so that particular iteration changes and enhancements will
be highlighted for the user’s comments.

Recording Test Information

The software development environment not only should capture requirements, assump-
tions, and design decisions, but, ideally, should map these into the RAD in a way useful
to both rapid application development and testing. This mapping automatically pro-
vides a trace, documenting the RAD’s development. As the system grows, knowing why
a particular design decision was made and being able to see where (and how) the RAD
implements it will be difficult without automated support. The developing/testing par-
adigm must capture mappings from design or development decisions to the implemen-
tation. These mappings need to be rapidly revisable to quickly make the next RAD
iteration.

Workbench

Figure 16-1 illustrates the workbench for testing RAD systems. Because rapid applica-
tion development goes through a series of iterations, the tasks in the workbench paral-
lel those iterations. Note that Task 3 may, in fact, perform all the iterations between the
planning iteration and the final iteration multiple times.

Rapid Application Development Testing 635



Figure 16-1 Workbench for testing RAD systems.

Input

The only input to this test process is the RAD requirements. Because of the nature of
RAD, the requirements are normally incomplete when development begins. The require-
ments will be continually developed throughout various iterations. Thus, the input to
each of the three steps in the recommended RAD test process will be different.

Do Procedures

This section begins by describing iterative RAD and spiral testing, and then integrates
those topics into a three-task strategy.

Testing Within Iterative RAD

The chapter provides a framework for iterative RAD testing. The most obvious
approach to testing during RAD would be to treat each development iteration as one
software life cycle. An advantage is that this keeps intact the methodology of testing

DO CHECK

RAD
Tests

Adequate

REWORK

Determine

Appropriateness
of RAD

Task 1

Test Planning

Iterations

Task 2

Test Subsequent
Planning Iterations

Task 3

Test Final
Planning Iteration

Task 4

RAD System
Requirements

RAD Test
Report

636 Chapter 16



familiar to most testers. The lack of a conventional specification effectively removes the
information basis for test planning. Under current descriptions of the developing
process, a specification would need to be generated, at least in part, before conven-
tional techniques could be applied.

The process’s complexity is also compounded by the need to conduct a full cycle of
testing for each iteration, even though the early iterations will almost never contain
detailed or unchanging requirements. This would be inefficient and impractical testing.

An alternative test approach is to iterate test planning in parallel with the develop-
ing iterations. This will simplify testing and reduce overall testing costs when com-
pared to the preceding approach. The initial test plan would consider only the basic
system description contained in the initial RAD iteration. As RAD iterations proceed,
the test plan would expand to incorporate the latest iteration modifications. One dis-
advantage is that this approach causes the test plan to follow the RAD process closely.
The decisions in the RAD might unduly influence the test plan, causing important test
conditions not to be explored. The possible disadvantage suggests that the unit and
integration testing might be done iteratively, with acceptance testing occurring entirely
on the final iteration of the development cycle.

By considering how the developing process closely follows the spiral process model
that leads to a spiral iterative test planning process. Figure 16-2 illustrates this process.

Figure 16-2 Spiral test planning process.

Test
Description

Conditions and Results
Determined

Test Oracle
Derivation 

Test Conditions
Specified

Test Conditions
Selection

Consistent Goals
Stated and Prioritized

Test Goal
Analysis

Needs/Assumptions
Identified

Test Approved

Test Execution
and Analysis

Rapid Application Development Testing 637



Spiral Testing

The proposed RAD testing strategy, termed spiral testing, remains iterative and paral-
lels the RAD process. Spiral testing characterizes the varying types of RAD iterations
by tailoring the testing process to account for these differences. Spiral testing distin-
guishes between the initial few RAD testing iterations, subsequent iterations, and the
final few iterations. The major distinction between the first few testing iterations and
the subsequent ones is that the first iterations, for any but the smallest of systems,
probably will have only test planning and structuring activities that establish priorities
and areas of test emphasis.

The framework for intermediate testing activity and final acceptance testing, to
include test derivation, is laid in the initial iterations. Unit and integration testing
will likely be confined to subsequent and final testing iterations. Subsequent testing
iterations will have less framework-related activity and more acceptance test oracle
derivation activity. The major distinction between the subsequent and final iterations
is that the final iterations are where developers return to their RAD to fix identified
errors and testers conduct final integration and acceptance and regression testing. Fig-
ure 16-3 shows the separation of the groups of iterations for either the development or
testing spiral. The following sections cover spiral testing in detail.

Figure 16-3 A “targeted” spiral.

Final User

Comments

Software

Delivery

Initial User Comments

Initial

Iterations

Subsequent

Iterations

Final Iterations

638 Chapter 16



Task 1: Determine Appropriateness of RAD

There are strengths and weaknesses to using the RAD concept to build software. If the
advantages outweigh the disadvantages, RAD should be used. However, some appli-
cations built under the RAD concept would have been better built under other software
development models.

RAD development offers the following strengths:

■■ System users get a quick view of the system’s deliverables.

■■ The cost of risk associated with development is reduced because decisions can
be made early regarding the usability of the first RAD prototype.

■■ Customer satisfaction can be improved through a series of developmental itera-
tions rather than a focus on a single deliverable.

■■ If the project is developed by a project team familiar with the user’s business,
fewer developers are required because of their knowledge of the user business.

■■ Using powerful development tools can reduce the cycle time for developing
the final system.

The problems associated with using the RAD model for development, on the other
hand, include the following:

■■ Users and developers must be committed to rapid-fire activities in an abbrevi-
ated time frame; thus any lack of commitment negates most of the advantages
of the RAD model.

■■ Diffusers are not continuously involved throughout the RAD cycles. Obtaining
the necessary feedback at the appropriate times will facilitate development.

■■ Unless the system can be appropriately modularized and has access to reusable
components, the reduced cost and schedule may not be achieved.

■■ Because the RAD concept does not require a fixed completion date, the risk is
that the development team will continue through the RAD cycles past the point
of economic return.

Understanding the strengths and weaknesses of the RAD model, testers should
assess whether RAD is a desirable model for a specific software system. Using this
analysis, the IT organization can be prevented from building software using the RAD
model when other developmental models would be more appropriate.

Testers should use Work Paper 16-1 to determine whether the RAD model is appro-
priate for their software system. If the testers are uncertain whether a specific item can
be answered Yes, they should give a No response. If more than 25 percent of the items
have a No response, the applicability of using the RAD model for this specific software
system should be re-evaluated.

Rapid Application Development Testing 639



Task 2: Test Planning Iterations

The first few iterations of the RAD serve varying purposes, depending on the particular
software under design. When feasibility is not a consideration or when a detailed
requirements document exists, the first development iterations establish the product’s
design framework as a base upon which to RAD the remainder of the system. When fea-
sibility must be investigated and/or when requirements are unknown, the first several
development iterations seek to construct abstract RADs to see if an acceptable system
can be designed. If the RAD is feasible, developers establish the major software require-
ments and design a development plan upon which to build the system during successive
iterations, as in the first case mentioned previously. The first few development iterations
will usually be devoted to establishing an overall RAD structural framework.

To mirror this process for test planning purposes, the initial test planning iterations
consider the developing results and frame the testing process for the remainder of the
project. This is the logical point for testers to determine the major critical portions of
the RAD, and establish test priorities. As RADs establish major requirements, the test
team begins to break these down into test goals, determining derived goals as well. As
development continues, the testers can define the testing emphasis in greater detail,
make needed test plan adjustments, and record test justifications.

It appears prudent (although not essential) throughout the development process for
the test team to review user input and generate goals independently from the RAD
team, so as to identify misstated requirements and to find missing requirements. This
increases the quality of the RAD versions, thereby decreasing the number of iterations
needed.

The initial iterations are where the test team will forecast the most important por-
tions of the system to test. As the implementation hierarchy of the system takes shape,
the testers establish test sections for path and integration testing. The long-term testing
purpose is to build the framework for constructing the final acceptance-test oracle and
to fit the intermediate testing activities into the overall development plan. The process
will be manual for the most part, and this would be where initial testing tools and their
databases/instrumentation would be initialized. The initial iteration phase would end
at the RAD iteration in which the top-level requirements specification is established.

It is recommended that the documentation for each iteration of the RAD process be
subject to the inspection process, as outlined in Part Three of this book, as well as com-
plete the checklist in Work Paper 16-2.

Task 3: Test Subsequent Planning Iterations

Once the basic RAD framework is established, subsequent iterations commence in which
developers enhance the RAD’s functionality and demonstrate it for user/designer
review. In the typical case, additional requirements are identified and the design matures
in parallel over multiple iterations. Both are validated in the review process. At some
point, sufficient requirements are identified to establish the overall system design.

The subsequent testing iterations will be characterized by unit testing, integration
testing, and continued requirements review to determine whether any requirements
are missing. To complement the design process, the test team concurrently develops

640 Chapter 16



integration test plans as designers complete subsections of the system design. In addi-
tion, as reusable components are instantiated to provide required functionality, the test
team or design team unit tests these modules (both approaches are acceptable in cur-
rent practice) by consulting the test history of the instantiated modules and conducting
additional unit testing appropriate to the developing system.

Should this additional testing be necessary, the test team updates the test history to
reflect the additional testing and its results. This update could be as simple as append-
ing a test script (although this could eventually cost a large amount of storage for a
large components test library) or as complex as completely revising the test history to
incorporate new test sets, assumptions tested, test case justifications, and additional
test history details. The complex update may be needed to reduce a series of simple
updates into a consistent and usefully compact synthesis. As performance aberrations
are found during a given iteration’s tests, they are readdressed to the design team for
correction prior to the next iteration demonstration.

As the design team RADs system components, the test team can commence integra-
tion test planning for those components. The integration testing process is the same at
any hierarchical system level for integration testing. The test team needs to keep inte-
gration testing at various levels coordinated to maximize test efficiency. If a standard
structure for integration test sets could be constructed, then it might be possible to
develop tools to manipulate these to conduct increasing levels of integration testing as
more components and system subsections are implemented. Currently, most of this
process would be manual. Final integration testing cannot commence until the RAD
implementation is complete.

Throughout testing, testers consult the RAD specification and all requirements to
determine the correct responses to test data. Considerable information needed for test
data selection will likely be found in the RAD specification language. Automated sup-
port to extract this information would be very helpful, but will depend on the devel-
oping language in question and on possessing the capability automatically to relate the
criteria to selected test data and execute the test.

Throughout the iterations, the test methodology must remain responsive to change.
Existing components and specifications may change or disappear between iterations,
contingent with user/developer/tester input. Additionally, each new iteration adds
increased functionality or furthers the completion of existing incomplete implementa-
tions. The test development process must capture all effects of change because additional
testing or retesting of previously tested code may be required. This retesting raises the
issue of “phase agreement” between the RAD spiral and the test-planning spiral.

An in-phase agreement would have formal iteration testing proceed at the completion
of a development iteration and prior to iteration demonstration to the user. The advan-
tage here is that the test team will have tested the system and the developers are not as
likely to demonstrate a system that contains undiscovered or obvious bugs. Any prob-
lems encountered in testing are corrected prior to user review. User confidence is not
enhanced when bugs that are not related to design issues are discovered during the
demonstration. On the other hand, many iterations will usually be demonstrating
requirements not yet validated, and it is wasteful to test requirements that have not
been validated.

Rapid Application Development Testing 641



An out-of-phase agreement relies on the designers to test their RAD iteration suffi-
ciently prior to demonstration (for their reputation, not for formal testing). The test
team conducts formal testing for an iteration at the conclusion of the user demonstra-
tion. They modify the formal test plan, developed during the development iteration,
by removing any planned testing of eliminated, changed, or superseded requirements
and by adding additional testing of corrections and modifications resulting from the
user’s review. Test planning proceeds in tandem with iterations development, but
actual testing waits for the results of the user’s review. Once the testers obtain user
comments, they may assume that the stated requirements at that point represent solid
requirements for the purpose of testing. This assumption continues until a requirement
is explicitly or implicitly changed or eliminated. The advantages of out-of-phase test-
ing are a savings in testing conducted (because you test only reviewed requirements)
and increased test responsiveness to user review. The disadvantages are the increased
likelihood of missed requirements and the possibility of bugs in the demonstrated sys-
tems. Work Paper 16-3 should be used when subsequent iterations are inspected.

Task 4: Test the Final Planning Iteration

Once developers establish all requirements (usually in the latter iterations), the final
few iterations of development are devoted to implementing the remaining functional-
ity, followed by error correction. Therefore, the testers can devote their work to com-
pleting the test for acceptance testing, and to remaining unit testing and subsection
integration testing.

The final test planning iterations commence with the completion of the operational
RAD and prior to final user acceptance. As any final requirements are implemented or
as system components are fine-tuned, tests are developed and conducted to cover these
changes. Most important, the test team completes the acceptance test plan. Once the
system is completely implemented and the acceptance test design is complete, the test
team conducts the acceptance test. The test team checks differences in actual results
from expected results and corrects the tests as appropriate while the design team cor-
rects system faults. The cycle continues until the system successfully completes testing.
If the design team is busier than the test team, the test team can use the available time to
conduct additional testing or priority-superseded testing previously skipped. The
result should be a sufficiently tested software system. Work Paper 16-4 should be used
when the final iteration is inspected.

Check Procedures

Work Paper 16-5 is a quality control checklist for testing RAD systems. It is designed so
that Yes responses indicate good test practices and No responses warrant additional
investigation. A Comments column is provided to explain No responses and to record
results of investigation. The N/A column is used when the checklist item is not applic-
able to the test situation.

642 Chapter 16



Output

This testing process will have multiple outputs of approximately the same composition.
These outputs are test reports that indicate findings at the end of the testing of each iter-
ation of the RAD development. The test reports should indicate what works and what
does not work. They should also contain testers’ recommendations for improvement.
Note that if there are many iterations of the system being developed, the reports may be
less formal so that they can be more quickly provided to the development team.

Guidelines

Spiral testing has the advantages of being flexible and maximizing the amount of test-
ing conducted during the RAD process. It allows for the steady development of an
acceptance test in the face of continual system change and facilitates lower-level test-
ing as soon as implementation code is instantiated. The spiral testing approach partic-
ularly suits the methodology for use with evolutionary, iterative RAD that is itself
spiral. Using test histories for reusable components should speed the testing process
by reducing the amount of unit testing required. Testers can obtain a further benefit of
the test history feature, the compounding of unit testing for reusable components, by
either increasing the component confidence factor or at least delineating the bounds
within which it may be successfully used.

The spiral testing approach also results in thorough documentation of the testing
conducted and a formal, written test plan that can be viewed with the user for
approval. The extended time for test development (considerably more than in conven-
tional life cycle models) also should provide for a more thorough test.

The major disadvantage to the approach is that the final acceptance test remains a
moving target until the completion of implementation coding. Additionally, the test
team must remain vigilant against following the development process so closely that
they fail to view the system objectively from the outside. The first disadvantage is
inherent to the development process; therefore, the goal is to minimize its effect. Spiral
testing is likely to do this. The second disadvantage may be reduced with experience
but will likely require separate test teams to conduct critical acceptance tests. Note that
the spiral testing strategy remains a theory at this point. Further research will be
required to determine its feasibility and practicality.

Summary

This chapter provided a testing process for systems developed using the RAD method-
ology. Testers need to be familiar with the RAD methodology their organization uses.
The materials contained in this chapter focused on the inspection process because it is
more effective in uncovering defects than is dynamic testing. Dynamic testing is more
effective when used in the later iterations of the RAD process. This chapter was designed
to be used in conjunction with the seven-step process outlined in Part Three.

Rapid Application Development Testing 643



WORK PAPER 16-1 RAD Applicability Checklist

YES NO COMMENTS

1. Is the system being designed a
user business applications?

2. Is the technical risk low?

3. Is the project team familiar with
the user business application?

4. Is the project team skilled in the
use of the RAD developmental
tools?

5. Is the developmental team
highly motivated to develop this
application using the RAD
model?

6. Can the system being developed
be modularized?

7. Are the requirements for the
software system reasonably well
known?

8. Is the cost of the development
not a critical concern?

9. Is the implementation schedule
not a critical concern?

10. Is the software project small
enough that it can be developed
within about 60 days?

11. Can the software functionality be
delivered in increments?

12. Is the software system relatively
small in comparison to other
systems developed by the IT
organization?

13. Are the users willing to become
heavily involved in the
development?

14. Will the users be available during 
the developmental cycle?

644 Chapter 16



Rapid Application Development Testing 645

WORK PAPER 16-2 RAD Inspection Checklist for Task 2

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Define Purpose and Scope of System

1. Is the defined system within the
context of the organization’s goals?

2. Is the defined system within the
context of the organization’s
information requirements?

3. Have the objectives that are critical to
the success of the organization been
identified in the RAD purpose and
scope?

4. Does the system scope identify the
user environment?

5. Does the system scope identify the
hardware environment?

6. Does the system scope identify the
other systems that interact with this
system (e.g., regarding input and
output)?

7. Does the RAD system scope define
available funding?

8. Does the RAD system scope identify
time constraints?

9. Does the RAD system scope identify
the available resources to build the
system?

10. Does the RAD system scope state the
security needs for the data and
software?

11. Has the RAD team been established?

12. Is the RAD team trained in the
techniques of RAD and the use of
specific fourth-generation language for
implementing RAD?

13. Is the RAD software development
group enthusiastic about the RAD
concept?

14. Does the RAD team know how to
control RAD?

(continues)



646 Chapter 16

WORK PAPER 16-2 (continued)

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Develop System Conceptual Model

1. Does the RAD team use a graphic
method (e.g., a data flow diagram) to
construct a model of the system to be
developed?

2. Are the data definitions used for the
RAD included in the data dictionary?

3. Are the critical system objectives
defined in the project scope related to
specific components of the conceptual
model?

4. Has the major business input been
defined?

5. Has the major business output been
defined?

6. Has the cost to implement the system
using traditional systems development
processes been estimated?

7. Has the cost of the RAD been
estimated? (The RAD should cost no
more than 6% to 10% of the full-scale
development effort.)

8. Have the benefits of the RAD system
been developed?

9. Have the risks associated with
developing this system when it goes
into production been identified?

10. Have the files needed to support the
RAD system when it goes into
production been identified?

11. Has a database administrator been
consulted to determine whether the
needed data will be available?

12. Has the computer operations
department been consulted to
determine whether it could run the
system if it were implemented?

13. Are there sufficient communications
lines to support the system?



Rapid Application Development Testing 647

WORK PAPER 16-2 (continued)

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Develop Logical Data Model

1. Has a model of the local information
flow for individual subsystems been
designed?

2. Has a model for the global information
flow for collections of subsystems been
designed?

3. Have the conceptual schemas for the
RAD system been defined?

4. Does the conceptual schema define
the attributes of each entity in the
subschema?

5. Has a model been developed for each
physical external schema?

6. Has the physical database been
designed to provide optimum access
for the prototype transactions?

7. Does the physical database design
provide efficiency in operation?

8. Is the RAD design restricted to
accessing the database at the logical
level?

9. Have the functions to be performed by
the RAD system been defined?

10. Has the sequence of performing the
functions been defined?

11. Has the potential source of input
transactions and data been defined?

12. Has a determination been made that
the needed data can be prepared in
time to meet RAD processing
schedules?



648 Chapter 16

WORK PAPER 16-3 RAD Inspection Checklist for Task 3

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Develop and Demonstrate RAD System

1. Have the basic database structures
derived from the logical data modeling
been defined?

2. Have the report formats been defined?

3. Have the interactive data entry screens
been defined?

4. Have the external file routines to
process data been defined?

5. Have the algorithms and procedures to
be implemented by the RAD been
defined?

6. Have the procedure selection menus
been defined?

7. Have the test cases to ascertain that
data entry validation is correct been
defined?

8. Have report and screen formatting
options been defined?

9. Has a RAD system been developed
using a fourth-generation language?

10. Has the RAD been demonstrated to
management?

11. Has management made strategic
decisions about the application based
on RAD appearance and objectives?

12. Has the RAD been demonstrated to
the users?

13. Have the users been given the
opportunity to identify problems and
point out unacceptable procedures?

14. Has the prototype been demonstrated
before a representative group of users?

15. If the RAD is unacceptable to
management or users, have requests
for changes or corrections been
documented?

16. Has a decision been made concerning
whether to develop another RAD
iteration?



Rapid Application Development Testing 649

WORK PAPER 16-4 RAD Inspection Checklist for Task 4

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Revise and Finalize Specifications

1. Is someone on the RAD team
responsible for reviewing each
component for inconsistencies,
ambiguities, and omissions?

2. Has the statement of goals and
objectives been reviewed to ensure
that all elements are present, that all
components have been defined, and
that there are no conflicts?

3. Has the definition of system scope
been reviewed to ensure that all
elements are present, that all
components have been defined, and
that there are no conflicts?

4. Have the system diagrams been
reviewed to ensure that all elements
are present, that all components have
been defined, and that there are no
conflicts?

5. Has the data dictionary report been
reviewed to ensure that all elements
are present, that all components have
been defined, and that there are no
conflicts?

6. Has the risk analysis been reviewed to
ensure that all elements are present,
that all components have been
defined, and that there are no
conflicts?

7. Has the logical data model been
reviewed to ensure that all elements
are present, that all components have
been defined, and that there are no
conflicts?

8. Have the data entry screens been
reviewed to ensure that all elements
are present, that all components have
been defined, and that there are no
conflicts?

(continues)



650 Chapter 16

WORK PAPER 16-4 (continued)

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

9. Have the report layouts been reviewed
to ensure that all elements are present,
that all components have been
defined, and that there are no
conflicts?

10. Have the selection menus and
operational flow been reviewed to
ensure that all elements are present,
that all components have been
defined, and that there are no
conflicts?

11. Has the physical database structure
been reviewed to ensure that all
elements are present, that all
components have been defined, and
that there are no conflicts?

12. Has the draft user manual been
reviewed to ensure that all elements
are present, that all components have
been defined, and that there are no
conflicts?

13. Have all of the RAD elements been
indexed?

14. Have all of the RAD elements been
cross- referenced by subject and
component?

15. Does the RAD documentation contain
sample reports?

16. Does the RAD documentation contain
sample data entry screens?

17. Does the RAD documentation contain
a listing of the fourth-generation
commands for each programmed
function? 



Rapid Application Development Testing 651

WORK PAPER 16-4 (continued)

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Develop Production System

1. Has a decision been made by the end
user regarding putting the system in
production?

2. If so, have all the significant system
problems been resolved?

3. If the RAD is very inefficient, is it
discarded in place of a production
system built using traditional
methods?

4. If the RAD does not have adequate
controls, is it thrown away and a new
system developed using traditional
methods?

5. If the RAD is placed into production,
does it have adequate data validation?

6. If the RAD is placed into production,
does it have adequate system controls?

7. If the RAD is placed into production,
does it have adequate documentation
for maintenance purposes?

8. If the system is rebuilt using traditional
methods, does the developmental
project team believe that the RAD
documentation is adequate for
developing a production system? 

(continues)



652 Chapter 16

WORK PAPER 16-4 (continued)

INSPECTION RESULT DESCRIPTION/LOCATION
PASS FAIL N/A OF NOTED DEFECT

Release Test System

1. Has the system been approved by the
test team before being released for
test?

2. Has the system design been
documented in detail?

3. Have the user manuals been revised?

4. Has a training plan been developed?

5. Are the users involved in the testing?

6. Is the system put under full production
conditions during testing?

7. Does the existing system remain in
place until the new system has passed
testing?

8. Have all end users been trained in the
operation of the system?

9. If the output is crucial to the
organization, has a parallel operation
test been performed?

10. Are errors noted during testing
documented?

11. Are needed changes noted during
testing documented?

12. Has a formal decision procedure been
developed to determine when to move
the system out of testing?

Release Production System

1. Have the users accepted the system
before it is placed into production?

2. Have the final user manuals been
prepared?

3. Have the final user manuals been
distributed to the end users?

4. Have the end users been trained in any
changes occurring between testing
and placement of the system into
production?



Rapid Application Development Testing 653

WORK PAPER 16-5 RAD Systems Quality Control Checklist

YES NO N/A COMMENTS

1. Does the test team contain a collective
knowledge and insight into how RAD
systems are developed?

2. Does the test team collectively
understand the tool that is used 
in RAD?

3. Do the testers understand that the
RAD’s requirements will be continually
changing as development progresses?

4. Does the test team collectively
understand how to use the inspection
tools?

5. Is the inspection process used at the
end of each iteration of RAD?

6. Are new requirements documented
prior to developing each RAD
iteration?

7. Did the testers test each RAD 
iteration?

8. Is the tester’s input incorporated into
the process of updating requirements
for the next iteration of a RAD?





655

Internal control has always been important. However, passage of the Sarbanes-Oxley
Act of 2002 by the U.S. Congress increased management’s awareness of this impor-
tance. Under this law, both the CEO and CFO must personally certify the adequacy of
their organization’s system of internal control. An improper certification may result in
criminal or civil charges against the certifier.

This chapter focuses on the internal controls within software systems. It is important
for the tester to know that there are two general categories of controls: environmental
(or general) controls, and controls within a specific business application (internal con-
trols). This chapter covers three types of controls in the latter category (specific business
application controls): preventive, detective, and corrective. The chapter then explains
how to evaluate controls within an information system.

Overview

There are two systems in every business application: the system that processes trans-
actions and the system that controls the processing of such (see Figure 17-1). From the
perspective of the system designer, these two are designed and implemented as one
system. For example, edits that determine the validity of input are included in the part
of the system in which transactions are entered. However, those edits are part of the
system that controls the processing of business transactions.

Testing Internal 
Controls

C H A P T E R

17



Figure 17-1 The two systems in every business application.

Because these two systems are designed as a single system, most software testers do
not conceptualize the two systems. Furthermore, the system documentation is not
divided into the system that processes transactions and the system that controls the
processing of transactions. 

When you visualize a single system, you may have difficulty visualizing the total
system of internal control. If you look at edits of input data by themselves, it is difficult
to see how the totality of control over the processing of a transaction is accomplished.
Thus, you are at risk of processing invalid transactions. This risk occurs throughout the
system, not just during data editing. A system of internal controls must address all the
risk of invalid processing from the point that a transaction is entered into the system to
the point that the output is used for business purposes.

The following three terms are associated with an undesirable occurrence during
processing:

■■ Risk. The probability that an undesirable event will occur

■■ Exposure. The amount of loss that might occur if an undesirable event occurs

■■ Threat. A specific event that might cause an undesirable event to occur

Controls are required to mitigate risks, exposure, and the specific threats that might
cause loss. Therefore, to evaluate the adequacy of internal controls, testers must know
the risks, exposures, and threats associated with the business application being tested.
The objective of a system of internal controls in a business application is to minimize
business risks. 

As mentioned previously, one category of control is environmental controls. Such a
system refers to the management-established and -maintained environment. Environ-
mental (or general) controls are the means by which management manages the organi-
zation, including organizational policies and structures, hiring practices, training
programs, supervisory/evaluation functions, and the day-to-day employee work
processes, such as a system development methodology for building software systems.

Without strong environmental controls, transaction-processing (internal) controls
may not be effective. For example, if passwords to access computer systems are not ade-
quately protected, the password system will not work. Individuals will either protect or
not protect their password based on environmental controls such as the attention man-
agement pays to password protection, the monitoring of the use of passwords, and
management’s actions regarding failure to protect passwords.

System that processes transactions

System that controls transactions

Business application processing

656 Chapter 17



Internal Controls

Internal application controls are designed to meet the specific control requirements of
each processing application. They contrast with and are complemented by environ-
mental controls applicable where the processing occurs. Application controls are
designed to ensure that the recording, classifying, and summarizing of authorized
transactions and the updating of master files will produce accurate and complete infor-
mation on a timely basis.

Normally, the processing cycle includes all the procedures in the source and user
departments and in the IT departments to record and prepare source data and ulti-
mately produce useful information during a specific time period. When you discuss
application controls, it is useful to classify them according to whether they are preven-
tive, detective, or corrective.

NOTE Some input errors may be acceptable if they do not cause an

interruption in the processing run—for example, a misspelling. When deciding

tolerance limits, an organization must compare the cost of correcting an error

to the consequences of accepting it. Such tradeoffs must be determined for

each application. Unfortunately, however, no universal guidelines are available.

Control Objectives

Controls typically are classified according to the location of their implementation:
input, process, and output. However, the location of controls is not important to their
evaluation. The auditor’s prime concern should be the objective of a control.

The objectives of internal application controls are to prevent, detect, or correct the
various causes (assumed to always exist) of risk exposure, as follows:

■■ To ensure that all authorized transactions are completely processed once and
only once

■■ To ensure that transaction data are complete and accurate

■■ To ensure that transaction processing is correct and appropriate to the 
circumstances

■■ To ensure that processing results are utilized for the intended benefits

■■ To ensure that the application can continue to function

In most instances, controls can be related to multiple exposures. A single control can
also fulfill multiple objectives. For these reasons, internal application controls are clas-
sified according to whether they prevent, detect, or correct causes of exposure. The fol-
lowing subsections describe these types of controls, using key controls as examples
(instead of trying to present an exhaustive list).

Testing Internal Controls 657



Preventive Controls

Preventive controls are the most desirable (cost-effective, and from a PR perspective)
controls because they stop problems from occurring. Therefore, application designers
should focus on preventive controls. Preventive controls include standards, training,
segregation of duties, authorization, forms design, prenumbered forms, documenta-
tion, passwords, consistency of operations, etc.

You might ask, “At what point in the processing flow is it most desirable to exercise
computer data edits?” Computer data edits are one example of preventive control, and
the answer to this question is this: “As soon as possible, to uncover problems early and
avoid unnecessary computer processing.” Some input controls depend on access to
master files and so must be timed to coincide with file availability. However, many
input-validation tests may be performed independently of the master files. Preferably,
these tests should be performed in a separate edit run at the beginning of the process-
ing. Normally, the input-validation tests are included in programs to perform data-
conversion operations such as scanning data into the computer. If these tests are
included in programs performing such operations, the controls may be used without
significantly increasing the computer run time.

Preventive controls are located throughout the entire IT system. Many of these con-
trols are executed prior to the data entering the computer programs. This section dis-
cusses the following preventive controls:

Source-data authorization

Data input

Source-data preparation

Turnaround documents

Prenumbered forms

Input validation

File auto-updating

Processing controls

Source-Data Authorization

After data have been recorded properly, there should be control techniques to ensure
that the source data have been authorized. Typically, authorization should be given for
source data such as credit terms, prices, discounts, commission rates, overtime hours,
and so forth.

The input documents, where possible, should have evidence of authorization and
should be reviewed by the internal control group in data processing. To the extent
practical, the computer should be utilized as much as possible to authorize input. This
may be done through programmed controls.

658 Chapter 17



Data Input

Data input is the process of converting data from non-machine-readable form (such as
hard-copy source documents) into a machine-readable form so that the computer can
update files with the transactions. Because the data-input process is typically a manual
operation, control is needed to ensure that the data input has been performed accurately.

Source-Data Preparation

In many automated systems, conventional source documents are still used and, there-
fore, no new control problems are presented prior to the conversion of source docu-
ments into machine-readable form. Specially designed forms promote the accuracy of
the initial recording of the data. A pre-audit of the source documents by knowledge-
able personnel to detect misspellings, invalid codes, unreasonable amounts, and other
improper data helps to promote the accuracy of input preparation.

In IT systems where the source document is eliminated or is in a form that does not
permit human review, control over source-data preparation should be such that access
to, and use of, the recording and transmitting equipment is properly controlled to
exclude unauthorized or improper use.

Turnaround Documents

Other control techniques to promote the accuracy of input preparation include the use
of turnaround documents, which are designed to eliminate all or part of the data to be
recorded at the source. A good example of a turnaround document is a bill from an oil
company. Normally, the bill has two parts: one part is torn off and included with the
remittance you send back to the oil company as payment for your bill; the other you
keep for your records. The part you send back normally includes prerecorded data for
your account number and the amount billed so that this returned part can be used as
the input medium for computer processing of the cash receipts for the oil company.

Prenumbered Forms

Sequential numbering of the input transaction form with full accountability at the
point of document origin is another traditional control technique. This can be accom-
plished either by using prenumbered forms or by having the computer issue sequen-
tial numbers.

Input Validation

An important segment of input processing is the validation of the input itself. This is an
extremely important process because it is really the last point in the input preparation
where errors can be detected before files are updated. The primary control techniques
used to validate the data are associated with the editing capabilities of the computer.

Testing Internal Controls 659



Based on the characteristics of the computer, an IT system has unique capabilities to
examine or edit each element of information processed by it. This editing involves the
ability to inspect and accept (or reject) transactions according to validity or reasonable-
ness of quantities, amounts, codes, and other data contained in input records. The edit-
ing ability of the computer can be used to detect errors in input preparation that have
not been detected by other control techniques discussed previously. 

The editing ability of the computer is achieved by installing checks in the program
of instructions—hence, the term “program checks.” They include the following:

■■ Validity tests. Validity tests are used to ensure that transactions contain valid
transaction codes, characters, and field sizes. For example, in an accounts
receivable system, if only PB through PL are valid transaction codes for input,
then input with other codes is rejected by the computer. In a labor data collec-
tion system, all time transactions and job transactions could be checked by the
computer against the random-access file of active job numbers, and non-
matches indicated on a report could be brought to the attention of the shop
foreman.

■■ Completeness tests. Completeness checks are made to ensure that the input
has the prescribed amount of data in all data fields. For example, a payroll
application requires that each new employee have data in all the fields in the
input screen be valid data. A check may also be included to see that all charac-
ters in a field are either numeric or alphabetic.

■■ Logical tests. Logical checks are used in transactions where various portions,
or fields, of the record bear some logical relationship to one another. A com-
puter program can check these logical relationships to reject combinations that
are erroneous even though the individual values are acceptable.

■■ Limit tests. Limit tests are used to test record fields to see whether certain pre-
determined limits have been exceeded. Generally, reasonable time, price, and
volume conditions can be associated with a business event. For example, on
one payroll application, the computer is programmed to reject all payroll rate
changes greater than 15 percent of the old rate. The Hours field is checked to
see whether the number of hours worked exceeds 44. In another application,
an exception report is generated when a customer’s balance plus the total of
his unfilled orders exceeds his credit limit.

■■ Self-checking digits. Self-checking digits are used to ensure the accuracy
of identification numbers such as account numbers. A check digit is
determined by performing some arithmetic operation on the identification
number itself. The arithmetic operation is formed in such a way that typical
errors encountered in transcribing a number (such as transferring two digits)
will be detected.

■■ Control totals. Control totals are used to ensure that data is complete and/or
correct. For example, a control total could indicate the number of active
employees to be paid and the accumulated net pay for a weekly payroll.

660 Chapter 17



File Auto-Updating

The updating phase of the processing cycle is the auto-updating (via computer) of files
with the validated transactions. Typically, auto-updating involves sequencing transac-
tions, comparing transaction records with master-file records, performing computations,
and manipulating and reformatting data for the purpose of updating master files and
producing output data for distribution to user departments for subsequent computer-
ized processing.

The accuracy of file updates depends on controls to ensure the programming, hard-
ware checks designed and built in to the equipment by the manufacturer, and pro-
grammed controls included in the computer programs themselves.

Another control technique for the proper updating of files is file maintenance. File
maintenance consists of the procedures involved in making changes to the permanent
information contained in master files, such as an employee’s name, address, employee
number, and pay rate. Because these data are so important to the proper computerized
processing of files, formalized procedures are required to make changes to this type of
permanent information. All master-file changes should be authorized in writing by the
department initiating the change. A notice or register of all changes should be fur-
nished to the initiating department to verify that the changes were made.

Processing Controls

As discussed previously, programmed controls are an important part of application
control. Programmed controls on the auto-updating of files are also important because
they are designed to detect data loss, check mathematical computations, and ensure
the proper posting of transactions. Programmed checks to detect data loss or incorrect
processing include record counts, control totals, and has totals:

■■ Record count. A record count is the number of records a computer processes,
which can then be compared with a predetermined count. Typically, a record
count is established when the file is assembled, and the record count is carried as
a control total at the end of the file and adjusted whenever records are added or
deleted. For example, a record count may be established for all new hires or fires
processed. This record count can then be compared internally (if a control card is
included with the input transactions) or manually to predetermined totals of new
hires or fires. Each time the file is processed, the records are recounted and the
quantity is balanced to the original or adjusted total. Although the record count
is useful as a proof of processing accuracy, it is difficult to determine the cause of
error if the counts are out of balance.

■■ Control total. A control total is made from amount or quantity fields in a group
of records and is used to check against a control established in previous or sub-
sequent manual or computer processing.

■■ Has total. A has total is another form of control total made from data in a 
non-quantity field (such as vendor number or customer number) in a group
of records.

Testing Internal Controls 661



Programmed checks of mathematical calculations include limit checks, cross-foot-
ing balance checks, and overflow tests.

Some calculations produce illogical results, such as million-dollar payroll checks or
negative-amount payroll checks. Such calculations can be highlighted in exception
reports with the use of limit checks, which test the results of a calculation against pre-
determined limits. For example, a payroll system may include limit checks to exclude
from machine payroll check preparation all employees with payroll amounts greater
than $500 or less than $0.

Cross-footing balance checks can be programmed so that totals can be printed and
compared manually or internally during processing. For example, the computer-audit
program is used in testing accounts receivable and in selecting accounts for confirma-
tion. Each account is aged according to the following categories: current, 30, 60, and 90
days. The aged amounts for each account are temporarily stored in accumulators in the
central processing unit. When all open items for the account have been aged, the aged
totals for the account are compared to the account balance stored elsewhere in the cen-
tral processing unit. Any difference results in an error. The program also includes for
all accounts the accumulation and printout of aged amounts for manual comparison
with the total accounts receivable balance.

The overflow test is widely used to determine whether the size of a result of a com-
putation exceeds the registered size allocated to hold it. If so, there must be a means of
saving the overflow portion of the results that otherwise would be lost. Overflow control
may be programmed or may be available as a hardware or software control provided by
the equipment manufacturer.

Programmed checks for proper postings may be classified as file checks. Basically,
these are controls used to ensure that the correct files and records are processed
together. The problem of using the correct file is significant in IT systems because of the
absence of visible records and because of the ease with which wrong data can be stored
electronically. The increase in the size and complexity of modern data processing sys-
tems has resulted in the growth of large system libraries containing data that can cost
thousands of dollars to generate. For the purpose of preserving the integrity of data,
various labeling techniques have been devised to provide maximum protection for a
file to prevent accidental destruction or erasure and to ensure proper posting, updat-
ing, and maintenance. Two types of labels are used, external and internal. (External
labels are a physical safeguard that properly falls under the category of documentation
and operating practices. They are attached to the exterior of data processing media.)

Detective Controls

Detective controls alert individuals involved in a process of a problem so that action
can be taken. One example of a detective control is a listing of all paychecks for indi-
viduals who worked more than 80 hours in a week. Such a transaction may be correct,
or it may be a systems error, or even fraud.

Detective controls will not prevent problems from occurring, but rather will point
out a problem once it has occurred. Examples of detective controls include batch con-
trol documents, batch serial numbers, clearing accounts, labeling, and so forth.

662 Chapter 17



This section discusses the following detective controls:

■■ Data transmission

■■ Control register

■■ Control totals

■■ Documentation and testing

■■ Output checks

Data Transmission

After the source data have been prepared, properly authorized, and converted to
machine-processable form, the data usually are transmitted from the source depart-
ment to the data processing center. Data transmission can be made by conventional
means (such as messenger and mail) or by data transmission devices that allow data
transmission from remote locations on a timelier basis.

One important control technique in data transmission is batching, the grouping of a
large number of transactions into small groups. Batching typically is related more to
sequential-processing systems where transactions have to be put into the same order
as the master files; however, batching may also apply to many direct-access systems
where it may be desirable to batch input for control purposes.

Let us consider a payroll example as an illustration of batching. The source docu-
ment may include time cards (source-data preparation), which should have been
approved by a foreman (data authorization). For batching, these data time cards could
be divided into groups of 25, with a control total for hours worked developed for each
batch along with the total for all batches. Each batch transaction and its control totals
could then be sent (data transmission) to the internal control group in the IT depart-
ment for reconciliation with the batch control totals. Thus, batching and controls totals
are useful techniques for the control of both data conversion and data transmission.
These control totals could also be used during the computer processing phase during
which the payroll files would be updated (as discussed later in this chapter).

Control totals should be developed on important fields of data on each record to
ensure that all records have been transmitted properly from the source to the data pro-
cessing center. Controls might be developed on the number of records in each batch or
could be based on some quantitative field of data such as invoice amount or hours
worked, and so on. Such controls serve as a check on the completeness of the transac-
tion being processed and ensure that all transactions have been received in the data
processing center.

Control Register

Another technique to ensure the transmission of data is the recording of control totals
in a control log so that the input processing control group can reconcile the input con-
trols with any control totals generated in subsequent computer processing.

Testing Internal Controls 663



Control Totals

Control totals are normally obtained from batches of input data. These control totals
are prepared manually, prior to processing, and are then incorporated as input to the
computer processing phase. The computer can be programmed to accumulate control
totals internally and make a comparison with those provided as input. A message con-
firming the comparison should be printed out, even if the comparison did not disclose
an error. These messages are then reviewed by the internal processing control group.

Documenting and Testing

Accuracy of programming is ensured by properly documenting and extensively test-
ing program procedures. Good documentation aids in locating programming errors
and facilitates correction even in the absence of the original designer or programmer.
Extensive program test procedures under real-life conditions, testing all possible
exceptions without actual programmer involvement, minimizes the possibilities of
hidden program bugs and facilitates the smooth running of the system.

Output Checks

The output checks consist of procedures and control techniques to do the following:

■■ Reconcile output data, particularly control totals, with previously established
control totals developed in the input phase of the processing cycle

■■ Review output data for reasonableness and proper format

■■ Control input data rejected by the computer during processing and distribute
the rejected data to appropriate personnel

■■ Distribute output reports to user departments on a timely basis

Proper input controls and file-updating controls should give a high degree of assur-
ance that the computer output generated by the processing is correct. However, it is
still useful to have certain output controls to achieve the control objectives associated
with the processing cycle. Basically, the function of output controls is to determine that
the processing does not include any unauthorized alterations by the computer opera-
tions section and that the data are substantially correct and reasonable. The most basic
output control is the comparison of control totals on the final output with original
input control totals such as record counts or financial totals. Systematic sampling of
individual items affords another output control. The testing can be done by the origi-
nating group or the control group.

One of the biggest controls in any system occurs when the originating group reviews
reports and output data and takes corrective action. Review normally consists of a search
for unusual or abnormal items. The programmed controls discussed previously, coupled
with exception reporting, actually enhance the ability of responsible personnel to take
necessary corrective action.

Another form of output control in some organizations is the periodic and systematic
review of reports and output data by an internal audit staff. This group normally has

664 Chapter 17



the responsibility to evaluate operating activities of the company, including computer
operations, to determine that internal policies and procedures are being followed.

Corrective Controls

Corrective controls assist in the investigation and correction of causes of exposures that
have been detected. These controls primarily collect evidence that can be used to deter-
mine why a particular problem has occurred. Corrective action is often a difficult and
time-consuming process; however, it is important because it is the prime means of iso-
lating system problems. Many systems improvements are initiated by individuals tak-
ing corrective actions on problems. 

Note that the corrective process itself is subject to error. Many major problems have
occurred in organizations because corrective action was not taken on detected prob-
lems. Therefore, detective control should be applied to corrective controls.

Examples of corrective controls are audit trails, discrepancy reports, error statistics,
backup and recovery, and so on. This section discusses two corrective controls: error
detection and resubmission, and audit trails.

Error Detection and Resubmission

Until now we have talked about data control techniques designed to screen the incom-
ing data to reject any transactions that do not appear valid, reasonable, complete, and
so on. We also must deal with these errors upon detection. We must establish specific
control techniques to ensure that all corrections are made to the transactions in error
and that these corrected transactions are reentered into the system. Such control tech-
niques should include the following:

■■ Having the control group enter all data rejected from the processing cycle in
an error log by marking off corrections in this log when these transactions are
reentered; open items should be investigated periodically.

■■ Preparing an error input record or report explaining the reason for each
rejected item. This error report should be returned to the source department for
correction and resubmission. This means that the personnel in the originating
or source department should have instructions on the handling of any errors
that might occur.

■■ Submitting the corrected transactions through the same error detection and
input validation process as the original transaction.

Audit Trails

Another important aspect of the processing cycle is the audit trail. The audit trail con-
sists of documents, journals, ledgers, and worksheets that enable an interested party
(for example, the auditor) to trail an original transaction forward to a summarized total
or from a summarized total backward to the original transaction. Only in this way can
he determine whether the summary accurately reflects the business’s transactions.

Testing Internal Controls 665



Cost/Benefit Analysis

In information systems, a cost is associated with each control. Because no control
should cost more than the potential errors it is established to detect, prevent, or correct,
the cost of controls must be evaluated. As part of that evaluation, remember that the
extent to which controls are poorly designed or excessive, they become burdensome
and may not be used. This failure to use controls is a key element leading to major
exposures.

Preventive controls are generally the lowest in cost. Detective controls usually
require some moderate operating expense. On the other hand, corrective controls are
almost always quite expensive. Prior to installing any control, some cost/benefit
analysis should be done.

Controls need to be reviewed continually. This is a prime function of the auditor,
who should determine whether controls are effective. As the result of such a review, an
auditor will recommend adding, eliminating, or modifying system controls.

Assessing Internal Controls

If software testers perform tests to evaluate the adequacy of a system of internal con-
trols, the work of internal auditors is lessened. The internal auditors would be able to
rely on the work performed by the software testers. However, it is recommended that
software testers confine their tests to identifying strengths and weaknesses of internal
controls. The identified weaknesses can form the basis of improving the system of con-
trols within an application system.

Figure 17-2 illustrates the workbench for assessing internal controls.

Task 1: Understand the System Being Tested

Testing the adequacy of a system of internal controls begins with a tester understand-
ing the objectives and implementation of an application system. When preparing for
any type of test of an application system, the tester needs this background information
on the application system. The background information can be obtained in two ways: 

■■ Study the system documentation. The documentation from the user area
about the application system, as well as the documentation prepared by the
system development team, provides information on the application system.
This documentation will not only help the tester understand the system but
will also be an important component in performing Task 3, which is a review
of the application system controls.

■■ Interview the application system stakeholders. The tester may want to talk to
various individuals/groups that have a stake in the processing of the applica-
tion system. The types of people interviewed may include the following:

666 Chapter 17



■■ Customer personnel. Those who have requested the info system for their
processing purposes.

■■ System users. Those individuals who will use the system to perform their
day-to-day responsibilities

■■ Control personnel. Those that have the responsibility to ensure that the
application system is under control and, if not, to take appropriate action.

■■ Internal auditors. If the organization’s internal auditors have reviewed the
application system in the user area, they have knowledge that would help
the tester determine the types of tests to perform.

Work Paper 17-1 is an application internal-control questionnaire. Section A of this
questionnaire defines a minimum acceptable level of documentation for the tester to
understand the application system using system documentation.

Figure 17-2 Workbench for testing internal controls.

Control
Effectively
Assessed?

NO

YES

Individual(s) Skills
in Assessing

Internal Control

Duplication
Documentation

Internal Control
Assessment

Report

Understand
the System

Being Tested

Task 1

Identify
Risks

Task 2

Document Control
Strengths and
Weaknesses

Task 5

Review 
Application

Controls

Task 3

Test
Application

Controls

Task 4

Testing Internal Controls 667



Task 2: Identify Risks

Ideally, system documentation includes the application system risks. This is normally
a component of the process system developers use to help define requirements. If the
system developers have not done this, those assigned testing responsibilities for the
application system should have completed a risk-assessment activity. The seven-step
software-testing process presented earlier in this book provides a methodology for
identifying application system risks.

These risks become the requirements for designing controls. First the risk must be
identified, and then the exposure estimated and the threats identified. When you know
the exposure and threats, a decision can be made as to the importance of controlling the
risk. For example, if the risk is minor (for example, $100 or less), no controls may be
needed. On the other hand, if the risk is high, in the hundreds of thousands of dollars,
significant strong controls are needed.

Testers should not make decisions about whether a specific risk requires controls.
That is the responsibility of the customer/user of the application system. However,
if the customer/users have not determined whether controls are needed, and esti-
mated the strength of controls that might be needed, testers should merely identify this
as a weakness in the system of internal controls. It would not be necessary for the
testers to estimate the exposure, but rather just indicate a specific risk that has not been
controlled through the application system’s internal controls.

Task 3: Review Application Controls

A detailed review of the system should encompass an understanding of both the details
of the processing and the major controls over the major phases of the application
(namely, input, processing, and output). A useful starting point to enable the tester to
determine the details of processing is the review of the system’s documentation, such as
systems flowcharts, narrative description, and record layouts of transactions being
processed and the master files being updated. The review of the system’s documenta-
tion should be followed by interviews with user and system personnel about the spe-
cific control aspects of the application. Work Paper 17-1 provides questions that the
tester should ask when reviewing a specific application. The tester should be involved
in reviewing documentation for the specific application to determine the nature of the
input controls, processing controls, output controls, and file controls (types of controls
discussed earlier in this chapter).

Task 4: Test Application Controls

After the tester has reviewed the system documentation and has interviewed relevant
IT and user personnel, the tester should have a pretty good understanding of the
nature of the specific application and the types of controls included. The information
obtained through the initial review of the system should then be supplemented by
tracing different types of transactions through the system. The tracing of transactions
is designed to establish the existence of system procedures and to confirm the tester’s

668 Chapter 17



understanding of the system obtained through discussions with responsible personnel
and through the review of systems documentation.

The tester may be able to test the system in a non–computer-processing way; in
other situations, it may be desirable, if not necessary, to test with the use of computer
processing.

Testing Without Computer Processing

If the processing application being evaluated is well documented and a visible audit
trail exists, the tester may test the existence and effectiveness of the client’s controls
and processing procedures by checking source data, control reports, error listings,
transaction registers, and management reports. The tester, in effect, views the com-
puter program as a black box and makes an inference about what goes on in the pro-
gram by looking at known input (source documents) and known output (i.e., error
listings or transaction registers).

Testing without using computer processing or by using conventional source docu-
ments and printed outputs is a process quite familiar to testers and requires no further
discussion.

Testing with Computer Processing

When testing the applications system, dynamic testing is used primarily to obtain
information about the operation of the application and the programmed controls. Basi-
cally, there are two ways to test a system with the computer: the test-data approach and
the mini-company approach.

Test-Data Approach

The test-data approach is one of the methods available to the tester to evaluate com-
puter-based systems. This approach is primarily used to obtain information about the
operation of the computer program or set of programs in an application and about the
program controls.

The test-data method is probably most applicable when:

■■ A significant part of the system of internal control is embodied in the computer
program.

■■ There are gaps in the audit trail making it difficult or impractical to trace input
to output or to verify calculations.

■■ The volume of records is so large that it may be more economical and more
effective to use test-data methods instead of manual testing methods.

Because most accounting and financial processing systems involve the updating of
records, the use of test data usually involves the use of master records. So, as Figure 17-3
suggests, the sample transactions processed with master records determine how the
computer system and programmed controls update the master files and generate output.

Testing Internal Controls 669



As the diagram indicates, the tester, with an understanding of how the computer pro-
gram (including the programmed controls) should operate, develops predetermined
processing results that he compares to the actual results from his testing process. Based
on the comparison of actual results to predetermined results, he makes some conclu-
sions about the effectiveness and existence of the system and programmed controls.

The inherent advantage of creating test transactions over selecting actual transac-
tions is that the tester may include representative types of transactions in his tests with
relative ease. Conventionally, to test the system, the tester selects actual accounting
transactions previously processed by the client. Typically, this approach calls for trac-
ing several transactions from the recording of the source documents, through what-
ever intermediate records might exist, to the output reports or records produced. Often
this approach is incomplete and inexact, and the transactions do not include the ones
requiring exception handling. By creating transactions, the tester can process data that
are truly representative and that can include any type of transactions.

By several methods, the tester can determine the types of transactions to be included
in his test data. One approach is to analyze the data used to test the computer programs.
Much of such test data tests the processing steps and controls that the tester is interested
in. Such a method is the most expedient because many transactions can be devised by
mere duplication or slight modification of the system test data. This method has the
added advantage of reviewing the system procedures in testing. Such a review might
prove highly informative and beneficial to user/personnel by uncovering outdated tests
and areas in the program not being tested at all. Another and more time-consuming way
to determine the types of transactions to include in the test data involves analyzing the
input records and creating simulated transactions in accordance with the test objectives.
Typically, a combination of the two approaches is necessary to include all the transac-
tions that the tester is interested in processing.

Figure 17-3 Updating computer files.

Simulated
Transactions

Master
Records

Computer
System

Actual Processing
Results in 

Visible Form

Predetermined
Processing

Results

Tester
Comparison Results

Electronic Processing
Manual Processing

670 Chapter 17



Regardless of the approach used to determine the types of transactions to be
processed, several observations should be made. All possible combinations within all
data fields need not be set out as separate transactions. Distinguish between data fields
that merely represent identification data (that is, account numbers, social security
numbers) and those that involve invariable data. In the case of the former, only a lim-
ited number of possibilities needs be included to test the identification routines in the
program. For example, to test sequence checking and identification comparison rou-
tines, a transaction with a valid transaction code and employee number and containing
valid information could be placed out of sequence in the test deck. Additional tests for
sequence checking and identification comparison would not be necessary. Not all com-
binations within variable data fields need testing either. 

The tests should include transactions that determine the processing and handling of
the following general conditions:

■■ Valid conditions

■■ Out-of-sequence conditions

■■ Out-of-limits conditions

■■ Routines arising from a major decision point where alternative processing takes
place as a result of comparing transaction records with master records (that is,
where the transaction identification number can be greater, equal to, or less
than the identification number on the master record)

■■ Units of measure differences (that is, tons instead of pounds)

■■ Incomplete, invalid, or missing input information

■■ Wrong master and/or transaction files

■■ Numeric characters in fields where alphabetic characters belong and vice versa

■■ Characters in certain fields that exceed prescribed length (an overflow condition)

■■ Illogical conditions in data fields where programmed consistency checks test
the logical relationship between the fields

■■ Conditions where transaction codes or amounts do not match the codes or
amounts established in tables stored in internal memory

Obviously, all these conditions cannot be tested with each type of transaction, but the
majority of them may be tested in processing all transactions included in the test data.

■■ Obtaining master records. The tester must obtain master records with which to
process the test transactions. The contents of the master records must also be
available in visible form to compute the predetermined results for comparison
with output resulting from the processing of test data.

Although actual master records may be readily obtained in many systems, get-
ting the same records in printed form without advance planning is difficult.
One method is to time the tests so they are processed with the output master
file used to prepare a printed report, such as the accounts receivable aged trial

Testing Internal Controls 671



balance or an inventory report. Another method is to have an inquiry program
prepared that will print out selected master records from the master file to be
used in processing the test transactions.

■■ Control of client’s program. One of the important procedures for testing a sys-
tem is to make sure that the program being tested is the one the company actu-
ally uses to process data.

Mini-Company Approach

The mini-company approach appears to have great potential for fast-response systems.
This approach overcomes some of the limitations of the test-data approach and enables
remote entry of test data, online testing, and surprise testing of systems.

The mini-company approach can be defined as a means of passing fictitious test trans-
actions through a computer system simultaneously with live data, without adversely
affecting the live files or outputs. In other words, it is a small subsystem of the regular
system. A separate set of outputs, including statistics and reports, are produced for the
mini-company.

Consider how the mini-company approach could be used in a payroll system. In the
time-recording system, a fictitious department could set up records for fictitious
employees included as part of the live master file. The test transactions or mini-com-
pany transactions could be entered into the system through the terminals used for time
recording and run with normal transactions. Exception reports on clock-in transactions
and job transactions could be prepared for the mini-company for unusual or error
transactions entered. The valid transactions for the mini-company recorded on the
daily transactions tape could be separated from the actual data and then processed in
a normal manner, generating daily labor reports and providing input for payroll pro-
cessing and preparation of payroll reports, including payroll checks. The results of the
mini-company’s input could be compared with results predetermined to indicate any
irregularities in controls or processing.

Transaction Flow Testing

Transaction flow testing is a method used to document controls in computerized appli-
cations. This control review method requires the auditor to identify the following:

■■ The organization’s cycles of business activities

■■ The types of transactions that flow through each cycle (for example, in the pay-
roll cycle are new employee transactions, employee rate increase transactions,
hours worked transactions, absences transactions, and so on)

■■ The functions that are performed within each cycle to recognize, authorize,
process, classify, and report transactions (activities performed within each
cycle; for example, in a payroll system activities include authorizing a change
to pay rates, the classification of absences by type, and the preparation of out-
put such as payroll checks)

■■ Specific internal control objectives for each cycle

■■ The internal control techniques used to achieve each stated objective

672 Chapter 17



Transaction flow testing requires the tester to develop a flowchart showing what trans-
actions flow through the business activity being tested. As the tester traces the transaction
flow, the tester would indicate the various functions performed on that transaction in the
order in which they occur. The control objective at each point is identified, as well as
the technique used to achieve that objective.

Using this flowchart of transaction processing, documented in accordance with the
transaction flow testing methodology, provides the auditor with the type of informa-
tion needed to assess the adequacy of internal control.

Objectives of Internal Accounting Controls

Objectives of internal control for an entity’s cycles and its financial planning and con-
trol function can be developed using a step-down analysis. As shown in Figure 17-4,
the analysis begins with the broad objectives of internal control contained in profes-
sional accounting literature.

From such an analysis, two levels of objectives can be identified:

■■ Systems control and financial planning and control objectives

■■ Cycle control objectives

The systems control and financial planning and control objectives are more specific
than the broadly stated objectives of internal control contained in professional account-
ing literature. Cycle control objectives can be developed from the systems control objec-
tives by refining them for the different categories of transactions found within a cycle. 

Figure 17-4 Internal control objectives.

Basic Objectives

Financial Planning
and Control
Objectives

Cycle Control Objectives

Systems Control Objectives

A-D Pervasive Objectives

E-J Transaction Flow Objectives

Treasury
Cycle

Objectives
Purchasing
Objectives

Payroll
Objectives

Conversion
Cycle

Objectives

Revenue
Cycle

Objectives

Financial
Reporting

Cycle
Objectives

Expenditure Cycle

Testing Internal Controls 673



Systems Control Objectives

This section identifies ten systems control objectives that apply to all accounting sys-
tems in all industries. For convenience in reference, the systems control objectives are
identified as A through J. The first four (A through D) are pervasive and deal with
authorization, classification, substantiation and evaluation, and physical safeguards.
The final six (E through J) address the flow of transactions through a system.

The systems control objectives are as follows:

A. Authorizations should be in accordance with criteria established by the appro-
priate level of management.

B. Transactions should be classified in a manner that permits the preparation of
financial statements in conformity with generally accepted accounting princi-
ples and management’s plan.

C. Report and database contents should be periodically substantiated and 
evaluated.

D. Access to assets should be permitted only in accordance with management’s
authorization.

E. Economic events should be recognized and submitted for acceptance on a
timely basis.

F. All, and only, economic events meeting management’s criteria should be accu-
rately converted to transactions and accepted for processing on a timely basis.

G. All accepted transactions should be processed accurately, in accordance with
management’s policies, and on a timely basis.

H. The results of processing should be reported accurately.

I. Database elements should accurately reflect the results of processing.

J. Events affecting more than one system should result in transactions that are
reflected by each system in the same accounting period.

Systems control objectives apply to all cycles. They are not intended, however, to be
used directly in evaluating an entity’s internal control techniques. Rather, they repre-
sent a base from which specific cycle control objectives applicable to an individual
entity can be developed.

Financial Planning and Control Objectives

In addition to the ten systems control objectives, four financial planning and control
objectives may be used to evaluate the techniques employed by management to define
and communicate the objectives and business of the entity; the long- and short-range
plans for the entity; and the framework for reporting to the designated representatives
of stockholders, owners, or members. Figure 17-5 shows the relationship between these
control objectives and transaction processing. These financial planning and control
objectives are as follows:

■■ The objectives of the entity and the nature of its business activities should be
defined and communicated.

674 Chapter 17



■■ A strategic (long-range) plan should be maintained and communicated.

■■ A short-range plan should be developed and communicated.

■■ Management’s plans and the performance of the entity should be regularly
reported to the designated representatives of the shareholders, owners, or
members

The relationship of these matters to internal accounting controls may seem remote,
particularly since the management planning process extends beyond accounting and
financial disciplines and embraces marketing, productions, public relations, and legal
and legislative considerations. A financial plan is, however, a quantification of an
entity’s total planning process. A well-developed, properly communicated, and effec-
tively administered financial plan is a powerful tool for controlling economic events.

Cycle Control Objectives

Specific internal control objectives can be derived for each of an entity’s recognized
cycles from the systems control objectives. Cycle control objectives should address
authorization, transaction processing, classification, substantiation and evaluation, and
access to assets within each cycle, as follows:

■■ Authorization objectives derived from systems control objective A. These objec-
tives address controls for securing compliance with policies and criteria estab-
lished by management as part of the financial planning and control function.

■■ Transaction processing objectives derived from systems control objectives E

through J. These objectives address the controls over recognition, processing,
and reporting of transactions and adjustments.

■■ Classification objectives derived from systems control objective B. These
objectives address controls over the source, timeliness, and propriety of
journal entries.

■■ Substantiation and evaluation objectives derived from systems control

objective C. These objectives address periodic substantiation and evaluation of
reported balances and the integrity of processing systems.

■■ Physical safeguard objectives derived from systems control objective D.

These objectives address access to assets, records, critical forms, processing
areas, and processing procedures.

The illustrative cycle control objectives are oriented toward a manufacturing entity
in which the following cycles are recognized:

Treasury

Expenditure (Purchasing)

Expenditure (Payroll)

Conversion

Revenue

Financial Reporting

Testing Internal Controls 675



Figure 17-5 Relation of systems control objectives to transaction flow.

S
y
ste

m
s C

o
n

tro
l O

b
je

ctive
s

Appropriate AuthorizationsA

Appropriate Accounting ClassificationB

Substantiation and EvaluationC

Adequate Physical SafeguardsD

E

Recognition
of Economic

Events

F

Acceptance
of

Transactions

G

Integrity
of

Processing

H

Integrity
of

Reports

I

Integrity
of

Databases

J

Integrity of
Interfaces
(cutoff)

Files

To Other
Systems

Tra
n

sa
ctio

n
 Flo

w

Economic
Event

Transactions
Financial

Statements
Processing Reporting

General
Ledger
Posting

676 Chapter 17



The illustrative objectives make certain assumptions about the entity. For example,
the functions that are assumed to be part of the expenditure (purchasing) cycle are pur-
chasing, receiving, accounts payable, and cash disbursements. In the conversion cycle,
as another example, it is assumed that the entity has a cost accounting system.

Although the illustrative cycle control objectives have a particular industry orienta-
tion and are based on a number of assumptions, they probably are usable, with only
minor modifications, by many entities in a wide variety of industries.

Modifications should be made to recognize the nature of economic activity in an
entity’s industry and the terminology and transaction-processing methods that are
unique to the industry. For example, objectives identified for a particular retail com-
pany that makes only cash sales may address controls over cash registers (which are
not much of a problem to most manufacturers) while ignoring customer accounts
receivable. Similarly, the objectives for a utility might recognize that services delivered
are billed on the basis of meter readings rather than delivery tickets. Whatever modifi-
cations are made, however, the internal control objectives for a cycle should derive
from the control objectives for a cycle, which should derive from the ten systems con-
trol objectives to ensure coverage of each major control within each significant flow of
activity.

Results of Testing 

At the completion of Tasks 1 through 4, testers have gathered the following informa-
tion about the test performed on internal controls:

Risks for which there were no controls

Controls for which there were no risks

Controls that were not adequate to control the risk to the level specified by the
stakeholders of the application system

Interfaces to other systems that are not adequately controlled (see the material on
control cycles)

Risks that appear to be adequately controlled

Task 5: Document Control Strengths and Weaknesses

Most testers do not have sufficient training to determine the adequacy of internal con-
trols, which normally is an audit/management responsibility. What the testers can do
is identify strengths and weaknesses that customer management can use to determine
whether more controls are needed.

The following guide should prove helpful to testers to determine whether controls
are strong, average, weak and or non-effective.

■■ Strong controls. An automated preventive control with an automated correc-
tive action—for example, a control that checks the customers credit limit and
denies a purchase if that credit limit is exceeded.

Testing Internal Controls 677



■■ An automated detective control with a monitored corrective action. A
detective control might identify a customer ordering more than the normal
number of a product, with a message going to marketing personnel that
must be responded to.

■■ A manual preventive control with a monitored corrective action. An
instructor in a warehouse checks to ensure that the products shipped are
those on the invoice, and if not, stops shipment until the correct shipment
can be determined.

■■ Weak controls. A manual preventive control with a manual corrective process
but not a required process—for example, a guard checks employees’ badges
manually but does not have to stop an employee from entering if the guard is
busy with other actions (for example, a telephone call) or if the guard recog-
nizes that individual as an employee.

■■ Non-effective controls. A detective control with no action required—for example,
a computer compiler message does not require the programmer to take action.

If risks have been identified, and exposures estimated, the tester’s report of strengths
and weaknesses should be based on level of risk. This is consistent with a concept of
internal controls. The tester would look at the totality of controls from the initiation of the
source information to the use of the output deliverables. 

If risks are not identified in the system documentation, testers would use the risks
determined in Task 2 of this process to report strengths and weaknesses.

Quality Control Checklist

Testers should use the questionnaire in Work Paper 17-1 as a quality-control checklist
for assessing their organization’s level of internal control.

Summary

This chapter examined a five-step process to test the adequacy of internal controls in an
application system. The chapter also discussed preventive, detective, and corrective
control categories to help the tester understand controls and determine control strength
and weaknesses. For more information on building and/or testing systems of internal
control, visit www.internalcontrolinstitute.com. 

678 Chapter 17



WORK PAPER 17-1 Internal Control Questionnaire

QUESTION YES NO COMMENTS

A. Documentation

Documentation consists of work papers and records that

describe the system and procedures for performing a
processing task. It is the basic means of communicating

the essential elements of the data processing system and

the logic followed by the computer programs. Preparing

adequate documentation is a necessary, although

frequently neglected, phase of data processing. A lack of

documentation indicates a serious weakness within the

management control over a data processing installation.

■■ Is the program supported by an adequate

documentation file? A minimum acceptable level

of documentation should include the following:

Problem statement

System flowchart
Transactions and activity codes

Record layouts

Operator instructions

Program flowchart
Program listing

Approval and change sheet

Description of input and output forms

B. Input Controls

Input controls are designed to authenticate the

contents of source documents and to check the

conversion of this information into machine-readable

formats or media. Typically, these controls will not be

designed to detect 100 percent of all input errors
because such an effort would be either too costly or
physically impractical. Therefore, an economic balance

must be maintained between the cost of error detection
and the economic impact of an undetected error. This

should be considered when evaluating input control.

Judgment must be used when identifying essential

information, the accuracy of which must be verified.

The following questions can also be used to evaluate

internal control practices:

■■ Are procedures adequate to verify that all

transactions are being received for processing?

To accomplish this, there must be some systematic

procedure to ensure all batches entered for
processing or conversions are returned. Basic

control requirements are being met if the answer
to one of the following questions is “yes.”

(continues)

Testing Internal Controls 679



WORK PAPER 17-1 (continued)

QUESTION YES NO COMMENTS

■■ Are batch controls (at least an item count)

being established before source documents

are sent for processing?

■■ If batch controls are established, is there some

other form of effective control (such as

prenumbered documents) that ensures that all

documents have been received?

■■ If no batch control is used, is there some other
means of checking the receipt of all

transactions? If yes, describe. (For example, in
a payroll operation, the computer may match

attendance time cards and corresponding job

tickets for each employee as the master file is

updated.)

■■ Are procedures adequate to verify the recording of

input data? Control is being maintained if the

answer to one of the following questions is “yes.”

■■ Are important data fields subject to

verification?

■■ If only some (or none) of the important data
fields are verified, is an alternate checking

technique employed? Acceptable alternate

techniques include the following:

Self-checking digits

Control totals

Has totals

Editing for reasonableness

■■ If input data is converted from one form to

another prior to processing on the computer
system, are controls adequate to verify the

conversion? Normal conversion controls include

the following:

Record counts

Has totals

Control totals

■■ If data transmission is used to move data between
geographic locations, are controls adequate to

determine transmission is correct and no messages

are lost? Controls would normally include one or
more of the following:

Message counts

Character counts

Dual transmission

■■ Is the error correction process and the re-entry of

the corrected data subject to the same controls as

is applied to original data?

680 Chapter 17



WORK PAPER 17-1 (continued)

QUESTION YES NO COMMENTS

■■ Are source documents retained for an adequate

period of time in a manner that allows

identification with related output records and

documents?

C. Program and Processing Controls

Programs should be written to take the maximum
advantage of the computer’s ability to perform logical

testing operations. In many cases, tests that could be

employed are not used because the programmer does

not know the logical limits of the data to be processed.

■■ Is adequate control exercised to ensure that all

transactions received are processed by the

computer? Note: The answer to one of the

following two questions should be “yes.”

■■ If predetermined batch control techniques are
being used, does the computer accumulate

matching batch totals in each run wherein the

corresponding transactions are processed, and

is there adequate provision for systematic

comparison of computer totals with

predetermined totals?

(Note: Having the computer internally match

totals is more accurate than external visual

matching. In addition, note that original

batch totals are often internally combined into

pyramid summary totals as different types of

input transactions are merged during

progressive stages. This is acceptable if it does

not create a serious problem when attempting

to locate errors when the overall totals are
compared.)

■■ If no batch total process is in use, is there an
effective substitute method to verify that all

transactions are processed? (Example: Any

application where source documents are
serially numbered and the computer system
checks for missing numbers.)

■■ Is adequate use being made of the system’s ability

to make logical data validity tests on important

fields of information? These tests may include the

following:

■■ Checking code or account numbers against a
master file or table

■■ Using self-checking numbers

■■ Testing for alpha or blanks in a numeric field

(continues)

Testing Internal Controls 681



WORK PAPER 17-1 (continued)

QUESTION YES NO COMMENTS

■■ Comparing different fields within a record to

see whether they represent a valid

combination of data

■■ Checking for missing data

■■ Is sequence checking employed to verify sorting

accuracy of each of the following:

■■ Transactions that were presorted before entry
into the computer (sequence check on the

first input run)

■■ Sequenced files (sequence check incorporated

within processing logic that detects out-of-

sequence condition when files are updated or
otherwise processed)

D. Output Control

Output control is generally a process of checking

whether the operation of input control and program
and processing controls has produced the proper
result. The following questions should be answered

regarding all controls in effect: 

■■ Are all control totals produced by the computer
reconciled with predetermined totals? (Basically,

control totals on input plus control totals on files

to be updated should equal the control totals

generated by the output.)

■■ Are control total reconciliations performed by

persons independent of the department

originating the information and the data
processing department?

■■ Are error corrections and adjustments to the

master file:

■■ Prepared by the serviced departments’

personnel?

■■ Reviewed and approved by a responsible

official who is independent of the data
processing department?

■■ Are procedures adequate to ensure that all

authorized corrections are promptly and properly
processed and that the corrections result in a file

that matches the control totals?

682 Chapter 17



WORK PAPER 17-1 (continued)

QUESTION YES NO COMMENTS

E. File Control

Because data files can be destroyed by careless

handling or improper processing, proper file control is

vital in all data processing installations.

■■ Are control totals maintained on all files and are
such totals verified each time the file is processed?

■■ Are all files backed up to permit file re-creation in
case files are lost/destroyed during processing?

■■ Are all files physically protected against damage

by fire or other accidental damage?

■■ Are there adequate provisions for periodic 

checking of the contents of master files by 

printout and review, checking against physical 

counts, comparison to underlying data, or 

other procedures?

Testing Internal Controls 683





685

(Note: Much of the material in this chapter derives from a forthcoming book on testing
and supporting COTS applications by William E. Perry, Randall Rice, William Bender,
and Christina Laiacona.)

Increasingly, organizations are buying software from stores. This software is some-
times referred to as “shrink-wrap” software or commercial off-the-shelf (COTS) soft-
ware. The fact that it is commercially available does not mean that it is defect free, or
that it will meet the needs of the user. COTS software must be tested.

Contracted software, or outsourced software, is a variation of COTS. The commonal-
ity between the two is that an organization other than the one using the software builds
and tests the software. In contrast to COTS software, however, software development
that is outsourced entails a closer relationship between the organization using the soft-
ware and the organization building the software. Often, that closer relationship allows
the contracting organization access to developers and/or the internal documentation
regarding the software under development.

Over time, more organizations will rely on COTS software than software developed
in-house. Although organizations will therefore need fewer or no software developers,
in-house testing will still need to be performed. This chapter explains the role of testers
when their organization acquires COTS software.

Testing COTS and 
Contracted Software

C H A P T E R

18



Overview

COTS software must be made to look attractive if it is to be sold. Thus, developers of
COTS software emphasize its benefits. Unfortunately, there is often a difference between
what the user believes the software can accomplish and what it actually does accom-
plish. Therefore, this chapter recommends both static and dynamic testing. Static testing
concentrates on the user manual and other documentation; dynamic testing examines
the software in operation. Note that normally you will have to purchase the software to
perform these tests (unless the software developer provides a trial version for testing
purposes). However the cost to purchase is usually insignificant compared to the prob-
lems that can be caused by software that does not meet an organization’s needs. The cost
of testing is always less than the cost of improper processing.

The testing process in this chapter is designed for COTS software, and for contracted
or outsourced software for which a close relationship with the developer does not
exist. However, the testing process presented in this chapter can be modified to test
contracted software developed according to an organization’s specified requirements.
This chapter first explains the differences between COTS and contracted software. The
chapter then discusses the changes that may need to be made to the testing process
when software is custom developed under contract with outside sources.

COTS Software Advantages, 
Disadvantages, and Risks

This section distinguishes between COTS and contracted software, highlighting not
only the differences but also the inherent advantages and disadvantages of COTS soft-
ware and the testing challenges organizations face with COTS software. The final sub-
section details the risks organizations face when implementing COTS software.

COTS Versus Contracted Software

The two major differences between COTS and contracted software are as follows:

■■ Who writes the requirements. With COTS software, the developer writes the
requirements. With contracted software, the contracting organization writes the
requirements. Testers then perform verification testing on the requirements speci-
fied in the contract. This type of testing cannot be performed with COTS software.

■■ Ability to influence and test during development. During development, the
only limits imposed on testers of contracted software are the contract provi-
sions. In contrast, an organization seeking software cannot usually test COTS
software during development at all (unless as part of a beta testing scheme).

Therefore, the main difference between the testing of COTS software and contracted
software is that when the development of software is contracted, testing can occur prior
to the delivery of the software.

686 Chapter 18



COTS Advantages

Organizations gain multiple potential advantages when deploying COTS products,
including the following:

■■ They reduce the risks the come with internal software development. Software
projects are inherently risky. With COTS products, the vendor assumes the risks.

■■ They reduce the costs of internal software development. Software develop-
ment is costly. With COTS products, the vendor spreads the costs over a popu-
lation of customers.

■■ They increase the speed and reliability of delivering applications. You don’t
have to wait months or years for a system to become reality. COTS products are
available immediately. The time-consuming part is the acquisition, integration,
and testing of the products to deliver the right solution.

■■ They increase the possible sources of software. In-house software typically
has one or a few sources: in-house developers, contracted developers, and per-
haps outsourced development. In contrast, a variety of vendors might offer
COTS products to meet a need.

■■ They tend to be higher-quality software. Although COTS products will have
defects, COTS products have fewer overall defects as compared to software
developed in-house. According to Capers Jones, in his book Software Assess-

ments, Assessments, Benchmarks, and Best Practices (Addison-Wesley Professional,
2000), management information systems (MIS) applications have an average
defect removal efficiency of about 85 percent. This is compared to 91 percent
for commercial (vendor) software. This metric is derived by dividing the
defects found by the producer by the total defects found during the life span
of the application. The metric does not take into account defect severity.

■■ They enable organizations to leverage newer technology. To stay competitive
and thus in business, COTS product vendors are motivated to stay current with
technology. As operating systems and other applications progress in technology,
COTS products must also evolve to maintain and support their customer base.

■■ They enable easier integration with other applications. Although there are
integration issues with COTS products in general, applications developed in-
house may have even more integration issues because private, nonstandard
interfaces may be developed and used by in-house developers.

COTS Disadvantages

COTS products are not without their disadvantages (challenges), including the following:

■■ Selecting the right package. There may be many alternatives in the market-
place, but getting the best fit may require time to evaluate several alternatives.

■■ Finding the right product. After searching for and evaluating multiple prod-
ucts, you may realize that there are no acceptable products to meet your
requirements.

Testing COTS and Contracted Software 687



■■ Product changes driven by vendors and other users. When it comes to COTS
products, you are one voice among many in the marketplace. Although you
might like to see certain product features implemented, you have little control
over a product’s direction. The U.S. federal government used to have a lot of
control over certain product directions; in the PC era, however, private-sector
demand has greatly increased, and as a result, government influence has
decreased.

■■ Dealing with vendor licensing and support issues. A frequent complaint
among COTS product customers is that vendors often change their licensing
practices with little or no notice to the customers. Many times, the changes
favor the vendor.

■■ Integrating with existing and future applications. Many times, COTS prod-
ucts are used with other products. The integration with some products may
be rather seamless, whereas other products may require extensive effort to
develop interfaces.

■■ Testing from an external perspective. As compared to applications developed
in-house, COTS products do not allow the tester to have an internal perspective
regarding the product for test-case development. Black-box testing (explained
in the next section) is almost always the testing approach. 

■■ Continual testing for future releases. COTS testing is never done. The product
evolves, and the environment and interfaces evolve (and therefore interfaced
applications).

■■ Lack of control over the product’s direction or quality. Perhaps one of the
most troubling issues in COTS products is that the customer has no control
over certain things, such as the future direction of the product. Sometimes
products are sold to other vendors, who then abandon support for a product
just to make it noncompetitive with other products they own. Obviously, such
practices frustrate organizations when they find a COTS product that meets
their needs (but that might not meet their needs in the future).

Implementation Risks

As COTS products are deployed, some of the risks are as follows:

■■ Functional problems. Some of the product features will not work at all, and
some will work in a way that is less than desired. This risk can be mitigated by
defining feature requirements before evaluating products.

■■ Security issues. Currently, we seem to be in a “fix on failure” mode when it
comes to COTS security. About the only line of defense is for customer and
users to be constantly aware of new security vulnerabilities and stay current
with patches.

■■ Compatibility issues. There is also the risk that the product may work well in
some environments but not in others. This risk can be mitigated by evaluating
the product in all applicable environments.

688 Chapter 18



■■ Integration and interoperability issues. The product implemented may
require extensive efforts to integrate it with other applications. This risk can be
mitigated by performing a “proof of concept” in the evaluation phase, as well
as talking with other customers who have successfully integrated the same
product into their operations.

■■ Vendor issues. There is always a risk that a vendor will go out of business, sell
a product to a competitor, or drop support for a product. This risk can be miti-
gated to a small degree by making vendor stability and support points of eval-
uation criteria.

■■ Procurement and licensing issues. These are typically contracting concerns,
but can also be mitigated to some extent by including such issues as evaluation
criteria.

■■ Testing issues. Project sponsors and management often assume that the COTS
vendor does most of the testing. Because of this misperception, testing is mini-
mized, and major problems are missed until after deployment. You can mini-
mize this risk with a full understanding of testing as a shared task between
vendors and customers, and an understanding that testing is an ongoing job.

It is generally advisable with COTS software to have a repository for user-reported
problems, perhaps someone appointed as manager for a specific COTS software pack-
age. All problems are reported to that individual. The individual will determine what
action needs to be taken, and then notify all the software users.

Testing COTS Software

The testing of COTS products presents a number of challenges, including the following:

■■ Unknown structure. Structure in this case means more than just code—it
can extend to interfaces, data stores, add-ins, APIs, and other elements of the
architecture.

■■ Unknown functional requirements. COTS products are a good example of
testing something without benefit of documented requirements. You may have
access to a user manual or training guide, but those are not the same as docu-
mented requirements.

■■ Requires an external, black-box approach. Testing is almost always a black-
box effort. This means there will be some functional tests that are unnecessary
and some structural tests that are missed.

■■ Testing integration “glue” with other applications. Integration glue is what
holds one COTS application to other applications (and perhaps to the operating
system, too). This glue may be developed by vendors or by in-house develop-
ers. The challenge is to understand these points of integration, where they are
used, and how to validate them.

■■ Compatibility across platforms. Many organizations have multiple platforms
to span when using a particular COTS product. Ideally, the product will be
compatible on all the platforms. However, even in operating systems from the

Testing COTS and Contracted Software 689



same vendor, a product often behaves differently on various platforms. Some
COTS products will not work at all on some related operating systems. For this
reason, a degree of compatibility testing is often required.

■■ Release schedules. Just when you think you have one test of a COTS product
finished, a new version may be released that totally changes the look and feel of
the product. These kinds of changes also affect the test cases, test scripts, and test
data you have in place. Most COTS product release schedules are spaced months
apart, but there can also be service packs and subreleases to fix problems.

■■ Continual regression testing. When you consider the number of elements that
work together in the COTS environment, nearly everything is in flux. That’s
why regression testing is needed. You do not have to test everything continu-
ously, but you do need a workable set of test cases you can run as changes are
seen in the operational environment.

■■ Technology issues. The COTS product itself is only one element of the applica-
tion to be tested. Because technology changes rapidly, the overall technical
environment changes rapidly, too. These changes can include standards as well
as software and hardware components. This fact reinforces the idea that testing
is never really finished for a COTS product.

■■ Test-tool issues. The test automation issues in COTS are huge. Ideally, you
want automated test scripts that do not require extensive maintenance. There
are two problems here, at least:

■■ The COTS products under test will change (probably often) to keep up with
new technology.

■■ Test tools will change to keep up with technology about 6 to 12 months
after the technology is introduced.

This means that there is often a window of time when you will not be able to
automate the tests you would like to automate, or have been able to automate
in the past. This situation is unlikely to improve.

Testing Contracted Software

The major differences between testing COTS software and testing contracted software
are as follows:

■■ Importance of vendor reputation. COTS testing focuses more on the applica-
tion. With COTS, an organization is buying a specific application. Their con-
cern is the applicability and quality of that application to achieve a specific
organizational objective. With contracted software, the application is not devel-
oped in-house. In both cases, testers should be involved in the formulation of
selection criteria to identify a vendor to build and maintain the software.

■■ Access to software developers. Rarely does an organization acquiring COTS
software have access to the software developers. Normally, they will work with
a vendor’s marketing group and help desk for answers to questions regarding a

690 Chapter 18



COTS application. With contracted software, the contract can indicate the type
of access that the acquiring organization wants with the software developers.

■■ Ability to impact development. With COTS software, the acquiring organiza-
tion rarely has the ability to influence the development of the application. They
may influence changes to the software but rarely the initial release of the soft-
ware. With contracted software, the contract can indicate that the acquiring
organization can meet with developers and propose alternative development
methods for building and documenting the software. 

■■ Requirements definition. With COTS software, the acquiring organization
does not write the requirements for the software package. With contracted soft-
ware, the acquiring organization writes the requirements. Therefore, with con-
tracted software, if testers are going to be involved prior to acceptance testing
they need to focus on the requirements to ensure that they are testable. In addi-
tion, testers may want to use verification-testing methods such as participating
in reviews throughout the development cycle.

■■ The number of vendors involved in software development. With COTS soft-
ware, generally only a single vendor develops the software. With contracted
software, there may be multiple vendors. For example, some organizations use
one vendor to select another vendor that will build the software. Some organi-
zations contract for another vendor to test the software. Some contracted soft-
ware may involve testers with multiple vendors and the coordination among
those vendors. 

Objective

The objective of a COTS testing process is to provide the highest possible assurance of
correct processing with minimal effort. However, the testing process should be used for
noncritical COTS software. If the software is critical to the ongoing operations of the
organization, the software should be subject to a full scale of system testing, which is
described in Part Three of this book. The testing in the process might be called 80-20 test-

ing because it will attempt with 20 percent of the testing effort to catch 80 percent of the
problems. That 80 percent should include almost all significant problems (if any exist).
Later in this chapter, you also learn how to test contracted software.

Concerns

Users of COTS software should also be concerned about the following:

■■ Task/items missing. A variance between what is advertised or included in the
manual versus what is actually in the software.

■■ Software fails to perform. The software does not correctly perform the
tasks/items it was designed to perform.

Testing COTS and Contracted Software 691



■■ Extra features. Features not specified in the instruction manual may be
included in the software. This poses two problems. First, the extra tasks may
cause problems during processing; and second, if you discover the extra task
and rely on it, it may not be included in future versions.

■■ Does not meet business needs. The software does not fit with the user’s busi-
ness needs.

■■ Does not meet operational needs. The system does not operate in the manner,
or on the hardware configuration, expected by the user.

■■ Does not meet people needs. The software does not fit with the skill sets of
the users.

Workbench

A workbench for testing COTS software is illustrated in Figure 18-1. The workbench
shows three static tasks: test business fit, test system fit, and test people fit. A fourth
task is the dynamic test when the software is in an executable mode and the processing
is validated. As stated earlier, the tests are designed to identify the significant problems,
because a tester cannot know all the ways in which COTS software might be used (par-
ticularly if the software is disseminated to many users within an organization).

Figure 18-1 Workbench for testing COTS software.

DO CHECK

Software

Adequately

Tested

REWORK

Test Business Fit

Task 1

Test Operational Fit

Task 2

Test People Fit

Task 3

Acceptance-Test the

Software Process

Task 4

User

Manuals

Software

COTS

Assessment

692 Chapter 18



Input

This testing process requires two inputs: the manuals (installation and operation) that
accompany the COTS software, and the software itself. The manuals describe what the
software is designed to accomplish and how to perform the tasks necessary to accom-
plish the software functions. Note that in some instances the user instructions are con-
tained within the software. In such cases, the first few screens of the software may
explain how to use the software.

Do Procedures

The execution of this process involves four tasks plus the check procedures. The
process assumes that those conducting the test know how the software will be used in
the organization. If the tester does not know how the software will be used, an addi-
tional step is required for the tester to identify the software functionality that users
need. The following subsections describe the four tasks.

Task 1: Test Business Fit

The objective of this task is to determine whether the software meets your needs. The
task involves carefully defining your business needs and then verifying whether the soft-
ware in question will accomplish them. The first step of this task is defining business
functions in a manner that can be used to evaluate software capabilities. The second step
of this task is to match software capabilities against business needs. At the end of this
task, you will know whether a specific software package is fit for your business.

Step 1: Testing Needs Specification

This test determines whether you have adequately defined your needs, which should
be defined in terms of the following two categories:

■■ Products/reports output. Products/reports output refers to specific documents
that you want produced by the computer system. In many instances, the style
and format of the output products are important. Consider, for instance, a
check/invoice accounting system. The specific location of the check does not
have to be defined but, instead, just the categories of information to be included
on the check. Computer-produced reports may also be important for tax infor-
mation (e.g., employee withholding forms), financial statements where specific
statements are wanted (e.g., balance sheets or statements of income and
expense), or customer invoice and billing forms (which you might want
preprinted to include your logo and conditions of payment).

Testing COTS and Contracted Software 693



■■ Management information. This category tries to define the information
needed for decision-making purposes. In the output product/report category,
you were looking for a document; in this case, you are looking for information.
How that information is provided is unimportant. Therefore, the structure of
the document and what the documents are (or their size, frequency, or volume)
are not significant. All you need is information.

No form is provided for documenting these needs; the method of documentation is
unimportant. Writing them on a yellow pad is sufficient. However, it is important to
define, document, and have those needs available when you begin your software-
selection process.

After documenting your needs, evaluate them using the 10-factor test of complete-
ness of business requirements illustrated in Work Paper 18-1. This evaluation consists
of a cause-effect test that attempts to identify the potential causes of poor needs defin-
ition. This test indicates the probability that you have completely documented your
needs. To complete this evaluation, follow these steps:

1. Familiarize yourself with the documented business needs.

2. Consider each of the ten items in Work Paper 18-1 one at a time as they relate to
the documented business needs. This review challenges the adequacy of your
business needs based on your personal knowledge of the business. Thus, this test
must be done by someone knowledgeable in the business. (Note: It can be done
by two or more people, if appropriate. In such cases, a consensus can be arrived
at by either averaging the assessments or negotiating a common assessment.)

3. Indicate your agreement or disagreement with the statement based on your
understanding of each item. Consider, for example, the first item in Work Paper
18-1 (i.e., that the system will experience very few changes over time). For each
item assessed with regard to that statement, indicate whether you:

■■ SA. Strongly agree with the statement.

■■ A. Agree with the statement.

■■ N. Neither agree nor disagree with the statement (i.e., are basically neutral
and are not sure whether the statement is applicable or inapplicable). 

■■ D. Disagree with the statement.

■■ SD. Strongly disagree with the statement.

Check the appropriate assessment column for each of the ten statements.

4. Calculate an assessment score for each of the ten statements as follows: For
each item checked SA, score 5 points; for each S, score 4 points; for each N,
score 3 points; for each D, score 2 points; for each SD, score 1 point. Your final
score will range between 10 and 50.

The score can be assessed as follows:

■■ 10–25 points: Poorly defined requirements. You are not ready to consider
buying a software package; do some additional thinking and discussion
about this need.

694 Chapter 18



■■ 26–37 points: The needs are barely acceptable, particularly at the low end

of the range. Although you have a good start, you may want to do some
clarification of the reports or decision-making information.

■■ 38–50 points: Good requirements. In this range, you are ready to continue
the software testing process.

At the conclusion of this test, you will either go on to the next test or clarify your
needs. My experience indicates that it is a mistake to pass this point without well-
defined needs.

Step 2: Testing CSFs

This test tells whether the software package will successfully meet your business needs,
or critical success factors (CSFs). CSFs are those criteria or factors that must be present
in the acquired software for it to be successful. You might ask whether the needs are the
same as the CSFs. They are, but they are not defined in a manner that makes them
testable, and they may be incomplete. Often the needs do not take into account some of
the intangible criteria that make the difference between success and failure. In other
words, the needs define what we are looking for, and the critical success factors tell us
how we will evaluate that product after we get it. They are closely related and comple-
mentary, but different in scope and purpose.

The following list indicates the needs/requirements for an automobile, and is then
followed by the CSFs on which the automobile will be evaluated:

■■ Automobile requirements/needs:

■■ Seats six people

■■ Four doors

■■ Five-year guarantee on motor

■■ Gets 20 miles or more per gallon 

■■ Costs less than $12,000

■■ Critical success factors:

■■ Operates at 20.5 cents or less per mile

■■ Experiences no more than one failure per year

■■ Maintains its appearance without showing signs of wear for two years

Some of the more common CSFs for COTS applications are as follows:

■■ Ease of use. The software is understandable and usable by the average person.

■■ Expandability. The vendor plans to add additional features in the future.

■■ Maintainability. The vendor will provide support/assistance to help utilize the
package in the event of problems.

■■ Cost-effectiveness. The software package makes money for your business by
reducing costs and so on.

Testing COTS and Contracted Software 695



■■ Transferability. If you change your computer equipment, the vendor indicates
that they will support new models or hardware.

■■ Reliability. Software is reliable when it performs its intended function with
required precision.

■■ Security. The system has adequate safeguards to protect the data against damage
(for example, power failures, operator errors, or other goofs that could cause you
to lose your data).

The CSFs should be listed for each business application under consideration. Work
Paper 18-2, which is a test of fit, provides space to list those factors. Note that in most
applications there are eight or fewer CSFs. Therefore, this test is not as time-consuming
as it might appear.

Once Work Paper 18-2 has been considered, it can be used to test the applicability of
the software package under evaluation. (Work Paper 18-2 provides space to identify the
software package being tested.) When making the evaluation, consider the following
factors:

■■ Thorough understanding of the business application

■■ Knowledge of the features of the software package

■■ Ability to conceptualize how the software package will function on a day-to-
day basis

■■ Use of CSFs to indicate whether you believe one of the following:

■■ There is a high probability that the software package will meet the CSF.
(Mark an X in the Yes column.)

■■ The software package does not have a high probability of meeting the CSF.
(Mark an X in the No column.)

■■ There is more or less than a 50–50 probability of the software package’s suc-
cess. (Mark an X in the appropriate column and then clarify your assess-
ment in the Comments column.)

At the conclusion of this test, you will have matched your business needs against the
software capabilities and assessed the probability of the software’s success. If the prob-
ability of success is low (i.e., there are several No responses or highly qualified Yes
responses), you should probably not adopt this software package. Clearly, additional
study and analysis is warranted before you move forward and expend the resources to
implement a potentially unsuccessful system.

Task 2: Test Operational Fit

The objective of this task is to determine whether the software will work in your busi-
ness. Within your business, several constraints must be satisfied before you acquire the
software, including the following:

■■ Computer hardware constraints

■■ Data preparation constraints

696 Chapter 18



■■ Data entry constraints

■■ Other automated-processing constraints (e.g., if data from this software pack-
age must be fed into another software package, or receive data from another
software package, those interface requirements must be defined)

At the end of this task, you will know whether the software fits into the way you do
business and whether it will operate on your computer hardware.

This task involves three steps to ensure an appropriate fit between the software
being evaluated and your in-house systems.

Step 1: Test Compatibility

This is not a complex test. It involves a simple matching between your processing
capabilities and limitations and what the vendor of the software says is necessary to
run the software package. The most difficult part of this evaluation is ensuring that the
multiple software packages can properly interface.

This test is best performed by preparing a checklist that defines your compatibility
needs. Software vendors are generally good about identifying hardware requirements
and operating system compatibility. They are generally not good at identifying com-
patibility with other software packages.

In addition to the hardware on which the software runs, and the operating system
with which it must interact, there are two other important compatibilities: compatibility
with other software packages and compatibility with available data. If you have no
other software packages that you want to have interact with this one, or no data on com-
puter-readable media, you need not worry about these aspects of compatibility. How-
ever, as you do more with your computer, these aspects of compatibility will become
more important (while the hardware and operating compatibility will become routine
and easy to verify).

Finding someone who can tell you whether you have program and/or data com-
patibility is difficult. That someone must understand data formats, know what data
format programs use, and know that those programs or data will work when they are
interconnected. In many instances, trial and error is the only method of determination.
However, the fact that one program cannot read data created by another program does
not mean that the original data cannot be reused. For example, some utility programs
can convert data from one format to another. 

To prepare a compatibility list for the purpose of testing, use the information listed
here:

■■ Hardware compatibility. List the following characteristics for your computer
hardware:

■■ Vendor

■■ Amount of main storage

■■ Disk storage unit identifier

■■ Disk storage unit capacity

■■ Type of printer

Testing COTS and Contracted Software 697



■■ Number of print columns

■■ Type of terminal

■■ Maximum terminal display size

■■ Keyboard restrictions

■■ Operating systems compatibility. List the following for the operating system
used by your computer hardware:

■■ Name of operating system (e.g., UNIX or Windows)

■■ Version of operating system in use

■■ Program compatibility. List all the programs that you expect or would like this
specific application to interact with. Be sure that you have the name of the ven-
dor and, if applicable, the version of the program. Note that this linkage may
be verifiable only by actually attempting to interact two or more systems using
common data.

■■ Data compatibility. In many cases, program compatibility will answer the
questions on data compatibility. However, if you created special files, you may
need descriptions of the individual data elements and files. Again, as with pro-
gram compatibility, you may have to actually verify through trial and error
whether the data can be read and used by other programs. Note that in Step 3
(demonstration) you will have the opportunity to try to use your own data or
programs to see whether you can utilize common data and pass parameters
from program to program.

Step 2: Integrate the Software into Existing Work Flows

Each computer business system makes certain assumptions. Unfortunately, these
assumptions are rarely stated in the vendor literature. The drawback is that you often
must do some manual processing functions that you may not want to do in order to
utilize the system. In such cases, you can search for COTS software to automate the
manual processes.

The objective of this test is to determine whether you can plug the COTS software
into your existing system without disrupting your entire operation. Remember the 
following:

■■ Your current system is based on a certain set of assumptions.

■■ Your current system uses existing forms, existing data, and existing procedures.

■■ The COTS software is based on a set of assumptions.

■■ The COTS software uses a predetermined set of forms and procedures.

■■ Your current system and the new COTS software may be incompatible.

■■ If they are incompatible, the current business system and the COTS software
are not going to change—you will have to.

■■ You may not want to change—then what?

698 Chapter 18



The process for test of fit of the COTS software into your existing system requires
you to prepare a document flow diagram or narrative description. A document flow
diagram is a pictorial or narrative description of how your process is performed. That
is, you plug the COTS software into your existing system and then determine whether
you like what you see. If you do, the COTS software has passed this test. If not, you
either have to change your existing method of doing work or search for other software.

The data flow diagram is really more than a test. At the same time that it tests whether
you can integrate the COTS software into your existing system, it shows you how to do
it. It is both a system test and a system design methodology incorporated into a single
process. So, to prepare the document flow narrative or document flow description, these
three tasks must be performed:

1. Prepare a document flow of your existing system. Through personal experi-
ence or inquiry, quickly put down in document flow format the steps required
to complete the process as it is now performed. Because there will be 15 or
fewer steps in most instances, this should take only a few minutes.

2. Add the COTS software’s responsibility to the data flow diagram. Use a col-
ored pencil to cross out each of the tasks now being performed manually that
will be performed by the computer. Indicate the tasks you will continue to per-
form manually in a different pencil color. If the computer is going to perform
tasks that were not performed before, indicate those with a third color. At the
end of this exercise, you will have a clearly marked list of which manual tasks
were replaced by the computer, which manual tasks will remain as such, and
which new tasks have been added.

3. Modify the manual tasks as necessary. Some of the manual tasks can stay as is;
others will need to be added or modified. Again, do this in a different color.
Difference pencil colors enable you to highlight and illustrate these changes.

The objective of this process is to illustrate the type and frequency of work flow
changes that will be occurring. You can see graphically illustrated what will happen
when the computer system is brought into your organization. For example, there
might be tasks performed now that weren’t performed before or tasks that were previ-
ously performed but are no longer necessary or tasks that had been performed by peo-
ple which will now be performed by the computer. Having the computer perform
those tasks might mean that the oversight that people had been providing will not be
available any more.

At the end of this test, you must decide whether you are pleased with the revised
work flow. If you believe the changes can be effectively integrated into your work flow,
the potential COTS software integration has passed the test. If you think work-flow
changes will be disruptive, you may want to fail the software in this test and either
look for other software or continue manual processing.

If the testing is to continue, prepare a clean data flow diagram indicating what
actions need to be taken to integrate the computer system into your organization’s
work flow. This new data flow diagram becomes your installation plan of action. It will
tell you what changes need to be made, who is involved in them, what training might
be necessary, and areas of potential work flow problems.

Testing COTS and Contracted Software 699



Step 3: Demonstrate the Software in Action

This test analyzes the many facets of software. Software developers are always excited
when their program goes to what they call “end of job.” This means that, among other
things, it executes and concludes without abnormally terminating (i.e., stops after
doing all the desired tasks). Observing the functioning of software is like taking an
automobile for a test drive. The more rigorous the test, the greater the assurance you
are getting what you expect.

Demonstrations can be performed in either of the following ways:

■■ Computer store, controlled demonstration. In this mode, the demonstration is
conducted at the computer store, by computer store personnel, using their
data. The objective is to show you various aspects of the computer software,
but not to let you get too involved in the process. This is done primarily to limit
the time involved in the demonstration.

■■ Customer-site demonstration. In this mode, the demonstration takes place at
your site, under your control, by your personnel, using your information. It is
by far the most desirable of all demonstrations, but many computer stores may
not permit it unless you first purchase the COTS software.

These aspects of computer software should be observed during the demonstration:

■■ Understandability. As you watch and listen to the demonstration, you need to
evaluate the ease with which the operating process can be learned. If the com-
mands and processes appear more like magic than logical steps, you should be
concerned about implementation in your organization. If you have trouble fig-
uring out how to do something, think about how difficult it may be for some of
your clerical personnel who understand neither the business application nor
the computer.

■■ Clarity of communication. Much of the computer process is communication
between man and machine. That is, you must learn the language of the com-
puter software programs in order to communicate with the computer. Commu-
nication occurs through a series of questions and responses. If you do not
understand the communications, you will have difficulty using the routine.

■■ Ease of use of instruction manual. While monitoring the use of the equipment,
the tasks being demonstrated should be cross-referenced to the instruction
manual. Can you identify the steps performed during the demonstration with
the same steps in the manual? In other words, does the operator have to know
more than is included in the manual, or are the steps to use the process laid out
so clearly in the manual that they appear easy to follow?

■■ Functionality of the software. Ask to observe the more common functions
included in the software: Are these functions described in the manual? Are
these the functions that the salesperson described to you? Are they the func-
tions that you expected? Concentrate extensively on the applicability of those
functions to your business problem.

700 Chapter 18



■■ Knowledge to execute. An earlier test has already determined the extent of the
salesperson’s knowledge. During the demonstration, evaluate whether a lesser-
skilled person could as easily operate the system with some minimal training.
Probe the demonstrator about how frequently he runs the demonstration and
how knowledgeable he is about the software.

■■ Effectiveness of help routines. Help routines are designed to get you out of
trouble. For example, if you are not sure how something works, you can type
the word “help” or an equivalent, and the screen should provide you additional
information. Even without typing “help,” it should be easy to work through the
routines from the information displayed onscreen. Examine the instructions and
evaluate whether you believe you could have operated the system based on the
normal instructions. Then ask the operator periodically to call the help routines
to determine their clarity.

■■ Evaluate program compatibility. If you have programs you need to interact
with, attempt to have that interaction demonstrated. If you purchased other
software from the same store where you are now getting the demonstration,
they should be able to show you how data is passed between the programs.

■■ Data compatibility. Take one of your data files with you. Ask the demonstrator
to use your file as part of the software demonstration. This will determine the
ease with which existing business data can be used with the new software.

■■ Smell test. While watching the demonstration, let part of your mind be a
casual overseer of the entire process. Attempt to get a feel for what is happen-
ing and how that might affect your business. You want to have a sense of
whether you feel good about the software. If you have concerns, attempt to
articulate them to the demonstrator as well as possible to determine how the
demonstrator responds and addresses those concerns.

To determine whether an individual has the appropriate skill level to use the COTS
software, involve one or more typical potential users of the COTS software in the
demonstrations (i.e., Task 3) and in the validation of the software processing (i.e., Task 4).
If the selected users can perform those dynamic tests with minimal support, it is reason-
able to assume that the average user will possess the skills necessary to master the use of
the COTS software. On the other hand, if the selected user appears unable to operate the
software in a dynamic mode, it is logical to assume that significant training and/or sup-
port will be required to use this COTS software.

Task 3: Test People Fit

The objective of this task is to determine whether your employees can use the software.
This testing consists of ensuring that your employees have or can be taught the neces-
sary skills.

This test evaluates whether people possess the skills necessary to effectively use
computers in their day-to-day work. The evaluation can be of current skills or the pro-
gram that will be put into place to teach individuals the necessary skills. Note that this
includes the owner-president of the organization as well as the lowest-level employee.

Testing COTS and Contracted Software 701



First you select a representative sample of the people who will use the software. The
sample need not be large. Then this group is given training, which might involve sim-
ply handing someone the manuals and software. The users then attempt to use the
software for the purpose for which it is intended. The results of this test will show one
of the following:

1. The software can be used as is.

2. Additional training/support is necessary.

3. The software is not usable with the skill sets of the proposed users.

Task 4: Acceptance-Test the Software Process

The objective of this task is to validate that the COTS software will, in fact, meet the
functional and structural needs of users.

We have divided testing into functional and structural testing, which also could be
called correctness and reliability testing. “Correctness” means that the functions pro-
duce the desired results. “Reliability” means that the correct results will be produced
under actual business conditions.

Step 1: Create Functional Test Conditions

It is important to understand the difference between correctness and reliability because
such an understanding affects both testing and operation. Let’s look at a test example
to verify whether gross pay was properly calculated. This could be done by entering a
test condition showing 30 hours of work at $6 per hour. If the program works correctly,
it produces $180 gross pay. If this happens, we can say that the program is functionally
correct. These are the types of tests that should be prepared under this category.

The types of test conditions that are needed to verify the functional accuracy and
completeness of computer processing include the following:

■■ All transaction types to ensure they are properly processed

■■ Verification of all totals

■■ Assurance that all outputs are produced

■■ Assurance that all processing is complete

■■ Assurance that controls work (e.g., input can be balanced to an independent
control total)

■■ Reports that are printed on the proper paper, and in the proper number of copies

■■ Correct field editing (e.g., decimal points are in the appropriate places)

■■ Logic paths in the system that direct the inputs to the appropriate processing
routines

■■ Employees who can input properly

■■ Employees who understand the meaning and makeup of the computer outputs
they generate

702 Chapter 18



The functional test conditions should be those defined in the test plan. However,
because some of the test methods and business functions may be general in nature, the
interpretation and creation of specific test conditions may require a significant increase
of the test conditions. To help in this effort, a checklist of typical functional test condi-
tions is provided as Work Paper 18-3.

The objective of this checklist is to help ensure that sufficient functional test condi-
tions are used. As test conditions for the types listed on Work Paper 18-3 are com-
pleted, place a check mark next to that line. At the completion of the test conditions,
those types of functional test conditions that have not been checked should be evalu-
ated to determine whether they are needed. The checklist is designed to help ensure
the completeness of functional test conditions.

Step 2: Create Structural Test Conditions

Structural, or reliability, test conditions are challenging to create and execute. Novices
to the computer field should not expect to do extensive structural testing. They should
limit their structural testing to conditions closely related to functional testing. How-
ever, structural testing is easier to perform as computer proficiency increases. This type
of testing is quite valuable.

Some of the easier-to-perform structural testing relates to erroneous input. In some
definitions of testing, this reliability testing is included in functional testing. It is
included here because if the input is correct, the system performs in a functionally cor-
rect way; therefore, incorrect input is not a purely functional problem.

Most of the problems that are encountered with computer systems are directly asso-
ciated with inaccurate or incomplete data. This does not necessarily mean that the data
is invalid for the computer system. Consider the following example.

A photographic wholesaler sells film only by the gross. The manufacturer shrink-
wrapped film in lots of 144, and the wholesaler limited sales to those quantities. If a
store wanted less film, they would have to go to a jobber and buy it at a higher price. A
small chain of photo-processing stores ordered film from this manufacturer. Unfortu-
nately, the clerks did not really understand the ordering process. They knew only that
they would get 144 rolls of film when they ordered. On the order form submitted to the
manufacturer, the clerks indicated a quantity of 144. This resulted in 144 gross of film
being loaded onto a truck and shipped to the shopping center. The small photo shop
could not store that much film, and 143 gross were returned to the wholesaler. The net
result was lost money for the manufacturer. In this case, 144 was a valid quantity, but
incorrect for the desired order. This is a structural problem that needs to be addressed
in the same manner that entering 144 on the computer when you meant to enter 14
must be addressed.

The second part of structural testing deals with the architecture of the system. Archi-
tecture is a data processing term that describes how the system is put together. It is
used in the same context that an architect designs a building. Architectural problems
that could affect computer processing include the following:

■■ Internal limits on the number of events that can occur in a transaction (e.g.,
number of products that can be included on an invoice)

Testing COTS and Contracted Software 703



■■ Maximum size of fields (e.g., quantity only 2 positions in length, making it
impossible to enter an order for more than 99 items)

■■ Disk storage limitations (e.g., you are permitted to have only X customers)

■■ Performance limitations (e.g., the time to process transactions jumps signifi-
cantly when you enter more than X transactions)

These are but a few of the potential architectural limitations placed on computer
software. You must remember that each software system is finite and has built-in limi-
tations. Sometimes the vendor tells you that you can from time to time find these 
limitations if you search through the documentation, and occasionally you won’t
know them until they occur. However, all limits can be determined through structural
testing. The questions at hand are these: Do you feel competent to do it? Is it worth
doing? The answers to these questions depend on the critical nature of the software
and what would happen if your business is unable to continue computer processing
because you reach the program limitation.

A final category of potential structural problems relates to file-handling problems.
Although these do appear to be a problem, they are frequently found in computer soft-
ware. Typical problems that occur are incorrect processing when the last record on a
file is updated, or adding a record that will become the first record on a file. These
types of problems have haunted computer programmers for years. In the PC software
market, there are literally hundreds of thousands of people writing software. Some
have good ideas but are not experienced programmers; thus, they fall into the age-old
traps of file-manipulation problems.

As an aid in developing structural test conditions, Work Paper 18-4 lists the more
common structural problem areas. You can use this checklist either to determine which
types of structural test conditions you want to prepare or to check the completeness of
the structural conditions included in your test matrix. Either way, it may spark you to
add some additional test conditions to verify that the structure of your software per-
forms correctly.

Modifying the Testing Process for Contracted Software

The four tasks used to test COTS software equally apply to the testing of contracted
software. However, a new task is required, and Task 1 must be modified. The changes
to the COTS testing process are made the same way as discussed previously in this
book with regard to the seven-step testing process.

A new task must be included, and that task becomes the first task in the test process.
The objective of this task is to determine the best vendor to build the contracted soft-
ware. Testers therefore must evaluate the ability of various vendors to adequately test
the software. The testers may actually want to include testing requirements in any
requests for a proposal from a vendor. The testers may also want to consider being a
part of the vendor’s testing to ensure that the interests of the acquiring organization
are appropriately represented.

704 Chapter 18



Contracting/outsourcing organizations focus their testing efforts on whether the
software meets system specifications. As mentioned many times in this book, there is
often a difference between what is specified and what is needed. For example, the spec-
ifications may not clearly articulate that ease of use for end users is required. By hav-
ing the acquiring organization’s testers involved in the testing of the software at the
vendor location, you can ensure that some of these important “unspecified or inade-
quately specified” requirements are adjusted during development. The change to Task
1 (test business fit) focuses on the completeness of the requirements. Testers may want
to take two actions to ensure that the requirements as included in the proposal are ade-
quate to meet the true needs of the customer/users of the application. These two sub-
tasks are as follows:

1. Organize and participate in a requirements review. The testers can follow the
requirements verification process included in Step 3 of the seven-step testing
process to ensure the accuracy and completeness of the requirements.

2. Certify the requirements as testable. The testers can evaluate the requirements
and make the assessment as to whether a test can validate that the require-
ments have or have not been correctly implemented.

Check Procedures

At the conclusion of this testing process, the tester should verify that the COTS soft-
ware test procedure has been conducted effectively. The quality-control checklist for
conducting the COTS software review is included as Work Paper 18-5. It is designed
for Yes/No responses. Yes indicates a positive response; No responses should be inves-
tigated. The Comments column is provided to clarify No responses. The N/A column
is provided for items that are not applicable to a specific COTS software test process.

Output

There are three potential outputs as a result of executing the COTS software test
process:

■■ Fully acceptable. The software meets the full needs of the organization and is
acceptable for use.

■■ Unacceptable. The software has such sufficient deficiencies that it is not accept-
able for use.

■■ Acceptable with conditions. The software does not fully meet the needs of the
organization, but either lowering those expectations or incorporating alterna-
tive procedures to compensate for deficiencies makes the package usable, and
thus it will be disseminated for use.

Testing COTS and Contracted Software 705



Guidelines

The following guidelines will assist you in testing COTS software:

■■ Spend one day of your time learning and evaluating software, and you will
gain problem-free use of that software.

■■ Acquire computer software only after you have established the need for that
software and can demonstrate how it will be used in your day-to-day work.

■■ Instinct regarding goodness and badness should be used to help you select
software.

■■ Testing is not done to complicate your life, but rather to simplify it. After test-
ing, you will operate your software from a position of strength. You will know
what works, how it works, what doesn’t work, and why. After testing, you will
not be intimidated by the unknown.

■■ The cost of throwing away bad software is significantly less than the cost of
keeping it. In addition to saving you time and money, testing saves frustration.

■■ The best testing is that done by individuals who have a stake in the correct
functioning of the software. These stakeholders should both prepare the test
and evaluate the results.

■■ If your users can run the acceptance tests successfully from the outset (proce-
dures and training courses), they will be able to run their software successfully
in conjunction with their business function.

Summary

The process outlined in this chapter is designed for testing COTS software and con-
tracted software. It assumes that the testers will not have access to the program code;
therefore, the test emphasizes usability. The test is similar in approach to acceptance
testing.

706 Chapter 18



Testing COTS and Contracted Software 707

WORK PAPER 18-1 Test of Completeness of Business Requirements

Assessment Score =

Legend:

SA = Strongly agree

A = Agree

N = Neither agree nor disagree

D = Disagree

SD = Strongly disagree

ASSESSMENT

SA A N D SD
(5) (4) (3) (2) (1) COMMENTS

1. The system will experience
few changes over time.

2. All involved parties agree 
the needs are well defined.

3. The use of the results of the
application will require very
little judgment on the part 
of the users of the 
computer outputs.

4. The input to the system is
well defined.

5. The outputs from the 
system and the decision 
material are well defined.

6. The users of the system are
anxious to have the area
automated.

7. The users want to participate
in the selection and
implementation of the
software.

8. The users understand data
processing principles.

(continues)



708 Chapter 18

WORK PAPER 18-1 (continued)

ASSESSMENT

SA A N D SD
(5) (4) (3) (2) (1) COMMENTS

9. The application does not
involve any novel business
approach (i.e., an approach
that is not currently being
used in your business).

10. The users do not expect to
find other good business
ideas in the selected 
software.



Testing COTS and Contracted Software 709

WORK PAPER 18-2 Test of Fit

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Business Application Name of business application being tested.

Number A number which sequentially identifies a CSF.

Critical Success Factors (CSF) A factor which those responsible for the success of the business application 
must meet in order for the business application to be successful.

Meets CSF An assessment as to whether a specific CSF has been met, with a comments 
column to explain how the assessment was determined.

Business Application

MEETS CSF

NUMBER CRITICAL SUCCESS FACTORS YES NO COMMENTS



710 Chapter 18

WORK PAPER 18-3 Functional Test Condition Checklist

YES NO N/A COMMENTS

Have tests for the following conditions been
prepared?

1. Test conditions for each input transaction

2. Variations of each input transaction for each
special processing case

3. Test conditions that will flow through each
logical processing path

4. Each internal mathematical computation

5. Each total on an output verified

6. Each functional control (e.g., reconciliation of
computer controls to independent control
totals)

7. All the different computer codes

8. The production of each expected output

9. Each report/screen heading and column
heading

10. All control breaks

11. All mathematical punctuation and other editing

12. Each user’s preparation of input

13. Completeness of prepared input

14. User’s use of output, including the
understanding and purpose for each output

15. A parallel test run to verify computer results
against those which were produced manually

16. Matching of two records

17. Nonmatching of two records



Testing COTS and Contracted Software 711

WORK PAPER 18-4 Structural Test Condition Checklist

YES NO N/A COMMENTS

Have test conditions for each of these conditions 
been prepared?

1. Addition of a record before the first record on a file

2. Addition of a record after the last record on a file

3. Deletion of the first record on a file

4. Deletion of the last record on a file

5. Change information on the first record on a file

6. Change information on the last record on a file

7. Cause the program to terminate by predetermined
conditions

8. Accumulate a field larger than the mathematical
accumulators can hold

9. Verify that page counters work

10. Verify that page spacing works

11. Enter invalid transaction types

12. Enter invalid values in fields (e.g., put alphabetic
characters in a numeric field)

13. Process unusual conditions (of all types)

14. Test principle error conditions

15. Test for out-of-control conditions (e.g., the value of
records in the batch does not equal the entered 
batch total)

16. Simulate a hardware failure forcing recovery
procedures to be used

17. Demonstrate recovery procedures

18. Enter more records than disk storage can hold

19. Enter more values than internal tables can hold

20. Enter incorrect codes and transaction types

21. Enter unreasonable values for transaction processing

22. Violate software rules not violated by above structural
test conditions



712 Chapter 18

WORK PAPER 18-5 Off-the-Shelf Software Testing Quality Control Checklist

YES NO N/A COMMENTS

Have test conditions for each of these conditions
been prepared?

1. Addition of a record before the first record on a file

2. Addition of a record after the last record on a file

3. Deletion of the first record on a file

4. Deletion of the last record on a file

5. Change information on the first record on a file

6. Change information on the last record on a file

7. Cause the program to terminate by predetermined
conditions

8. Accumulate a field larger than the mathematical
accumulators can hold

9. Verify that page counters work

10. Verify that page spacing works

11. Enter invalid transaction types

12. Enter invalid values in fields (e.g., put alphabetic
characters in a numeric field)

13. Process unusual conditions (of all types)

14. Test principle error conditions

15. Test for out-of-control conditions (e.g., the value of
records in the batch does not equal the entered
batch total)

16. Simulate a hardware failure forcing recovery
procedures to be used

17. Demonstrate recovery procedures

18. Enter more records than disk storage can hold

19. Enter more values than internal tables can hold

20. Enter incorrect codes and transaction types

21. Enter unreasonable values for transaction
processing

22. Violate software rules not violated by above
structural test conditions



Testing COTS and Contracted Software 713

WORK PAPER 18-5 (continued)

YES NO N/A COMMENTS

Task 1: Test Business Fit

1. Have the business needs been adequately
defined?

2. Does the selected software package meet those
needs?

3. Have the critical success factors for the business
application been defined?

4. Is there a high probability that the software
package under consideration will satisfy the
critical success factors?

5. Is the software being evaluated designed to
meet this specific business need?

6. Does the software under consideration push the
critical success factors to their limit?

7. Do you personally believe the software under
consideration is the right software for you?

8. Do you believe this software package will
provide your business with one of the four
benefits attributable to software (i.e., perform
work cheaper, perform work faster, perform
work more reliably, or perform tasks not
currently being performed)?

9. Does the business approach, and the software
package, fit into your business’ long-range
business plan?

10. Is your business system that is being considered
for computerization relatively stable in terms of
requirements?

Task 2: Testing System Fit

1. Will the selected software package operate on
your computer hardware?

2. Will the selected software package operate on
your equipment’s operating system?

3. Is the proposed software package compatible
with your other computer programs (applicable
programs only)?

4. Can the proposed software package utilize
applicable existing data files?

(continues)



714 Chapter 18

WORK PAPER 18-5 (continued)

YES NO N/A COMMENTS

5. Is the method in which the software operates
consistent with your business cycle?

6. Are you willing to have you and your personnel
perform the business steps needed to make the
software function correctly?

7. Is the computer work flow for this area
consistent with the general work flow in your
business?

8. Were the software demonstrations satisfactory?

9. Do you believe that the software has staying
power (i.e., the vendor will continue to support
it as technological and business conditions
change)?

10. Are you pleased with the fit of this software
package into your computer and systems
environment?

Task 3: Testing People Fit

1. Were the workers exposed to or involved in the
decision to acquire a computer, and specifically
the applications that affect their day-to-day job
responsibilities?

2. Have your and your staff’s jobs been adequately
restructured after the introduction of the
computer?

3. Have the people involved with the computer
been trained (or will they be trained) in the
skills needed to perform their new job function?

4. Has each worker been involved in the
establishment of the procedures that he or she
will use in performing day-to-day job tasks?

5. Have the workers been charged with the
responsibility for identifying defects in
computer processing?

6. Does each worker have appropriate feedback
channels to all of the people involved with his
or her work tasks?

7. Are your people enthusiastic over the prospects
of involving a computer in their work?



Testing COTS and Contracted Software 715

WORK PAPER 18-5 (continued)

YES NO N/A COMMENTS

8. Have supervisors been properly instructed in
how to supervise computer staff?

9. Have adequate controls been included within
computer processing?

10. Do you believe your people have a positive
attitude about the computer and will work
diligently to make it successful?

Task 4: Validate Acceptance Test Software Process

1. Were test conditions created for all of the test
methods included in the test matrix?

2. Were both static and dynamic tests used as test
methods?

3. Have functional test conditions been prepared
which are consistent with the functional
requirements and critical success factors?

4. Have you prepared structural test conditions
which address the more common computer
architectural problems and incorrect data entry?

5. Has the sequence in which test conditions will
be executed been determined?

6. Are the test conditions prepared using the most
economical source of data?

7. Have the test conditions been prepared by the
appropriate “stakeholder”?

8. Have the test conditions been prepared in an
easy-to-use format?

9. Has the validity of the test process been
adequately challenged?

10. Do you believe that the test conditions when
executed will adequately verify the functioning
of the software?





717

Software designed to run on more than one platform must undergo two tests. The first
test is to validate that the software performs its intended functions. This testing
involves the seven-step testing process described in Part Three of this book. The sec-
ond test is that the software will perform in the same manner regardless of the plat-
form on which it is executed. This chapter focuses on the second test process.

This chapter provides a six-task process for testing in a multiplatform environment.
The test process presumes that the platforms for which the software must execute are
known. The process also presumes that the software has already been tested and that
testers have validated that it performs its intended functions correctly.

Overview

Each platform on which software is designed to execute operationally may have
slightly different characteristics. These distinct characteristics include various operat-
ing systems, hardware configurations, operating instructions, and supporting soft-
ware, such as database management systems. These different characteristics may or
may not cause the software to perform its intended functions differently. The objective
of testing is to determine whether the software will produce the correct results on var-
ious platforms.

Testing in a Multiplatform
Environment

C H A P T E R

19



Objective

The objective of this six-task process is to validate that a single software package exe-
cuted on different platforms will produce the same results. The test process is basically
the same as was used in parallel testing. Software must operate on multiple platforms
with the individual results being compared to ensure consistency in output. The test-
ing normally requires a test lab that includes the predetermined platforms.

Concerns

The following are the three major concerns for testing in a multiplatform environment:

1. The platforms in the test lab will not be representative of the platforms in

the real world. This can happen because the platform in the test lab may not be
upgraded to current specifications, or it may be configured in a manner that is
not representative of the typical configuration for that platform.

2. The software will be expected to work on platforms not included in the test

labs. By implication, users may expect the software to work on a platform that
has not been included in testing.

3. The supporting software on various platforms is not comprehensive. User
platforms may contain software that is not the same as that used on the plat-
form in the test lab (for example, a different database management system).

Background on Testing in a 
Multiplatform Environment

Testers face three major challenges when testing in a multiplatform environment.
These challenges are:

1. Determining the type of platform that users operate for the processing

2. Determining which software packages are available to those users

3. Determining the type of processing users will perform in a multiplatform 
environment

Testing in a multiplatform environment is similar to exhaustive testing—neither is
practical nor cost effective. Therefore, testers must make judgments on the most likely
platforms to be used, the most likely software packages possessed by the users, and the
most likely actions users will perform on a multiplatform environment.

718 Chapter 19



Some of these decisions will be made based on constraints limiting the tester’s capa-
bilities. For example, the test lab may have only a limited number of platforms avail-
able; therefore, testers cannot test on platforms to which they do not have access. The
developers of the system may state that users of the system are required to have X
number of software packages, which are named in the software system documenta-
tion. Therefore, testers have to be concerned only with that limited number of software
packages. Finally, the developers of the software may define the list of uses for which
the software can perform and testers only need to test for those defined number of
uses. 

In developing a test plan for testing in a multiplatform environment, the testers
need to make decisions regarding the three challenges previously described. If a test
plan is viewed as a contract, then in the test plan the testers can state: 

■■ Testing will occur on these platforms.

■■ Testing will validate that these software packages are useable in processing in a
multiplatform environment.

■■ Only a defined number of uses will be tested.

Although this test plan definition protects the tester from not testing undefined con-
ditions, it does not necessarily reduce the software application risk. Therefore, testers
should in addition to test planning, attempt to identify the risks associated with
not testing on certain platforms, certain packages, or certain application processes.
This information can be helpful in determining whether additional testing should be
performed.

Workbench

Figure 19-1 illustrates the workbench for testing in a multiplatform environment. This
figure shows that six tasks are needed to effectively test in a multiplatform environment.
Most tasks assume that the platforms will be identified in detail, and that the software to
run on the different platforms has been previously validated as being correct. Five of the
six tasks are designed to determine what tests are needed to validate the correct func-
tioning of the identified platforms, and the sixth task executes those tests.

Testing in a Multiplatform Environment 719



Figure 19-1 Workbench for testing in a multiplatform environment.

Input

The two inputs for testing in a multiplatform environment are as follows:

1. List of platforms on which software must execute. The main requirement
for multiplatform testing is a list of the platforms. These platforms must be
described in detail as input to testing or described in detail prior to commenc-
ing testing.

DO CHECK

REWORK

Define Platform
Configuration

Concerns

Task 1

List Needed
Platform

Configurations

Task 2

Assess

Test Room
Configuration

Task 3

List Structural

Components
Affected by the

Platform

Task 4

List Interfaces

the Platform
Affects

Task 5

Execute the Tests

Task 6

Platforms

Included

Software

Test
Report

Platforms
Tested

Adequately

720 Chapter 19



2. Software to be tested. The software package(s) to be tested is input to the test
process. This software must be validated that it performs its functions correctly
prior to multiplatform testing. If this has not been done, then the software
should be subject to the seven-step testing process, described in Part Three of
this book, prior to commencing multiplatform testing.

Do Procedures

The following six tasks should be performed to validate that software performs con-
sistently in a multiplatform environment:

1. Define platform configuration concerns.

2. List needed platform configurations.

3. Assess test room configurations.

4. List structural components affected by the platform(s).

5. List interfaces platform affects.

6. Execute the tests.

Task 1: Define Platform Configuration Concerns

The first task in testing a multiplatform environment is to develop a list of potential
concerns about that environment. The testing that follows will then determine the
validity of those concerns. The recommended process for identifying concerns is error
guessing.

Error guessing attempts to anticipate problems within the software package and its
operation. The proverb “an ounce of prevention is worth a pound of cure” speaks to
the error-guessing process. Studies by the IBM Corporation indicate that the same
types of software defects occur with the same frequency from project to project. Just as
medicine can predict that X percent of the 55-year-old age group will die of a heart
attack during the year, so the software test experts can predict the types of defects that
will occur in software.

This means that the types of problems that you encounter in one will occur in most
other similar tests. The problem may surface in a slightly different way, but it will be
the same basic problem. For example, the problem of data exceeding its allocated field
size will appear sooner or later in almost all software applications. If you anticipate it
and decide what you will do when it happens and how the software will react to the
situation, successful use of the software will not be threatened.

Error guessing requires the following two prerequisites:

1. The error-guessing group understands how the platform works.

2. The error-guessing group knows how the software functions.

Testing in a Multiplatform Environment 721



If the group that tested the software function is the same group doing the error
guessing, they will know how the software works. Knowing the platforms may require
the addition of platform-knowledgeable people to the error-guessing team.

Although it is possible to perform error guessing with one person, it is basically a
brainstorming process. Thus, it is always better when two or more people participate.
This is because of the powerful synergistic effect of a group. Synergism means that one
individual’s comments spark another individual to think about something he or she
might not have thought about without the other individual present.

Error guessing requires a recorder to write down the ideas developed by the group.
Each member of the group is allowed time to express what he or she believes might go
wrong with the software. Until every individual has had an initial opportunity to list
problems, there can be no criticism or comment on what other individuals have stated.
After the initial go-round, the recorder reads back these items one by one. At this point,
open discussion—that is, interactive discussion—commences. One group rule of this dis-
cussion is that there can be no criticism of errors raised or the individual who raised them.
All comments must be stated positively. If an individual believes that the type of error or
condition raised is not realistic, the ensuing discussion should be based on the probability
of occurrence rather than the point’s validity. If criticism is permitted during brainstorm-
ing, communication will cease and much of the value of the process will be lost.

The error-guessing process is normally very brief. In some instances, it lasts no longer
than 15 minutes, and only rarely would it exceed 1 hour. However, the process does
require total concentration. Therefore, the group should be removed from normal busi-
ness interruptions during this exercise.

The end product of error guessing is a list of potential error conditions for additional
investigation and testing. It is not up to the error-guessing team to determine what
happens when these error conditions occur. They need to be familiar enough with the
software to know whether there may be a problem, but they do not need to know all of
the solutions. This will be done in future testing steps.

Error guessing is meant to be a relatively unstructured, unorganized process. Gen-
erally, sufficient ideas are generated to prepare a reasonably comprehensive list of
potential problems—particularly when performed by two or more people. The follow-
ing is a short list of questions to brainstorm during error guessing:

■■ Does the software have any unusual transactions?

■■ What are the most common errors that you are now making?

■■ What would happen to processing if you forgot to perform one of the steps?

■■ What would happen if you did not enter all of the data in an input transaction?

■■ Will you be able to determine who performed what computer operation in case
questions arise regarding the correctness of operations?

■■ If a diagnostic message is produced by the computer, how will you know it has
been properly corrected?

■■ How will you know the person operating the computer knows how to operate
it correctly?

These questions are designed to spark ideas about what might go wrong within a
platform. The questions are not intended to be complete, nor do they need to be

722 Chapter 19



answered precisely. Their sole purpose is to steer you into areas for further exploration
regarding potential errors.

The concerns should be listed on Work Paper 19-1. Part 1 of the Work Paper provides
space for listing multiplatform testing concerns, as well as any recommended test to
address those concerns to determine whether they are valid or have already been han-
dled by the software and/or platform.

Task 2: List Needed Platform Configurations

The test must identify the platforms that must be tested. Ideally, this list of platforms
and detailed description of the platforms would be input to the test process. If so, this
step need only determine if those platforms are available in the test lab.

The needed platforms are either those that will be advertised as acceptable for using
the software, or platforms within an organization on which the software will be exe-
cuted. The platforms need to be described in detail. This information should be
recorded on Part 2 of Work Paper 19-1. Note that the description of the Work Paper will
list some of the items needed about each platform.

Testers must then determine whether those platforms are available for testing. If the
exact platform is not available, the testers need to determine whether an existing plat-
form is acceptable. For example, if an available platform did not contain some feature
or configuration, would the existing platform provide a reasonable test? If so, that plat-
form can be used for testing. If the needed platform is not available, the testers must
make a determination of whether to obtain such a platform or accept the risk that the
software will be released without testing that specific platform.

The determination of whether an available test platform meets the needed test plat-
form should be recorded on Part 2 of Work Paper 19-1. If the platform is not available,
testers should record the action they will take.

Task 3: Assess Test Room Configurations

The testers need to determine whether the platforms available in the test room are
acceptable for testing. This involves the following two steps:

1. For each needed platform listed on Work Paper 19-1, document the platform to
be used for testing, if any is available, on the Work Paper.

2. Make a determination as to whether the available platform is acceptable for
testing. Indicate your decision on Work Paper 19-1. If the platform is not
acceptable, note any actions to be taken.

Task 4: List Structural Components 
Affected by the Platform(s)

Structural testing deals with the architecture of the system. Architecture describes how
the system is put together. It is used in the same context that an architect designs a build-
ing. Some of the architectural problems that could affect computer processing include:

Testing in a Multiplatform Environment 723



■■ Internal limits on the number of events that can occur in a transaction (for
example, the number of products that can be included on an invoice).

■■ Maximum size of fields (for example, the quantity is only two positions in
length, making it impossible to enter an order for more than 99 items).

■■ Disk storage limitations (for example, you are permitted to have only 
X customers).

■■ Performance limitations (for example, the time to process transactions jumps
significantly when you enter more than X transactions).

These are but a few of the potential architectural limitations placed on computer
software. You must remember that each software system is finite and has built-in limi-
tations. Sometimes the vendor tells you these limitations, sometimes you can find them
if you search through the documentation, and sometimes you won’t know them until
they occur. However, all limits can be determined through structural testing. The ques-
tions at hand are: Do you feel competent to do it? and Is it worth doing? The answers
to these questions depend on the critical nature of the software and what would hap-
pen if your business was unable to continue computer processing because you reached
the program limitation.

Structural testing also relates to file-handling problems. Such file problems include
incorrect processing when the last record on file is updated or adding a record that will
become the first record on a file. In the personal computer software market, literally
thousands of people are writing software. Some have good ideas but are not experi-
enced programmers; thus, they fall into the age-old traps of file manipulation problems.

As an aid in developing structural test conditions, the more common structural prob-
lem areas are listed in the following text. You can use this checklist either to determine
which types of structural test conditions you want to prepare or to check the complete-
ness of the structural conditions. Either way, it may spark you to add some additional
test conditions to verify that the structure of your software performs correctly.

Have test conditions for each of the following transaction processing events been
prepared:

■■ Adding a record before the first record on a file

■■ Adding a record after the last record on a file.

■■ Deleting the first record on a file

■■ Deleting the last record on a file

■■ Changing information on the first record on a file

■■ Changing information on the last record on a file

■■ Causing the program to terminate by predetermined conditions

■■ Accumulating a field larger than the mathematical accumulators can hold

■■ Verifying that page counters work

■■ Verifying that page spacing works

■■ Entering invalid transaction types

724 Chapter 19



■■ Entering invalid values in fields (for example, put alphabetic characters in a
numeric field)

■■ Processing unusual conditions (of all types)

■■ Testing major error conditions

■■ Testing for out-of-control conditions (for example, whether the value of the
records in the batch do not equal the entered batch total)

■■ Simulating a hardware failure that forces recovery procedures to be used

■■ Demonstrating recovery procedures

■■ Entering more records than disk storage can hold

■■ Entering more values than internal tables can hold

■■ Entering incorrect codes and transaction types

■■ Entering unreasonable values for transaction processing

■■ Violating software rules not violated by preceding structural test conditions

Although some functional processing may be affected by various platforms, it is
normally the structural component of the function that is affected. The test team needs
to identify the structural components of functions that will be affected by the platform.
They may want to use the error-guessing technique described in Task 1 to identify
these structural components.

The potentially affected structural component should be documented on Work
Paper 19-2. The Work Paper lists the structural component, then each platform that
may affect that structural component, as well as how the structural component may be
affected by the platform. The testers should then determine which tests are needed to
validate that the structural component will or will not be affected by a platform.

Task 5: List Interfaces the Platform Affects

Systems tend to fail at interface points—that is, the points at which control is passed
from one processing component to another (for example, when data is retrieved from
a database, output reports are printed or transmitted, or a person interrupts processing
to make a correction). The purpose of this task is to identify those interfaces so that
they can be tested. Note that some of these interfaces will also overlap the software
structural components affected by the platform. If the test has been included in the
structural component task Work Paper, it need not be duplicated in the test recom-
mended in this task.

This is a two-part task. The first part is to identify the interfaces within the software
systems. These interfaces should be readily identifiable in the software’s user manual.
The second part is to determine whether those interfaces could be affected by the spe-
cific platform on which the software executes. This is a judgmental exercise. However,
if there is a doubt in the tester’s mind, he or she should test that interface on all of the
platforms that might affect that interface. The Work Paper should identify the platform
on which the interface may be affected, the interface itself, the interface both to and

Testing in a Multiplatform Environment 725



from the potential effect of the platform, and the test(s) that should be undertaken to
validate whether the interface is impacted by the platform. Note that this same test for
a single interface may have to be performed on multiple platforms. Document the
results of this task on Work Paper 19-3.

At the conclusion of this task, the tests that will be needed to validate multiplatform
operations will have been determined. The remaining task will be to execute those tests.

Task 6: Execute the Tests

The platform test should be executed in the same manner as other tests are executed in
the seven-step software testing process described in Part Three of this book. The only
difference may be that the same test would be performed on multiple platforms to
determine that consistent processing occurs.

Check Procedures

Prior to completing multiplatform testing, a determination should be made that testing
was performed correctly. Work Paper 19-4 provides a series of questions to challenge
the correctness of multiplatform testing. A Yes response to those items indicates that
multiplatform testing was performed correctly; a No response indicates that it may
or may not have been done correctly. Each No response should be clarified in the 
Comments column. The N/A column is for items that are not applicable to this specific
platform test.

Output

The output from this test process is a report indicating the following:

■■ Structural components that work or don’t work by platform

■■ Interfaces that work or don’t work by platform

■■ Multiplatform operational concerns that have been eliminated or substantiated

■■ Platforms on which the software should operate but that have not been tested

The report will be used to clarify the software’s operating instructions and/or make
changes to the software.

Guidelines

Multiplatform testing is a costly, time-consuming, and extensive component of testing.
The resources expended on multiplatform testing can be significantly reduced if that
testing focuses on predefined multiplatform concerns. Identified structural components

726 Chapter 19



that might be affected by the software and interfaces that might be affected by multiple
platforms should make up most of the testing. This will focus the testing on what
should be the major risks faced in operating a single software package on many differ-
ent platforms.

Summary

This multiplatform testing process is designed to be used in conjunction with the
seven-step testing process in Part Three of this book. It is essential that the software to
be tested on multiple platforms be validated prior to multiplatform testing. Combining
software validation testing with multiplatform testing normally will slow the test
process and increase the cost.

Testing in a Multiplatform Environment 727



728 Chapter 19

WORK PAPER 19-1 Multiplatform Concerns and Configurations

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Concern A narrative description of the concerns that need to be addressed in multi-
platform testing.

Recommended Test to This field should include any tests that the group developing the concerns believes
Address Concern could be made to determine the validity of that concern.

Needed Test Platform Detailed description of the platform on which the software will be executed. The
description should include at a minimum:

Hardware vendor

Memory size

Hard disk size

Peripheral equipment

Operating system

Supporting software

Available Test Platform This column should indicate whether the needed test platform is available, and if
not, what actions will be taken for test purposes.

Part 1 Multiplatform Testing Concerns

Concern Recommended Test to Address Concern

Part 2 Needed versus Available Platform Configurations

Needed Test Platform Available Test Platform Acceptable

Yes No



Testing in a Multiplatform Environment 729

WORK PAPER 19-2 Test to Validate Platform-Affected Software Structure

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Structural Component The name or identifier of the structural component affected by a platform.

Platform The specific platform or platforms that may affect the correct processing of the
identified structural component.

How Affected A narrative explanation of how the platform may affect the structural component
should be documented.

Test(s) to Validate The test group should recommend one or more tests to validate
Structural Component whether the platform affects the structural component. Note that these tests

may be different for different platforms.

Software Structure Affected
by Platform

Structural Test(s) to Validate
Component Platform How Affected Structural Component



730 Chapter 19

WORK PAPER 19-3 Test(s) to Validate Platform-Affected Interfaces

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Software Package The name of the software package that is being tested.

Platform Description of the platform that may affect an interface.

Interface Affected A brief narrative name or description of the interface affected, such as “retrieving
a product price from the pricing database.”

Interface The interface should be described to indicate the movement of data or processing
from one point to another. For example, a product price will be moved from
the product price database to the invoice pricing software package.

Effect This field should explain the potential risk or effect that could be caused by a
specific platform. For example, platform X may not have adequate space for over
1,000 product prices.

Test(s) to Validate This column should describe in detail each task that should be performed to
Interface validate interface processing. For example, put 1,001 product prices into the

pricing database to validate that the platform can support a pricing database that
contains over 999 product prices.

Interfaces Affected by Platform Test(s) to Validate Interface

Software Interface
Package Platform Affected Interface

From To Effect



Testing in a Multiplatform Environment 731

WORK PAPER 19-4 Multiplatform Quality Control Checklist

YES NO N/A COMMENTS

1. Have all of the platforms in which the software
is intended to be run been identified?

2. Has each platform configuration been
described?

3. Have the concerns for correct multiplatform
processing been identified?

4. If so, are those concerns reasonable and
complete?

5. Has a determination been made that the
identified platforms will be available for test?

6. If not, has a decision been made on how to
handle the potential risk associated with
platforms not being tested?

7. Have the structural components of the software
to be tested been identified?

8. Are those structural components complete?

9. Has a determination been made as to how each
of the identified platforms may impact those
structural components?

10. Have the interfaces for the software package
been identified and documented?

11. Has a determination been made as to whether
any or all of the platforms may affect those
interfaces?

12. Was multiplatform testing conducted under
real-world conditions?

(continues)



732 Chapter 19

WORK PAPER 19-4 (continued)

YES NO N/A COMMENTS

13. Did acceptance testing prove that the
procedures were correct and usable?

14. Did the acceptance test process verify that
people are adequately trained to perform their
job tasks on multiple platforms?

15. Did acceptance testing verify that the software
performs the functional and structural tasks
correctly (i.e., those tested)?

16. Did acceptance testing verify that the products
produced by the computer system are correct
and usable?

17. Did acceptance testing verify that the
operations personnel could correctly and
effectively operate the software on the multiple
platforms?

18. Did the acceptance test process verify that the
operational software system satisfied the
predefined critical success factors for the
software?

19. Did the acceptance test process verify that the
users/operators of the system can identify
problems when they occur, and then correctly
and on a timely basis correct and reenter those
transactions?

20. Have all the problems identified during
acceptance testing been adequately resolved?



733

In today’s environment, security is becoming an important organizational strategy.
Physical security is effective, but one of the greatest risks organizations now face is
software security. This risk occurs both internally (through employees) and externally
(through communication lines and Internet processing).

Testing software system security is a complex and costly activity. Performing compre-
hensive security testing is generally not practical. What is practical is to establish a secu-
rity baseline to determine the current level of security and to measure improvements.

Effectiveness of security testing can be improved by focusing on the points where
security has the highest probability of being compromised. A testing tool that has proved
effective in identifying these points is the penetration-point matrix. The security-testing
process described in this chapter focuses primarily on developing the penetration-point
matrix, as opposed to the detailed testing of those identified points.

Overview

This test process provides two resources: a security baseline and an identification of
the points in an information system that have a high risk of being penetrated. Neither
resource is statistically perfect, but both have proven to be highly reliable when used
by individuals knowledgeable in the area that may be penetrated.

The penetration-point tool involves building a matrix. In one dimension are the activ-
ities that may need security controls; in the other dimension are potential points of pen-
etration. Developers of the matrix assess the probability of penetration at various points

Testing Software 
System Security

C H A P T E R

20



in the software system at the points of intersection. By identifying the points with the
highest probability of penetration, organizations gain insight as to where information
systems risk penetration the most.

Objective

The objective of the security baseline is to determine the current level of security. The
object of the penetration-point matrix is to enable organizations to focus security mea-
sures on the points of highest risk. Although no location or information system can be
penetration-proof, focusing the majority of security resources on the high-risk points
increases the probability of preventing or detecting penetration.

Concerns

There are two major security concerns: Security risks must be identified, and adequate
controls must be installed to minimize these risks.

Workbench

This workbench assumes a team knowledgeable about the information system to be
secured. This team must be knowledgeable about the following:

■■ Communication networks in use

■■ Who has access to those networks

■■ Data or processes that require protection

■■ Value of information or processes that require protection

■■ Processing flow of the software system (so that points of data movement can be
identified)

■■ Security systems and concepts

■■ Security-penetration methods

The workbench provides three tasks for building and using a penetration-point
matrix (see Figure 20-1). The security-testing techniques used in this workbench are
the security baseline and the penetration-point matrix. The prime purpose of the
matrix is to focus discussion on high-risk points of potential penetration and to assist
in determining which points require the most attention. These techniques can be 
used by project teams, special teams convened to identify security risks, or by quality
assurance/quality-control personnel to assess the adequacy of security systems.

734 Chapter 20



Figure 20-1 Workbench for testing software system security.

Input

The input to this test process is a team that is knowledgeable about the information sys-
tem to be protected and about how to achieve security for a software system. The relia-
bility of the results will depend heavily on the knowledge of the individuals involved
with the information system and the specific types of individuals who are likely to pen-
etrate the system at risk points. The security-testing techniques presented in this chap-
ter are simple enough that the team should not require prior training in the use of the
security test tools.

Where Vulnerabilities Occur

A vulnerability is a weakness in an information system. It is the point at which software
systems are easiest to penetrate. Understanding the vulnerabilities helps in designing
security for information systems.

This section describes vulnerabilities that exist in the functional attributes of an
information system. This section identifies the location of those vulnerabilities and dis-
tinguishes accidental from intentional losses.

Team 
Knowledge 
about the 
Software System
and Security

DO CHECK

Tasks
Performed
Correctly

REWORK

Determine Security
Baseline

Task 1

Build a Penetration-
Point Matrix

Task 2

Analyze the
Results

Task 3

Penetration-
Point

Matrix

Security
Baseline

Security
Analysis

Testing Software System Security 735



Functional Vulnerabilities

The primary functional vulnerabilities result from weak or nonexistent controls in the
following eight categories, listed in order of historic frequency of abuse:

1. Input/output data. The greatest vulnerability in this category occurs when
access is most open. Data is subject to human interference both before it has
been entered into a computer and after it has been output from the computer.
Manual controls offer weaker resistance to people intent on interfering with
data than do programs that must be manipulated to achieve unauthorized
access. Input/output data controls include separation of data handling and
conversion tasks, dual control of tasks, document counts, batch total checking,
audit trails, protective storage, access restrictions, and labeling.

2. Physical access. When physical access is the primary vulnerability, nonemploy-
ees can gain access to computer facilities, and employees can gain access at
unauthorized times and in unauthorized areas. Perpetrators’ access motives
may include political, competitive, and financial gain. Financial gain can accrue
through burglary, larceny, and the unauthorized sale of computer services. In
some cases, disgruntled employees pose a risk. Physical access controls include
door locks, intrusion alarms, physical-access line of sight, secure perimeter
identification/establishment, badge systems, guard and automated monitoring
functions (e.g., closed-circuit television), inspection of transported equipment
and supplies, and staff sensitivity to intrusion. Violations often occur during
nonworking hours when safeguards and staff are not present.

3. IT operations. In this category of functional vulnerability, losses result from
sabotage, espionage, sale of services and data extracted from computer sys-
tems, unauthorized use of facilities for personal advantage, and direct financial
gain from negotiable instruments in IT areas. Controls in this category include
separation of operational staff tasks, dual control over sensitive functions, staff
accountability, accounting of resources and services, threat monitoring, close
supervision of operating staff, sensitivity briefings of staff, documentation of
operational procedures, backup capabilities and resources, and recovery and
contingency plans. The most common abuse problem in this functional cate-
gory is the unauthorized use or sale of services and data. The next most com-
mon problem is sabotage perpetrated by disgruntled IT staff.

4. Test processes. A weakness or breakdown in a business test process can result
in computer abuse perpetrated in the name of a business or government orga-
nization. The principal act is related more to corporate test processes or man-
agement decisions than to identifiable unauthorized acts of individuals using
computers. These test processes and decisions result in deception, intimidation,
unauthorized use of services or products, financial fraud, espionage, and sabo-
tage in competitive situations. Controls include review of business test
processes by company boards of directors or other senior-level management,
audits, and effective regulatory and law enforcement.

5. Computer programs. Computer programs are subject to abuse. They can also
be used as tools in the perpetration of abuse and are subject to unauthorized

736 Chapter 20



changes to perpetrate abusive acts. The abuses from unauthorized changes are
the most common. Controls include labeling programs to identify ownership,
formal development methods (including testing and quality assurance), sepa-
ration of programming responsibilities in large program developments, dual
control over sensitive parts of programs, accountability of programmers for the
programs they produce, safe storage of programs and documentation, audit
comparisons of operational programs with master copies, formal update and
maintenance procedures, and establishment of program ownership.

6. Operating system access and integrity. These abuses involve the use of time-
sharing services. Frauds can occur as a result of discovering design weaknesses
or by taking advantage of bugs or shortcuts introduced by programmers in the
implementation of operating systems. The acts involve intentional searches for
weaknesses in operating systems, unauthorized exploitation of weaknesses in
operating systems, or the unauthorized exploitation of weaknesses discovered
accidentally. Students committing vandalism, malicious mischief, or attempting
to obtain free computer time have perpetrated most of the acts in university-run
time-sharing services. Controls to eliminate weaknesses in operating system
access include ensuring the integrity and security of the design of operating sys-
tems, imposing sufficient implementation methods and discipline, proving the
integrity of implemented systems relative to complete and consistent specifica-
tions, and adopting rigorous maintenance procedures.

7. Impersonation. Unauthorized access to time-sharing services through imper-
sonation can most easily be gained by obtaining secret passwords. Perpetrators
learn passwords that are exposed accidentally through carelessness or adminis-
trative error, or they learn them by conning people into revealing their pass-
words or by guessing obvious combinations of characters and digits. It is
suspected that this type of abuse is so common that few victims bother to
report cases. Controls include effective passwords administration, periodic
password changes, user protection of their passwords, policies that require
hard-to-guess passwords, threat-monitoring or password-use analysis in time-
sharing systems, and rules that forbid the printing/display of passwords.

8. Media. Theft and destruction of digital data are acts attributed to weaknesses
in the control of computer media. Many other cases, identified as operational
procedure problems, involve the manipulation or copying of data. Controls
include limited access to data libraries, safe storage of computer media, data
labeling, location controls, number accounting, controls of degausser equip-
ment, and backup capabilities.

Vulnerable Areas

The following list ranks the nine functional locations according to vulnerability:

1. Data- and report-preparation facilities. Vulnerable areas include key-to-disk,
computer job setup, output control and distribution, data collection, and data
transportation. Input and output areas associated with online remote terminals
are excluded here.

Testing Software System Security 737



2. Computer operations. All locations with computers in the immediate vicinity
and rooms housing central computer systems are included in this category.
Detached areas that contain peripheral equipment connected to computers by
cable and computer hardware maintenance areas or offices are also included.
Online remote terminals (connected by telephone circuits to computers) are
excluded here.

3. Non-IT areas. Security risks also derive from business decisions in such non-IT
areas as management, marketing, sales, and business offices; and primary abu-
sive acts may originate from these areas.

4. Online terminal systems. The vulnerable functional areas are within online
systems, where acts occur by execution of programmed instructions as gener-
ated by terminal commands.

5. Programming offices. This area includes office areas in which programmers
produce and store program listings and documentation.

6. Handling areas for online data preparation and output reports. This category
includes the same functions described in Chapter 10 for preparing online scripts.

7. Digital media storage facilities. This area includes data libraries and any stor-
age place containing usable data.

8. Online operations. This category is the equivalent of the computer operations
discussed previously, but involves the online terminal areas.

9. Central processors. These functional areas are within computer systems them-
selves, and abusive acts may originate from within the computer operating sys-
tem (not from terminals).

Accidental Versus Intentional Losses

Errors generally occur during labor-intensive work processes, and errors lead to vul-
nerabilities. The errors are usually data errors, computer program errors (bugs), and
damage to equipment or supplies. Such errors often require jobs to be rerun, errors to
be corrected, and equipment to be repaired or replaced.

Nevertheless, it is often difficult to distinguish between accidental loss and inten-
tional loss. In fact, some reported intentional loss results because perpetrators have
discovered and made use of errors that result in their favor. When loss occurs, employ-
ees and managers tend to blame the computer hardware first (to absolve themselves
from blame and to pass the problem along to the vendor to solve). The problem is
rarely a hardware error, but proof of this is usually required before searching elsewhere
for the cause. The next most common area of suspicion is users or the source of data
generation because, again, the IT department can blame another organization. Blame is
usually next placed on the computer programming staff. Finally, when all other targets
of blame have been exonerated, IT employees suspect their own work.

It is not uncommon to see informal meetings between computer operators, pro-
grammers, maintenance engineers, and users arguing over who should start looking

738 Chapter 20



for the cause of a loss. The thought that the loss was intentional is remote because they
generally assume they function in a benign environment.

In many computer centers, employees do not understand the significant difference
between accidental loss from errors and intentionally caused losses. Organizations
using computers have been fighting accidental loss for 40 years, since the beginning of
automated data processing. Solutions are well known and usually well applied rela-
tive to the degree of motivation and cost-effectiveness of controls. They anticipate,
however, that the same controls used in similar ways also have an effect on people
engaged in intentional acts that result in losses. They frequently fail to understand that
they are dealing with an intelligent enemy who is using every skill, experience, and
access capability to solve the problem or reach a goal. This presents a different kind of
vulnerability, one that is much more challenging and that requires adequate safe-
guards and controls not yet fully developed or realized, let alone adequately applied.

Do Procedures

This test process involves performing the following three tasks:

1. Establish a security baseline.

2. Build a penetration-point matrix.

3. Analyze the results of security testing.

Task 1: Establish a Security Baseline

A baseline is a snapshot of the organization’s security program at a certain time. The
baseline is designed to answer two questions:

■■ What are we doing about computer security?

■■ How effective is our computer security program?

Baseline information should be collected by an independent assessment team; as
much as possible, bias for or against a security program should be removed from the
process. The process itself should measure both factual information about the program
and the attitudes of the people involved in the program.

Two categories of the baseline information need to be collected. The first is related to
the security process and includes the policies, methods, procedures, tools, and tech-
niques used to protect computer resources. The second category of information relates
to security acts and includes information about attempted and actual penetrations into
computer resources. Wherever possible, actual losses should be quantified. 

This task provides a five-step baseline procedure that includes data collection forms
and suggested analyses of the data collected. Most organizations will want to cus-
tomize this procedure based on their in-place security process, which may already
have some of the needed information. Therefore, suggestions are offered on customiz-
ing the baseline procedure.

Testing Software System Security 739



Why Baselines Are Necessary

Industrial psychologists tell us that most individuals suffer from cognitive dissonance.
This means that an individual is “blinded” by his own background and personal expe-
riences. After surviving life’s experiences and performing different jobs and tasks, one
comes to believe certain inalienable truths. When the mind becomes hardened with
this cognitive dissonance, it is hard to convince an individual that other facts or posi-
tions may be more correct than the one held.

One noted security expert defines cognitive dissonance in a slightly different way.
He says that there is a 20-year rule in almost all organizations (obviously not in those
that have been in business less than 20 years). The rule is that if an unfavorable event
has not occurred within the past 20 years, the probability of that even occurring is
assumed to be zero by the key officers in the corporation. For example, if the business
has not experienced a fire in the past 20 years, the fire procedures will be lax.

We see this 20-year rule vividly applied to the computer security field. Most organi-
zations have not experienced a major computer disaster or fraud within the past 20
years, and thus tend to exclude it as a viable probability. When newspapers report a
major computer disaster or problem (for example, hackers intrusions into well-known
companies’ databases), senior management vicariously substitutes the reported event
for a possible event in its organization. This “bends” the 20-year rule slightly, but nor-
mally the vicarious experience dissipates quickly and the 20-year rule again dominates
management thinking. The net effect of this phenomenon is a widely held “it won’t
happen here” philosophy.

When senior management adopts this thinking, logical arguments become useless.
The only workable solution to cognitive dissonance is a factual presentation. In the
area of computer security, this approach is a must.

This approach does not purport to claim to change managerial attitudes about the
need for computer security. What the factual arguments do is “embarrass” people into
changing behavior. The embarrassment results because they cannot intellectually
refute the factual data, and thus they accept a position they may not truly believe in but
are willing to undertake for the benefit of the organization.

Creating Baselines

The establishment of a security baseline need not be time-consuming. The objective is
to collect what is easy to collect, and ignore the information that is difficult to collect.
In many instances, the needed information may be already available.

The three key aspects of collecting computer security baseline information are as 
follows:

■■ What to collect. A determination must be made about what specific pieces of
information would be helpful in analyzing the current security program and in
building a more effective computer security program.

■■ From whom will the information be collected? Determining the source of
information may be a more difficult task than determining what information
should be collected. In some instances, the source will be current data collection

740 Chapter 20



mechanisms (if used by the organization). In other instances, individuals will be
asked to provide information that has not previously been recorded.

■■ The precision of the information collected. There is a tendency to want highly
precise information, but in many instances it is not necessary. The desired preci-
sion should be both reasonable and economical. If people are being asked to
identify past costs, high precision is unreasonable; and if the cost is large, it must
be carefully weighed against the benefit of having highly precise information. In
many instances, the same decisions would be made regardless of whether the
precision was within plus or minus 1 percent, or within plus or minus 50 percent.

The collection of data to create a security baseline should be completed within one
week. It may take longer in large organizations or if special programming is needed to
gather information from computer logs. 

This chapter proposes the following six-step baselining procedure:

1. Establish baseline team.

2. Set baseline requirements and objectives.

3. Design baseline data collection methods.

4. Train baseline participants.

5. Collect baseline data.

6. Analyze and report computer security status.

The baseline procedures described in this chapter are general in nature. They do not
take into account any unique features of an organization or the fact that data may
already be available. Therefore, the six-step procedure may need to be customized to
ensure that the correct information is collected at the least cost.

If customizing the six-step procedure, keep the following in mind:

■■ Availability of information. If data is already available, it should not be collected
in the baseline study. Those pieces of information can be excluded from the six-
step process and incorporated into the process in Step 5 (data collection step).

■■ Need for information. The baseline team must establish the objectives of the
baseline study. The information collected should support these baseline objec-
tives. If recommended information is not needed to support an objective, it
should be deleted (and vice versa).

■■ Adjust for corporate language and nomenclature. Generalized terms may
have been used in baseline collection forms. If so, these should be adapted to
organizational terminology wherever possible. Customized terminology pro-
vides the appearance of a baseline process designed specifically for the organi-
zation. The more closely people identify with the questions, the greater the
reliability of the data collected.

The baseline is presented as a one-time data collection procedure. Nevertheless, the
data collected must be updated periodically to measure changes from the baseline.
This follow-up data collection should be integrated into the security program, and not
separated as a special data collection process in the future.

Testing Software System Security 741



All processes need to be continually updated as business conditions change. The
proper time to change processes depends on the collection and analysis of feedback
information. This feedback information is the same information that was collected in
the baseline study. Without this continual feedback and analysis, even the most effec-
tive security programs will fall into disrepair.

Establish the Team

The selection of the baseline team is a critical step in the baselining process. Team mem-
bers must exhibit the following characteristics:

■■ Be representative of the groups involved in computer security

■■ Believe they are responsible for the performance of the baseline study

■■ Believe that the baseline study is a worthwhile exercise

■■ Be responsible for using the results of the baseline study to improve security

The baseline study must belong to the individuals responsible for computer security
and not to senior management. This does not mean that senior management does not
participate in the baseline study or use the results of the study. It means that as much
as possible the baseline will be owned by the people responsible for revising the com-
puter security program.

This principle of ownership cannot be overemphasized in the computer security
area. Most computer security programs fail because the employees of the organization
do not believe it is their computer security program. They believe it is the program of
the security officer, data processing management, senior management, or anybody but
themselves. The emphasis in this book is that ownership and responsibility of the com-
puter security belong to all employees of an organization. The concept of ownership
begins with the selection of the computer security team. The recommended process for
building the computer security team is relatively simple. Senior management convenes
a group representative of all parties involved in computer security. In general, these
should be the “movers and shakers” in the organization—the people who have the
respect of the majority of the employees. These individuals may or may not be supervi-
sors, but all must have the respect of the employees in the area from which they come.

Senior management now describes the importance and objectives of the baseline
study. This presentation should be primarily a testimonial by senior management on
the importance of computer security in the organization. The baseline study should be
presented as a first step in establishing an effective computer security program for the
organization. The presentation should not discuss the existing computer security pro-
gram or identify or imply that the individuals associated with the current program
have done less than an admirable job. The emphasis should be on changing require-
ments and the need to change and update the computer security program.

Senior management should then ask for volunteers to work on the computer security
baseline study. Nobody should be appointed to this study group. If the individuals in
the group do not believe in computer security, the results of the study will probably
reflect that disbelief. On the other hand, if people volunteer, they must have an interest
that can be nurtured by senior management to produce the kind of results desired. If
senior management’s testimonial is believable, there will be sufficient volunteers for the

742 Chapter 20



study group. If there are no volunteers, then senior management must seriously recon-
sider its attitudes and practices on computer security. In that instance it may be better to
hire a consultant to perform the study and then begin the new computer security pro-
gram at the senior management level.

Set Requirements and Objectives

The goal of the initial meeting of the baseline team should be to establish the require-
ments and objectives of the baseline study. To a large degree, these requirements and
objectives will have been established by senior management when the study team was
formed. Nevertheless, for the requirements and objectives to be “owned” by the study
team, the team must adopt those requirements and objectives as their own and not as
orders dictated by management.

The objectives should be twofold: first, to collect information about the computer
security process; and second, to collect information about the effectiveness of that
process in detecting and preventing intrusions.

These two objectives must be converted into baseline requirements. The require-
ments should be defined in sufficient detail so that at the end of the baseline study it can
be determined whether the baseline requirements have been met. It is these require-
ments that will motivate the remaining steps of the baseline process.

The baseline requirements must answer the who, what, when, where, why, and how
of the baseline study; this information is then supplemented by the precision desired
or achieved in the data collection process. The precision can be part of the require-
ments, or the respondents can be asked to state the level of precision they believe is in
their responses.

The baseline requirements worksheet shown in Table 20-1 serves to record informa-
tion regarding six focuses of concern, as follows:

■■ Resources protection. Whenever possible, place a value on the resource that
warrants security measures. The resources can be grouped; for example, the
computer media library can be treated as one resource. It is not necessary to
identify each reel of tape or each disk.

■■ Resources used. Evaluate the number of people and the amount of computer
time, security equipment, and other expenditures made for the sole purpose of
providing security over the resources. 

■■ Methods. Describe in detail the tools, techniques, and processes used to protect
the identified resources so that they are readily understandable by management.
For example, a single reference to guards is inadequate; the methods to be
described should explain the number of guards and their specific responsibilities.

■■ Training. Define the programs used to train individuals in how to fulfill their
security responsibilities, as well as the objectives, the methods used for training,
and any procedures used to ensure that the necessary skills have been mastered.

■■ Awareness. Record employee perception regarding the need for security, 
management’s security intent and specific responsibilities, and attitudes about
the performance of security responsibilities. 

Testing Software System Security 743



■■ Support. The support received from supervision and peers in performing secu-
rity responsibilities includes being given adequate time, training, direction, and
assistance where necessary.

The security violations should be available through existing reporting systems; if not,
information in the following four areas must be collected:

■■ Effectiveness. This involves the judgment of the individuals participating in
the security program about the ability of the program to prevent and detect
violations.

■■ Penetrations prevented. Automated security systems log attempted violations,
thus making this information easy to obtain. Manual security systems such as
barriers may prevent a lot of people from penetrating, but unless the suspected
offenders actually try and are observed, the information collected may not
accurately reflect potential risk and efficacy of prevention.

■■ Penetrations detected. This information should be recorded and reported by
the individuals who detected the penetration (either through a formal report-
ing system or based on the recollection of those involved in the detection).

■■ Losses. These are the losses to the organization that are the result of ineffective
security systems. Computer security experts estimate that only about 10 per-
cent of all losses are identified; therefore, this category might be divided into
identified and estimated losses.

For all categories in the Baseline Requirements Work Sheet, the baseline team should
provide guidance as to the following:

■■ What should be collected.

■■ Why the information is necessary.

■■ Who has the information.

■■ Where the information is available (For instance, the source of the information
might not realize that she has the information within a database.)

■■ Precision of information wanted.

■■ How the information is to be provided.

The more complete the information at this point in the data collection process, the
easier the remaining steps are to execute.

Design Data Collection Methods

Ideally, the collection of feedback information about computer security should come
from the process itself. Feedback information should be a by-product of the process,
and not an extra task given to the individuals who perform security-related activities.
For example, the scheduling or conducting of training should generate the information
about training; forms required to record security violations should provide the infor-
mation about violations; and job-accounting systems should indicate the amount of
resources utilized to provide computer security. 

744 Chapter 20



Table 20-1 Baseline Requirements Worksheet

SECURITY PROCESS SECURITY VIOLATIONS

BASELINE RESOURCES RESOURCES
REQUIREMENT PROTECTION USED FOR TRAIN- AWARE- EFFECTIVE- PENETRATION
QUESTION METHODS SECURITY ING NESS SUPPORT NESS PREVENTED DETECTED LOSSES

What

Why

Who

Where

When

How



The baseline study recognizes that the appropriate feedback mechanisms are not yet
in place. The performance of the study is usually a one-time task, and as such, special
data collection techniques need to be developed. Even so, these techniques should be
commensurate with the value received from collecting the information. Two easy-to-
use data collection forms are provided for the baseline study.

This Baseline Factual Data Collection form is designed to collect information that
has a factual basis, as opposed to attitudinal information (see Figure 20-2). This does
not mean that the factual information is 100 percent accurate, but rather that it is fac-
tual in nature as opposed to an individual’s opinion. However, both types of informa-
tion are important because both affect the integrity of the security program.

The factual information represents the areas of information defined in requirements
(which are factual in nature). The information is collected according to areas of secu-
rity. These can be organizational areas or areas of responsibility. The determination of
what areas to survey will be based on an analysis of where computer security is con-
ducted. At a minimum, it would include the following:

Central computer site(s)

Remote computer site(s)

Storage areas for computer media and resources

Points of physical protection

Communication lines or networks

Office equipment with security concerns

Origination of security concerns

This data collection form provides general categories of information wanted. The
prototype has been designed to assist baseline study teams in developing a customized
form for their organization. The end of the form provides space for the respondent to
indicate the precision of the information included on the form. This may need to be
qualified to indicate which piece of information is being rated. For example, training
information may be provided at high precision, but the cost to develop the security
measure may be provided at low precision. As stated earlier, the precision can be given
by the baseline study team or provided by the respondent. If the baseline study team
indicates the desired level of precision, this last item should be omitted from the form.

People’s attitudes about security are as important as the factual information gath-
ered. People are the penetrators of security systems, and people are the guardians of
the computer resources. If people are dedicated to computer security, it will happen; if
they are not, the opportunity for penetration will increase.

The Baseline Attitudinal Data Collection form should be widely distributed through-
out the organization (see Figure 20-3). Some organizations allow these forms to be
returned anonymously because they think people will be more open if guaranteed
anonymity. The baseline study team must make this judgment.

To avoid fence-sitting, the questions on the form must be answered using a Likert
scale. This form’s six-point scale requires respondents to select a response that is not
average: The respondent must decide whether something is better than average or less
than average.

746 Chapter 20



Figure 20-2 Baseline Factual Data Collection form.

The scale for each statement ranges from completely agree (a score of 1) to completely

disagree (a score of 6). The more closely the respondent agrees with the statement, the
closer he would score to a 1 (1, 2, and 3 are agreement options). The more he disagrees
with the statement, the closer he would come to 6 (the disagree options are 4, 5, and 6).

Train Participants

The individuals administering the baseline study, as well as the individuals involved in
providing that data, should be trained in what is expected from them. At a minimum,
this training should include the following:

■■ Baseline awareness. All of the individuals who will be participating in the 
program should be alerted to the fact that there is such a program in place and
that they will be involved in it and are an important part of the success of the
program.

■■ Collection methods. The participants in the program should be trained in the
sources of security information, how to get it, and the attributes of information
that are wanted. This primarily will be an explanation of the information
recorded on the baseline requirements worksheet (see Table 20-1).

■■ Forms completion. If forms are distributed or used, the respondents to those
forms should be instructed in the intent of the request for information, the type
and extent of responses desired, and the type of precision needed.

Security Area (where)

Individuals Responsible (who)

Resources Protected (why)

Security Methods Used (what)

Training Provided (what)

Cost to Develop (what)

Cost to Use (how)

Number of Penetrations During Past 12 Months (why)

 Prevented

 Detected

 Losses

Description (how)

Accuracy (precision)

 +/-5% +/-15% +/-25% +/-50% +/->50%

Testing Software System Security 747



Figure 20-3 Baseline Attitudinal Data Collection form.

The training is the responsibility of the chairman of the baseline study group. That
individual should first train the study group, and then the study group should train
the other participants.

Collect Data

The collection process should be performed as quickly as possible. When the requests
are made, include a response due date on the request (generally, within three to five
working days). This provides enough time to work the request into a normal schedule,
and yet does not give the appearance that the request is unimportant.

It is recommended, but not required, that the requests be made at a meeting of the
participants. This is an opportunity to train the people in the forms and at the same time

Area of Responsibility (where)
Individual Responsibility (who)

1. I am responsible for the computer resources that I use and/or have under
 my control.

2. I have been adequately trained in the security procedures and policies of
 the organization, and my supervisor has verified that I have mastered
 these skills.

3. Security is an important part of my job function.

4. I am evaluated by my supervisor on how well I perform my security-
 related responsibilities.

5. Computer security is a high priority for senior management.

6. Computer security is a high priority for my supervisor.

7. I receive strong support from my supervisor when I request resources,
 raise concerns, or make recommendations relating to computer security.

8. The current security program is effective in detecting and/or preventing
 system penetrations.

9. The organization spends the correct amount of resources on computer
 security.

10. Management has requested my advice about computer security.

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

Completely Agree Complete Disagree1 2 3 4 5 6

748 Chapter 20



to make the request to have the data collected. It is the responsibility of the baseline
study group to follow up and ensure that the needed data is provided by the prescribed
date. In the event that the data is collected from computer files, the baseline team may
either personally perform those analyses or contract them out to other parties.

Analyze and Report Security Status

The analysis of the security self-assessment exercise resulted in a profile indicating the
elements of security that presented the greatest threat. The analysis of the baseline will
result in two more profiles: (1) factual information collected about security practices,
and (2) attitudinal information from individuals involved in security. These analyses
can be presented individually or as a single report. The approach selected should be
based on experience as to how best to influence management decisions.

Let us consider a sample report of an analysis of the computer security baseline (pre-
sented in Table 20-2). This analysis shows the individual areas and selected analyses
based on both the factual and attitudinal data collection processes. The areas of secu-
rity listed are general, such as the central computer site. In actual practice, these should
be specific organizational units.

The analyses selected show five factual areas (value of computer resources, cost to
install security, cost to operate security, number of penetrations, and value of security
losses) and two attitudinal areas, (effectiveness of security, and management support
for security).

The translation from the data collection work sheets to this report may require some
interpretation and further analysis. For example, the report suggests that a value be
placed on the computer resources protected so that the cost of security can be shown in
relationship to what is being protected. If the individual reports cannot quantify this,
the baseline team must do it. The attitudinal analyses, such as effectiveness of security,
are taken from the attitudinal data collection work sheets. In our work sheet, we had a
rating classification of 1 to 6. These normally would have to be converted to terms that
are more easily understandable. For example, if on the Likert scale the rating 1 repre-
sented ineffective security and 6 represented very effective security, the numbers
might be converted to the following rating system:

Likert scale values of 1 and 2 are rated “poor.”

Likert scale values of 3 and 4 are rated “effective.”

Likert scale values of 5 and 6 are rated “excellent.”

A report of this type obviously requires explanatory material (in writing or orally).
The purpose of showing a recommended analysis is to suggest a way of presenting the
information. It is expected that the baseline team will use its creativity in putting together
a baseline report.

Using Baselines

The baseline is the starting point to a better security program. It both reports the status
of the current program and provides a basic standard against which improvements can
be measured. 

Testing Software System Security 749



Table 20-2 Report of Analysis of Computer Security Baseline

LOCATIONS 
REMOTE COMMU- OF

CENTRAL COMPUTER STORAGE AREA POINTS OF NICATION OFFICE COMPUTER-
SECURITY COMPUTER SITE(S)/ FOR COM- PHYSICAL LINES/ EQUIP- PRODUCED 
AREA TOTALS SITE(S) RESOURCES PUTER MEDIA PROTECTION NETWORKS MENT DATA

Value of 
computer 
resources

Cost to 
install security

Cost to 
operate 
security

Number of 
penetrations 
prevented

Number of 
penetra-
tions detected

Value of 
security losses

Effectiveness 
of security

Management 
support for 
security



The baseline study serves two primary objectives. First, it reduces computer security
discussions from opinion to fact. Even though some of the facts are based on attitude,
they are a statistical base of data on which analyses and discussion can be focused, as
opposed to people’s opinion and prejudices. The baseline helps answer the question of
whether the expenditure was worthwhile. For example, if a security software package
is acquired but there is no way to determine whether the environment has been
improved, management will wonder whether that expenditure was worthwhile. When
the next computer security request is made, the uncertainty about the last expenditure
may eliminate the probability of a new improvement.

Task 2: Build a Penetration-Point Matrix

A dilemma always exists as to where to place security. Earlier chapters stated that people
are the problem, and therefore security should be placed over people. However, watching
people is not a practical or desirable way to control people. Therefore, computer security
is best achieved through controlling activities. The activities in turn control people.

For example, we want to stop people from removing computer media from the
media library unless authorized to do so. This can best be accomplished by placing
controls over the computer media in the form of a librarian; we can then exercise our
security procedures through the computer media library and librarian.

This task identifies the activities that need control, as well as the data flow points
where penetration is most likely to occur. These concepts are used to build a penetration-
point matrix that helps identify security vulnerabilities for management action. The
creation of the penetration-point matrix answers the question of where security is
needed and whether security controls exist at the most likely points of penetration.

Controlling People by Controlling Activities

The computer security challenge in any organization is to control people—not just
employees, but also vendors, customers, passers-by, and ex-employees.

The only effective way to control people is to continually monitor their activities. To
control an individual, we would have to hire another individual to watch him first, and
then hire a third individual to watch the second individual watching the first individual.
Not only is this not practical, but it would be resented by a large percentage of employ-
ees and customers. Thus, another approach is needed to accomplish the same objective.

The solution to the computer security dilemma is to establish activities that control
people. For example, it would be difficult to keep unauthorized individuals out of the
computer center, unless a strategy such as card access control were initiated. Control
designers refer to this concept as “division of responsibilities.” The activities that
appropriately divide responsibilities also introduce the controls that monitor people’s
activities on a continuous basis. The monitoring through activities is not considered
objectionable, although constant surveillance would be.

The challenge is the identification of the appropriate activities. This is another criti-
cal step in building an effective security program. The number and types of activities
selected for control are another aspect of determining the scope or magnitude of the
security program in the organization.

Testing Software System Security 751



Selecting Security Activities

The determination of the magnitude of the security program is based on the following
two factors: 

■■ Type and magnitude of risks

■■ Type and extent of security controls

The greater the risks, the greater the need for control. The two variables of the scope
of the security program are directly related. One can measure the magnitude of the
risks to determine the strength of the management security controls needed. The
amount of management controls to be installed is also a measure of the scope of the
security program.

The activities that require management security controls can be divided into the cat-
egories discussed in the following three subsections.

Interface Activities

These are the activities and individuals that use computer resources. The specific activ-
ities relate to functions either needed by the computer environment or furnished by the
computer environment:

■■ Program users. Users are the operational “activities” for which the applications
have been developed and for which the processing results are needed. The pri-
mary users of computer resources are the operational areas responsible for the
application being processed. Secondary users include various staff units in the
organization.

■■ Technical interfaces. The operating environment includes many software pack-
ages (for example, operating systems, database management systems, and
administrative scheduling systems). These individual packages need to be gener-
ated and installed; then the interfaces between the packages must be established.
Many of the technical interfaces are performed by systems programmers and
other specialists, such as database administrators.

■■ Application systems. Application systems are the software packages that
process user data to produce the results needed by the users. These application
systems can be developed from internally generated specifications, acquired as
commercially available software, or developed under contract by vendors. The
activity includes testing to ensure that the application functions correctly, and
then making any change necessary to ensure the operational efficacy. 

■■ Privileged users. Each organization has a group of users who by their stature
in the organization are privileged. This means that they may not be subject to
the same level of control as nonprivileged users. The two primary categories of
privileged users are senior management and auditors. 

■■ Vendor interfaces. Organizations contract with a variety of vendors for special
services. These include the vendors of hardware, software, and other support
services such as maintenance, cleaning, and consulting services. In the perfor-
mance of vendors’ duties, it may be necessary for vendor personnel to interact
with computer operations during normal operating periods.

752 Chapter 20



Development Activities

These are the activities that relate to the acquisition, creation, and maintenance of the
software needed to accomplish the processing requirements established by users of com-
puter facilities to meet business needs:

■■ Policies, procedures, and standards. The organization develops policies
regarding how a function is to be performed. These policies are implemented
through procedures, such as system development methods by which work is
performed. These standards can apply to both specific professional areas and
other users of resources, such as microcomputer users.

■■ Training. Training is key. People should be fully trained in how to perform
their job and then supervised (and evaluated) to ensure that they have mas-
tered those skills. 

■■ Database administration. Databases are groupings of data that are managed
independently of the application programs that utilize the data. The creation of
the databases requires a new organization structure to manage and administer
the use of this new development. In many organizations, the database also
includes the definition of data and the use of the data dictionary software 
documentation tool.

■■ Communications. This activity encompasses the electronic movement of data
between one computer facility and another. Modern communications facilities
include the Internet, intranets, local-area networks, virtual private networks,
and wireless systems. When common carrier facilities are used, the organiza-
tion loses control over the security of information from the time it passes into
the hands of the common carrier until it is again returned to the organization.

■■ Documentation. Documentation (hard copy or electronic) includes all the nar-
rative information developed and maintained about processing activities. For
an application under development, documentation includes record definitions,
system specifications, program listings, test conditions and results, operator
manuals, user manuals, control documentation, flow charts, and other pictorial
representations.

■■ Program change control. The maintenance activity has the responsibility to
define, implement, and test changes to application systems. Nevertheless, the
control of those changes should be independent of the activity that actually per-
forms the program maintenance. The program change control activity involves
logging changes, monitoring their implementation, and verifying that all the
changes to programs are appropriately authorized and that all authorized
changes are made.

■■ Records-retention program. This activity is designed both to retain needed
computer-related documents and to appropriately destroy unneeded docu-
ments. Whereas the computer media is designed to physically store the data,
the records-retention program relates to the amount of time that the informa-
tion will be retained. The records-retention program includes both manual and
computer media. The time and method by which data will be destroyed is an
important part of the records-retention program. Many organizations either

Testing Software System Security 753



shred or burn key hard-copy computer documentation. In addition, some orga-
nizations have custodians to retain and control important records.

Operations Activities

These are the procedures and methods used to process data on the computer using the
software developed for that purpose as initiated by the activities that interface with the
computer center. Activities also include supporting tasks necessary to ensure the integrity
of the mainline operations:

■■ Computer processing. This is the activity of processing data to produce desired
results. Processing is used in this context to indicate the totality of steps per-
formed between the initiation of a transaction and the final termination of that
transaction. Processing includes both manual and automated functions that
manipulate data.

■■ Media libraries. Media libraries are repositories for computer media. The
media libraries may be on-site, company facilities off-site, or with contractors
who hold data at their site. Off-site libraries are used to protect data in the
event of a disaster to the on-site media library.

■■ Error handling. This activity begins when data is rejected from normal process-
ing and continues until the time the problem has been resolved and the trans-
action has been correctly processed. Error handling normally involves a
logging of errors and then a monitoring of the correction and reentry process.
It is a particularly vulnerable point in many application systems because the
reentry may only be subject to minimal control.

■■ Production library control. The production library is the repository for computer
programs and program-related parameters. For example, job control language
statements are necessary to support programs, but are retained in libraries other
than the production library. There are many libraries, but the emphasis in this
activity is on control over those libraries that affect the integrity of computer 
processing.

■■ Computer operations. These are the steps involved in ensuring that the desired
results are achieved through computer processing. Operations involve terminal
usage, support operations such as offline printers and office systems, and the
central computer facility. Operations can also occur at off-site service centers.

■■ Disaster planning. Disaster planning encompasses the retention of data for pur-
poses other than normal operations, and all the procedures and methods needed
to restore the integrity of operation in the event that it is lost. Because disasters
can occur at any point of activity—for example, at a terminal operation—there
may be many different activities included within the disaster plan. It is gener-
ally advisable to involve users in the development of the plan affecting their
operations.

■■ Privileged utilities and commands. Various aids are employed to assist the
technicians, operators, and developers in the performance of their job responsi-
bilities. Many of these utilities and aids are designed to circumvent the normal
operation controls.

754 Chapter 20



Organizations may want to divide their activities into different categories, or add
other categories of activities subject to control. It is generally advisable to select activi-
ties that closely relate to the organizational structure of the company. For example, if
the records-retention program and media library are under the same individual, it
would not be necessary to break these into two distinct activities. On the other hand,
the policies, procedures, and standards may involve several organizational units and
therefore should be divided into two or more different activities.

Controlling Business Transactions

The second dimension of the security program concerns controlling application pro-
cessing. The activities are designed to support transaction processing. The primary
objective of the data processing function is to process data (i.e. business transactions).

The security of transaction processing occurs at those points where there is transaction
activity. Any time a transaction is originated, moved, stored, retrieved, or processed, it is
subject to unauthorized and unintentional manipulation.

When developing security over transaction processing, it is important to identify the
point where the transaction could be manipulated. These points are where the risk of
manipulation is greatest and thus where control should be established. Most organiza-
tions refer to these as control points.

The ten control points in transaction processing are as follows:

■■ Transaction origination. The creation of a business transaction through the
normal conduct of business activities is the first opportunity for manipulation.
An order received from a customer would originate the business transaction of
filling a customer order.

■■ Transaction authorization. It is management’s responsibility to ensure that
transactions are only processed in accordance with the intent of management.
The method by which this is achieved is to require transactions to be authorized
prior to processing. In some instances, this requires a special authorization, such
as signing a purchase order; in other instances, management has authorized a
transaction if it meets predetermined criteria, such as an order from a customer
whose credit has been approved by management.

■■ Data entry. This process transcribes transactions onto computer media. In some
instances, the transaction is both originated and authorized at the point where
it is entered. Nevertheless, these are still three distinct control events to be 
performed.

■■ Transaction communication. This control point relates to all the movement
activities of transactions. Although shown as a single control point, it may be
repeated several times during the life of a single transaction. For example, a
transaction can be moved between the origination and authorization step, as
well as from the output control point to the usage control point.

■■ Transaction storage. This point involves placing transactions in a location to
await further processing. Like communication, it is shown as a single control
point but may occur several times in the transaction life cycle. For example, the

Testing Software System Security 755



paper document that originates the transaction may be stored in a file cabinet,
whereas the electronic image of that transaction is stored in a database.

■■ Transaction processing. Processing encompasses all mathematical and logical
manipulations on data, as well as the updating of information stored in computer
files. Processing can be automated (by computer) or manual by (by people).

■■ Transaction retrieval. This control point involves the removal of transactions
from storage. As with the storage function, this can be a manual storage cabinet
or a computerized file. The removal can be the electronic image; in this case,
the image is retained on file. There is also a form of retrieval in which no docu-
ment or image is retained after the retrieval action is concluded.

■■ Transaction preparation (output). This action involves the conversion of elec-
tronic media to a format usable by people. It may involve the display of a single
transaction on a terminal, or it may involve the consolidation, summarization,
and presentation of large volumes of transactions on reports. The content may
be altered in this process; for example, state codes may be converted to the for-
mal spelling of the state name.

■■ Transaction usage. This involves actions taken on computer-produced results
by either people or programs to meet user needs. Actions can range from doing
nothing, which in many instances is a definitive action, to initiating a whole
series of steps, for example, reordering products.

■■ Transaction destruction. This final action on a transaction is the destruction of
the transaction itself. In many instances, organization policy and/or the law
specifies the time that a transaction must be retained before it can be destroyed.
In other instances, the destruction of a transaction is up to the individual
responsible for the transaction processing.

These ten control points represent the points at which transactions are vulnerable to
penetration. If security is to be broken, it will be broken at one of these points. Invari-
ably, the system will be penetrated at the weakest point.

There is a close relationship between the processing activities and the control points
in transaction processing. The transactions are processed by the previously described
activities. These activities either directly contribute to the processing (for example, the
communication activity) or support the processes that carry out the transaction (for
example, the program change control activity ensures that the programs that perform
the processing are current with business requirements).

Characteristics of Security Penetration

Many hundreds of years ago, the Chinese built a great wall around their entire civi-
lization to protect themselves from penetrators. This was a costly and time-consuming
exercise and in the end proved futile. The French tried the same tactic by building the
Maginot line after World War I, only to find that the Germans went around these great
fortifications, which in the end proved to be a useless defense.

A smarter strategy is to locate security defenses at the point where penetration could
be the greatest. To select those points, we need to analyze the history of penetrations
and develop hypotheses that tell us where our systems are most vulnerable.

756 Chapter 20



We need to explore two premises to understand where penetration will occur. First,
penetration will occur at the weakest point in transaction processing. Penetrations
aimed at manipulating transaction processing will pick the weakest control point in
the processing cycle for penetration. The term hacking means a continual probing to
identify a weakness. Penetrators invariably hack until they find the weak point and
then penetrate at that point. Therefore, if the weakest point in the cycle is strengthened,
the effort required to penetrate the system increases. Each time the weak point is
strengthened, the ante to play the penetration game goes up.

Second, penetration will occur in the least-controlled activity. The activity in which
there is the greatest opportunity to manipulate is the activity that is most subject to
manipulation. For example, if it is easiest to manipulate training, then that is the activ-
ity that will be used to penetrate the system. In one of the classic computer fraud cases,
the head teller in a bank trained new tellers to ignore the warning messages that indi-
cated unauthorized manipulation was occurring.

The two variables described in this chapter, control points and controllable activi-
ties, hold the key to determining where security is needed. If either a control point or
an activity is weak, it needs to be strengthened; and if activities and control points that
are related are both weak, the opportunity for penetration is even greater. By looking
at these variables and showing the relationship, we can identify the point where the
computer processes are most likely to be penetrated.

Building a Penetration-Point Matrix

The Computer Security Penetration-Point Matrix is directed at data manipulation (see
Table 20-3). It is not designed to identify all security threats. For example, natural disas-
ters are a threat, but not a people threat. Disgruntled employees may wish to sabotage
the computer center by destroying equipment; this is a threat to computer processing,
but not a threat to transaction processing. On the other hand, most of the day-to-day
security threats are data related and are identifiable through the use of the Computer
Security Penetration-Point Matrix.

This matrix lists the 10 transaction control points in the vertical column and the 19
controllable activities in the horizontal column.

The matrix can be completed for each major business transaction. If the organization
has a control design methodology, the insight gained from completing the form for the
organization will suffice to identify the major penetration points. If each application is
uniquely controlled, the matrix should be prepared for each transaction.

The matrix is completed control point by control point. The processing at each con-
trol point is viewed in relation to the activities that are involved in that processing. In
most instances, many of the activities will be involved. Several questions need to be
asked when looking at each activity. First, is there a high probability that this control
point could be penetrated through this activity? For example, the first control point is
transaction origination, and the first controllable activity is users of that application.
The question then becomes: Do the users have a high probability of penetrating the
point where the transaction is originated? If so, three points are allocated and recorded
in the intersection of the lines from that control point and controllable activity.

Testing Software System Security 757



Table 20-3A Computer Security Penetration-Point Matrix

DEVELOPMENT 

USERS OF TECHNICAL AND POLICIES, 

APPLICATION INTERFACE MAINTENANCE PROCEDURES, 

DATA AND TO COMPUTER OF APPLICATION PRIVILEGED VENDOR AND DATABASE 

PROGRAMS ENVIRONMENT SYSTEMS USERS INTERFACES STANDARDS TRAINING ADMINISTRATION COMMUNICATIONS DOCUMENTATION

Transaction 
organization

Transaction 
authorization

Data entry

Transaction 
communication

Transaction 
storage

Transaction 
processing

Transaction 
retrieval

Transaction 
preparation

Transaction 
usage

Transaction 
destruction

Subtotal



Table 20-3B Computer Security Penetration-Point Matrix

PROGRAM CHANGE RECORDS RETENTION COMPUTER PRODUCTION COMPUTER DISASTER PRIVILEGED UTILITIES 

CONTROL PROGRAM PROCESSING MEDIA LIBRARIES ERROR HANDLING LIBRARY CONTROL OPERATIONS PLANNING AND COMMANDS

Transaction 
organization

Transaction 
authorization

Data entry

Transaction 
communication

Transaction 
storage

Transaction 
processing

Transaction 
retrieval

Transaction 
preparation

Transaction 
usage

Transaction 
destruction

Subtotal

Subtotal 
Table 20-3a

Total Score



If there is not a high probability of penetration, the question must be asked whether
there is an average probability. If so, a score of 2 is put in the intersection between the
control point and controllable activity. If there is a low probability, but still a probabil-
ity, of penetration, then a score of 1 should be recorded in the matrix intersection. If
there is no probability of penetration, or a minimal probability of penetration, a dash
or zero should be put in the intersection. This procedure is continued until all the con-
trol points have been evaluated according to each of the 19 controllable activities.

The scores allocated for each intersection should be totaled vertically and horizon-
tally. This will result in a minimum horizontal score of 0, and a maximum score of 57.
The vertical scores will total a minimum of 0 and a maximum of 30. Circle the high
scores in the vertical and horizontal Total columns. These will indicate the high-risk
control points and the high-risk activities. Circle the intersections for which there are
high scores for the transaction control point, and a high score for the controllable activ-
ity and either a two or three in the intersection between those high total scores.

The most probable penetration points should be listed in this order:

■■ First priority is given to the intersection at which both the controllable activity
and the control point represent high probabilities of penetration through high
total scores. These are the points where there is the greatest risk of penetration.

■■ Second priority is given to the high-risk controllable activities. The activities
are general controls, which usually represent a greater risk than application
control points.

■■ Third priority is given to the high-risk control points as indicated by high total
scores for the control point.

At the end of this exercise, management will have an indication of where security is
needed most. Because security will be placed on activities and at transaction control
points through activities, this identification process is important in determining the
magnitude of the computer security program.

Task 3: Analyze the Results of Security Testing

Software testers can analyze the results from testing computer security. This analysis
provides a baseline and the points at which security most likely could be penetrated. If
the testers have identified the controls at the penetration points, they will have most of
the information needed to analyze the adequacy of security.

If software testers have a background in security, they will have uncovered a lot of
information during their baseline exercise and while developing the penetration-point
matrix. This additional information can prove helpful in analyzing.

Analysis of the following proves helpful in determining whether security is ade-
quate for an information system:

■■ Whether adequate controls exist at the points of highest probability of 
penetration

■■ Whether controls exist at the points of most probable penetration

■■ Adequacy of the controls to protect against penetration at the points of most
probable penetration

760 Chapter 20



■■ Strengths and weaknesses identified in the baseline assessment

■■ Risks for which there are no controls

■■ Penetration points for which there are no controls

Because security is a highly specialized topic, software testers may need assistance
in evaluating the adequacy of security in high-risk systems. If the data or assets con-
trolled by the system pose minimal risk to the organization, software testers should be
able to make a judgment regarding the adequacy of security controls.

Evaluating the Adequacy of Security

To limit the amount of testing that must be done, complete one or all of the following
three tests on the points with the highest probability of penetration. Fraud studies indi-
cate that those points with the highest potential to penetrate are the ones where pene-
tration is most likely to occur:

■■ Evaluate the adequacy of security controls at identified points. The objective
of this test is to evaluate whether the security controls in place are adequate to
prevent or significantly deter penetration. The process is one of evaluating the
magnitude of the risk and strength of controls. If the controls are perceived to
be stronger than the magnitude of the risk, the probability of penetration at
that point is significantly reduced. On the other hand, if the controls appear
inadequate, testers could conclude that the identified point is of high risk.

■■ Determine whether penetration can occur at identified point(s). In this test,
testers actually try to penetrate the system at the identified point. For example,
if it is the payroll system and testers are trying to determine whether invalid
overtime can be entered into the payroll system, the testers attempt to do this.
In fact, the testers would attempt to break security by actually doing it.

This type of test requires pre-approval by management. The testers must pro-
tect themselves so that they are not improperly accused of actually trying to
penetrate the system. Also, if the system is actually penetrated at that point by
the technique used by the testers, they stand to be among the potential perpe-
trators who might be investigated.

■■ Determine whether penetration has actually occurred at this point. This test
involves conducting an investigation to determine whether the system has actu-
ally been penetrated. For example, if improper overtime is the area of concern
and the payroll clerks are the most likely perpetrators, testers investigate paid
overtime to determine whether it was in fact properly authorized overtime.

NOTE Software testers can create a penetration-point matrix. The testers may

want to work with security experts and/or internal/external auditors when

performing any or all of the three tests. The software testers can be helpful in

this process, and also learn how auditors perform these types of tests.

Testing Software System Security 761



Check Procedures

The check procedures for this test process should focus on the completeness and com-
petency of the team using the security baseline process and the penetration-point
matrix, as well as the completeness of the list of potential perpetrators and potential
points of penetration. The analysis should also be challenged.

Work Paper 20-1 contains questions to help check the completeness and correctness
of the security test process. Yes responses indicate good control. No responses should
result in challenging the completeness and correctness of the conclusions drawn from
the matrix.

Output

The output from this test process is a security baseline, the penetration-point matrix
identifying the high-risk points of penetration, and a security assessment.

Guidelines

You can use the penetration-point matrix in one of two ways:

■■ It can be used to identify the people and the potential points of penetration 
so that an investigation can be undertaken to determine whether a particular
location/information system has been penetrated.

■■ It can be used to evaluate/build/improve the security system to minimize the
risk of penetration at high-risk points.

Summary

This test process is designed to help software testers conduct tests on the adequacy of
computer security. The process is built on two premises: First, extensive security test-
ing is impractical; after all, practical security testing involves focusing on specific
points of vulnerability. Second, software testers are most effective in identifying points
of potential security weakness, but help may be needed in performing the actual secu-
rity analysis.

762 Chapter 20



Testing Software System Security 763

WORK PAPER 20-1 Test Security Quality Control Checklist

YES NO N/A COMMENTS

1. Has a team of three or more people been put
together to prepare and use the penetration-
point matrix?

2. Is there a reasonable possibility that the team
members can identify all the major potential
perpetrators?

3. Do the team members have knowledge of the
location/information system under
investigation?

4. Is there a high probability that the team will
identify all the major potential points of
penetration?

5. Will the team use a synergistic tool to facilitate
brainstorming/discussion to identify potential
perpetrators/penetration points?

6. Does the prepared penetration-point matrix
include the identified potential perpetrators and
potential points of penetration?

7. Has the team used appropriate synergistic tools
to rate the probability that a given perpetrator
will penetrate a specific point?

8. Has every perpetrator and penetration point
been analyzed?

9. Has the accumulation of points been performed
correctly?

10. Have the high-risk penetration points been
identified?

11. Has there been a reasonable challenge that the
identified high-risk points are in fact the high-
risk points of penetration?





765

A data warehouse is a central repository of data made available to users. The central-
ized storage of data provides significant processing advantages but at the same time
raises concerns of the data’s security, accessibility, and integrity. This chapter focuses
on where testing would be most effective in determining the risks associated with
those concerns.

Overview

This testing process lists the more common concerns associated with the data ware-
house concept. It also explains the more common activities performed as part of a data
warehouse. Testing begins by determining the appropriateness of those concerns to the
data warehouse process under test. If appropriate, the severity of the concerns must be
determined. This is accomplished by relating those high-severity concerns to the data
warehouse activity controls. If in place and working, the controls should minimize the
concerns.

Concerns

The following are the concerns most commonly associated with a data warehouse:

■■ Inadequate assignment of responsibilities. There is inappropriate segregation
of duties or failure to recognize placement of responsibility.

Testing a 
Data Warehouse

C H A P T E R

21



■■ Inaccurate or incomplete data in a data warehouse. The integrity of data
entered in the data warehouse is lost because of inadvertent or intentional acts.

■■ Losing an update to a single data item. One or more updates to a single data
item can be lost because of inadequate concurrent update procedures.

■■ Inadequate audit trail to reconstruct transactions. The use of data by multiple
applications may split the audit trail among those applications and the data
warehouse software audit trail.

■■ Unauthorized access to data in a data warehouse. The concentration of data
may make sensitive data available to anyone who gains access to the data
warehouse.

■■ Inadequate service level. Multiple users vying for the same resources may
degrade the service to all because of excessive demand or inadequate resources.

■■ Placing data in the wrong calendar period. Identifying transactions with the
proper calendar period is more difficult in some online data warehouse envi-
ronments than in others.

■■ Failure of data warehouse software to function as specified. Vendors provide
most data warehouse software, making the data warehouse administrator
dependent on the vendor to ensure the proper functioning of the software.

■■ Improper use of data. Systems that control resources are always subject to mis-
use and abuse.

■■ Lack of skilled independent data warehouse reviewers. Most reviewers are
not skilled in data warehouse technology and, thus, have not evaluated data
warehouse installations.

■■ Inadequate documentation. Documentation of data warehouse technology is
needed to ensure consistency of understanding and use by multiple users.

■■ Loss of continuity of processing. Many organizations rely heavily on data
warehouse technology for the performance of their day-to-day processing.

■■ Lack of criteria to evaluate. Without established performance criteria, an orga-
nization cannot be assured that it is achieving its data warehouse goals.

■■ Lack of management support. Without adequate resources and “clout,” the
advantages of data warehouse technology may not be achieved.

Workbench

Figure 21-1 illustrates the workbench for testing the adequacy of the data warehouse
activity. The workbench is a three-task process that measures the magnitude of the con-
cerns, identifies the data warehouse activity processes, and then determines the tests
necessary to determine whether the high-magnitude concerns have been adequately
addressed. Those performing the test must be familiar with the data warehouse activ-
ity processes. The end result of the test is an assessment of the adequacy of those
processes to minimize the high-magnitude concerns.

766 Chapter 21



Figure 21-1 Workbench for testing a data warehouse.

Input

Organizations implementing the data warehouse activity need to establish processes
to manage, operate, and control that activity. The input to this test process is knowl-
edge of those data warehouse activity processes. If the test team does not have that
knowledge, it should be supplemented with one or more individuals who possess a
detailed knowledge of the data warehouse activity processes.

Enterprise-wide requirements are data requirements that are applicable to all soft-
ware systems and their users. Whenever anyone accesses or updates a data warehouse,
that process is subject to the enterprise-wide requirements. They are called enterprise-
wide requirements because they are defined once for all software systems and users.

Each organization must define its own enterprise-wide controls. However, testers
should be aware that many IT organizations do not define enterprise-wide requirements.
Therefore, testers need to be aware that there may be inconsistencies between software
systems and/or users. For example, if there are no security requirements applicable
enterprise-wide, each software system may have different security procedures.

Enterprise-wide requirements applicable to the data warehouse include but are not
limited to the following:

■■ Data accessibility. Who has access to the data warehouse, and any constraints
or limitations placed on that access.

■■ Update controls. Who can change data within the data warehouse as well as
the sequence in which data may be changed in the data warehouse.

DO CHECK

Test

Performed
Correctly

REWORK

Measure the 

Magnitude of Data 
Warehouse Concerns

Task 1

Data Warehouse

Activity Processes

Assessment
Results

Identify Data 

Warehouse Activity 
Processes to Test

Task 2

Test the Adequacy of 
Data Warehouse 

Activity Processes

Task 3

Testing a Data Warehouse 767



■■ Date controls. The date that the data is applicable for different types of
processes. For example, with accounting data it is the date that the data is offi-
cially recorded on the books of the organization.

■■ Usage controls. How data can be used by the users of the data warehouse,
including any restrictions on users forwarding data to other potential users.

■■ Documentation controls. How the data within the data warehouse is to be
described to users.

Do Procedures

To test a data warehouse, testers should perform the following three tasks:

1. Measure the magnitude of data warehouse concerns.

2. Identify data warehouse activities to test

3. Test the adequacy of data warehouse activity processes

Task 1: Measure the Magnitude 
of Data Warehouse Concerns

This task involves two activities. The first activity is to confirm that the 14 data ware-
house concerns described earlier are appropriate for the organization. The list of con-
cerns can be expanded or reduced. In addition, it may be advisable to change the
wording of the concerns to wording more appropriate for the culture of the organiza-
tion under test. For example, Concern 1 is inadequate assignment of responsibilities. If
it is more appropriate in your organization to talk of job description responsibilities,
make the appropriate change.

Once the list of potential data warehouse concerns has been finalized, the magni-
tude of those concerns must be determined. Work Paper 21-1 should be used to rate the
magnitude of the data warehouse concerns. If the list of concerns has been modified,
Work Paper 21-1 will also have to be modified.

To use Work Paper 21-1, a team of testers knowledgeable in both testing and the data
warehouse activity should be assembled. For each concern, Work Paper 21-1 lists sev-
eral criteria. The criteria should each be answered with a Yes or No response. The test
team should have a consensus on the response. A Yes response means that the criterion
has been met. Being met means that it is both in place and used. For example, Criterion
1 for Concern 1 asks whether a charter has been established for a data warehouse
administration function. A Yes response means that the charter has been established
and is, in fact, in place and used. A No response means that either the criterion has not
been established or it is not being used. The Comments column is available to clarify
the Yes and No responses.

At the conclusion of rating the criteria for each concern, the percent of No responses
should be calculated. For example, the first concern lists seven criteria. If three of the
seven criteria have a No response, then approximately 43 percent would have received
a No response.

768 Chapter 21



When Work Paper 21-1 has been completed, the results should be posted to Work
Paper 21-2. For example, if Concern 1 received 43 percent of No responses, the bar on
Work Paper 21-2 would be completed vertically above Concern 1 on Work Paper 21-2
to 43 percent. This would put that concern in the “medium” category. At the conclusion
of this task, Work Paper 21-2 will show the magnitude of the data warehouse concerns.

Task 2: Identify Data Warehouse 
Activity Processes to Test

There are many ways organizations can establish a data warehouse activity. Associated
with the data warehouse are a variety of processes. This section describes the more
common processes associated with data warehouse activity.

Organizational Process

The data warehouse introduces a new function into the organization, and with that
function comes a shifting of responsibilities. Much of this shifting involves a transfer of
responsibilities from the application system development areas and the user areas to a
centralized data warehouse administration function.

The introduction of the data warehouse is normally associated with the organiza-
tion of a formal data warehouse administration group. This group usually reports
within the data processing function and frequently directly to the data processing
manager. The objective of the data warehouse administration function is to oversee
and direct the installation and operation of the data warehouse.

The data warehouse administration function normally has line responsibilities for
data documentation, system development procedures, and standards for those applica-
tions using data warehouse technology. The database administrator (DBA) function also
has indirect or dotted-line responsibilities to computer operations and users of data
warehouse technology through providing advice and direction. In addition, the data
warehouse administrator should be alert to potential problems and actively involved in
offering solutions.

Studies on the success of data warehouse technology strongly indicate the need for
planning. A key part of this planning is the integration of the data warehouse into the
organizational structure. This integration requires some reorganization within both the
data processing and user areas.

Data Documentation Process

The transition to data warehouse technology involves the switching of information
technology emphasis from processing to data. Many existing systems are process-dri-
ven, whereas data warehouse technology involves data-driven systems. This change in
emphasis necessitates better data documentation.

If multiple users are using the same data, documentation should be easy-to-use and
complete. Misunderstandings regarding the data’s content, reliability, consistency, and
so on will lead to problems in the data’s interpretation and use. Clear, distinct docu-
mentation helps reduce this risk.

Testing a Data Warehouse 769



Many organizations use standardized methods of data documentation. The sim-
plest method is to use forms and written procedures governing the method of defining
data. More sophisticated installations use data dictionaries. The data dictionary can be
used as a standalone automated documentation tool or integrated into the processing
environment.

The data warehouse administrator normally oversees the use of the data dictionary.
This involves determining what data elements will be documented, the type and extent
of documentation requested, and assurance that the documentation is up-to-date and in
compliance with the documentation quality standards.

The documentation requirement for data is a threefold responsibility. First, individ-
uals must be educated in the type of documentation required and provide that docu-
mentation. Second, the documentation must be maintained to ensure its accuracy and
completeness. Third, the data used in the operating environment must conform to the
documentation. If the data in operation is different from the documentation specifica-
tions, the entire process collapses.

System Development Process

Data warehouse technology is designed to make system development easier; however,
this occurs only when the application system fits into the existing data hierarchy. If the
system requirements are outside the data warehouse structure, it may be more difficult
and costly to develop that system by using the data warehouse than by using non–data
warehouse methods.

One method of ensuring that applications effectively use data warehouse technol-
ogy is to have data warehouse administration personnel involved in the development
process. In other words, more front-end planning and assessment are required to
ensure the effective use of data warehouse technology than when the data warehouse
is not used. This front-end effort also ensures that the application project team under-
stands the resources available through data warehouse technology.

The data warehouse is a continually changing grouping of data. Part of the data
warehouse involvement in system development is to adjust and modify the structure
continually to meet the changing needs of application systems. Thus, the development
process for the data warehouse is twofold: to ensure that the applications effectively
use the data warehouse, and to establish new data warehouse directions in order to
keep the data warehouse in step with application needs.

The system development process in the data warehouse technology has the follow-
ing three objectives:

■■ To familiarize the system’s development people with the resources and capabil-
ities available 

■■ To ensure that the proposed application system can be integrated into the exist-
ing data warehouse structure, and if not, to modify the application and/or the
data warehouse structure

■■ To ensure that application processing will preserve the consistency, reliability,
and integrity of data in the data warehouse

770 Chapter 21



A problem that often surfaces in the use of data warehouse technology is how to
charge for data warehouse usage. Some applications operate more effectively using the
data warehouse than others. Experience has shown that moving some applications from
non–data warehouse to data warehouse technology substantially reduces the cost of pro-
cessing, while in other instances the cost increases. The reason for this is that the data
warehouse must be optimized toward a specific data usage. Obviously, the data ware-
house administrator must attempt to optimize the data warehouse toward the high-
usage applications and let the usage be less efficient in the small-volume applications.
The costs associated with a data warehouse should not be allowed to discourage its use.

Access Control Process

One of the major concerns for management about the data warehouse is the ready
accessibility of information. As more data is placed into a single repository, that repos-
itory becomes more valuable to perpetrators.

The access control function has two primary purposes. The first is to identify the
resources requiring control and determine who should be given access to those
resources. The second is to define and enforce the control specifications identified in
the previous responsibility in the operating environment.

The access control function can be performed by the data warehouse administration
function or an independent security officer. Obviously, an independent function is
stronger than the same function that administers the data warehouse. The method
selected will depend on the value of the information in the data warehouse and the size
of the organization. The more valuable the data, or the larger the organization, the more
likely it is that the function will be implemented through an independent security officer.

The enforcement of the security profile for the data warehouse in online systems is
performed by security software. Some data warehouse management systems have secu-
rity features incorporated in the data warehouse software, whereas others need to be
supplemented by security packages. Many of the major hardware vendors, such as IBM,
provide security software. In addition, several independent vendors provide general-
purpose security software that interfaces with many data warehouse software systems.

The access control function has the additional responsibility of monitoring the effec-
tiveness of security. Detecting and investigating potential access violations are impor-
tant aspects of data warehouse access control. Unless the access control procedures are
monitored, violators will not be detected; and if violators are not reprimanded or pros-
ecuted, there will be little incentive for other involved parties to comply with access
control rules.

Data Integrity Process

The integrity of the contents of the data warehouse is the joint responsibility of the
users and the data warehouse administrator. The data warehouse administrator is con-
cerned more about the integrity of the structure and the physical records, while the
users are concerned about the contents or values contained in the data warehouse.

The integrity of dedicated files is primarily the responsibility of the user. The data
processing department has a responsibility to use the correct version of the file and to

Testing a Data Warehouse 771



add features that protect the physical integrity of the records on the file. However, the
ultimate responsibility for the integrity resides with the user, and the application sys-
tems need to be constructed to ensure that integrity. This is usually accomplished by
accumulating the values in one or more control fields and developing an independent
control total that can be checked each time the file is used.

In a data warehouse environment, the traditional integrity responsibilities change. No
longer does a single user have control over all the uses of data in a data warehouse. Sev-
eral different application systems may be able to add, delete, or modify any single data
element in the data warehouse. For example, in an airline reservation system, any autho-
rized agent can commit or delete a reserved seat for a flight. On the other hand, the data
warehouse administrator doesn’t have control over the uses of the data in the data ware-
house. This means that the data integrity must be ensured through new procedures.

The data integrity process may involve many different groups within an organiza-
tion. These groups, such as various users and the data warehouse administration func-
tion, will share parts of this data integrity responsibility. In fulfilling data integrity
responsibility, the following tasks need to be performed:

1. Identify the method of ensuring the completeness of the physical records in the
data warehouse.

2. Determine the method of ensuring the completeness of the logical structure of
the data warehouse (i.e. schema).

3. Determine which users are responsible for the integrity of which segments of
the data warehouse.

4. Develop methods to enable those users to perform their data integrity 
responsibilities.

5. Determine the times at which the integrity of the data warehouse will be verified.

Operations Process

The normal evolution of data warehouse operations is from the data warehouse admin-
istration function to specialized operations personnel and then to regular computer
operators. This evolution is necessary so that an organization can develop the appropri-
ate skills and methods needed for training and monitoring regular computer operators.
Without taking the appropriate time to develop skills, operators may be placed into a
position where their probability of success is minimal.

Data warehouse technology is more complex than non–data warehouse technology.
Normally, the data warehouse is coupled with communication technology. This means
that two highly technical procedures are coupled, making the resulting technology
more complex than either of the contributing technologies.

Most of the day-to-day operations are performed by users. The data warehouse pro-
vides the basis for a user-operated technology. One of the advantages of the data ware-
house is the powerful utilities associated with the technology that are available to the
users. One of the more powerful utilities is the query languages, which provide almost
unlimited capabilities for users to prepare analyses and reports using the data within
the data warehouse.

772 Chapter 21



Computer operators face the following challenges when operating data warehouse
technology:

■■ Monitoring space allocation to ensure minimal disruptions because of space
management problems

■■ Understanding and using data warehouse software operating procedures and
messages

■■ Monitoring service levels to ensure adequate resources for users

■■ Maintaining operating statistics so that the data warehouse performance can be
monitored

■■ Reorganizing the data warehouse as necessary (usually under the direction of
the data warehouse administrator) to improve performance and add capabili-
ties where necessary

Backup/Recovery Process

One of the most technically complex aspects of data processing is recovering a crashed
data warehouse. Recovery can occur only if adequate backup data is maintained. The
recovery procedure involves the following four major challenges:

1. Verifying that the integrity of the data warehouse has been lost.

2. Notifying users that the data warehouse is inoperable and providing them with
alternate processing means. (Note: These means should be predetermined and
may be manual.)

3. Ensuring and having adequate backup data ready.

4. Performing the necessary procedures to recover the integrity of the data 
warehouse.

Many data warehouses are operational around the clock during business days, and
some, seven days a week. It is not uncommon for many thousands of transactions to
occur in a single day. Thus, unless recovery operations are well planned, it may take
many hours or even days to recover the integrity of the data warehouse. The complex-
ity and planning that must go into data warehouse contingency planning cannot be
overemphasized.

The responsibility for data warehouse recovery is normally that of computer opera-
tions. However, the users and data warehouse administrators must provide input into
the recovery process. The data warehouse administrator usually develops the proce-
dures and acquires the recovery tools and techniques. The user provides the specifica-
tions on time span for recovery and determines what alternate procedures are acceptable
during this period.

One of the problems encountered is notifying users that the data warehouse is no
longer operational. In larger organizations, there may be many users, even hundreds
of users, connected to a single data warehouse. It may take longer to notify the users
that the data warehouse is not operational than it will take to get the data warehouse

Testing a Data Warehouse 773



back online. The group involved in the recovery may not have adequate resources to
inform all of the users. Some of the procedures to inform users of the loss of data ware-
house integrity include:

■■ Sending messages to terminals if facilities to transmit are available

■■ Having a telephone number that users can call to determine if the data ware-
house is down

■■ Providing users with the service expectations so that when those expectations
are not met the users can assume a data warehouse problem has occurred

The backup/recovery process begins with determining what operations must be
recovered and in what time frame. This provides the recovery specifications. From
these specifications, the procedures are developed and implemented to meet the recov-
ery expectations. Much of the process involves collecting and storing backup data;
thus, it is very important for all involved parties to agree on what backup data is
needed.

Performing Task 2

Two events are associated with this task. First, use Work Paper 21-3 to determine
whether the preceding activities are appropriate to your data warehouse activity, sup-
plementing or reducing the list of data warehouse activities, as necessary. In addition,
you should change the process name to the specific vocabulary of your organizational
culture.

Task 3: Test the Adequacy of Data 
Warehouse Activity Processes

This task is to evaluate that each of the seven identified processes contains controls that
are adequate to reduce the concerns identified earlier in this chapter. A control is any
means used to reduce the probability of a failure. The determination of whether the
individual applications enter, store, and use the correct data is made using the seven-
step process included in Part Three of this book.

Figure 21-2 indicates which activity processes should be tested. This figure is used
by first identifying the significant data warehouse concerns, as determined in Task 1.
The check marks in the “Data Warehouse Activity Processes” columns indicate which
processes should reduce the concerns so that the probability of failure is minimized.
For example, if a significant data warehouse concern is that “there is an inadequate
assignment of responsibility,” then the three data activity processes of organization,
system development, and access control should be tested.

Figure 21-3 shows the types of tests that should be undertaken for each data ware-
house activity process for the identified concerns. The tests are those focused on deter-
mining that specific controls exist. If those controls exist, then the testers can assume
that the process is adequately controlled so that the probability of failure is minimized.

774 Chapter 21



Testing a Data Warehouse 775

Data Warehouse Activity Processes

Data Warehouse Concerns

Inadequate assignment of responsibility √ √ √

Inaccurate or incomplete data in a database √ √ √ √ √

Losing an update to a single data item √ √

Inadequate audit trail √ √ √ √

Unauthorized access to a database √ √

Inadequate service level √ √ √

Placing data in the wrong calendar period √ √ √

Failure of data warehouse software to √ √ √ √ √ √

function as specified

Fraud/embezzlement √ √ √

Lack of independent database reviews √ √

Inadequate documentation √ √ √ √ √ √

Continuity of processing √ √ √

Lack of performance criteria √ √ √

Lack of management support √ √ √

√ = should be tested

O
rg

a
n

iz
a

ti
o

n

D
a

ta
 D

o
cu

m
e

n
ta

ti
o

n

S
y

s
te

m
 D

e
v

e
lo

p
m

e
n

t

A
cc

e
s
s
 C

o
n

tr
o

l

D
a

ta
 I

n
te

g
ri

ty

O
p

e
ra

ti
o

n

B
a

ck
u

p
/

R
e

co
v

e
ry

Figure 21-2 Which data warehouse activities should be tested?

ORGANIZATIONAL CONTROL OBJECTIVES

Concern Concern Test should determine that 

Number a control exists

1. Inadequate assignment of 1. To assign data warehouse responsibilities to 
responsibilities individuals

2. To see that user retains organizational 
responsibility for the accuracy, 
completeness, and security of data

3. To perform independent reviews to ensure 
the adequate assignment of responsibilities

2. Inaccurate or incomplete 1. To see that the organizational structure is 
data in a data warehouse. designed to ensure the adequate 

assignment of responsibilities

Figure 21-3 Organizational control objectives. (continues)



ORGANIZATIONAL CONTROL OBJECTIVES

Concern Concern Test should determine that 

Number a control exists

8. Failure of the data 1. To see that the organizational structure is 
warehouse software to designed to ensure prompt detection and
function as specified correction of data warehouse software errors

2. To document data warehouse expectations

9. Fraud/embezzlement 1. To divide responsibilities so that an individual
cannot perform and conceal a single event

10. Lack of independent data 1. To see that a data warehouse review group 
warehouse reviews is established that is independent of the 

data warehouse function
2. To define review responsibilities

11. Inadequate documentation 1. To document departmental data warehouse 
organizational responsibilities in the 
department charter

2. To document individual data warehouse 
responsibilities in their job description

13. Lack of performance 1. To define data warehouse expectations in 
criteria measurable terms

14. Lack of management 1. To ensure that senior management defines 
support and enforces data policy

2. To ensure that senior management
participates in data warehouse decision
making

3. To ensure that senior management supports 
independent data warehouse review groups

DATA DOCUMENTATION CONTROL OBJECTIVES

4. Inadequate audit trail 1. To define data warehouse audit trail 
requirements

2. To divide requirements between the user 
and the DBA function

3. To document data warehouse deletions

7. Placing data in the 1. To define data accounting requirements
wrong calendar period

8. Failure of data warehouse 1. To assign centralized control of external 
software to function as schema
specified 2. To define data independently of the 

applications that use  the data

11. Inadequate 1. To develop an inventory of data elements
documentation 2. To document data in accordance with

documentation standards
3. To enforce the use of data as documented

776 Chapter 21

Figure 21-3 (continued)



SECURITY/ACCESS CONTROL OBJECTIVES

Concern Concern Test should determine that 

Number a control exists

1. Inadequate assignment 1. To assign responsibility for security to a 
of responsibilities function independent of the one requiring 

security

5. Unauthorized access in 1. To define access to each data warehouse 
the data warehouse resource

2. To include all individuals involved in data 
warehouse in the access control process

3. To ensure prompt punishment of violators
4. To create logs of security-related activities

9. Fraud/embezzlement 1. To see that security measures address the 
common methods of fraud

12. Continuity of processing 1. To ensure that visitors and service personnel
are escorted

2. To assess the risks of security problems on 
disruptions to processing

14. Lack of management 1. To see that management establishes the 
support desired level of security

2. To see that management supports 
punishment for security violations

COMPUTER OPERATIONS ACTIVITY CONTROL OBJECTIVES

2. Inaccurate or incomplete 1. To ensure that data is not lost or changed 
data in a data warehouse due to improper operations

5. Unauthorized access in a 1. To physically protect the data warehouse 
data warehouse from unauthorized access

6. Inadequate service level 1. To minimize both the frequency and the 
impact of inadequate service level

2. To monitor service-level performance

8. Failure of the data 1. To monitor data warehouse software 
warehouse software to failures to determine responsibility and
function as specified implement fixes as appropriate

11. Inadequate 1. To document data warehouse software 
documentation operating procedures and controls

12. Continuity of processing 1. To plan for expected capacity requirements
2. To minimize data warehouse software 

downtime

13. Lack of performance 1. To establish data warehouse software 
criteria expectations

Testing a Data Warehouse 777

Figure 21-3 (continued) (continues)



DATA WAREHOUSE BACKUP/RECOVERY CONTROL OBJECTIVES

Concern Concern Test should determine that 

Number a control exists

2. Inaccurate or incomplete 1. To verify controls after recovery to ensure the 
integrity of the recovered data warehouse

4. Inadequate audit trail 1. To maintain records on the recovery process

6. Inadequate service level 1. To include segments of the application in 
the recovery process

2. To specify assignments
3. To retain adequate backup data

8. Failure of the data 1. To test the recovery process
warehouse software to 
function as specified

11. Inadequate documentation 1. To document recovery procedures

12. Continuity of processing 1. To determine expected failure rates
2. To specify recovery requirements
3. To define alternate processing procedures
4. To inform users about service interruptions

DATA WAREHOUSE INTEGRITY CONTROL OBJECTIVES

2. Inaccurate or incomplete 1. To verify the integrity of the initial 
data in a data warehouse population of the data warehouse

2. To validate conformance to data definition
3. To control access for data modification
4. To provide adequate backup and recovery 

methods
5. To preserve the integrity of the data

warehouse
6. To preserve the consistency of data

redundancy
7. To control the placement of data warehouse 

data on media and devices
8. To maintain independent data warehouse 

controls
9. To maintain data warehouse segment

counts

3. Losing an update to a 1. To utilize concurrency and lockout controls
single data item

4. Inadequate audit trail 1. To maintain adequate audit trails to permit 
reconstruction of processing

7. Placing data in the wrong 1. To establish accounting controls to ensure 
calendar period that data is recorded in the proper calendar 

period

778 Chapter 21

Figure 21-3 (continued)



DATA WAREHOUSE INTEGRITY CONTROL OBJECTIVES

Concern Concern Test should determine that 

Number a control exists

8. Failure of data warehouse 1. To verify the proper functioning of the data 
software to function as warehouse software
specified 2. To verify the correctness of the interface 

to the data warehouse software

11. Inadequate 1. To document the data definitions for 
documentation creation of the data warehouse

SYSTEM DEVELOPMENT CONTROL OBJECTIVES

1. Inadequate assignment 1. To divide system development 
of responsibilities responsibilities among the DBA function,

the application project team, and the user

14. Lack of management 1. To ensure that senior management 
support participates in system planning

2. To ensure that senior management approves
data warehouse application proposals

13. Lack of performance 1. To establish performance criteria for all data 
criteria warehouse applications

4. Inadequate audit trail 1. To include the audit trail in the design
specifications

2. Inaccurate or incomplete 1. To include the methods of ensuring accurate
data in the data warehouse and complete data in the design specifications

7. Placing data in the 1. To include the accounting requirements in 
wrong calendar period the design specifications

11. Inadequate 1. To ensure that documentation conforms to 
documentation data warehouse documentation standards

2. To ensure that documentation is up to date

3. Losing an update to a 1. To implement controls to ensure the proper 
single data item sequencing of updates

10. Lack of independent 1. To establish a test plan
data warehouse 2. To have the test plan implemented or 
reviews group monitored by an independent group

9. Fraud/embezzlement 1. To test the adequacy of of controls

8. Failure of the data 1. To test to ensure that the system achieves 
warehouse software specified performance criteria
to function as specified

6. Inadequate service 1. To monitor the installed application to
ensure that specified performance criteria
are achieved

Testing a Data Warehouse 779

Figure 21-3 (continued)



Check Procedures

Work Paper 21-4 is a quality control checklist for testing a data warehouse. It is
designed so that Yes responses indicate good test practices and No responses warrant
additional investigation. A Comments column is provided to explain No responses
and to record results of investigation. The N/A response is used when the checklist
item is not applicable to the test situation.

Output

The output from the data warehouse test process is an assessment of the adequacy of the
data warehouse activity processes. The assessment report should indicate the concerns
addressed by the test team, the processes in place in the data warehouse activity, and the
adequacy of those processes.

Guidelines

The testing of the data warehouse activity as proposed in this chapter is one of risk
assessments. It is not designed to ensure that the data warehouse will function prop-
erly for each use, but rather to apprise management of the probability that failures will
be minimized or that additional management action should be taken. The actual deter-
mination of the correct processing of the warehouse should be done in conjunction
with the application software that uses the data warehouse.

Summary

This chapter is designed to assist testers in evaluating the work processes associated
with a data warehouse activity. It is designed to be used in conjunction with the test of
application software that uses the data warehouse. The actual processing of data from
the data warehouse should be tested using the seven-step process included in Part
Three of this book. However, unless adequate control procedures are in place and
working, the testers cannot rely on results of the one application software test to be
applicable to other data warehouse applications.

If the data warehouse activity processes are adequate to address the concerns, the
testers can assume that the results of testing one application will be similar to testing
other applications using the data warehouse. On the other hand, if the processes do not
adequately minimize the probability of failure in the data warehouse, more extensive
testing may be required of all the individual applications that use the data warehouse.

780 Chapter 21



WORK PAPER 21-1 Rating the Magnitude of Data Warehouse Concerns

Worksheet Concern #1: Inadequate Assignment of Responsibilities

Description of Concern:

There is inappropriate segregation of duties or failure to recognize placement of responsibility.

YES NO COMMENTS

1. Has a charter been established for the
database administration function outlining
the role and responsibilities for the function?

2. Have the user responsibilities regarding the
integrity of the data warehouse been defined?

3. Have job descriptions been modified for all
individuals interfacing with the data
warehouse to define their data warehouse
responsibilities?

4. Have job descriptions been developed for full-
time data warehouse administration personnel?

5. Has a formal method of resolving data
warehouse disputes been established?

6. Does the organization have a data policy
which outlines organizational data
responsibility?

7. Are the functions being performed by data
warehouse administration within that
administration’s formal role and responsibility? 

Percent of No responses %

(continues)

Testing a Data Warehouse 781



WORK PAPER 21-1 (continued)

Worksheet Concern #2: Inaccurate or Incomplete Data in a Data Warehouse

Description of Concern:

The integrity of data entered in the data warehouse is lost due to inadvertent or intentional acts.

YES NO COMMENTS

1. Has each element of data in the data
warehouse been identified?

2. Have the data validation rules for each data
element been documented?

3. Have the data validation rules for each data
element been implemented?

4. Are the data validation rules adequate to
ensure the accuracy of data?

5. Have procedures been established to ensure
the consistence of redundant data elements?

6. Have procedures been established for the
timely correction of data entry errors?

7. Are procedures established to promptly notify
all users of the data warehouse when an
inaccuracy or incomplete data condition has
been identified?

8. Are the data warehouse administration tools
and techniques adequate to ensure the
consistency of redundant data elements?

Percent of No responses %

782 Chapter 21



WORK PAPER 21-1 (continued)

Worksheet Concern #3: Losing an Update to a Single Data Item

Description of Concern:

One or more updates to a single data item can be lost due to inadequate concurrent update
procedures.

YES NO COMMENTS

1. Does the data warehouse software in use
have a lockout feature to prevent concurrent
updates to a single data item?

2. Does the data warehouse software have a
feature to resolve deadlock in accessing data
(for example, user A has item 1 and wants
item 2, while user B has item 2 and wants
item 1)?

3 Has the sequencing of updates to the data
warehouse been defined?

4. Are there controls in the data warehouse
software to ensure that events can only be
recorded in the predetermined sequence?

5. Have the parties that can create, update, or
delete a data element been identified?

Percent of No responses %

(continues)

Testing a Data Warehouse 783



WORK PAPER 21-1 (continued)

Worksheet Concern #4: Inadequate Audit Trail

Description of Concern:

The use of data by multiple applications may split the audit trail among those applications and
the data warehouse software audit trail.

YES NO COMMENTS

1. Has the audit trail for data warehouse
applications been identified and
documented?

2. Has the retention period for each part of the
data warehouse audit trail been determined?

3. Is a data warehouse software log maintained?

4. Does management determine what
information will be maintained in the data
warehouse software log?

5. Can the audit trail trace source transactions
to control totals and trace control totals back
to the initiating transactions?

6. Can the audit trail provide the evidence
needed to reconstruct transaction
processing?

7. Is the audit trail in operation whenever the
data warehouse is in operation?

8. Are all overrides of normal data warehouse
software procedures recorded on the data
warehouse software log?

9. Can the application audit trail records be
cross-referenced to the data warehouse
software log audit trail records? 

Percent of No responses %

784 Chapter 21



WORK PAPER 21-1 (continued)

Worksheet Concern #5: Unauthorized Access to Data in a Data Warehouse

Description of Concern:

The concentration of sensitive data may make it available to anyone gaining access to a data
warehouse.

YES NO COMMENTS

1. Have all of the data elements requiring
security procedures been identified?

2. Have all of the data warehouse users been
identified?

3. Has a user profile been established indicating
which resources can be accessed by which
users?

4. Has the enforcement of the user profile been
automated?

5. Is the access mechanism, such as passwords,
protected from unauthorized manipulation?

6. Has the organization established a data
warehouse security officer function (note that
this need not be a full-time function)?

7. Are security violators promptly punished?

8. Are formal records maintained on security
violations?

9. Are security violation summaries presented to
management in regular reports? 

Percent of No responses %

(continues)

Testing a Data Warehouse 785



WORK PAPER 21-1 (continued)

Worksheet Concern #6: Inadequate Service Level

Description of Concern:

Multiple users contesting for the same resources may degrade the service to all due to excessive
demand or inadequate resources.

YES NO COMMENTS

1. Has the level of service that is desired been
documented?

2. Are procedures established to monitor the
desired level of service to users?

3. Are users encouraged, by the use of such
techniques as varying chargeout rates, to
spread out their nonurgent processing?

4. Have the identified options to improve service
when it degrades been identified?

5. Does the data warehouse administrator
continually monitor the service level and
make adjustments where appropriate?

6. Are steps to take established at points where
service level degrades?

7. Do procedures identify the cause of
degradation in service, such as a single user
consuming exorbitant amounts of resources,
so that action can be taken to eliminate those
causes where appropriate?

Percent of No responses %

786 Chapter 21



WORK PAPER 21-1 (continued)

Worksheet Concern #7: Placing Data in the Wrong Calendar Period

Description of Concern:

Identifying transactions with the proper calendar period is more difficult in some on-line data
warehouse environments than in others.

YES NO COMMENTS

1. Do procedures identify the criteria for
determining into which accounting period
transactions are placed?

2. Are all postdated transactions date-stamped
to identify the accounting period in which
they belong?

3. Are procedures established to cut off
processing at the end of significant
accounting periods, such as at year-end?

4. For applications where data must be
segregated into accounting periods, are
significant transactions entered both
immediately before and immediately after the
accounting cutoff period manually reviewed
to ensure they are in the appropriate
accounting period?

5. Are formal procedures established to move
data from one accounting period to another
if appropriate?

Percent of No responses %

(continues)

Testing a Data Warehouse 787



WORK PAPER 21-1 (continued)

Worksheet Concern #8: Failure of Data Warehouse Software to Function as Specified

Description of Concern:

Most data warehouse software is provided by vendors, making the data administrator dependent
on the vendor to assure the proper functioning of the software.

YES NO COMMENTS

1. Have the processing expectations been
determined?

2. Is the data warehouse software evaluated to
determine that it performs in accordance
with the predetermined requirements?

3. Is each new release of data warehouse
software thoroughly tested?

4. Has a maintenance contract for the data
warehouse software been established?

5. Are procedures established to identify data
warehouse software problems?

6. Are operations personnel trained to identify
and report data warehouse software
problems?

7. Have backup procedures been developed for
use in the event of a data warehouse software
failure?

8. Are data warehouse software failures
recorded and regularly reported to the data
warehouse administrator?

9. Are the vendors promptly notified in the
event of a data warehouse software problem
so that they can take appropriate action?

Percent of No responses %

788 Chapter 21



WORK PAPER 21-1 (continued)

Worksheet Concern #9: Fraud/Embezzlement

Description of Concern:

Systems that control resources are always subject to fraud and embezzlement.

YES NO COMMENTS

1. Do data warehouse administration personnel
have access to the data in the data
warehouse?

2. Has methodology been established for
designing data warehouse controls?

3. Has the data warehouse been reviewed
within the last year by an independent
reviewer?

4. Have procedures been established to identify
and report errors, omissions, and frauds to
senior management?

5. Are all data warehouse resources access
controlled?

6. Are passwords or other access control
procedures changed at least every six
months?

7. Are all error messages acted upon in a timely
fashion?

8. Are deviations from normal processing
investigated?

9. Do data validation routines anticipate and
report on unusual processing?

Percent of No responses %

(continues)

Testing a Data Warehouse 789



WORK PAPER 21-1 (continued)

Worksheet Concern #10: Lack of Independent Data Warehouse Reviews

Description of Concern:

Most reviewers are not skilled in data warehouse technology and thus have not evaluated data
warehouse installations; in addition, many auditor software packages cannot access data
warehouse software.

YES NO COMMENTS

1. Is there an internal audit function having
jurisdiction over reviewing data warehouse
technology?

2. Is there an EDP quality assurance group
having jurisdiction over reviewing data
warehouse technology?

3. Does either of these groups have adequate
skills to perform such a review?

4. Has an independent review of data
warehouse technology been performed
within the last 12 months?

5. Was a report issued describing the findings
and recommendations from that review?

6. Were the findings and recommendations
reasonable based upon the current use of
data warehouse technology?

7. Is an independent review of data warehouse
technology planned during the next 12
months?

Percent of No responses %

790 Chapter 21



WORK PAPER 21-1 (continued)

Worksheet Concern #11: Inadequate Documentation

Description of Concern:

Documentation of data warehouse technology is needed to ensure consistency of understanding
and use by multiple users.

YES NO COMMENTS

1. Do data documentation standards exist?

2. Are data documentation standards enforced?

3. Is a data dictionary used to document the
attributes of data elements?

4. Is a data dictionary integrated into the data
warehouse software operation, so that the
only entry into data warehouse software-
controlled data is through the data
dictionary?

5. Does the data warehouse administration
group provide counsel in documenting and
using data?

6. Does the data documentation contain the
data validation rules?

Percent of No responses %

(continues)

Testing a Data Warehouse 791



WORK PAPER 21-1 (continued)

Worksheet Concern #12: Continuity of Processing

Description of Concern:

Many organizations rely heavily on data warehouse technology for the performance of their day-
to-day processing.

YES NO COMMENTS

1. Have the potential causes of data warehouse
failure been identified?

2. Has the impact of each of those failures on
the organization been assessed?

3. Have procedures been developed to continue
processing during a data warehouse failure?

4. Are procedures established to ensure that the
integrity of the data warehouse can be
restored after data warehouse failure?

5. Has the sequence of actions necessary to
restore applications after a data warehouse
failure been documented?

6. Have computer operations personnel been
trained to data warehouse recovery
procedures?

7. Is sufficient backup data stored off-site to
permit reconstruction of processing in the
event of a disaster?

8. Are records maintained on data warehouse
failures so that specific analysis can be
performed?

Percent of No responses %

792 Chapter 21



WORK PAPER 21-1 (continued)

Worksheet Concern #13: Lack of Performance Criteria

Description of Concern:

Without established performance criteria, an organization cannot be assured that it is achieving
data warehouse goals.

YES NO COMMENTS

1. Have measurable objectives for data
warehouse technology been established?

2. Are those objectives monitored to determine
whether they are achieved?

3. Can the cost associated with data warehouse
technology be identified?

4. Can the benefits associated with data
warehouse technology be identified?

5. Was a cost/benefit analysis prepared for the
installation and operation of data warehouse
technology?

6. Has the cost/benefit projection been
monitored to measure whether those
projections have been achieved?

7. Is the achievement of the performance
criteria evaluated by an independent group,
such as EDP quality assurance?

Percent of No responses %

(continues)

Testing a Data Warehouse 793



WORK PAPER 21-1 (continued)

Worksheet Concern #14: Lack of Management Support

Description of Concern:

Without adequate resources and “clout,” the advantages of data warehouse technology may not
be achieved.

YES NO COMMENTS

1. Has a member of senior management been
appointed responsible for managing data for
the organization?

2. Was senior management involved in the
selection of the organization’s data
warehouse technology approach?

3. Has a review board been established
comprising users, EDP personnel, and senior
managers to oversee the use of data
warehouse technology?

4. Has data processing management attended
courses on the use of data warehouse
technology?

5. Has senior management requested regular
briefing and/or reports on the
implementation and use of data warehouse
technology?

6. Has senior management been involved in the
preparation of a long-range plan for use of
information in the organization?

7. Is senior management involved in the
settlement of disputes over the attributes or
use of information in the organization?

Percent of No responses %

794 Chapter 21



In
ad

e
q

u
at

e
 a

ss
ig

n
m

e
n

t 
o
f 

re
sp

o
n

si
b

ili
ti

e
s

In
ac

cu
ra

te
 o

r 
in

co
m

p
le

te
 d

at
a 

in
 a

 d
at

ab
as

e

Lo
si

n
g

 a
n

 u
p

d
at

e
 t

o
 a

 s
in

g
le

 d
at

ab
as

e

In
ad

e
q

u
at

e
 a

u
d

it
 t

ra
il

U
n

au
th

o
ri

ze
d

 a
cc

e
ss

 i
n

 a
 d

at
ab

as
e

In
ad

e
q

u
at

e
 s

e
rv

ic
e
 l
e
ve

l

P
la

ci
n

g
 d

at
a 

in
 t

h
e
 w

ro
n

g
 c

al
e
n

d
ar

 p
e
ri

o
d

Fa
ilu

re
 o

f 
D

B
M

S
 t

o
 f

u
n

ct
io

n
 a

s 
sp

e
ci

fi
e
d

Fr
au

d
/e

m
b

e
zz

le
m

e
n

t

La
ck

 o
f 

in
d

e
p

e
n

d
e
n

t 
d

at
ab

as
e
 r

e
vi

e
w

s

In
ad

e
q

u
at

e
 d

o
cu

m
e
n

ta
ti

o
n

C
o
n

ti
n

u
it

y 
o
f 

p
ro

ce
ss

in
g

La
ck

 o
f 

p
e
rf

o
rm

an
ce

 c
ri

te
ri

a

La
ck

 o
f 

m
an

ag
e
m

e
n

t 
su

p
p

o
rt

WORK PAPER 21-2 Magnitude of Data Warehouse Concerns

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

% of No Responses This column divides the percentage of No responses into three categories: low, medium, and high.

Concern Ratings The rating for the concerns listed on this work paper represents the percentages of No responses calculated for those concerns on
Work Paper 21-1.

Data Warehouse Concerns These are the 14 data warehouse concerns described earlier in this chapter.

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

(Continues)



WORK PAPER 21-2 (continued)

% OF NO CONCERN
RESPONSES RATINGS

100% High

68%

67% Medium

34%

33% Low

0%



Testing a Data Warehouse 797

WORK PAPER 21-3 Data Warehouse Activity Process

APPROPRIATE

YES NO N/A COMMENTS

1. Organizational Process

2. Data Documentation Process

3. System Development Process

4. Access Control Process

5. Data Integrity Process

6. Operations Process

7. Backup/Recovery Process



WORK PAPER 21-4 Data Warehouse Quality Control Checklist

YES NO N/A COMMENTS

1. Does someone assigned to the test team have data
warehouse skills?

2. Does the tester understand the generic data
warehouse concerns?

3. Does the final list of data warehouse concerns
represent the true concerns of your organization?

4. Has the vocabulary in all of the work papers and
figures been adjusted to the vocabulary in use in your
organization?

5. Does the test team understand the criteria that are
used to determine the magnitude of the data
warehouse concerns?

6. Do the ratings of the magnitude of the concerns
seem reasonable?

7. Have the data warehouse activity processes been
identified?

8. Do the identified processes appear to represent the
actual processes in use in the data warehouse 
activity?

9. Does the test team understand the controls that are
needed to minimize failure in each of the data
warehouse activities processes?

10. Does the final assessment of the test team regarding
the data warehouse appear reasonable to the test
team?

11. Does the assessment report issued by the test
team appear to represent the results of the test?

798 Chapter 21



799

This chapter focuses on the unique characteristics of web-based testing. Testing can use
the same seven-step process described in Part Three of this book. This chapter focuses
on determining whether web-based risk should be included in the test plan, which
types of web-based testing should be used, and selecting the appropriate web-based
test tools for the test execution phase.

Web-based systems are those systems that use the Internet, intranets, and extranets.
The Internet is a worldwide collection of interconnected networks. An intranet is a pri-
vate network inside a company using web-based applications, but for use only within
an organization. An extranet is a private network that allows external access to cus-
tomers and suppliers using web-based applications.

Overview

Web-based architecture is an extension of client/server architecture. The following 
section describes the difference between client/server architecture and web-based
architecture.

In a client/server architecture, as discussed in Chapter 15, application software
resides on the client workstations. The application server handles processing requests.
The back-end processing (typically a mainframe or super-minicomputer) handles pro-
cessing such as batch transactions that are accumulated and processed together at one
time on a regular basis. The important distinction to note is that application software
resides on the client workstation.

Testing 
Web-Based Systems

C H A P T E R

22



For web-based systems, the browsers reside on client workstations. These client work-
stations are networked to a web server, either through a remote connection or through a
network such as a local area network (LAN) or wide area network (WAN).

As the web server receives and processes requests from the client workstation,
requests may be sent to the application server to perform actions such as data queries,
electronic commerce transactions, and so forth.

The back-end processing works in the background to perform batch processing and
handle high-volume transactions. The back-end processing can also interface with
transactions to other systems in the organization. For example, when an online bank-
ing transaction is processed over the Internet, the transaction is eventually updated to
the customer’s account and shown on a statement in a back-end process.

Concerns

Testers should have the following concerns when conducting web-based testing:

■■ Browser compatibility. Testers should validate consistent application perfor-
mance on a variety of browser types and configurations.

■■ Functional correctness. Testers should validate that the application functions
correctly. This includes validating links, calculations, displays of information,
and navigation.

■■ Integration. Testers should validate the integration between browsers and
servers, applications and data, and hardware and software.

■■ Usability. Testers should validate the overall usability of a web page or a web
application, including appearance, clarity, and navigation.

■■ Security. Testers should validate the adequacy and correctness of security con-
trols, including access control and authorizations.

■■ Performance. Testers should validate the performance of the web application
under load.

■■ Verification of code. Testers should validate that the code used in building the
web application (HTML, Java, and so on) has been used in a correct manner.
For example, no nonstandard coding practices should be used that would
cause an application to function incorrectly in some environments.

Workbench

Figure 22-1 illustrates the workbench for web-based testing. The input to the work-
bench is the hardware and software that will be incorporated in the web-based system
to be tested. The first three tasks of the workbench are primarily involved in web-based
test planning. The fourth task is traditional software testing. The output from the
workbench is to report what works and what does not work, as well as any concerns
over the use of web technology.

800 Chapter 22



Figure 22-1 Workbench for web-based testing.

DO CHECK

Tests
Performed
Correctly

REWORK

Select Web-based Risks
to Include in Test Plan

Task 1

Select Web-based
Tests

Task 2

Select Web-based
Test Tools

Task 3

Test Web-based
Systems

Task 4

Web Software/
Hardware

Web Test
Report

Testing Web-Based Systems 801

Input

The input to this test process is the description of web-based technology used in the
systems being tested. The following list shows how web-based systems differ from
other technologies. The description of the web-based systems under testing should
address these differences:

■■ Uncontrolled user interfaces (browsers). Because of the variety of web
browsers available, a web page must be functional on those browsers that you
expect to be used in accessing your web applications. Furthermore, as new
releases of browsers emerge, your web applications will need to keep up with
compatibility issues.

■■ Complex distributed systems. In addition to being complex and distributed,
web-based applications are also remotely accessed, which adds even more con-
cerns to the testing effort. While some applications may be less complex than
others, it is safe to say that the trend in web applications is to become more
complex rather than less.



■■ Security issues. Protection is needed from unauthorized access that can cor-
rupt applications and/or data. Another security risk is that of access to confi-
dential information.

■■ Multiple layers in architecture. These layers of architecture include applica-
tion servers, web servers, back-end processing, data warehouses, and secure
servers for electronic commerce.

■■ New terminology and skill sets. Just as in making the transition to client/
server, new skills are needed to develop, test, and use web-based technology
effectively.

■■ Object-oriented. Object-oriented languages such as Java are the mainstay of
web development.

Do Procedures

This section discusses the four tasks testers should perform when testing a web-based
system.

Task 1: Select Web-Based Risks 
to Include in the Test Plan

Risks are important to understand because they reveal what to test. Each risk points to
an entire area of potential tests. In addition, the degree of testing should be based on
risk. The risks are briefly listed here, followed by a more detailed description of the
concerns associated with each risk:

■■ Security. As we have already seen, one of the major risks of Internet applica-
tions is security. It is very important to validate that the application and data
are protected from outside intrusion or unauthorized access.

■■ Performance. An Internet application with poor performance will be judged
hard to use. Web sites that are slow in response will not retain the visitors they
attract and will be frustrating to the people who try to use them.

■■ Correctness. Obviously, correctness is a very important area of risk. It is essen-
tial that the functionality and information obtained from web-based applica-
tions are correct.

■■ Compatibility (configuration). A web-based application must be able to work
correctly on a wide variety of system configurations including browsers, oper-
ating systems, and hardware systems. All of these are out of the control of the
developer of the application.

■■ Reliability. An Internet application must have a high level of availability and
the information provided from the application must be consistent and reliable
to the user.

802 Chapter 22



■■ Data integrity. The data entered into an Internet application must be validated
to ensure its correctness. In addition, measures must be taken to ensure the
data stays correct after it is entered into the application.

■■ Usability. The application must be easy to use. This includes things like navi-
gation, clarity, and understandability of the information provided by the 
application.

■■ Recoverability. In the event of an outage, the system must be recoverable. 
This includes recovering lost transactions, recovering from loss of communica-
tions, and ensuring that proper backups are made as a part of regular systems
maintenance.

Security Concerns

The following are some of the detailed security risks that need to be addressed in an
Internet application test plan:

■■ External intrusion. Perhaps the most obvious security concern is that of pro-
tecting the system from external intrusion. This can include intrusion from 
people who are trying to gain access to sensitive information, people who are
trying to intentionally sabotage information, and people who are trying to
intentionally sabotage applications.

■■ Protection of secured transactions. Another major area of concern is that of
protecting transactions over the Internet. This is especially true in dealing with
electronic commerce transactions. Many consumers are reluctant to give credit
card information over the Internet for fear that information will be intercepted
and used for fraudulent purposes.

■■ Viruses. The Internet has become a vehicle for propagating tens of thousands
of new viruses. These viruses are contained in downloaded files that can be 
distributed from web sites and e-mail.

■■ Access control. Access control means that only authorized users have security
access to a particular application or portion of an application. This access is
typically granted with a user ID and password.

■■ Authorization levels. Authorization levels refer to the ability of the application
to restrict certain transactions only to those users who have a certain level of
authorization.

Performance Concerns

System performance can make or break an Internet application. Several types of perfor-
mance testing can be performed to validate an application’s performance levels. Perfor-
mance testing is a very precise kind of testing and requires the use of automated tools
for testing to be accomplished with any level of accuracy and efficiency. Unfortunately,

Testing Web-Based Systems 803



manual approaches to performance testing fall short of the accuracy needed to cor-
rectly gauge an application’s performance and may lead to a false level of confidence
in the test.

Typically, the most common kind of performance testing for Internet applications is
load testing. Load testing seeks to determine how the application performs under
expected and greater-than-expected levels of activity. Application load can be assessed
in a variety of ways:

■■ Concurrency. Concurrency testing seeks to validate the performance of an
application with a given number of concurrent interactive users.

■■ Stress. Stress testing seeks to validate the performance of an application when
certain aspects of the application are stretched to their maximum limits. This
can include maximum number of users, and can also include maximizing table
values and data values.

■■ Throughput. Throughput testing seeks to validate the number of transactions
to be processed by an application during a given period of time. For example,
one type of throughput test might be to attempt to process 100,000 transactions
in one hour.

Correctness Concerns

Of course, one of the most important areas of concern is that the application functions
correctly. This can include not only the functionality of buttons and “behind the
scenes” instructions but also calculations and navigation of the application.

■■ Functionality. Functional correctness means that the application performs its
intended tasks as defined by a stated set of specifications. The specifications of
an application are the benchmark of what the application should do. Func-
tional correctness is determined by performing a functional test. A functional
test is performed in a cause-effect manner. In other words, if a particular action
is taken, a particular result should be seen.

■■ Calculations. Many web-based applications include calculations. These calcu-
lations must be tested to ensure correctness and to find defects.

■■ Navigation. Navigation correctness can include testing links, buttons, and gen-
eral navigation through a web site or web-based application.

Compatibility Concerns

Compatibility is the capability of the application to perform correctly in a variety of
expected environments. Two of the major variables that affect web-based applications
are operating systems and browsers.

Currently, operating systems (or platforms) and how they support the browser of
your choice will affect the appearance and functionality of a web application. This
requires that you test your web-based applications as accessed on a variety of common

804 Chapter 22



platforms and browsers. You should be able to define the most commonly used plat-
forms by reviewing the access statistics of your web site.

Browser Configuration

Each browser has configuration options that affect how it displays information. These
options vary from browser to browser and are too diverse to address in this text. The
most reasonable testing strategy is to define optimal configurations on the most stan-
dard kinds of browsers and test based on those configurations.

Some of the main things to consider from a hardware compatibility standpoint are
the following:

■■ Monitors, video cards, and video RAM. If you have a web site that requires a
high standard of video capability, some users will not be able to view your site,
or will not have a positive experience at your site. 

■■ Audio, video, and multimedia support. Once again, you need to verify that 
a web application is designed to provide a level of multimedia support that a
typical end-user will need to be able to access your site. If software plug-ins 
are required, you should provide links on your page to facilitate the user in
downloading the plug-in.

■■ Memory (RAM) and hard drive space. RAM is very important for increasing
the performance of a browser on a particular platform. Browsers also make
heavy use of caching, which is how a browser stores graphics and other infor-
mation on a user’s hard drive. This helps speed the display of web pages the
next time the user visits a web site.

■■ Bandwidth access. Many corporate users have high-speed Internet access
based on T-1 or T-3 networks, or ISDN telephone lines. 

Browser differences can make a web application appear differently to different peo-
ple. These differences may appear in any of the following areas (this is not intended to
be an exhaustive list; these are merely the more common areas of browser differences):

■■ Print handling. To make printing faster and easier, some pages add a link or
button to print a browser-friendly version of the page being viewed.

■■ Reload. Some browser configurations will not automatically display updated
pages if a version of the page still exists in the cache. Some pages indicate if the
user should reload the page.

■■ Navigation. Browsers vary in the ease of navigation, especially when it comes
to visiting pages previously visited during a session. A web application devel-
oper may need to add navigational aids to the web pages to facilitate ease of
navigation.

■■ Graphics filters. Browsers may handle images differently, depending on the
graphic filters supported by the browser. In fact, some browsers may not show
an image at all. By standardizing on JPG and GIF images you should be able to
eliminate this concern.

■■ Caching. How the cache is configured (size, etc.) will have an impact on the
performance of a browser to view information.

Testing Web-Based Systems 805



■■ Dynamic page generation. This includes how a user receives information from
pages that change based on input. Examples of dynamic page generation
include:

■■ Shopping cart applications

■■ Data search applications

■■ Calculation forms

■■ File downloads. Movement of data from remote data storage for user 
processing.

■■ E-mail functions. Because e-mail activities can consume excessive processing
time, guidelines should be developed.

Each browser has its own interface and functionality for e-mail. Many people use
separate e-mail applications outside of a browser, but for those who don’t, this can be
a concern for users when it comes to compatibility.

Reliability Concerns

Because of the continuous uptime requirements for most Internet applications, reliability
is a key concern. However, reliability can be considered in more than system availability;
it can also be expressed in terms of the reliability of the information obtained from the
application:

Consistently correct results

Server and system availability

Data Integrity Concerns

Not only must the data be validated when it is entered into the web application, but it
must also be safeguarded to ensure the data stays correct:

■■ Ensuring only correct data is accepted. This can be achieved by validating the
data at the page level when it is entered by a user.

■■ Ensuring data stays in a correct state. This can be achieved by procedures to
back up data and ensure that controlled methods are used to update data.

Usability Concerns

If users or customers find an Internet application hard to use, they will likely go to a
competitor’s site. Usability can be validated and usually involves the following:

■■ Ensuring the application is easy to use and understand

■■ Ensuring that users know how to interpret and use the information delivered
from the application

■■ Ensuring that navigation is clear and correct

806 Chapter 22



Recoverability Concerns

Internet applications are more prone to outages than systems that are more centralized
or located on reliable, controlled networks. The remote accessibility of Internet appli-
cations makes the following recoverability concerns important:

■■ Lost connections

■■ Timeouts

■■ Dropped lines

■■ Client system crashes

■■ Server system crashes or other application problems

Work Paper 22-1 is designed to determine which web-based risks need to be
addressed in the test plan, and how those risks will be included in the test plan. The use
of this work paper should be associated with a “brainstorming session” by the web-
based test team. The work paper should be completed once the web-based test team has
reached consensus regarding inclusion of risks in the test plan.

Task 2: Select Web-Based Tests

Now that you have selected the risks to be addressed in the web-based applications,
you must examine the types and phases of testing needed to validate them.

Unit or Component

This includes testing at the object, component, page, or applet level. Unit testing is the
lowest level of testing in terms of detail. During unit testing, the structure of languages,
such as HTML and Java, can be verified. Edits and calculations can also be tested at the
unit level.

Integration

Integration is the passing of data and/or control between units or components, which
includes testing navigation (i.e., the paths the test data will follow). In web-based appli-
cations, this includes testing links, data exchanges, and flow of control in an application.

System

System testing examines the web application as a whole and with other systems. The
classic definition of system testing is that it validates that a computing system func-
tions according to written requirements and specifications. This is also true in web-
based applications. The differences apply in how the system is defined. System testing
typically includes hardware, software, data, procedures, and people.

In corporate web-based applications, a system might interface with Internet web
pages, data warehouses, back-end processing systems, and reporting systems.

Testing Web-Based Systems 807



User Acceptance

This includes testing that the web application supports business needs and processes.
The main idea in user acceptance testing (or business process validation) is to ensure
that the end product supports the users’ needs. For business applications, this means
testing that the system allows the user to conduct business correctly and efficiently. For
personal applications, this means that users are able to get the information or service
they need from a web site efficiently.

In a corporate web page, the end-user testers may be from end-user groups, manage-
ment, or an independent test team that takes the role of end users. In public web appli-
cations, the end-user testers may be beta testers, who receive a prototype or early release
of the new web application, or independent testers who take the role of public web users.

Performance

This includes testing that the system will perform as specified at predetermined levels,
including wait times, static processes, dynamic processes, and transaction processes.
Performance is also tested at the client/browser and server levels.

Load/Stress

This type of testing checks to see that the server performs as specified at peak concurrent
loads or transaction throughput. It includes stressing servers, networks, and databases.

Regression

Regression testing checks that unchanged parts of the application work correctly after
a change has been made. Many people mistakenly believe that regression testing
means testing everything you ever tested in an application every time you perform a
test. However, depending upon the relative risk of the application you are testing,
regression testing may not need to be that intense. The main idea is to test a set of spec-
ified critical test cases each time you perform the test. Regression testing is an ideal
candidate for test automation because of its repetitive nature.

Usability

This type of testing assesses the ease of use of an application. Usability testing may be
accomplished in a variety of ways, including direct observation of people using web
applications, usability surveys, and beta tests. The main objective of usability testing is
to ensure that an application is easy to understand and navigate.

Compatibility

Compatibility testing ensures that the application functions correctly on multiple
browsers and system configurations. Compatibility testing may be performed in a test

808 Chapter 22



lab that contains a variety of platforms, or may be performed by beta testers. The
downside with beta testing is the increased risk of bad publicity, the lack of control,
and the lack of good data coming back from the beta testers.

Work Paper 22-2 is designed to assist testers in selecting testing types. The type of
testing to be performed should be focused on the web-based risks addressed by the test
plan. The test team should determine how the various types of web-based testing
selected should be used to assess the various risks. This work paper, like Work Paper
22-1, should be developed through brainstorming and consensus by the web-based
test team.

Task 3: Select Web-Based Test Tools

Effective web-based testing necessitates the use of web-based testing tools. A brief
description of categories of the more common web-based test tools follows:

■■ HTML tools. Although many web development packages include an HTML
checker, there are ways to perform a verification of HTML if you do not use/
have such a feature. 

■■ Site validation tools. Site validation tools check your web applications to iden-
tify inconsistencies and errors, such as moved or orphaned pages and broken
links.

■■ Load/stress testing tools. Load/stress tools evaluate web-based systems when
subjected to large volumes of data or transactions.

■■ Test case generators. Test case generators create transactions for use in testing.
This tool can tell you what to test, as well as create test cases that can be used in
other test tools. 

Work Paper 22-3 is designed to document the web-based test tools selected by the
test team, as well as how those tools will be used. The work paper should contain all of
the specific test tools available to the web-based testing team.

Task 4: Test Web-Based Systems

The tests to be performed for web-based testing will be the types of testing described
in the seven-step testing process, which is Part Three of this book. The seven-step
process may have to be modified based on the risks associated with web-based testing.

Check Procedures

The web-based test team should use Work Paper 22-4 to verify that the web-based test
planning has been conducted effectively. The Comments column is provided to clarify
No responses. The N/A column is provided for items that are not applicable to this
specific web-based test plan.

Testing Web-Based Systems 809



Output

The only output from this test process is a report on the web-based system. At a mini-
mum, this report should contain the following:

■■ A brief description of the web-based system

■■ The risks addressed and not addressed by the web-based test team

■■ The types of testing performed, and types of testing not performed

■■ The tools used

■■ The web-based functionality and structure tested that performed correctly

■■ The web-based structure and functionality tested that did not perform correctly

■■ The test team’s opinion regarding the adequacy of the web-based system to be
placed into a production status

Guidelines

Successful web-based testing necessitates a portfolio of web-based testing tools. It is
important that these test tools are used effectively. These are some common critical suc-
cess factors for buying, integrating, and using test tools:

■■ Get senior management support for buying and integrating test tools. Top-
down support is critical. Management must understand the need for test tools
and the risks of not using test tools.

■■ Know your requirements. This will help you avoid costly mistakes. You may
not be able to meet all your requirements, but you should be able to find the
best fit.

■■ Be reasonable in your expectations—start small and grow. Your first project
using any kind of tool is your learning project. Expect to make some mistakes.
You can hedge your risk by applying the test tool(s) to simple tasks with high
payback.

■■ Have a strong testing process that includes tools. Until this is in place, test
tool usage will be seen as optional and the tool may die because of lack of 
interest. In addition, people need to know how to define what to test.

■■ Don’t cut the training corner. People must understand how to use the test tool.
Most people will naturally use about 20 to 25 percent of the tool’s functionality.
If training is not provided and the tool is not effective, don’t blame the tool.

810 Chapter 22



Summary

This chapter provides guidelines on how to properly plan for web-based testing. Like
other aspects of testing, web-based testing should be risk oriented. The chapter
describes the risks, presents the types of testing that can be used to address those risks
in testing, and provides guidance in using web-based test tools. The approach for test-
ing web-based systems should be incorporated into a test plan and that plan should be
followed during test execution. This chapter does not address the test execution part of
web-based testing. Testers should follow the execution components of the seven-step
testing process described in Part Three of this book.

Testing Web-Based Systems 811



WORK PAPER 22-1 Web-Based Risks to Include in the Test Plan

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Web-based Risks This field lists the eight web-based risks described in this chapter. The description
implies that “lack of” is associated with the risk.

Include in Test The web-based testing should determine whether any or all of the eight identified 
web-based risks need to be addressed in the test plan. A check in the Yes column 
indicates that it should be included in the plan, and a check in the No column 
indicates it is not needed in the plan.

How risk will be This column is designed to be used in two ways. If the risk is not to be included in
included in the test plan, a justification as to why not could be included in this column. The
web-based test second use is the test team’s preliminary thoughts on how this risk will be included
plan in the test plan. The description might involve the types of tests, the types of tools,

and/or the approach to be used in testing.

INCLUDE IN

WEB-BASED RISKS TEST HOW RISK WILL BE INCLUDED IN

(LACK OF) YES NO WEB-BASED TEST PLAN

Security

Performance

Correctness

Compatibility (Configuration)

Reliability

Data Integrity

Usability

Recoverability

812 Chapter 22



WORK PAPER 22-2 Types of Web-Based Testing to Perform

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Types of Web-based This column contains the more common types of web-based testing. The names
Testing may need to be modified for your culture. Additional types of testing performed

by your test group may need to be added to this column.

Perform This field is used for the web-based test team to indicate which types of testing
will be used during web-based testing. A check mark in the Yes column indicates
the type of testing that will be performed, and check mark in the No column 
indicates that type of testing will not be performed.

Risk Focus The web-based test team should indicate the risk that this test type will be used to 
address. The type of risk to be incorporated into the test plan has been identified on 
Work Paper 22-1. In addition, the column can be used to indicate the justification for 
not using various types of web-based testing, if appropriate.

How to Be Used The web-based test team should write a brief narrative description of how they plan 
to use this test type to address the risks that will be incorporated into the test plan.

PERFORM

TYPES OF WEB-BASED TESTING YES NO RISK FOCUS HOW TO BE USED

Unit/Component

Integration

System

User Acceptance

Performance

Load/Stress

Regression

Usability

Compatibility

Testing Web-Based Systems 813



WORK PAPER 22-3 Select Web-Based Test Tools

Field Requirements

FIELD INSTRUCTIONS FOR ENTERING DATA

Web-based Test Tool All of the test tools available to your web-based test team should be listed in this
column. The column contains generic types of test tools, but they should be
replaced by specific test tools.

Perform The web-based test team should identify which web-based test tool will be used
during testing. A check in the Yes column indicates that the tool is to be used, and
check in the No column indicates that the tool is not to be used.

Test Type Focus The test team should indicate in this column which type of testing will be
performed using this test tool. The test types are those indicated by the check mark
in the Yes column on Work Paper 22-3. All of the test types with a Yes check mark
on Work Paper 22-2 should be addressed in this column. Note that a single test tool
may be used for multiple test types.

How to Be Used The web-based test team should indicate in this test column how they plan to use a
specific test tool during web-based testing. The testers should be as specific as
possible in completing this column.

PERFORM

WEB-BASED TEST TOOLS YES NO TEST TYPE FOCUS HOW TO BE USED

HTML text tool

Site validation test tool

Java test tool

Load/stress test tool

Test case generator

Other (list tools)

814 Chapter 22



WORK PAPER 22-4 Web-Based Testing Quality Control Checklist

YES NO N/A COMMENTS

1. Has a web-based test team been organized?

2. Does the web-based test team understand the
differences between client/server and web-based
technology?

3. Does the web-based test team understand web
terminology?

4. Does the web-based test team understand the
risk associated with web technology?

5. Has the web-based test team reached consensus
on which risks are applicable to this specific web-
based system?

6. Has a determination been made as to how the
identified risks will be incorporated in the test
plan?

7. Is there a consensus that the web-based risks not
included in the test plan are of minimal concern
to this web-based system?

8. Has the web-based test team identified the types
of testing required for this system?

9. If so, how have those testing types been
correlated to the web-based risks?

10. Has the web-based test team reached consensus
on how the web-based types of testing will be
used for test purposes?

11. Is there a portfolio of web-based test tools
available in the organization?

12. Are the available test tools adequate for the web-
based system being tested?

13. Has each type of testing that will be included in
the test plan been supported by a specific web-
based test tool?

14. Has the test team reached consensus on how the
test tools will be used during testing?

15. Have all of the web-based testing decisions made
by the test team been incorporated into the test
plan?

Testing Web-Based Systems 815





PA R T

Five

Building Agility into 
the Testing Process





819

This chapter introduces a seven-step process to build agility into your software testing
process through time compression. Agility not only improves software testing processes;
it also adds flexibility and enhances ease of use. Thus, agility leads to a “continuous
process enhancement,” which significantly increases testing volumes because of satis-
faction with the process.

Testers avoid defective and difficult-to-use processes in the worst case; in the best
case, they customize the processes, which means that they are not followed as
intended. Testers pick and choose those pieces from the process they like, and impro-
vise on those components they do not like, which leads to each testing group having its
own testing process. The net result is significant effectiveness and efficiency variability
among testing projects. When testers focus on adding agility to the process, the process
improves, and all testing groups are likely to follow the agile process.

The Importance of Agility

Agile systems are designed to be quick and easy to use. Much effort has been expended
on the development of agile software development processes. Unfortunately, those
software development processes have not placed much emphasis on software testing,
even though in many systems, testing consumes about one-half the total developmen-
tal resources.

Using Agile Methods to
Improve Software Testing

C H A P T E R

23



Effective agile processes have the following three characteristics:

■■ Well-defined objectives 

■■ Open information/communication channels

■■ Task-performance flexibility

The best way to build an agile software testing process is to empower the actual
testers to build one. Software testers can build an agile testing process by focusing on
the following three goals:

■■ Eliminating nonproductive aspects of testing

■■ Identifying and incorporating best testing practices

■■ Building the process using the practices that offer the greatest payback with the
highest probability of successful implementation

Process variability is the enemy of agile software testing. The first step to reduce vari-
ability is to identify and measure variability. Variability means the range of resources
needed to accomplish a task. For example, if the time to prepare a script of 100 actions
takes an average of 100 hours, with the most efficient person doing it in 50 hours, and the
least efficient doing it in 150 hours, the process variability is 100 hours for that task. 

Flexibility, the desirable attribute of agile software testing, is relatively affected by
excessive process variability. For example, if someone prepares a test script using a
process with extensive variability, the testing team cannot rely on a task being com-
pleted when needed.

As discussed more fully in the following section, common business practices inhibit
agility. Remember, therefore, that agility will result only under the following conditions:

■■ IT management supports and allots resources to building agile systems.

■■ Testers are empowered to focus on business objectives, rather than just follow
test processes.

■■ Significant emphasis is placed on communication and team building.

Building an Agile Testing Process

To build an agile testing process, you must have a “champion” and an “agile imple-
mentation team.” Ideally, the champion would be the director of the organization or
the Chief Information Officer. It is best that the champion not have direct responsibil-
ity for managing or performing software testing. 

The agile implementation team can be as few as three or as many as five people, but
each person should be a stakeholder in the testing. At a minimum, the team should
have these representative members:

■■ Software manager 

■■ Development representative, particularly, a project leader who respects the
importance of testing

■■ User representative

820 Chapter 23



If more than three individuals are included in the agile implementation team, the
additional numbers should be software testers. Although it is not necessary for a mem-
ber of the process/engineering standards committee to be a member of the agile imple-
mentation team, that committee should be kept informed of all activities (and provide
input to the process as necessary).

The seven-step process for time compression discussed later in this chapter addresses
some of the specific responsibilities and tasks of the agile implementation team. This
team does not have to perform all of the tasks involved in building an agile software test-
ing process. For example, if a testing sub-process is to be changed, they might delegate
that task to one or two testers knowledgeable in that specific task. However, the agile
implementation team should develop a plan, obtain the resources, set work priorities,
and oversee the implementation process. 

Agility Inhibitors

The following ten factors inhibit agility in software testing processes (and thus con-
tribute to inefficient and ineffective testing):

1. Test processes are not mature processes, making them prone to defects.

Mature test processes have minimal variability. Mature test processes are con-
tinuously improved. When testers follow a mature test process, the process
itself causes few defects. These characteristics of a mature process rarely exist
in today’s testing processes.

2. Test processes are not designed to facilitate changing requirements. Business
requirements change frequently. Opportunities to capitalize on new ideas occur
frequently. When creating new information systems, it is difficult to fully define
requirements at the start of the project. These factors result in constantly chang-
ing requirements. Unfortunately, test processes are not designed to handle
these changes.

3. Quality is not defined in most software testing plans. Quality is defined as
both meeting requirements and satisfying customer needs. However, in most
test plans, quality is not an attribute of the plan.

4. Test processes are not flexible. No single process is effective in testing all soft-
ware systems. However, flexibility, to adjust to the challenges individual test
teams face, is rarely built in to test processes.

5. Test processes are not objective-driven. One of the key principles of agile sys-
tems is that everyone understands the objectives. Many testers are mired in the
process of creating and executing test conditions and rarely are informed of the
business objectives of the system. Therefore, they do not understand how the
day-to-day work helps accomplish business objectives and add value.

6. Lines of communication between testers and developers, users, and IT man-

agement are not defined. Flexibility requires continuous and effective commu-
nication. It is important that all stakeholders be involved in the testing process,
which means that testers need communication lines to those stakeholders. In
most organizations, testers are not encouraged to initiate such communication.

Using Agile Methods to Improve Software Testing 821



7. Testers do not get the same respect as developers. In many organizations,
testers are not considered equal to developers. This inequality is expressed in the
amount of training provided, the resources expended on tools and processes, and
the willingness to send testers to outside seminars and conferences; in many
organizations, testers even have a lower pay grade than developers.

8. Open and honest communication up and down the chain of command does

not exist. In many organizations, testers are viewed as the inhibitors of getting
software into production by a scheduled date. Developers don’t confide their
problems (the errors they believe may exist) in testers; and likewise, testers
often keep the type of test they are conducting secret from the developers. This
lack of communication can easily increase the cost of development and testing.

9. Testers are not actively involved, or given the resources to be involved, in

determining their own processes. Experience has shown that the best test
processes are those developed by the process users. Unfortunately, most test
groups are not provided the time or the training needed to define, upgrade,
and continually improve their test processes.

10. Minimal effort is expended on creating effective and efficient test teams.

One of the most important principles of agile processes is focusing on building
and upgrading effective and efficient teams. Most test managers are not trained
in team building and team management. Many testers do not view themselves
as team members, but merely individuals performing specific tasks.

Is Improvement Necessary?

To decide whether improvement is necessary, you must first ask whether software test-
ing is currently performed efficiently. Then you must ask whether software testing is cur-
rently performed effectively. An agile process focuses efficiency (which implies time
compression). Experience shows that when testing is efficient, it will also be effective.

From a management perspective, effectiveness is easier to determine than efficiency.
You can easily measure effectiveness by using a metric called Defect Removal Efficiency
(DRE). DRE refers to the percentage of defects removed through testing. In other words,
if software contains 100 defects, and testing finds 75 of those defects, the DRE metric is
75 percent. The higher the DRE metric, the more effective the testing process.

Another way to measure the effectiveness of software testing is to calculate opera-
tional measures that relate to availability of software for production purposes. To do
so, you must consider the mean time to failure (MTTF), the mean time between failures
(MTBF), and the mean time to repair (MTTR). You can readily obtain this information
from operational activities (see Figure 23-1).

The MTBF is the amount of time (or number of events) between the last failure and
the current failure. Of course, failure must be defined (e.g., incorrect processes and/or
non-operational software). As part of your consideration of MTBF, you must factor in
the amount of time it takes to make the process/software operational after failure.

822 Chapter 23



Figure 23-1 Measures of MTTF, MTBT, MTTR, and availability.

If you calculate MTBF on a regular basis, you can monitor the number of defects that
remain. These types of calculations are beyond the scope of this book; MTFB is used
here just to illustrate testing effectiveness. Simplistically, if MTBF is unchanging, it
implies a replenishment of defects. In other words, as failures are corrected, new fail-
ures are introduced. On the other hand, if MTBF is increasing, you can statistically pre-
dict the time when the next failure will be detected.

The bottom-line measure of testing effectiveness is availability of the software,
meaning not only available for use, but available for correct processing. If testing is
“perfect,” the system will be continuously available for correct processing.

An analysis of DRE, MTTF, MTBF, and MTTR provides insight into testing effec-
tiveness. If testing does not appear to be effective, time-compression efforts will
improve both testing and effectiveness.

Compressing Time

Many organizations consider software testing an art form rather than an engineering
discipline. And although some might think that such an approach to testing is more
closely related to an agile process, exactly the opposite is true. The art-form approach,
although believed to be highly creative, is inefficient and leads to frustration (among
testers and other expecting testing deliverables).

Quality Assurance Institute studies indicate that only about half of software testing
groups develop plans for testing. Of those, only about half actually follow the plan in

MTTF* = The number of time units the system is operable before the first
 failure occurs

MTBF = Sum of the number of time units the system is operable
 Number of failures during the time period

MTTR = Sum of the number of time units required to repair the system
 Number of repairs during the time period

*MTTF applies to non-repairable systems and is not applicable after the first failure.
Some experts consider MTTF to be a special case of the MTBF measurement.

System Available System Available

Failure Restart Failure

MTTF*

MTBF MTTR
MTBF

Detection and Repair

Using Agile Methods to Improve Software Testing 823



detail. The result is that testers have to spend time developing the testing process,
instead of performing actual testing responsibilities.

A software testing process that eliminates most of the rework and communication
problems among testers does not eliminate flexibility. A timely (calendar-day efficient)
agile process can offer the flexibility testers need to perform their testing tasks.

Challenges

Many testers understand that IT management already tries to save testing time by giv-
ing them unreasonable deadlines. If a scheduled implementation date has been estab-
lished, and dynamic testing can occur only after code is complete, testers feel the
pressure of that deadline. Two solutions to this dilemma exist: ask for more time, or
complete the process more efficiently. Agile processes facilitate speed.

Many organizations fail to compress testing time because of the following challenges:

■■ No time/no resources. Almost all IT organizations and individual staff mem-
bers have more work than they can currently handle. The misconception is that
if effort is expended on trying to save testing time, then software projects cur-
rently needed by customers/users cannot be completed on time. The dilemma
is this: Do you spend your time doing the work of the business or do you
expend your effort to compress testing time?

■■ Long-term process. Most believe that the time to change a process is in direct
relationship to the size of the process. In other words, it requires a massive re-
engineering effort to change the software testing process because it is a large
process. Software testing is among the most complex process in an IT organiza-
tion; therefore, changing an extensive and complex process is a long, time-
consuming and expensive process.

Industry models have resulted from efforts to improve quality and productiv-
ity. These models include the Software Engineering Institute (SEI) Computer
Maturity Model (CMMI), the International Standards Organization Model, and
the Malcolm Baldrige National Quality Award Model. Optimistic estimates to
fully implement any of these models is three years (usually longer). Because
few IT directors have a guaranteed tenure of three or more years, they are
reluctant to undertake such an effort.

No in-house skill sets. Even if IT managers want to compress testing time,
many do not believe the current staff possesses the skill sets necessary to do 
it. Without those skill sets, either a new process needs to be acquired, imple-
mented, and taught, or consultants must be engaged to come in and perform
the necessary analysis and changes to compress testing time.

Poor past experience. Almost since the day the first computer was delivered to
an organization, vendors have promised new tools and techniques that will
compress testing time and improve productivity. Many of these “vendor mira-
cles” have resulted only in building bad software systems faster. Many of the
miracles never really touched the root cause of too much time spent on testing.
For example, avoiding test planning is not the way to compress software test-
ing time.

824 Chapter 23



Solutions

Agile approaches to compressing software testing time are needed. Conventional
approaches have not worked. Although many have helped, they are long-term solu-
tions in an industry that prefers the short term.

Industrial engineers have used agile methods (known in that sector as time and
motion studies) to compress the time required to build manufactured products since
the late 1920s. These methods work.

To successfully compress software testing time, organizations must do the following:

1. Make “compressing” a project. Asking someone to do a task, but not provid-
ing the time, resources, and procedures to do it will not work. Many view
unbudgeted tasks as a means by which management can get more work for 
the same money. In addition, unless compressing testing time is a project, it
will not be managed like a project, and therefore the probability of success is
diminished. 

2. Focus solely on compressing time. There are many reasons why an IT organi-
zation might want to undertake an improvement effort, of which compressing
testing time is but one focus. Objectives might include improving quality and
productivity, providing better documentation, and compressing testing time.
Unfortunately, when an individual is given many goals, it is difficult to differ-
entiate the important from the unimportant goals.

Experience shows that if many variables are in play, selecting the most relevant
variable will pull the other variables in the same direction. In other words, if
process improvement focuses on the correct, single variable, the other desirable
variables most likely will also be achieved.

Manufacturing experience shows that the correct variable to select is “time
compression.” By focusing on that variable, quality, productivity, and the
morale and motivation of the testing staff will be improved.

3. Use a “time-compression” process. If you ask someone to do a job, you need to
tell them how to do it. Telling someone to compress the time to complete test-
ing without providing a process to perform that “compression” effort has only
a minimal probability of success. If you do not provide an individual with a
process, they first must develop that process and then execute it.

4. Use in-house best-of-the-best work practices. Some software testing projects,
when completed, have a high degree of customer satisfaction, whereas others
do not. Some software testing projects are performed efficiently; some are not.
A quick analysis can readily identify those projects exhibiting high customer
satisfaction and those projects that are very efficiently developed. Finding the
best practices from the best projects and then having everyone use these best
practices is the quickest way to implement time-compression solutions in the
software testing process.

Time compression will elicit agility. The following section consolidates time-com-
pression methods into an easy-to-use seven-step process that, when implemented, will
result in an agile software testing process.

Using Agile Methods to Improve Software Testing 825



Measuring Readiness

Wanting to compress software testing time and having the organizational motivation
and resources in place to do so are two different things. It is like dieting: You might want
to lose weight, but the serious question is whether you are really ready to apply the dis-
cipline needed to lose weight. The same applies to readiness for time compression.

The following five criteria are the most significant “time-compression” readiness
criteria:

■■ Management support

■■ Software testing process in place (The process can have significant variability,
but the general activities in the process should exist and be documented.)

■■ A need for time compression (e.g., an obvious benefit from such for customers,
users, and business priorities)

■■ Surmountable barrier/obstacle identification

■■ Requisite resources

Testers (in consensus with a small group of key stakeholders in the effort and indi-
viduals respected by the teams involved) can use Work Paper 23-1 to evaluate the pre-
ceding criteria. If any readiness criterion has fewer than three Yes responses out of the
five questions you must ask for each readiness criterion, your organization is not ready
for a time-compression process. Any readiness criteria receiving three or four Yes
responses should be evaluated to determine whether the items receiving a No response
(i.e., not ready for a time-compression improvement process) might warrant more
readiness preparatory work before undertaking the time-compression process.

If those key individuals having the responsibility for testing believe, after this analy-
sis, that the organization is ready to compress testing time, begin the seven-step
process outlined in the following section. If the individuals responsible for software
testing have any reservations about the readiness to proceed, readiness work should be
undertaken prior to beginning the seven-step process.

The Seven-Step Process

To compress software testing time/effort, follow these seven steps: 

1. Measure software process variability. The timeline is the series of activities
that must be executed to develop a software system. In this step, you define 
an activity by documenting a workbench for each activity. The workbench 
indicates the objective, the standards (for example, exit criteria), as well as the
procedures to perform and check the work leading to the completion of that
workbench. From this timeline process, you can determine time-compression
opportunities.

2. Maximize best practices. Identify the software testing projects that are most
effective and those that are most efficiently developed (effectiveness meaning
high customer satisfaction, and efficiency meaning minimizing resources to
complete the testing). 

826 Chapter 23



3. Build on strength, minimize weakness. An analysis of the testing process will
indicate those areas that contain the greatest testing strengths and those where
weaknesses exist. Obviously, you must focus your time-compression efforts on
the areas of weaknesses.

4. Identify and address improvement barriers. Barriers are obstacles to time-
compression improvements. The barriers can be budgetary or process oriented
(i.e., getting permission to act), or the barrier may come in the form of an
obstructionist on the team or in management. You must decide whether you
can reduce or eliminate the barriers. If you cannot, you should explore another
time-compression activity.

5. Identify and address cultural and communication barriers. An IT organiza-
tion’s culture dictates, in many ways, the means by which the organization
attempts to achieve results. For example, in a “management-object culture,”
adherence to process is difficult to achieve. Any time-compression effort must
be implemented within the cultural restrictions of an IT organization.

6. Identify doable improvements. The totality of the information you gather 
in Steps 1 through 5 are used in this step to identify those time-compression
methods and techniques that have the greatest probability of success.

7. Develop and execute an implementation plan. After you have identified the
time-compression improvement to seek, you must put a plan needs into place
to implement the improvement and make it operational. Resource allocation is
part of this step.

Steps 6 and 7 are repeated continuously to achieve shorter and shorter testing cycles.
This is a never-ending process. Periodically, probably annually, you should repeat
Steps 1 through 5 to identify new opportunities as well new barriers/obstacles.

Summary

It is not good practice to compress a bad software testing process. In other words, to do
bad testing faster should not be the objective of time compression. However, industrial
engineering experience has shown that if the time-compression effort is focused exclu-
sively on time compression, it will improve both effectiveness and efficiency.

This chapter has described a seven-step process for compressing software testing
time. It has also provided a readiness assessment to help determine whether your orga-
nization is ready to undertake this process.

Using Agile Methods to Improve Software Testing 827



WORK PAPER 23-1 Readiness Assessment for Compressing Software
Testing Time

Readiness Criteria: Management Support YES NO COMMENTS

Does the IT culture support using work process to test 
software systems?

Would IT management support and encourage the more-
effective testers to document their best testing practices?

Would IT management be willing to become personally 

involved in the efforts to compress software testing time?

Would IT management reward those who invest time and 
effort to compress software testing time?

Do the IT strategic and tactical annual work plans include 
goals and objectives for compressing software testing time?

TOTAL

Readiness Criteria: A Software Testing Process in Place YES NO COMMENTS

Does a software testing process exist?

Do most of the software testing projects follow the software 
testing process from, at least, an intent perspective?

Have the software testers been trained in using the process?

Is the process divided into self-contained testing activities?

If so, do each of these self-contained activities contain 
entrance and exit criteria?

TOTAL

828 Chapter 23



WORK PAPER 23-1 (continued)

Readiness Criteria: Need for Time Compression YES NO COMMENTS

Do the users/customers of IT software want a shorter testing 
time?

Does IT management want a shorter software testing time?

Do IT project personnel want a shorter software testing time?

Is there a backlog of software testing projects waiting to be 

undertaken?

Is the inability to get software testing projects completed on 
a timely basis negatively affecting the business?

TOTAL

Readiness Criteria: Surmountable Barrier/

Obstacle Identification YES NO COMMENTS

Are the cultural barriers against compliance to work processes 
surmountable?

Are political obstacles to time compression surmountable?

Are organizational barriers to time compression surmountable?

Are budget and schedule constraint barriers to time 
compression surmountable?

Are management hot buttons and red flags related to time 
compression surmountable?

TOTAL

(continues)

Using Agile Methods to Improve Software Testing 829



WORK PAPER 23-1 (continued)

Readiness Criteria: Requisite Resources YES NO COMMENTS

Are the tools needed for time compression available (e.g., 
consensus techniques)?

Are the necessary skill sets available?

Is the staff time needed available?

Are the resources of the process engineering/standards 

committee available?

Because compressing software testing time is achieved 
through many small efforts, will resources be available over 
an extended period of time?

TOTAL

830 Chapter 23



831

To enhance a software testing process, you must follow an improvement plan. Tradi-
tional improvement plans focus on identifying a defective component and then mini-
mizing the impact of that defect, thus enhancing the testing process under review. This
chapter uses a significantly different approach to improvement: time compression. Time
compression drives agility. This process to add agility to software testing has proven in
practice to be much more effective than traditional process improvement methods.

This chapter explains in detail each of the seven steps needed to build agility in to
your software testing process. Each step is described in a “how-to” format. This chap-
ter assumes that a team of testers has been assigned the responsibility to build agility
into the software testing process (as discussed in Chapter 23).

Step 1: Measure Software Process Variability

A process is a method for making or doing something in which there are a number of
steps. The steps and the time required to execute those steps comprise a timeline to
produce the desired result. This chapter explains how to define and document those
steps so that they represent a software testing process timeline. In this chapter, you also
learn how to reduce variability.

Building Agility into 
the Testing Process

C H A P T E R

24



If the timeline is lengthy, or if some steps are bottlenecks, or if the steps do not per-
mit flexibility in execution, testing cannot be performed in an agile manner. Develop-
ing a software testing timeline will help identify those testing components that inhibit
agility in software testing.

Timelines

A timeline is a graphic representation of the sequence in which the steps are performed
and the time needed to execute those steps. The timeline not only shows the time
required to execute a process but also the time required for each step. It can also show
the time for substeps. Timelines enable someone who is responsible for building an
agile testing process to evaluate that process.

A process is the means by which a task is performed. Whereas in manufacturing most
processes are automated, professional processes rely much more on the competence of
the individual performing the process. A professional process consists of two compo-
nents: the people tasked with completing the process, and the process itself. The process
steps normally assume a level of competence for the individual performing the process,
and therefore much of the process need not be documented. For example, a programmer
coding in a specific language follows a process, which assumes that the programmer fol-
lowing the process is competent in that specific language. Therefore, the process does not
attempt to explain the programming language.

A poorly defined process relies much more on the competency of the individual per-
forming that process than does a well-defined process. For example, a poorly defined
requirement-gathering process may require only that the defined requirements be easy
to understand. A well-defined process may utilize an inspection team of requirement-
gathering analysts to determine whether the requirements are easily understandable.
In addition, a well-defined process may have a measurement process to measure easy-
to-understand requirements.

Normally, as processes mature, more of the process is incorporated into the steps
and less depends on the competency of the individual. Therefore, the reliance on peo-
ple performing the process tends to go down as the process matures.

As the timeline is defined, the variability inherent in the process is also defined.
Variability can include the quality of the products produced by the process, as well as
the time required to produce those products. A process with extensive variability is
considered to be “out of control,” whereas a process with acceptable variability is con-
sidered to be “in control.”

Figure 24-1 illustrates variability in the software testing process. Chart A shows a
bell-shaped curve showing extensive variability. For example, to perform a specific
task in the software testing process may take an average of 100 hours but have a vari-
ability of between 24 and 300 hours to perform that task. Chart B shows that same task
in the software testing process with minimal variability. For example, the average time
to perform that task, as illustrated in Chart B, may be 100 hours, with a range of
between 90 and 110 hours to perform that task. Thus, Chart B shows a process under
control, which is more desirable than the out-of-control process illustrated in Chart A.

832 Chapter 24



Figure 24-1 Variability in the software testing process.

Process Steps

A process step has the following attributes:

■■ A self-contained task

■■ Defined (standards) input and output (i.e., entrance and exit) criteria 

■■ The specific work task(s) necessary to convert the input product(s) to the out-
put product(s) 

■■ The quality control task(s) necessary to determine that specific work tasks have
been correctly performed

■■ The tools required 

■■ A rework procedure in case the output product does not meet exit criteria
(standards)

Workbenches

The preferred way to illustrate a process step is to define a “workbench” to perform
that step. The components of a workbench for unit testing are as follows:

■■ Input products. The input product is the software to be unit tested.

■■ Standards. The standards for unit testing are the entrance and exit criteria for
the workbench. The standards state what those test specifications must include

Average Time– + Average Time

Chart A Chart B

Process with Extreme Variance Process Under Control

– +

Building Agility into the Testing Process 833



to be acceptable for unit testing the coding workbench and the attributes of the
completed unit test (e.g., one of the exit criteria might be every branch tested
both ways).

■■ Do procedures. This would be the task(s) necessary to unit test the code.

■■ Toolbox. One tool in the unit testing toolbox might be the test data generator.

■■ Check procedures. Many check procedures might be used: One might be a rou-
tine in the test data generator, which would do a static analysis of the test. If the
test data generator indicated an error, rework would occur. In addition, a unit
test inspection process may be performed in which peers inspect the unit test
data to ensure it meets the appropriate test “standards.” 

■■ Output product. If the check procedure indicates no errors in the unit test specifi-
cations, it becomes an output product from the workbench. The output product,
then, would become the input product for integration and/or system testing.

Time-Compression Workbenches

The workbench concept needs to be expanded and used to identify causes of variabil-
ity. Figure 24-2 shows a time-compression workbench. Added to this workbench are
the activities that provide the greatest opportunity to reduce test-time variability.
These additional activities are the ones that most commonly cause variability of a soft-
ware test step.

Figure 24-2 A time-compression workbench.

Validate
Entrance
Criteria

Entrance
Criteria

• Literal
• Intent

Do Check

Exit
Criteria

• Literal
• Intent

Input

Rework

Rework Outside

Workbench

Rework Inside

Workbench

Software
Test Product(s)

In

Other

Processes/
Products

In

Worker
Competency

Tools

Product(s)
Out

to Next
Workbench

834 Chapter 24



The following four factors cause the most testing variability:

■■ Rework associated with not meeting entrance criteria. The entrance criteria
define the criteria the input products must meet to be utilized by the work-
bench. Failure to meet entrance criteria means that the previous workbench has
not met the exit criteria for that workbench.

A more common scenario is that the entrance criteria for the input are not
checked. In other words, the worker for the workbench accepts defective input
products. This means that the defects are incorporated into the workbench
activities. The net result is that the longer a defect “lives,” the more costly it is
to correct it. An obvious time-compression strategy is to check entrance criteria.

■■ Worker competency. If the worker is not competent (skill sets or in using the
work process), the probability of making defects increases significantly. Note
that using the workbench effectively also assumes the worker is competent in
using the tools in the toolbox. Therefore, an obvious time-compression strategy
is to ensure the competency of the individuals using the workbench step.

■■ Internal rework. Internal rework generally indicates either the worker is
incompetent or the processes provided to the worker are defective. In our test-
ing workbench example, if the tester did not prepare tests for all the code 
specifications and those defects were uncovered by a test inspection process,
internal rework would occur. An obvious time-compression strategy is to
reduce internal rework.

■■ External rework. External rework refers to a situation in which the worker for 
a specific workbench cannot complete the workbench without additional input
from previous workbench step(s).

Reducing Variability

Measuring testing time variability is a project. It must be recognized as a project and
managed as a project. This means that time and resources must be allocated to the
time-compression project. You can compress testing time by reducing variability.

Although preparation is needed to compress the testing effort, the actual compress-
ing project will require only minimal staff and resources. The preparation that helps
make “compressing” successful includes the following:

1. Find a “compressing” champion. Identify someone in the IT organization to be
the champion for this effort. It can be the IT director or anyone well-respected
in the IT organization. 

2. Teach those having a vested interest in compressing software test time the

process to compress testing. The champion or someone appointed by the
champion should learn the seven-step process to compress test time and pro-
vide an overview of that process to those who have a vested interest in com-
pressing testing time. Generally, those individuals are project leaders, system
designers, systems analysts, system programmers, quality assurance personnel,
testers, and standards and/or software engineering personnel. Everyone having

Building Agility into the Testing Process 835



a “stake” in compressing test time should understand the time-compression
process.

3. Find individuals to identify “compressible” components of the testing

process. Identify two to five individuals who want to be involved in compress-
ing the testing process. Generally, it should be at least two individuals, but no
more than five. They will become the “agile implementation team.”

4. Assign a budget and timeline to identify implementable time-compression

improvements to the testing process. If the individuals on the team are knowl-
edgeable about the testing process, this should require no more than two to
three days for each team member. Generally, these individuals already have an
idea about how testing might be compressed. The process that they follow will
confirm these ideas and/or identify the probable root causes for excessive test
time. Because these individuals are knowledgeable, it is recommended that they
spend approximately two to four hours per week over a four to six week period
to complete Steps 1 through 6 of the seven-step testing time-compression
process. Step 7 deals with selecting these individuals and obtaining resources
for the project.

The software testing agile implementation team needs to understand the compo-
nents of a software testing process for two reasons:

■■ To identify testing workbenches. If your organization has an immature testing
process, you may have difficulty identifying specific workbenches because they
may be integrated into larger tasks and not easily identifiable. 

■■ To help define root causes of variability. As the agile implementation team
identifies a specific workbench as one having great variability, they may have
difficulty identifying the root cause. By examining their knowledge of specific
workbench activity, the agile implementation team may be able to determine
that the root cause of variability is a lack of performing a specific activity, or
performing it in an ineffective manner.

Developing Timelines

A testing timeline shows the number of workdays needed to complete the testing. The
three tasks that need to be followed to develop a software testing timeline are as follows:

1. Identify the workbenches.

2. Measure the time for each workbench via many testing projects.

3. Define the source of major variability in selected workbenches.

Identifying the Workbenches

The workbenches that create the software testing timeline must be defined. These are
not all the workbenches in the software test process, just those that might be defined as
“the critical path.” These workbenches, if lined end to end, determine the time span to
complete the software testing.

836 Chapter 24



There may be many other workbenches in software testing that need not be consid-
ered in this timeline definition. The types of workbenches that need not be considered
include the following:

■■ Workbenches done in parallel with another workbench, but by themselves 
do not influence the timeline. For example, there may be a testing estimation
workbench that is performed in parallel with defining the testing plan work-
bench; but it is defining the testing plan workbench that is the one constraining
test time, rather than the estimating workbench.

■■ Report generation workbenches, such as time reporting, status reporting, and
so forth.

■■ Workbenches/tasks normally performed during wait time, such as software
testing documentation. Note that as the timeline is “shrunk,” some of these
workbenches may, at a later time, affect the timeline.

■■ Estimating changes to the software testing plan.

■■ Staff training/staff meetings, unless they delay the completion of a critical
workbench.

It is important to note that the process for “compressing” software testing time need
not be a high-precision exercise. For example, if a critical workbench is left out, or a
noncritical one added, it will not significantly affect the process for compressing test-
ing time. Those corrections can be made as the process is repeated over time.

The workbenches defined for the timeline may or may not be the same workbenches/
tasks/steps defined in the organization’s software testing process. The timeline work-
benches may divide a workbench in the organization software testing process, or it may
combine one or more steps/tasks in the testing process into a single workbench. What is
important is that the workbench be a critical component of software testing (in the opin-
ion of the team responsible for compressing testing).

The workbenches must be identified and defined in a sequence from the beginning
to the end of the testing process. For each workbench, the following information is
needed:

■■ Workbench name. The name may be one assigned by the software testing agile
implementation team or the name given in the organization’s software testing
process.

■■ Input(s). The entrance criteria that will initiate action for the workbench. The
names of the input(s) should be those used in your organization’s software
testing process.

■■ Workbench objective(s). The specific purpose for performing the workbench.
This should be as specific as possible and, ideally, measurable. Note that in
compressing the workbench, it is extremely important that those involved
clearly understand the objective(s) for performing that workbench.

■■ Output(s). The exit criteria for products produced by the workbench. The out-
put(s) should be identified by the name used in the organization’s software
testing process.

Building Agility into the Testing Process 837



■■ Approximate estimated timeline. This should be the number of workdays
required to execute the workbench. The agile implementation team can deter-
mine the unit of measure they desire for the timeline. It can be days, half-days,
or hours.

Once defined, this information should be transcribed to Work Paper 24-1. Note that
this work paper is representative of what is needed; the actual work paper should be
much larger.

The timeline is a completion timeline and not a person-hour timeline. In other
words, a three-day timeline is three workdays. It may, in fact, take several individuals
all working the three available workdays to complete the task in three days.

Measuring the Time for Each Workbench via Many Testing Projects

The objective of this task is to measure an approximate workbench timeline in work-
days for each workbench included in Work Paper 24-1. Note that this would normally
be done only for those workbenches that have an extended (that is, large) calendar-day
timeline. For each workbench selected to calculate the completion timeline, Work
Paper 24-2 should be completed. The objective of this work paper is to measure the
completion timeline for a specific workbench for many different projects. If historical
data is available, measuring the timeline for 10 to 20 different projects is ideal. How-
ever, in practice, most organizations calculate the timeline for fewer projects. If histor-
ical data is not available, it should be collected from projects currently being tested.

For each project for which the workbench completion timeline is being calculated,
the following information should be collected and recorded on Work Paper 24-2:

■■ Workbench name. The name assigned to the specific workbench on Work
Paper 24-1.

■■ Project. The name of the software testing project for which the completion
timeline is being documented.

■■ Start date. The calendar date that identifies when the workbench activity 
commenced.

■■ Date “do” procedures completed first time. This is the date on which the
workbench was completed if no rework was required. In other words, if every-
thing was done perfectly, this is the completion date. However, if rework was
required, that rework extends the date of completion.

■■ Date workbench completed. This is the date that the work assigned this spe-
cific workbench was completed, including any rework.

■■ No-rework delivery days. This is the number of days between the start date for
this project and the date the do procedures could have been completed the first
time if there was not rework.

■■ Actual timeline days. This is the number of workdays between the start date of
this workbench to the date the workbench was completed. 

After the workbench completion timeline data has been collected for a reasonable
number of projects, the following should be calculated:

838 Chapter 24



■■ Average no-rework timeline. The average days as calculated in the “minimum
timeline days” column. The no-rework completion timeline days are totaled 
for all the projects and divided by the number of projects to get this particular
calculation.

■■ Variability of no-rework days. The variability for the average no-rework day
timeline is the number of days that the workbench was completed earlier than
the average no-rework days and the number of days it was completed later
than the average no-rework days. For example, if the average number of days
is five and one project is completed in three days and another in eight days, 
the variability is between plus three days and minus two days.

■■ Average actual days timeline. This is calculated by totaling the days in the
“total timeline days” column and dividing by the number of projects.

■■ Variability of actual days. This is calculated by determining which project was
completed earliest and which was latest. The number of days early from the
average actual days and the number of days late produce the plus and minus
variability.

Figure 24-3 shows an example of calculating the delivery timeline for three work-
benches that performed testing. Note that to complete a timeline like this, you should
use projects of equal size and complexity (perhaps by classifying projects tested as
small, medium, or large).

Figure 24-3 Workbench completion workday timeline.

Workbench Name:

Project Timelines:

Project(s) Start Date

Date "Do"
Procedures
Completed
First Time

Date
Workbench
Completed

Minimum
Timeline

Workdays

Actual
Timeline

Workdays

A

B

C

June 1

July 30

November 3

June 18

August 30

November 18

Average No Rework Workdays Timeline:18

Average Actual Workdays Timeline:25

No Rework Workdays Variability:-4 to +8

Actual Workdays Variability:-5 to +8

14

26

14
54

18

20

33

22
75

25

June 26

September 8

December 1

             – 3 =

Building Agility into the Testing Process 839



As you can see in Figure 24-3, test planning was performed for three projects. For
each project, the Minimum Timeline Workdays is the number of workdays between the
start date and the date on which the first draft of the test plan was completed. The
actual timeline workdays for each project is the number of workdays from the start of
test planning until the test plan is complete. This example shows that the minimum
average number of workdays for test planning is 18, with a variability of minus 4 and
plus 8. The minus 4 means that some test planning projects were completed 4 days ear-
lier than the average, and one was completed 8 days longer than the average. The same
basic calculation in the example is performed for the actual timeline workdays.

Defining the Source of Major Variability in Selected Workbenches

For each workbench selected for calculating the workbench completion timeline using
Work Paper 24-2, a variability completion timeline analysis should be performed. This
analysis should be performed for both the best projects (i.e., completed in less than the
average number of workdays) and the least-efficient projects (i.e., required more than
the average number of workdays to be completed).

For projects with both the below- and above-average variability, an analysis should
be done by the agile implementation team to determine where they believe the major
source of variability occurred. For example, if a particular workbench took an average
of five workdays and one project completed it in three workdays, the agile implemen-
tation team would need to determine the source of the two-day variability. For exam-
ple, the project team that completed it in three days may have used a tool that none of
the other projects used. In this case, the tool would be the source of variability. On the
other hand, if a workbench is completed in an average of 5 workdays and one team
took 10 workdays to complete it, the source of that variability may be lack of training
or competency on the part of the individual performing the workbench. That lack of
competency would be the source of the process variability.

The workbench components on Work Paper 24-3 are those previously described in
this chapter. For the workbench being analyzed, the agile implementation team would
identify one or more of what they believe are the source(s) of variability for that work-
bench. When they identify the source, they should then attempt to determine the prob-
able cause. To complete Work Paper 24-3, the following needs to be determined:

■■ Variability analyzed. This analysis should be performed both for those projects
below the average timeline workdays and again for those projects above the
average timeline workdays. (Note: The team may decide only to evaluate the
single best and worst performances of the workbench, or it may analyze sev-
eral of the better and several of the worst performances of the workbench.)

■■ Source of variability. For each of the ten workbench components, the team
should determine whether they believe that component is or is not the source
of variability. 

■■ Root cause. For each workbench component the team believes is the source 
of variability, they should try to determine the root cause of that variability.
Again, it might be the use of a tool by one project, or the lack of training or
competence on the part of the worker in another project.

840 Chapter 24



Improvement Shopping List

The objective of performing Step 1 of the seven-step process to compress testing time
is to identify some specific components of a testing process in which you can reduce
the variability. When Work Papers 24-1 through 24-3 are complete, the agile imple-
mentation team should begin to develop a “shopping list” of potential process com-
pletion timeline improvements. Work Paper 24-4 is provided for that purpose. Note
that this work paper is also used in Steps 2 and 3. 

To complete Work Paper 24-4, the agile implementation team needs to provide the
following information:

■■ Ideas for completion time improvement. From the analysis performed on the
timeline, the team can identify the following types of potential improvements:

■■ Workbench(es) requiring a large number of workdays to complete. Large
workbenches provide opportunities for improvement. Improvements may
include dividing one workbench into two or more workbenches, providing
a better way to do it, providing a more efficient way to perform the task,
and so forth.

■■ Workbench(es) with large negative and/or positive variability. Work-
benches with large variability provide the opportunity to identify the good
and bad projects and use the techniques in the good projects to improve the
timeline or eliminate the characteristics in the workbench implementation
that are less efficiently performed.

■■ Identify the root cause of the variability. Knowing the potential cause of
variability, both positive and negative, provides an opportunity for
improvement.

■■ Experience gained from the analysis process. Sometimes when a team per-
forms an analysis and does impromptu brainstorming, they identify an
opportunity for timeline improvement.

■■ Reference number. This column is designed to let the agile implementation
team reference other documents that contain more information about improve-
ment suggestions.

■■ Priority. The agile implementation team should give its first impression as to
whether this is a good opportunity (higher priority) for timeline compression
or an idea that might provide only minimal improvement (lower priority).

Quality Control Checklist

Work Paper 24-5 is a quality control checklist for Step 1 that the agile implementation
team can use to minimize the probability of performing this step incorrectly.

If the investigation indicates that a particular aspect of this step was incorrectly per-
formed, it should be repeated. (Note: Some teams prefer to review the quality control
checklist before they begin the step to give them a fuller understanding of the intention
of this step.)

Building Agility into the Testing Process 841



Conclusion

This step has explained work processes and how an analysis of those work processes can
lead to ideas for completion timeline compression. The step has provided a tool, the
workbench concept, for analyzing each critical task in the software testing process. The
step also provided an expanded workbench for timeline compression. This expanded
workbench provides a process to identify ideas to compress the testing timeline. These
ideas are used in Step 6 to identify the specific ideas that will be turned into an improve-
ment process. The next step, Step 2, is designed to help the team identify potential causes
of weakness in the testing process.

Agile systems maximize flexibility and minimize variability. The primary purpose
of this step has been to identify the variability in the software testing process so that the
variability in those steps/tasks that would be included in an agile testing process is
minimized.

Step 2: Maximize Best Practices

When identifying the best-of-the-best practices, you can begin to move all software
testers toward maximum testing competency. Agile software testing needs best prac-
tices to be truly “agile.” When testers are proficient in the basics, (i.e., best testing prac-
tices), they can incorporate agility into those processes to perform software testing
more effectively and efficiently.

This step describes how to maximize best practices. To do so, you must consider the
skill sets of the individuals involved in testing, the testable attributes of software, and
the processes used to test the software. This step will enable you to define any capabil-
ity barriers in your organization’s software testing, determine the best practices avail-
able, and continue to develop your list of ideas for compressing time to make your
testing process more agile.

Tester Agility

The traditional role of software testers is to validate that the requirements documented
by the development team have, in fact, been implemented. This role makes two
assumptions. First, that the requirements are, in fact, what the customer/user truly
needs. Second, that part of the role of the tester is to identify, for the development team,
those requirements that have been incorrectly implemented.

Problems are associated with the testers validating the defined requirements, as 
follows:

■■ The belief that the implemented system will satisfy customer needs. This has
proven not to be so, and the result is excessive change and maintenance. 

■■ The development team will capture all the needed requirements. The fact is
that development teams tend to concentrate on functional requirements, not
quality factors.

842 Chapter 24



Quality factors are those attributes of software that relate to how the functional
requirements are implemented. For example, ease of use is a quality factor. Requirements
can be implemented in a manner that is not easy to use. However, customers/users
rarely specify an ease-of-use requirement. The quality factors may be the deciding factors
as to whether sales will be made.

Testers must change their role from validating developer-defined requirements to
representing customers/users. As this discussion continues, keep in mind these two
distinct focuses and how testers (representing users/customers) can eliminate many of
the tester capability barriers.

Software Testing Relationships

The interaction of four relationships in software testing helps to determine the agility
and the performance of testing. Each party has a perspective concerning the software
testing, and that perspective affects test team performance capabilities:

1. The customer/user. The perspective of the customer/user focuses on what they
need to accomplish, their business objectives (a subjective determination). They
may or may not be able to express these business objectives in the detail soft-
ware testers need. This perspective is often called “quality in perspective.”

2. The software development team. The development team focuses on how to
implement user requirements. They seek to define the requirements to a level
that allows the software to be developed (an objective determination). (If they
can build that software and meet the requirements, however, they may or may
not be concerned as to whether it is the right system for the user/customer.)
This is often called the “quality in fact” perspective.

3. IT management. The environment established by IT management determines
the testing methodology, methodology tools, estimating testing tools, and so
forth. The environment determines what testers can do. For example, if they do
not have an automated tool to generate test data, testers may be restricted as to
the number of test transactions they can deal with.

4. The testers. The perspective of the testers focuses on building and executing a
test plan to ensure the software meets the true needs of the user.

Operational Software

The testing capability barrier is two dimensional: One dimension is efficiency; the
other dimension is effectiveness. However, these two dimensions are affected by soft-
ware “quality factors.” Figure 24-4 shows that these quality factors affect how each
party views its role compared to another stakeholder’s perspective.

Software Quality Factors 

Software quality is judged based on a number of factors, as outlined in Figure 24-5.
These factors are frequently referred to as “success factors,” in that if you satisfy user
desire for each factor, you generally have a successful software system. These should
be as much a part of the application specifications as are functional requirements.

Building Agility into the Testing Process 843



Figure 24-4 Relationships affecting software testing.

Figure 24-5 Software attributes (quality factors).

Factor Definition

Correctness Extent to which a program satisfies its specifications and fulfills the

 user's mission objectives.

Reliability Extent to which a program can be expected to perform its intended

 function with required precision.

Efficiency The amount of computing resources and code required by a program

 to perform a function.

Integrity Extent to which access to software or data by unauthorized persons

 can be controlled.

Usability Effort required to learn, operate, prepare input, and interpret output

 of a program.

Maintainability Effort required locating and fixing an error in an operational program.

Testability Effort required testing a program to ensure that it performs its

 intended function.

Flexibility Effort required modifying an operational program.

Portability Effort required to transfer a program from one hardware

 configuration and/or software system environment to anther.

Reusability Extent to which a program can be used in other applications related

 to the packaging and scope of the functions that program performs.

Interoperability Effort required to couple one system with another.

Quality

factors

Customer/
user

Software
development

builds

software

Testers' tests

vs. true

customer/user
needs

Management's

testing &

development

environments

(constraints)

844 Chapter 24



Tradeoffs

It is incorrect to assume that with enough time and resources all quality factors can be
maximized. For example, to optimize both integrity and usability is an unrealistic expec-
tation. As the integrity of the system is improved (e.g., through more elaborate security
procedures), using the system becomes more difficult (because the user must satisfy the
security requirements). Thus, an inherent conflict is built in to these quality factors.

Figure 24-6 shows the relationship between the 11 software quality factors. Note in
this figure that a relationship exist between efficiency and most other factors.

Figure 24-7 shows the impact of not specifying or incorporating all the quality factors
in software testing. Let’s consider one quality factor: maintainability. Figure 24-7 shows
that maintainability must be addressed during software test design, code, and testing.
However, no significant impact occurs on the system test if maintainability has not been
addressed in software testing. Likewise, no impact occurs on operation, initially, if soft-
ware maintainability has not been addressed in software testing. What is crucial is that
there is a high impact, because the software needs to be revised and transitioned into
operation. Thus, a high cost is associated with software that is difficult to maintain.

Figure 24-6 Relationships between software quality factors.

FACTORS

Correctness

Reliability

Efficiency

Integrity

Usability

Maintainability

Testability

Flexibility

Portability

Reusability

Interoperability

FA
CTO

RS

Cor
re

ct
ne

ss

Re
lia

bi
lit

y

Ef
fic

ie
nc

y

In
te

gr
ity

Usa
bi

lit
y

M
ai
nt

ai
na

bi
lit

y

Te
st
ab

ili
ty

Fl
ex

ib
ili
ty

Po
rta

bi
lit

y

Re
us

ab
ili
ty

In
te

ro
pe

ra
bi

lit
y

= High = Low

If a high degree of quality is present for factor,
what degree of quality is expected for the other:

Blank = No relationship or application dependent

LEGEND

Building Agility into the Testing Process 845



Figure 24-7 The impact of not specifying software quality factors.

Life-Cycle
Phases
Factors

Requirements
Analysis

Design
Code

&
Debug

System
Test

Operation Revision Transition

Expected
Cost Saved

Vs. Cost
to Provide

Correctness

Reliability

Efficiency

Integrity

Usability

Maintainability

Testability

Flexibility

Portability

Reusability

Interoperability

= Quality factors should be measured

= Impact of poor quality is realized

Legend:

High

High

Low

Low

Medium

High

High

Medium

Medium

Medium

Low



The objective of discussing quality factors, software testing relationships, and the
relationships between quality factors and the tradeoffs of implementing such is to help
you understand some of the reasons for performance barriers. Your software testing
staffs can only develop software with a predefined effectiveness and a predefined effi-
ciency. If you intend to compress software testing time, you must understand these
barriers and incorporate them into the software testing time-compression activities.

Capability Chart

The easiest way to understand the capability barrier is to illustrate that barrier on a
capability chart, shown in Figure 24-8. This figure shows the two dimensions of the
chart: efficiency and effectiveness. Efficiency is a measure of the productivity of soft-
ware testing, and effectiveness is a measurement of whether the test objectives are
being met.

Figure 24-8 shows ten different projects. At the conclusion of each project, the pro-
ject is measured for efficiency and effectiveness. The location on the software testing
capability chart is determined by that efficiency/effectiveness measurement.

Let’s look at two examples. Project A rates very high on efficiency but low on effec-
tiveness. In other words, the test team optimized the resources available to test a pro-
ject in a very efficient manner. However, the customer of Project A is not satisfied with
the test results. Project J is just the opposite. The customer of Project J is extremely
pleased with the results, but the test team was very inefficient in testing that project.

Figure 24-8 Software testing capability chart.

Effective Software Testing
(meets customer needs)

A-J = Assessment scores for testing ten software testing projects

Efficient/
Productive

Software Testing

High

A

B

C

D
E

G

H

I

J

F

Low

Low High

Building Agility into the Testing Process 847



In an effort to compress testing time, an agile implementation team should expect that
tested projects on this chart will provide the solutions to compress testing time. For
example, the practices used in testing Project A, if they were transferable to the other proj-
ects, might result in high test efficiency. Likewise, if the practices used in Project J could
be transferred to all tested projects, there might be high customer satisfaction with all
projects. Identifying these practices is the key component of this time-compression step.

The capability barrier line illustrated in Figure 24-8 represents the best an IT test
team can do given current practices, staff competency, and management support. Agile
testers must use new and innovative practices to enable an organization to break
through their capability barrier.

A question that people ask about this capability chart is why the capability barrier
line does not represent the results of the most efficient and most effective project. Note
that if Project A were as effective as Project J, it would be outside the capability barrier
line. The reason for this is the relationship between the quality factors. As an organiza-
tion project becomes more efficient, other quality factors suffer. Likewise, if they
become more effective, the efficiency factors deteriorate. Therefore, the best compro-
mise between effectiveness and efficiency will be less than the most effective project or
the most efficient project. (Note: This is only true using current best practices. New test
practices may enable an organization to break through their testing capability barrier.)

Measuring Effectiveness and Efficiency

Measuring software testing efficiency and effectiveness involves two activities: defin-
ing the measurement criteria, and developing a metric for efficiency and a metric for
effectiveness. Completed testing projects can then be measured by these two metrics.
The result of measuring a specific software testing project is then posted to the soft-
ware testing capability chart (see Figure 24-8).

There is no single correct way to measure software testing effectiveness and effi-
ciency. The IT industry has not agreed on such a metric. On the other hand, many orga-
nizations perform these measurements regularly. The measurement is one of the
activities that should be conducted at the conclusion of a software testing project.

The correct metric for efficiency and effectiveness is a metric that is agreed on by the
involved parties. In a similar manner, there is no perfect way to measure the movement
of the stock market. However, a metric called the Dow Jones Average has been devel-
oped and agreed on by the involved parties. Thereby, it becomes an acceptable metric
for measuring stock market movement. Does everyone agree that the Dow Jones Aver-
age is perfect? No. On the other hand, there is general consensus that it is a good mea-
surement of movement of the stock market.

General rules must be followed to create an acceptable metric, as follows:

■■ Easy to understand. The metric cannot be complex. The recommendation is
that the metric range be between 0 and 100, because many measurements are
on a scale of 0 to 100.

■■ Limited criteria. If there are too many criteria involved in the metric, it
becomes overly complex. The recommendation is that no more than five 
criteria be included in the metric.

848 Chapter 24



■■ Standardized and objective criteria. There needs to be a general definition of
the criteria so that it can be used by different people and, as much as possible,
the criteria should be objective (objective meaning that it can be counted as
opposed to making a judgment). 

■■ Weighted criteria. All criteria are not equal. Therefore, the metric should
weight criteria. The most important criteria should get the most weight.

Defining Measurement Criteria

The most common way to measure software testing effectiveness is to determine
whether testers can validate the presence or absence of the development team’s
defined requirements. In this case, four different metrics enable you to measure soft-
ware testing effectiveness, as follows:

Requirements tested and found correct.

Requirement does not execute as specified.

Requirement is missing.

Requirement found in tested software, but not specified by development team.

Measuring Quality Factors 

The quality factor of “correctness” refers to testers validating whether the require-
ments specified by the development team work. However, the quality factor of cor-
rectness does not include all the other quality factors that the test team should be
addressing. For example, it does not address whether the software is maintainable.
Note that the software can be implemented with all the functional requirements in
place and working, but cannot be efficiently or effectively maintained because the soft-
ware was not built with maintenance in mind. For example, the logic may be so com-
plex that it is difficult for a maintainer to implement a change in the software.

If the tester represents the customer/user, the tester’s responsibility may include
testing some or all of the quality factors. This is generally determined in the relation-
ship of the tester to the customer/user. If the tester is to evaluate more than the cor-
rectness quality factor, additional effectiveness criteria must be determined and used.

The generally accepted criteria used to define software quality are as follow:

■■ Traceability. Those attributes of the software that provide a thread from the
requirements to the implementation with respect to the specific testing and
operational environment.

■■ Completeness. Those attributes of the software that provide full implementa-
tion of the functions required.

■■ Consistency. Those attributes of the software that provide uniform design and
implementation techniques and notation.

■■ Accuracy. Those attributes of the software that provide the required precision
in calculations and outputs.

■■ Error tolerance. Those attributes of the software that provide continuity of
operation under non-nominal conditions.

Building Agility into the Testing Process 849



■■ Simplicity. Those attributes of the software that provide implementation of
functions in the most understandable manner (usually avoidance of practices
that increase complexity).

■■ Modularity. Those attributes of the software that provide a structure of highly
independent modules.

■■ Generality. Those attributes of the software that provide breadth to the func-
tions performed.

■■ Expandability. Those attributes of the software that provide for expansion of
data storage requirements or computational functions.

■■ Instrumentation. Those attributes of the software that provide for the mea-
surement of usage or identification of errors.

■■ Self-descriptiveness. Those attributes of the software that provide explanation
of the implementation of a function.

■■ Execution efficiency. Those attributes of the software that provide for mini-
mum processing time.

■■ Storage efficiency. Those attributes of the software that provide for minimum
storage requirements during operation.

■■ Access control. Those attributes of the software that provide for control of the
access of software and data.

■■ Access audit. Those attributes of the software that provide for an audit of the
access of software and data.

■■ Operability. Those attributes of the software that determine operation and pro-
cedures concerned with the operation of the software.

■■ Training. Those attributes of the software that provide transition from current
operation or initial familiarization.

■■ Communicativeness. Those attributes of the software that provide useful
inputs and outputs that can be assimilated.

■■ Software system independence. Those attributes of the software that deter-
mine its dependency on the software environment (operating systems, utilities,
input/output routines, etc.).

■■ Machine independent. Those attributes of the software that determine its
dependency on the hardware system.

■■ Communications commonality. Those attributes of the software that provide
the use of standard protocols and interface routines.

■■ Data commonality. Those attributes of the software that provide the use of
standard data representations.

■■ Conciseness. Those attributes of the software that provide for implementation
of a function with a minimum amount of code.

850 Chapter 24



The software criteria listed here relate to the 11 software quality factors previously
described. Figure 24-9 shows this relationship. For each of the factors, this figure shows
which software criterion should be measured to determine whether the software factor
requirements have been accomplished.

Note that some of the software criteria relates to more than one quality factor. For
example, the modularity criterion is included in six of the factors, and consistency in
three. As a general rule, you could assume that those criteria that appear most fre-
quently have a higher relationship to the overall quality of the application system than
do those criteria that appear only once. On the other hand, if the user rated a specific
quality factor very high in importance, and that factor had a criterion that appeared
only once, that criterion would be important to the success of the application as viewed
from a user perspective.

The quality factors and the software criteria relate to the specific application system
being developed. The desire for quality is heavily affected by the environment created
by management to encourage the creation of quality products. An environment favor-
able to quality must incorporate those principles that encourage quality.

Figure 24-9 Software criteria and related quality factors.

Factor Software Criteria Factor Software Criteria

• Correctness

• Reliability

• Efficiency

• Integrity

• Usability

• Maintainability

• Flexibility

Traceability
Consistency

Completeness

Error Tolerance

Consistency
Accuracy
Simplicity

Storage Efficiency
Execution Efficiency

Access Control
Access Audit

Operability
Training

Communicativeness

Consistency

Modularity
Generality

Expandability

• Testability

• Portability

• Reusability

• Interoperability

Simplicity
Modularity

Instrumentation
Self-descriptiveness

Modularity
Self-descriptiveness

Machine
Independence

Software System
Independence

Generality
Modularity

Software System
Independence

Modularity
Communication
Commonality

Data Commonality

Building Agility into the Testing Process 851



Defining Efficiency and Effectiveness Criteria

Efficiency has sometimes been defined as “doing the job right”; and effectiveness has
sometimes been defined as “doing the right job.” Because of the lack of standards, IT
metrics, and common software testing processes, it is difficult to reach agreement on
efficient versus inefficient testing. For example, one would like an efficiency measure,
such as X hours to test a requirement. However, because requirements are not equal, a
requirement weighting factor would have to be developed and agreed on before this
efficiency criteria could be used.

The lack of industry-accepted efficiency metrics should not eliminate the objective
to measure testing efficiency.

There are many ways to measure software testing efficiency. One is the efficiency
within the testing process. For example, do testers have the appropriate skills to use the
testing tools? Does management support early involvement of testers in the develop-
ment project? Are the testing processes stable and do they produce consistent results?
Another way to measure software testing efficiency is the efficiency of the process itself. 

Measuring Effectiveness

Measuring effectiveness of software testing normally focuses on the results achieved
from testing. The generally acceptable criteria used to define/measure the effective-
ness of testing are as follows:

■■ Customer satisfaction. How satisfied are the software customers with the
results of software testing.

■■ Success criteria. Customers predefine quantitative success criteria. (If testers
meet those criteria, it will be considered a successful project.)

■■ Measurable test objectives. Objectives stated in a manner that can be mea-
sured objectively so that it can be determined specifically whether the objec-
tives are achieved.

■■ Service-level agreement. The contract between the customer and the testers as
to the expected results of the testing efforts, how it will be measured, responsi-
bilities in completing the testing, and other criteria considered important to the
success of the test effort.

■■ Inconsistency between the test and customer culture. If customer and tester
cultures are of different types, this can impede the success of the project. For
example, if the customer believes in using and complying with a process, but
testers do not, conflicts can occur. Step 5 addresses these culture differences.

Measuring Efficiency

Generally acceptable criteria used to define/measure software testing efficiency are as
follows:

■■ Staff competency. Train staff members in skills necessary to perform those
tasks within the software testing process. (For example, if staff members use a
specific automated test tool, the staff members should be trained in the usage
of the tool.)

852 Chapter 24



■■ Maturity of software testing process. Usually a commonly accepted maturity
level, such as the levels in SEI’s CMMI.

■■ Toolbox. The software testing effort contains the tools needed to do the testing
efficiently.

■■ Management support. Management support of the use of testing processes and
tools, meaning that management requires compliance to process and compli-
ance to the use of specified tools, and rewards based on whether processes are
followed and tools are used efficiently.

■■ Meets schedule. The software testing is completed in accordance with the
defined schedule for software testing.

■■ Meets budget. The software testing is completed within budget.

■■ Software test defects. The number of defects that software testers make when
testing software.

■■ Software testing rework. The percent of the total test effort expended in
rework because of defects made by solution testers.

■■ Defect-removal efficiency. The percent of developer defects that were identi-
fied in a specific test phase as compared to the total number of defects in that
phase. For example, if the developers made 100 requirement defects during 
the requirement phase, and the testers found 60 of those defects, the defect-
removal efficiency for the requirements phase would be .6, or 60 percent.

■■ Percent of deliverables inspected. The criteria transferred from validation to
verification, removing defects at a point where they are cheaper to remove.

■■ Software testing tool rework. The amount of resources consumed in using
testing tools because of defects in those tools (or defects in how those tools
were used).

Building Effectiveness and Efficiency Metrics

The agile implementation team should select the criteria used to measure the effective-
ness and efficiency of the testing process. They should select what they believe are rea-
sonable measurement criteria for both efficiency and effectiveness. These can be taken
from the criteria examples described in this step or from criteria agreed on by the agile
implementation team. They should document the criteria selected. 

The measurement criteria should be recorded on Work Paper 24-6 and should
include the following:

Criteria name

Description

Efficiency

Effectiveness

Rank

Building Agility into the Testing Process 853



After the agile implementation team has agreed on the criteria used to measure test
efficiency and effectiveness, they need to rank those criteria. The ranking should be a
two-part process:

1. Rank the criteria high, medium, or low. (Those ranked high are the best criteria
for measurement.)

2. Starting with the high criteria, select no more than five criteria for efficiency
and five for effectiveness. Note: These do not have to be those ranked high, 
but those ranked high should be considered before those ranked medium.

Both the efficiency and effectiveness metrics are developed the same way. It is rec-
ommended that three to five criteria be used. Then the criteria must be measurable.
Use the following method to do that:

1. A method for calculating a criteria score must be determined. It is recom-
mended that the calculated score for individual criteria be a range of 0 to 100.
This is not necessary, but it simplifies the measurement process because most
individuals are used to scoring a variable using a range of 0 to 100.

2. The criteria used for efficiency or effectiveness must then be weighted. The
range should total 100 percent. For example, if there are five criteria and they
all weighted equally, they each will be given a 20 percent rating or 20 percent 
of the total effectiveness or efficiency score.

3. To calculate a specific efficiency or effectiveness score for a project, the criteria
score is multiplied by the weighting percentage to produce an efficiency or
effectiveness score. The individual scores for efficiency and effectiveness are
added to produce a total score.

Work Paper 24-7 is designed to record the criteria score and weighting. You can also
use this work paper to calculate a total effectiveness and efficiency score for the
selected software testing projects.

Figure 24-10 shows an example of an efficiency and effectiveness metric. For both
efficiency and effectiveness, three criteria are defined. For each criterion, a method to
calculate the criteria score has been determined. The criteria score is then multiplied by
the weighting percentage, and Figure 24-10 shows a project example efficiency score of
76 percent and an effectiveness score of 80 percent. 

After Work Paper 24-7 has been developed, the efficiency and effectiveness score for
a reasonable number of software testing projects should be calculated. These can be
historical projects or projects that will be completed in the near future. Those scores are
then posted to Work Paper 24-8. Each project is to be posted to the intersection of the
efficiency score and effectiveness score. Figure 24-10 shows an example of this posting.
(Note: The circled criteria scores are the ones assigned for this “Project Example.”)

Identifying Best Practices from Best Projects

The projects that score best in efficiency and the projects that score best in effectiveness
should be selected for analysis. The agile implementation team should analyze those
projects to determine the practices that cause some to be most efficient and some to be

854 Chapter 24



most effective. If the agile implementation team is knowledgeable in the software test-
ing methodology, and has in-depth discussions with the test teams whose projects are
either efficient or effective, the best practices can usually be identified.

Figure 24-10 Examples of an effectiveness and efficiency metric.

Software Project Name:

Measuring
Effectiveness

Measuring Efficiency

Efficiency Criteria

DRE during
requirements
and design phases

Number of tester
defects per function
point

Percent of
Deliverables Inspected

Reliability

Uncorrected detected
errors at date of
operation

User satisfaction

Method to Calculate
Criteria Score

Defect Removal
Efficiency

95% DRE = 100%

85-95%
DRE = 70%

less than 85%
DRE=30%

Number of Defects

3 to 4/FP = 70%
5 6o 6/FP = 40%

more than 7/FP = 20%

90 to 100% = 70%
75 to 89% = 75%

Method to Calculate
Criteria Score

System Uptime (first
month of operation)
99 to 100% = 100%

95 to 97% = 50%
less than 95% = 10%

Number of detected
errors uncorrected

Fewer than 5 = 100%

11 to 20 = 40%
more than 20 = 10%

User survey in which
user rates testing effort 1

to 100%

Example 80%

under 60% = 10%

Weight

Project Example

Efficiency Score

30%

Total: 100%

Total Efficiency Score:

Total: 100%

Total Efficiency Score:

21%

40% 40%

30% 15%

20% 16%

30% 24%

50% 40%

80%

Weight Effectiveness Score

76%

Less than
2/FP = 100%

60 to 74% =

98 to 99% =

6 to 10 =

Building Agility into the Testing Process 855



The best practices identified should be posted to Work Paper 24-9. The information
posted should include the following:

■■ Best practice. The name of the best practice, which may be named by the project
team or it may be a specific commonly used best practice.

■■ Description. The description should clearly state the objective of the best 
practice.

■■ Project used in. The name of the software testing project that used this practice
so that the project team can be consulted if more information is needed.

■■ Application efficiency/effectiveness. Indicate whether this is a best practice
that improves efficiency or effectiveness. Check the appropriate column.

By using these practices the software testing process can become more agile.

Improvement Shopping List 

The end objective of performing Steps 1 through 3 of the seven-step process is to iden-
tify the specific components of a software testing process where the timeline can be
reduced. 

Work Paper 24-9 has identified the potential best practices for compressing software
testing time. The practicality of using these best practices should be investigated.
Those that the agile advancement team believes would enhance the agility of the soft-
ware testing process should be identified as software testing agile best practices and
posted to Work Paper 24-10. 

To complete Work Paper 24-10, the agile implementation team needs to provide the
following information:

■■ Best practices for time improvement. From the analysis performed on the best
practices, the team can identify those best practices that, if used in new testing
projects, should result in improved agility in testing.

■■ Reference #. This column is designed to let the agile implementation team ref-
erence other documents that contain more information about the idea sug-
gested for improvement.

■■ Priority. The agile implementation team should give their first impression as to
whether this is a good opportunity for timeline compression or an idea that
might provide only minimal improvement. 

Quality Control Checklist

Step 2 is an important aspect of compressing software testing time. A misunderstand-
ing of the process or making an error in the performance of Step 2 can lead to missed
opportunities to compress software testing time. A quality control checklist is provided
for the agile implementation team to use to minimize the probability of performing
this step incorrectly.

856 Chapter 24



Work Paper 24-11 is a quality control checklist for Step 2. The investigation should
focus on determining whether a specific aspect of the step was performed correctly or
incorrectly.

Individuals should first review and answer the questions individually. Then the
agile implementation team should review these questions as a team. A consensus Yes
or No response should be determined. “No” responses must be explained and investi-
gated. If the investigation indicates that the particular aspect of the step was incor-
rectly performed, it should be repeated. (Note: Some teams prefer to review the quality
control checklist before they begin the step to give them a fuller understanding of the
intention of this step.)

Conclusion

The objective of this step is to identify those best practices that, when implemented in
new projects, will “compress” software testing time. The method to identify these best
practices is to develop a metric that scores the effectiveness and efficiency of completed
software testing projects. Those projects that scored high in efficiency are candidates to
contain practices that will improve efficiency in future testing efforts. Those projects
that scored high in effectiveness are candidates to contain best practices that will
improve the effectiveness of future testing projects. By focusing on improving effec-
tiveness and efficiency of the software testing effort, the total completion time should
compress. The product of this step is a list of best practices identified as ideas or can-
didates to use to compress software testing time. The next step focuses on assessing the
strengths and weaknesses of the existing software testing process.

Step 3: Build on Strength, Minimize Weakness

After determining the software testing process timeline and determining the testing
process best practices, it is time to take an overall look at the software testing process.
This will be done by conducting a macro self-assessment of the process. The objective
is to identify the major strengths and weaknesses of the process. All projects should
capitalize on the strengths and minimize the weaknesses. Doing so can help compress
software testing delivery time.

Effective Testing Processes

Software development processes were developed years before much effort was
expended on building software testing processes. Even today, many organizations have
loosely defined testing processes. In addition, many computer science curricula do not
include software testing as a topic. This step defines four criteria for an effective soft-
ware testing process, and provides you with an assessment to evaluate your software
testing process against those criteria.

It is common today to relate effectiveness of a process to the maturity of the process,
maturity meaning primarily that variability is removed from the process. This means

Building Agility into the Testing Process 857



that each time the process is performed, it produces similar results. For example, if an
IT organization desires a defect-removal efficiency of 95 percent in the requirements
phase, a process that meets that objective time after time is considered a mature or
effective process.

Software testing process characteristics make some more effective than others. In
simplistic terms, the answers to these questions will help you determine the effective-
ness of a process:

1. Does the software testing process do the right thing?

2. Does the software testing process do the thing right? In other words, is the soft-
ware testing process efficient?

The five primary components of a software testing process are as follows:

1. Create an environment conducive to software testing.

2. Plan the testing.

3. Execute the task in accordance with the plan.

4. Analyze the result and report the results to software stakeholders.

5. Analyze the test results to improve the testing process based on that analysis.

Efficient test processes perform those five components with minimal resources.
They do the work “right the first time.” This means that there are minimal defects and
minimal rework performed by the software testers.

When software testing is treated as an art form, and depends on the experience and
judgment of the testers, it may or may not be effective and efficient. If it is effective and
efficient, it is primarily because of the competency of the individual testers. However,
when a test process is people dependent, it is not necessarily repeatable or transferable
between projects.

Assessing the Process 

An inefficient software testing process tends to expand the software testing delivery
time. Fine-tuning the process so that it is efficient will compress the testing time. The
purpose of an assessment is to identify the strengths and weaknesses of your specific
testing process. (Note again that as you focus on efficiency, effectiveness is a by-product
of that effort.)

Work Paper 24-12 provides the assessment items that include the three primary
components of the software tester’s workbench (which represent the process to do
work and the process to check work). However, assessment emphasizes those aspects
of making processes effective (determining whether testers will do and check work in
accordance with the process, and whether those Do and Check procedures are effec-
tive). These three components that make processes work are: management commit-
ment to software testing processes, the environment established by management in
which software testers perform their work, and management’s support and allocation
of resources to continuously improve the software testing process.

The time-compression team should use this self-assessment questionnaire to self-
assess their software testing process. They should do this as follows:

858 Chapter 24



1. Read each item individually aloud as a team. 

2. Have the team discuss the item to ensure a consensus of understanding. 

3. Reach consensus on a Yes or No response to the item. If consensus cannot be
reached, then a No response should be recorded.

Software testers face many unique challenges. The root cause of these challenges is
often the organizational structure and management’s attitude toward testing and testers.
In many organizations, testers have lower job classifications and pay than developers.
Many IT managers consider testing an annoyance and something that will be complete
in whatever time is available between the end of development and the commencing of
operational status for the software.

Developing and Interpreting the Testing Footprint 

At the conclusion of assessing the five criteria in Work Paper 24-12, total the number of
Yes responses in each criterion. Then post the number of Yes responses to Work Paper
24-13. This work paper is a software testing process assessment footprint chart. To
complete this chart, put a dot in the criteria line that represents the number of Yes
responses for that category. For example, if in category 1 (i.e., management commit-
ment to quality software testing), you have two Yes responses, put a dot on the line on
the number 2 circle. After posting the number of Yes responses for all five categories,
draw a line between the five dots. The connection of the five dots results in a “foot-
print” that illustrates the assessment results of your software testing process. Explain
your No responses in the Comments column.

Three footprint interpretations can be easily made, as follows:

■■ Software testing process weaknesses. The criterion or criteria that score low 
in the number of Yes responses are areas of weakness in your software testing
process. The items checked No indicate how you could strengthen a particular
category.

■■ Software testing process strengths. Those criteria that have a high number of
Yes responses indicate the strengths of your software testing process. Where
your software testing process is strong, you want to ensure that all of your soft-
ware testing projects benefit from those strengths.

■■ Minimal variability of strengths and weaknesses. Building an effective process
involves moving the footprint envelope equally in all five criteria toward the five
Yes response levels. The management commitment criterion would push the
other four criteria in the right direction. However, there should not be significant
variability between the five criteria. Ideally, they will all move outward toward
the five Yes response levels one level at a time.

Examples of the type of analysis that you might make looking at this footprint are as
follows:

1. If you scored a 5 for management commitment to the process, but the other cat-
egories are low in Yes responses, this indicates not “walking the walk” in uti-
lization of an effective software testing process.

Building Agility into the Testing Process 859



2. When there is a wide discrepancy between the numbers of Yes responses in dif-
ferent categories, it indicates a waste of resources. For example, investing a lot
in the Do procedures for the process, but not building an effective environment,
does not encourage consistency in use.

It is generally desirable to have the time-compression team evaluate their software
testing footprint. They need to look at the footprint, draw some conclusions, discuss
those conclusions, and then attempt to reach a consensus about them.

Poor Testing Processes

If a worker is given a poor process, that process reduces the probability of the individ-
ual being successful at performing the work task. Rather than the work task support-
ing success, the worker must modify, circumvent, or create new steps to accomplish
the work task. In other words, the worker is diverted from doing an effective software
testing job because of the time-consuming activity of surviving the use of a poor work
process.

The objective of this self-assessment is to emphasize that work processes are much
more than just the steps the software tester follows in performing the work task. For a
work task to be effective, management must be committed to making that work
process successful; management must provide the resources and training necessary to
ensure worker competency and motivation in following the process; and management
must provide the resources and skills sets needed to keep the software testing process
current with the organization’s business and technical needs.

If that work process is enhanced using the principles of agile work processes, the
workers will have the competency, motivation, empowerment, and flexibility needed
to meet today’s software testing needs.

Improvement Shopping List

At the conclusion of the self-assessment process, the time-compression team should
identify ideas for workday timeline improvements to your software testing process.
Consider all category items assessed with a No response as a potential improvement
idea. Record these ideas on Work Paper 24-14. 

Quality Control Checklist

Work Paper 24-15 is a quality control checklist for Step 3. The quality control investi-
gation should focus on determining whether a specific aspect of the step was per-
formed correctly or incorrectly.

The agile implementation team should review these questions as a team. A consen-
sus Yes or No response should be determined. “No” responses should be explained
and investigated. If the investigation indicates that the particular aspect of the step was
incorrectly performed, it should be repeated. (Note: Some teams prefer to review the
quality control checklist before they begin the step to give them a fuller understanding
of its intention.)

860 Chapter 24



Conclusion

This step has proposed a process to self-assess the software testing process to identify
ideas to compress testing delivery time. The step provided the criteria associated with
effective software testing processes. These effectiveness criteria were converted to a soft-
ware testing self-assessment work paper. The result of conducting the self-assessment
was to develop a software testing process footprint. This footprint, coupled with the
results of the self-assessment, should enable the agile implementation team to develop
many ideas for compressing software testing delivery time.

Step 4: Identify and Address Improvement Barriers

Many good ideas are never implemented, because barriers and obstacles associated
with the ideas cannot be overcome. If the implementation attempt is undertaken with-
out fully understanding the barriers and obstacles, success is less likely. Therefore, it is
essential, if software testing time compression is to be effective, that these barriers and
obstacles be understood and addressed in the implementation plan.

The software testing agile implementation team will face two types of barriers when
attempting to compress testing time: people barriers and organizational/administrative
barriers. Both can impede progress. This step identifies a process to identify both barri-
ers, and provides guidance for the agile implementation team on how these barriers
and obstacles might be addressed. According to the dictionary, a barrier and an obstacle
are approximately the same thing. Both terms are used in this step to highlight the
importance of identifying and addressing anything that reduces the probability of effec-
tively reducing delivery time.

Organizations consist of people. The people have different wants and desires, which
will surface when change is imminent. People not only normally resist change, they
also have many techniques to stop change or turn change in a different direction.

The Stakeholder Perspective

The activity of compressing software testing time involves changing the way people
do work. Thus, these individuals have a “stake” in the change happening or not hap-
pening. Individuals react differently as they consider what is their stake in the time-
compression effort.

An important component in the people barrier concept is the “WIIFM” concept.
WIIFM stands for “What’s in it for me?” If an individual cannot identify WIIFM in a
proposed change, he or she will either not help the change occur, or will openly resist
the change. Individuals have four different reactions to change:

■■ Make it happen. An individual having this stake wants to be a driving force in
reducing software testing delivery time. This person is willing to assume a
leadership role to make change happen.

■■ Help it happen. This individual does not want to lead the change, but will
actively support the change. That support is expressed in a willingness to help

Building Agility into the Testing Process 861



change happen. In other words, if there is an assignment to help compress soft-
ware testing time, the individual will work on activities such as data gathering,
building solutions, writing new software testing procedures, and so forth to
help compress software testing time.

■■ Let it happen. This individual neither supports nor objects to the change. 
However, this individual will view that there is nothing in the change for them.
Whether the change occurs or not, it is not important to them. They will neither
support nor resist the change.

■■ Stop it from happening. This individual does not believe that the change is
worthwhile, or the individual just objects to the change. This individual may
openly object to the change and take whatever action possible to stop the
change from happening. Or even worse, some of these individuals outwardly
support the change but quietly work hard to stop the change from happening
by raising barriers and obstacles.

The agile implementation team must identify the key individuals in the activities for
compressing software testing time and determine what stake they have in the change.
These individuals usually include the following:

■■ IT management

■■ Testers

■■ User management

■■ Quality assurance/quality project leaders

■■ Control personnel

■■ Software designers

■■ Administrative support

■■ Programmers

■■ Trainers

■■ Test managers

■■ Auditors

It may be desirable to identify these individuals by name. For example, list the indi-
vidual names of IT management. This should be done whenever the individual is con-
sidered personally involved in the change or can influence a change. In other instances,
the stakeholders can be grouped (for example, testers). If the agile implementation
team determines that the testers all have approximately the same stake in the change,
they do not need to name them individually.

In viewing which stake an individual has, the agile implementation team must care-
fully evaluate the individual’s motives. For example, some individuals may outwardly
support compressing software testing time because it is politically correct to do so.
However, behind the scenes, they may believe that the wrong group is doing it or it is
being done at the wrong time, and thus will openly support it, but are in fact, in the
“Stop It From Happening” stakeholder quadrant.

862 Chapter 24



Stakeholder Involvement

After reading the preceding section, you might have this logical question: “Why are so
many stakeholders involved in software testing?” The answer is that the goal of soft-
ware testing is to identify defects and deficiencies in the software. Because someone is
potentially responsible and accountable for those defects, they are concerned about
how software testing is performed, what software testing does, and how and to whom
the defects will be reported.

Let’s just look at a few examples. If developers and programmers are most likely the
individuals responsible for those defects, they potentially consider testers as affecting
their performance appraisal. Project leaders may consider the testers as “that group”
that is delaying the implementation of the software. IT management may consider
testers as the group that stops them from meeting their budgets and schedules. While
believing that it is important to identify defects and deficiencies before software goes
into operation, they may also believe it is more important to get the software into oper-
ation than to complete a test plan.

The bottom line is that as testing becomes more effective and efficient, resistance to
testing may increase. This is because testers are identifying more defects. What this
means is that the stakeholders’ involvement in change is an important component in
making the software testing process more effective and efficient. Testers should not
believe that just because they are testing more effectively and efficiently that their
changes will be welcome by those having a stake in the testing.

Performing Stakeholder Analysis 

The agile implementation team needs to do the following to analyze the various stakes
held by those who have a vested interest in the change. Work Paper 24-16 is designed
to document this analysis.

1. Identify the stakeholder. This can be the name or the function (for example,
the name Pete Programmer or the users of the software).

2. Identify the current stake. For that individual or function, determine which of
the four stakeholder quadrants that individual is in (for example, the “Make It
Happen” stake).

3. Document the reasons the individual has that stake. The agile implementa-
tion team must carefully analyze and document why they believe an individual
has that stake. For example, testers may be in the “Stop It From Happening”
stake because they believe that by compressing time, the organization will 
need fewer testers.

4. Identify the desired stake for the individual or function. If the individual/
function does not have what the agile implementation team believes is the cor-
rect stake to make change happen, the team must decide which stake is the most
desirable for making the change occur. For example, if the software designers are
in the “Stop It From Happening” stake, the team may want to move them to the
“Let It Happen” stake. In addition, if there are two or more individuals in the

Building Agility into the Testing Process 863



“Make It Happen” stake, to avoid leadership conflict, one of the leaders should
be moved to the “Help It Happen” stake.

5. Develop a plan to address stakeholder barriers. If an individual or function 
is not in a desired stake, a plan must be developed to move that individual/
function to the desired stake. For example, moving the software designers from
the “Stop It From Happening” stake to the “Let It Happen” stake might occur 
if the agile implementation team can assure them that the amount of time allo-
cated for software designing will not be reduced.

Red-Flag/Hot-Button Barriers

This people barrier is highly individual. A red flag or hot button is something that
causes a negative reaction on the part of a single individual. It is normally associated
with someone in a management position, but can be associated with anyone who can
exercise influence over the successful completion of a compression project. An indi-
vidual, for a variety of reasons, may be strongly against a specific proposal. For exam-
ple, if an improvement approach is assigned to “reduce defects,” the word defect may
raise a red flag with a specific individual. They do not like the word. They prefer words
such as problem or incident. Thus, by changing a word, a red flag can be avoided.

Other examples of red flags/hot buttons include the following:

■■ Changing a procedure that was developed by an individual who likes that pro-
cedure and wants to keep in place.

■■ People who do not like anything that was not “invented here.”

■■ The individual or group proposing the change is not liked, and someone does
not want them to get credit for anything.

■■ The idea has been tried before. Some people believe that because something
was tried before that a variation or additional attempt to do the same thing will
result in failure.

■■ Not the way I like it done. Some individuals want extreme formal approval
processes to occur before any change happens. This means rather than taking 
a “fast track” process to compressing software testing time, they want it care-
fully analyzed and reviewed by multiple layers of management before any-
thing happens.

Document these red flag/hot button barriers on Work Paper 24-17.

1. Barrier/obstacle/red flag. Name the barrier/obstacle/red flag in enough detail
so it is understandable.

2. Source. The name of the individual or condition creating the barrier/obstacle/
red flag.

3. Root cause. What is the reason that the barrier/obstacle/red flag exists.

4. How to address. The team’s initial idea to overcome the barrier/obstacle/
red flag.

864 Chapter 24



Staff-Competency Barriers

Changes to the software testing process that can compress software testing time may
be desirable, but the existing skills must be available if the implementation of the
change is to be successful. In some instances, this is judgment; for example, the manual
work process needs to be changed, and the agile implementation team believes for that
specific process no one in the IT organization has the needed skills. In other instances,
missing skills are obvious. For example, a new tool is recommended, but no one in that
organization knows how to use that tool.

Document these competency barriers on Work Paper 24-17.

Administrative/Organizational Barriers

In many instances, the administrative procedures are organizational barriers that
inhibit change. Many believe that these administrative and organizational barriers are
designed to slow change. Some people believe that rapid change is not good, and by
imposing barriers they will cause more analysis before a change is made. Also, delay-
ing implementation will enable all individuals to make known any personal concerns
about the change.

A partial list of the administrative and organizational barriers that can inhibit com-
pressing software testing time follows:

■■ Funding. Funds are not available to pay for making the change happen. For
example, overtime may be needed, new tools may need to be acquired, special-
ized training contracted for, and so forth. Some of these money constraints are
real, and others represent individual priorities. For example, if you invite some-
one to go to dinner with you, but they decline because they cannot afford it, it
may mean they cannot afford it, but it also may mean that they have higher 
priorities for using their funds.

■■ Staff. The individuals needed to develop and implement a change may have
no time available. Staff resources may be committed to current projects, and
therefore a request that new projects be undertaken may be declined because
no staff is available to implement them.

■■ Improvement approvals. Approval by one or more individuals may be required
before work can be performed. Although the approval process is designed to
stop unwanted consumption of resources, it can also inhibit activities that are not
desired by the individual authorized to approve those activities. The approval
process also gives an individual the opportunity to “sit” on this request to delay
the activity until involved individuals become discouraged. If the approval
process involves two or more people, delays are built in to the process, which 
can also discourage individuals from taking action.

■■ Paperwork. Sometimes individuals who want to undertake a work activity
might be required to complete a proposal form to have the work done. The
organization may have a procedure that indicates how to complete a proposal
request. Some of these can include developing budgets and schedules, naming

Building Agility into the Testing Process 865



involved parties and affected parties, listing the steps to be performed, identi-
fying the controls built in to the process, and so forth. The paperwork itself
might discourage an individual from undertaking a voluntary activity; but
when the paperwork is coupled with the approval process, which can delay
approval because the paperwork is not properly completed, good projects can
be stopped from occurring.

■■ Organizational turf. Questions may arise as to who has the authority to under-
take a project. Third parties sometimes become involved in a project because
they believe that their “organizational area” is the one that should undertake
the project. For example, if a software testing team decides to improve a testing
process, but the quality assurance or process engineering group believes that it
is their “turn” to improve processes, they might object to the agile development
team doing it and thus delay or kill the project.

■■ Value received. Sometimes individuals must demonstrate the value they expect
to receive from undertaking the work activity. This may involve accounting pro-
cedures with detailed return on investment calculations. Sometimes the return
on investment calculation must be submitted to the accounting department for
review. In many instances, it is easier to eliminate seven workdays from the
software testing time than it is to demonstrate quantitatively the value that will
be received from undertaking the time-compression project.

■■ Priorities. Individuals and groups have priorities that they believe are the way
in which work should be performed. If a time-compression project does not fit
into that prioritization scheme, they will want to delay the time-compression
project to deal with their priorities. Obviously, work priorities tend to take
precedence over process-improvement priorities. This means that there is
always enough time to correct that work but never enough time to eliminate
the problem that causes bad work.

The organizational and administrative barriers should also be documented on Work
Paper 24-17. At this point, it is unimportant whether a specific barrier/obstacle will
stop a time-compression project. It is important to list as many barriers and obstacles
as the agile implementation team feels might affect any time-compression project. 
The relationship between a specific barrier/obstacle and a specific time-compression
project will be addressed when a plan is developed to implement a specific time-
compression idea.

Determining the Root Cause of Barriers/Obstacles 

The barrier/obstacle cannot be adequately addressed until the root cause is determined.
Likewise, the barrier/obstacle will continue to exist until the root cause of the barrier/
obstacle has been addressed. The process of determining the root cause is an analytical
process.

Consider an example. Assume the agile implementation team believes that a new
software testing estimating tool will create a better estimate for software testing, in that
it will allocate the appropriate time needed for defining software testing objectives.
The agile implementation team may believe that if the testing objectives are better

866 Chapter 24



defined, they will “compress” the remainder of the software testing time. When the
idea is presented for approval, the involved manager indicates that no funds are avail-
able to acquire the estimation tool. One might assume that the lack of funds is the root
cause. However, when an analysis is done, it becomes obvious that the approving
manager does not want that specific estimating tool, but prefers the current estimation
method. If the agile implementation team focuses on obtaining funding, the tool will
never be acquired. If team members identify the root cause as the manager’s resistance
to the tool, their efforts will focus on convincing the manager that the tool will be ben-
eficial. If they address that root cause, the funds might become available.

Work Paper 24-18 is the recommended analysis method the agile implementation
team should undertake to identify the root cause for a specific barrier or obstacle. It is
also called the “Why-Why” analysis. One of these work papers should be used for each
barrier/obstacle listed on Work Paper 24-17 that the team believes should be analyzed
to identify the root cause. 

The agile implementation team then begins the “Why-Why” analysis. Let’s revisit the
previous example. The barrier/obstacle is the inability to obtain management approval
because of lack of funding. The agile implementation team then begins to ask the ques-
tion “Why?” In this example, it would say “Why can’t we get management funding for
the estimation tool?” The first answer is that no funds are available. They then begin to
ask the question “Why are no funds available?” and they arrive at the conclusion that no
funds are available because the root manager does not like the estimation tool. If the agile
implementation team believes that is the root cause of the barrier/obstacle, they post that
root cause to Work Paper 24-17.

This analysis may be simple to conclude, or it may be complex. A complex analysis
may involve many primary and secondary contributors. The “Why-Why” analysis
should continue until the agile implementation team believes they have found the root
cause. If the barrier identified affects a specific compression-improvement plan, the
plan should include the approach recommended to overcome the barrier. If that plan
does not work, the “Why-Why” work paper should be revisited to look for another
potential root cause.

The success of using this analysis depends on the agile implementation team having
an in-depth understanding of how the organization works. They also need to know the
traits and characteristics of the individual in authority to overcome the barrier. The
analysis will not always lead to the root cause, but in most instances it does.

Addressing the Root Cause of Barriers/Obstacles

After the potential root cause of a specific barrier/obstacle has been identified, the
agile implementation team needs to identify how they will address that specific root
cause. The “how to address component” can be done in this step, or the agile imple-
mentation team can wait until they are developing a specific time-compression plan
and then determine how to address the root cause.

There are no easy answers to how to address the root cause. Again, the more the
agile implementation team knows about the organization and the characteristics of the
key individuals in the organization, the easier the solutions become. Some of the solu-
tions as to how to address the root cause of the barrier/obstacle include the following:

Building Agility into the Testing Process 867



■■ Education. Sometimes the individual involved does not have the necessary
knowledge to make a good decision for the IT organization. By providing that
education to the individual, the individual is in a better position to make the
proper decision. In our estimating tool example, if the approving manager had
a better knowledge of how the estimation tool works and why it is more reli-
able in estimating than the current system, the individual might make that
approval.

■■ Training. Training provides the specific skills necessary to do a task. Resistance
sometimes occurs because individuals feel inadequate in performing a task
they will be required to do. For example, in the estimating tool example, they
may not want to use the estimating tool because they are unsure they will be
able to use it effectively. If they are provided the training on how to use it
before the decision is made, that concern will be alleviated.

■■ Champion. Sometimes a highly respected individual in the organization needs
to be recruited to champion a specific improvement idea. The individual can 
be a member of management, someone from a customer/user area, or a highly
respected person in the IT department. After that individual makes his/her
position known as a champion for a specific idea, other people will normally
accept that recommendation and support the idea.

■■ Marketing/communicating. Marketing first must identify an individual’s need,
and then provide the solution to satisfy that need. For example, if your approv-
ing manager for an estimating tool has a need to complete projects on time
with high customer satisfaction, marketing the estimation tool to meet that
need can help get approval for the idea. Marketing should not be viewed nega-
tively, but rather, should be viewed as a method of getting ideas accepted. Indi-
viduals unfamiliar with marketing techniques should read books, such as those
by Zig Zigler, that explain the various steps in a marketing program. Although
these books are written for the marketing professional, they have proven bene-
ficial for IT staff members in getting ideas accepted.

■■ Rewards. Individuals tend to do what they are rewarded for. If IT management
establishes a reward system for software testing time compression, it will
greatly encourage individuals to support those efforts. The rewards can be
financial, extra time off, or certain benefits such as special parking areas and so
forth. Sometimes just a lunch recognizing success, paid for by the IT organiza-
tion, will encourage people to work harder because they recognize the reward
system as something management wants. (Note: It may be important to reward
most or all of the stakeholders.)

■■ Competitions. Organizing a competition to compress software testing time 
has been effective in some organizations. One organization set up a horse race
track. The track was divided into ten parts. The parties were then asked to
determine ways to compress software testing time. For each day they were able
to compress a software testing effort, their horse moved one position. The first
horse that completed the ten-day time-compression goal was rewarded. How-
ever, it was equally important that there be prizes for second place, third place,
and so on.

868 Chapter 24



The determination about how to address a specific root cause of barrier/obstacle
should be posted to Work Paper 24-17. Note the previous examples are only a partial list
of the solutions for addressing the root cause(s) of barrier/obstacles. The agile imple-
mentation team should select specific solutions to address those root causes.

Quality Control Checklist

Work Paper 24-19 is a quality control checklist for Step 4. The investigation should
focus on determining whether a specific aspect of the step was performed correctly or
incorrectly.

The agile implementation team should review these questions as a team. A consen-
sus Yes or No response should be determined. “No” responses should be explained
and investigated. If the investigation indicates that the particular aspect of the step was
incorrectly performed, it should be repeated. (Note: Some teams prefer to review the
quality control checklist before they begin the step to give them a fuller understanding
of the intention of this step.)

Conclusion

Everybody favors compressing software testing time. What they object to is the method
proposed to compress software testing time. They might also object to the allocations of
resources for compressing software testing time, especially when the IT organization is
behind in implementing business software projects. It is important to recognize that indi-
viduals may believe that their career is partially dependent on completing a specific pro-
ject. Anything that might delay that effort would be viewed negatively.

Many organizations establish approval processes designed to delay the quick imple-
mentation of projects. These processes ensure that the appropriate safeguards are in
place, that only those projects desired by management are, in fact, implemented. These
safeguards also become barriers and obstacles to implementing ideas that can com-
press software testing time.

Individuals who want to compress software testing time must be aware of what these
barriers and obstacles are. Some are people related, whereas others are administrative
and organizational related. For all of these, they must look for the root cause and then
develop a solution to address that root cause. This step has provided a process to do
just that.

Step 5: Identify and Address Cultural 
and Communication Barriers

The “management culture” of an IT organization refers to the approach management
uses to manage the IT organization. The Quality Assurance Institute has identified five
different IT cultures. These range from a culture that emphasizes managing people by
setting objectives to a culture that encourages and supports innovation. Each of the five
cultures requires a different type of solution to be used to compress software testing time.

Building Agility into the Testing Process 869



This step describes the five cultures, and then helps the agile implementation team
through a process to identify the barriers and constraints imposed by the IT management
culture.

The culture affects the way people do work, and the way people work affects their
lines of communications. Open and complete communication is a key component of an
agile software testing process. Thus, opening communication lines is an important part
of building an agile software testing process.

This step explains how organizational cultures go through an evolutionary process.
Some believe that the hierarchal organizational structure is patterned after the meth-
ods Moses used to organize his people in the desert. Up until the 1950s, most cultures
were hierarchical in structure. The newer cultures have flattened organizational struc-
tures and emphasize teams and empowerment. Obviously, those cultures that empha-
size teams and empowerment are more suited to agile software testing processes.

Management Cultures

There are five common management cultures in IT organizations worldwide (see Fig-
ure 24-11), as follows:

■■ Manage people

■■ Manage by process

■■ Manage competencies

■■ Manage by fact

■■ Manage business innovation

Figure 24-11 The five management cultures.

Manage Business
innovation

Manage innovation
Partnership
Learn continually

Manage by Fact

Optimize capability
Predict results
Optimize Processes

Manage Compentencies

1

2

3

4

5

Manage capabilities
Focus on end user
Stabilize processes

Manage by Process

Discipline emphasized

Competency emphasized

Management emphasized

Business emphasized

Discipline emphasized

Competency emphasized

Management emphasized

Business emphasized

Use processes
Predefine deliverables
Teach skills

Manage People

Dependent on people
Drive by schedule
Motivated by politics

870 Chapter 24



The five cultures are generally additive. In other words, when an organization
moves to a culture of “manage by process,” the organization does not stop managing
people. When it moves to the “manage by competency” culture, it is addressing the
people issue of work processes. Measurement is not effective until the work processes
are stabilized at the “manage by competency” level.

Culture 1: Manage People

In this culture, people are managed. This is sometimes called management by objectives.
The staff is given specific objectives to accomplish. Management’s concern is that those
objectives be accomplished, but generally they are not concerned about how those
objectives are accomplished.

The management philosophy for this culture is that good work is accomplished by
hiring good people, setting appropriate objectives for those people, setting reasonable
constraints, and then managing people to meet those objectives. This is a results-
oriented culture. The people performing the work are responsible for determining the
means to accomplish the results. Management is more concerned with satisfying con-
straint objectives than how products are built.

The management environment within this culture has these characteristics:

■■ Manage people to produce deliverables. Results are emphasized and processes
de-emphasized when people are given the responsibility to produce the deliver-
ables (i.e., results) on which their performance will be evaluated. How products
are built is of little concern to a Culture 1 manager.

■■ Control people through budgets, schedules, staffing, and performance

appraisals. Without processes, management cannot directly control or assess
interim status of deliverables; thus, management places constraints on the
workers and uses those constraints to control the results.

■■ Hierarchical organization. Direction and communication flows from the top 
of the organization downward. Politically driven personal agendas often take
precedence over doing the right thing.

■■ Reactionary environment. Management does not anticipate, but rather reacts
to unfavorable situations as they arrive.

■■ Emphasis on testing quality into deliverables. Product testing uses a “fix on
failure” (code and fix) approach to eliminate defects from products prior to
delivery. This method does not prevent the same type of defect from occurring
again in another project.

■■ Success depends on who is assigned to a project. This culture emphasizes
assigning the best people to the most important projects because success is 
primarily based on people’s skills and motivation.

■■ Objective measures used. Measurement is based on things that can be
counted, such as headcount, workdays, budgets, schedules, etc.

■■ Outsourcing. Outside resources are used to fill competency gaps rather than
training existing staff.

Building Agility into the Testing Process 871



Why Organizations Continue with Culture 1

The primary reasons organizations stay at Culture 1 include the following:

■■ Inexperience with other cultures. Management learned this culture prior to
becoming management. They were managed using this culture and believe that
goals and objectives can be met using this culture. Management is in a comfort
zone that is difficult to change.

■■ Pressures to meet schedules. Customers, users, and senior management evalu-
ate IT management on results.

■■ Time/resource constraints. The IT organization thinks it does not have the
resources needed to develop and implement disciplined processes.

■■ Quality is a discretionary expense. The actions and resources needed to
improve quality are above and beyond current project cost, and thus, come
under different budget categories. Many believe that quality costs are not
recoverable.

■■ The IT staff believes their profession is creative. Being creative means having
the freedom to perform tasks in a manner that is subject to as few constraints as
possible, which leads to variability among projects. Management may fear staff
turnover if emphasis is placed on disciplined processes.

■■ Customers/users control IT budget. Under charge out systems, IT manage-
ment may not have the option to fund process improvement processes without
concurrence from customers/users.

■■ Difficulty. The change from Culture 1 to Culture 2 is the most difficult change
of all the changes to approach.

Why Organizations Might Want to Adopt Culture 2

■■ Current performance is not acceptable to the customers/users.

■■ Without improvement, the IT function may be outsourced.

■■ Without improvement, IT management may be replaced. Outsourcing is fast
becoming a viable alternative.

■■ Response to executive management requests to improve quality, performance,
and productivity: executive management finds the IT organization’s perfor-
mance unacceptable and demands improvement.

■■ Improve staff morale and reduce turnover. IT staff feels overworked and inade-
quately rewarded and feels the probability of success is low. Thus, the desire to
move to another organization.

■■ Do more with less. Executive management increases the IT workload without
corresponding increases in resources to complete the additional work.

■■ Products delivered by suppliers do not meet the true needs of the IT 
organization, even though they might meet the purchasing or contractual 
specifications.

872 Chapter 24



Culture 2: Manage by Process

The second culture manages by work processes. The movement from the “manage peo-
ple” culture to the “manage by process” culture is significant. In the “manage people”
culture, people are held responsible for results. In the “manage by process” culture, man-
agement is held responsible for results because they provide the work processes that
people follow. If the work processes cannot produce the proper results, management is
accountable because they are responsible for those work processes.

The management philosophy behind this culture is that processes increase the prob-
ability that the desired results will be achieved. To be successful, this culture requires
management to provide the leadership and discipline needed to make technology pro-
fessionals want to follow the work processes. At Culture 1, the workers are made
responsible for success, whereas at Culture 2, management assumes the responsibility
for success, while the workers are responsible for effectively executing the work
processes. The management environment within the “manage by process” culture has
these characteristics:

■■ Management provides the means (i.e., processes) for people to perform 

work with a higher probability of repeatable success than without processes.

Resources (time, people, budget) are allocated to process testing and improve-
ment. Management budgets the funds needed to develop and improve processes.

■■ Select staffs/teams are empowered to define and/or improve the processes.

The individuals who use the processes develop processes. Thus, the developers
of the processes become the “owners” of the process.

■■ Management is proactive in reducing and eliminating the reoccurrence of

problems through improved processes. The IT organization identifies and
anticipates problems and then takes action, so that the same problem will not
reoccur when the same series of tasks are performed in the future.

■■ Cross-functional organizational structures are established. Teams composed
of members of different organizational units are established to resolve cross-
functional issues, such as testing of processes and change of management.

■■ Subjective measurement is added to objective measurement. Subjective mea-
sures, such as customer surveys, become part of the operational culture.

■■ Inputs and outputs are defined. Detailed definitions reduce misunderstanding
and process variability.

Why Organizations Continue with Culture 2

The primary reasons organizations stay at Culture 2 include the following:

■■ Management is comfortable with culture. After investing the time and
resources to move to Culture 2, both management and staff have learned to
operate at this approach. Management is not anxious to initiate additional 
significant changes to the way work is performed.

■■ Cost/time to move to another culture. Each move to a different culture has an
associated cost—monetary and staff time allocated. Based on current work-
loads, those resources may not be available.

Building Agility into the Testing Process 873



■■ Culture 2 has provided relief from Culture 1 problems. Many of the problems
facing management, such as budget overruns and missed schedules, have been
at least partially resolved by moving to Culture 2. Given this, management
may follow the “if it isn’t broke, don’t fix it” philosophy.

■■ Project priorities. Management must devote full effort to meet current project
priorities and thus, does not have the time or energy to initiate significant
change. These significant changes require moving to another culture.

■■ Cross-functional politics. Timing may not be desirable to change the way the
IT organization operates. For example, changing to another culture may put the
IT organization out of step with the way its customers and senior management
operate.

Why Organizations Might Want to Adopt Culture 3 

■■ Processes are incomplete. Culture 2 processes tend to be developed to address
a wide variety of needs. For example, one system testing process may be built
for implementing any and all projects. These processes tend to be large in order
to encompass the many needs the processes have to fill. In addition, some
processes may not be defined.

■■ Processes are not easily customized. The organization may not be able to cus-
tomize a process to meet a specific need of a customer/user.

■■ Company needs/goals have changed. What the company does, and how the IT
organization fits into its needs has changed, making the generic process culture
(Culture 2) incompatible with the new needs/goals.

■■ Processes are not fully integrated. Culture 2 processes tend to be independently
developed and may not take into account the organization’s overall mission.

■■ There is pressure from executive management and/or customers/user to

improve. The improvements achieved from moving from Culture 1 to Culture
2 may not meet management’s current improvement expectation, thus expedit-
ing the need to move to another management culture.

■■ Suppliers focus on the purchasing and the contractual specifications rather

than spending effort on understanding the true business needs of the IT

organization. The IT organization is normally unwilling to invite suppliers into
an IT planning session to familiarize suppliers with the strategy and direction
of the IT organization.

Culture 3: Manage Competencies

The third culture manages competencies. This means that the hiring and training of
people is focused on making them competent in using the organization’s work
processes. In addition, IT organizations using this cultural approach do not accept
work that is outside their areas of competency.

874 Chapter 24



The underlying philosophy for this culture is that an IT organization must identify
the needed core competencies and then build an organization that is capable of per-
forming those competencies effectively and efficiently. Requests for work outside those
core competencies should be declined; however, IT may assist in obtaining outsourcing
assistance in performing those requirements. 

At this culture, IT builds trust with its customer base since it is capable of perform-
ing as it says it can, within the cost and budget and constraints.

The management environment within the “manage competencies” approach has
these characteristics:

■■ Processes that support the core competencies. The IT organization decides
which products and services they will support and then builds the competen-
cies (i.e., work processes) to produce and deliver those products and services.

■■ Employee hiring based on competencies. Individuals are hired and trained to
perform certain work processes (i.e. competencies).

■■ Competencies that support organizational business objectives. The compe-
tencies selected by the IT organization should relate to the information needs
incorporated in to the organization’s business objectives.

■■ High level of process customization. Processes can be quickly customized and
adapted to the specific customer/user needs.

■■ Empowered teams. Teams are organized and empowered to take action and
make decisions needed to meet business objectives.

■■ Establishment of defect databases. Defects are recorded and entered into data-
bases for analysis and improvement of core competencies.

■■ Continuous learning. Education and training become an integral part of day-
to-day work activities.

Why Organizations Continue with Culture 3

The primary reasons organizations stay at Culture 3 include the following:

■■ New skills are required to move to Culture 4. Management and staff must be
convinced that the effort and skill sets needed to move to a statistical approach
are worthwhile. The background needed to make that decision may not be
available.

■■ Rapid changes in technology make it difficult to keep pace. The effort
required to maintain the competencies at this culture is already consuming
available resources, making it difficult to institute the changes needed to move
to another culture. It may be more effective and economical to outsource.

■■ Overcoming learning and unlearning curves is difficult. Reaching and main-
taining competencies involves unlearning old processes and learning new
processes. Maintaining learning and unlearning curves, as process changes
accelerate, becomes a major activity for the IT staff.

■■ Continuous training is expensive. Incorporating more training in addition to
the Culture 3 training will significantly increase the training cost.

Building Agility into the Testing Process 875



Why Organization Might Want to Adopt Culture 4 

■■ Improvement is needed to remain competitive. In a global marketplace, orga-
nizations are pressured to continually improve productivity and quality, add
capabilities, and reduce cost to customers. 

■■ Need for more reliable data. Management of Culture 3 produces data about
processes, but that data normally does not have the consistency and reliability
needed for use in decision making.

■■ Reduce judgment factor in decision making. Without reliable data, managers
must make decisions based heavily on judgment. Judgment, although often
effective, does not produce the consistency in decisions that encourages confi-
dence from customers/users and senior management.

■■ The suppliers not aligned with customer demand. Suppliers are not posi-
tioned to react to customer demand as it occurs so that specialized orders or
products and services not previously requested can be obtained quickly
enough to satisfy IT customer demand.

Culture 4: Manage by Fact

The fourth culture is “manage by fact.” Quantitative results are established and mea-
sures are collected and compared against expected results. Based on those measures,
management makes whatever changes are needed to ensure that the outcome of the
work processes is that needed by IT customers.

The underlying management philosophy of this approach is that decision making
should be based on fact (however, those facts will be tempered by judgment and expe-
rience). The stability of the Culture 3 work processes produces reliable quantitative
data, which management can depend on in decision making. The quantitative feed-
back data, normally produced as a work process by-product, will be used for manag-
ing and adjusting work in progress, as well as identifying defect-prone products and
processes as candidates for improvement.

The management environment within the “manage by fact” culture has these 
characteristics:

■■ Making decisions using reliable data. The more reliable the data, the more it can
be incorporated in decision making and the better decisions that can be made.

■■ Identifying and improving processes using reliable data. Having reliable data
enables improvement teams to select processes and where within those
processes the most productive improvements can be made.

■■ Workers measure their own performance. Workers are provided quantitative
data needed to effectively manage their own work processes.

■■ Process managed quantitatively. Project teams and workers have the quantita-
tive data needed to effectively manage their own work processes.

■■ Measurement integrated from low levels to high levels. Quantitative data can
be rolled up from low-level data to high-level data showing how low level
components affect the goals and objectives of the organization.

876 Chapter 24



■■ Defect rates anticipated and managed. The defect databases established at
Culture 3 can be used to predict defect rates by processes and work products,
so that defects can be anticipated and acted upon.

Why Organizations Continue with Culture 4

The primary reasons organizations stay at Culture 4 include the following:

■■ Current processes have been optimized. The integrated processes and inte-
grated measurement data allows optimization of current work processes.

■■ Allow others to innovate. It may be cheaper to follow the lead than to be a
leader.

■■ Management is comfortable with the culture. Organizations operate effec-
tively and efficiently at Culture 4. If management is comfortable with that
approach, they may not have the desire to initiate changes in the work 
environment.

■■ Knowledge of business is not required. It is a major educational effort to train
the IT staff in business activities.

■■ Time and effort are required to optimize a measurement program. Manage-
ment may wish to use its scarce resources for purposes other than innovating
new technological and work approaches.

■■ Unwilling to share processes with other organizations. Moving to Culture 5
normally involves sharing current work processes with other organizations. IT
management may decide that work processes are proprietary and prefer not to
share them.

Why Organizations Might Want to Adopt Culture 5

■■ Leapfrog the competition. Innovative business cultures may provide the orga-
nization with a competitive advantage.

■■ Become an industry leader. Culture 5 produces world-class organizations that
tend to be recognized by leading industry associations and peer groups. In
turn, this leads to other organizations wanting to share solutions.

■■ Receive pressure from customers/users and senior management to improve.

Even with existing processes optimized, executive management and customer/
user may demand additional improvements in productivity and quality.

■■ Partner with customers in reengineering business solutions. With current
capabilities optimized, IT management and staff can redirect their efforts
toward reengineering business solutions and be assured IT has the capabilities
and customer trust needed to build these solutions.

■■ Need to develop a business-to-business partnership for reducing supplier

cost. The Internet, coupled with business-to-business partners for jointly order-
ing supplies and services, can minimize cost, but becomes effective only when
cultures support business-to-business activities.

Building Agility into the Testing Process 877



Culture 5: Manage Business Innovation

The fifth culture is one of business innovation. Innovation is possible because at Cul-
ture 4, management is confident that they can do what they say they will do with the
resources estimated, and the work can be completed within or ahead of schedule. The
types of improvements now possible are sometimes called “breakthrough” improve-
ments, meaning significantly new ways to do work. Also in this culture, the focus is on
using technology to drive business objectives.

The underlying management philosophy at this culture is using information as a
strategic weapon of the business organization. IT is looking at new and innovative
technological and system approaches to improve the overall business success of the
organization. The culture requires information technology and management to be
knowledgeable about the business side of the organization.

The management environment within the “manage business innovation” culture
has these characteristics:

■■ Supports e-commerce activities. Integrate e-commerce systems to the “back-
office” systems so that they become an integrated network of systems. In many
organizations, this involves interfacing with legacy systems.

■■ Supports e-business activities. E-business activities involve rethinking the
way organizations conduct their business. It involves developing new relation-
ships with customers, providing customers new ways to acquire products and
information regarding product testing and delivery, as well as increasing value
of products and services to the customer. For e-business to be successful, IT is
normally a major driver of the e-business.

■■ Finds innovative solutions to business problems. Where existing processes
are ineffective or cause productivity bottlenecks, innovative solutions may be
the only option for productivity breakthroughs.

■■ Acquires solution from other industries. Organizations that share their work
processes with other organizations also receive mutual sharing, which can lead
to productivity breakthroughs.

■■ Enables workforce to become an “alliance” between employees, external cus-

tomers, suppliers, and other parties having a vested interest in improvement.

After IT organizations have optimized their work processes, they can then
build an alliance with all of the parties having a vested interest in the success 
of the information technology organization.

■■ Uses innovative technologies. New technologies, such as knowledge manage-
ment and data warehousing, can be incorporated into process-improvement
activities (e.g., suppliers, customers, auditors).

■■ Strategic business planning and information technology become equal 

partners in setting business directions. IT becomes a leader in integrating
technology into solving business problems and/or creating new business
opportunities.

878 Chapter 24



Cultural Barriers

From the discussion of the five IT management cultures, the agile implementation
team must identify their organization’s IT culture and the barriers and obstacles asso-
ciated with that culture. Five tasks are involved in completing this step. The results of
the tasks should be recorded on Work Paper 24-20.

Identifying the Current Management Culture

Using the description of the five cultures, the agile implementation team must deter-
mine which of the five cultures is representative of their organization’s IT management
culture. Normally, this is not difficult because at least 90 percent of the IT organizations
are in Culture 1 (i.e., manage people) or Culture 2 (i.e., manage process). A Culture 1
organization is one in which IT management focuses more on stating objectives to be
accomplished. In Culture 2, IT management expects their staff to follow the software
testing process specifically, and if the project team follows it, management must
assume responsibility for the results. 

Identifying the Barriers Posed by the Culture

The barriers posed by the IT management culture are normally those described as the
reasons why the IT organization desires to stay with its existing culture. For example,
if the IT organization is a Culture 1 (i.e., manage people), IT management may want to
stay with Culture 1. For example, if management likes to set objectives for people to
accomplish and manages those objectives, any solution that does not place responsi-
bility on the individual for completing a task would probably not be acceptable to IT
management. The agile implementation team should review all the reasons why IT
management would want to stay with its current culture and from that extrapolate
what they believe are the barriers posed by that culture. These barriers should be tran-
scribed to Work Paper 24-20.

Determining What Can Be Done in the Current Culture

This task is turning the identified barriers into positive statements. For example, in
identifying a barrier, we said in the preceding example that any solution that is not
focused on establishing and managing objectives for individuals would not be accept-
able to IT management. Given this barrier, any solution should include specific objec-
tives for individuals to accomplish.

Determining the Desired Culture for Time Compression

The agile implementation team generally cannot change the IT management culture.
However, by this point in the time-compression process, the team members should
have some general idea of how they can compress the software testing time. If those

Building Agility into the Testing Process 879



solutions would be more effectively implemented in a different culture, the agile
implementation team should identify which culture is most conducive to the type of
solutions they are thinking about.

Although an agile implementation team cannot change the culture, they may be able
to change an aspect of the culture that will enable them to implement one of their time-
compression solutions. If that culture would be desirable, the agile implementation
team should indicate which is the desired culture and record it on Work Paper 24-20.

Determining How to Address Culture Barriers

Work Paper 24-20 identifies two categories of culture barriers: those imposed by the
current IT management culture, and those that exist in a current culture, but could be
alleviated if a new culture were in place. Given these two categories of barriers, the
agile implementation team should determine how they could address those culture
barriers. If the barrier cannot be adequately addressed, any solution inhibited by that
barrier should not be attempted. If the barrier can be adequately addressed, the solu-
tion must include a plan to address that culture barrier. Those recommendations
would be included in Work Paper 24-20. You can use the “Why-Why” analysis to help
you identify the root cause of the cultural barrier and then apply the recommended
solution to adjust to those cultural barriers.

Open and Effective Communication

Agile processes depend on open and effective communication. Open and effective
communication has these three components:

■■ Understanding and consensus on objectives. Those working on an agile soft-
ware testing project must know the objectives that they are to accomplish and
believe they are the right objectives. To accomplish this effectively, the test 
objectives need to be related to business objectives. In other words, for testing a
website, if a business objective is that a website should be easy to use, the test
objectives must be related to that business objective. In addition, the testing
team must believe as a team these are the proper objectives for them to achieve.
Taking time and effort to ensure the testers understand the objectives, and 
gain their support, is an important component of building an effective soft-
ware test team.

■■ Respect for the individual. Open and effective communication depends on
those communicating having respect for one another. Disagreements are nor-
mal, but they must be in an environment of respect. Showing that appropriate
respect exists is an important component of team building.

■■ Conflict-resolution methods. Teams need methods to resolve conflict. Individ-
uals may have variant opinions about how to perform a specific task. Those
differences must be resolved. The resolution process will not always mean that
individuals will change their opinions, but it means they will support the deci-
sion made. 

880 Chapter 24



For an in-depth discussion of the challenges testers face, refer to Chapter 8, “Step 2:
Developing the Test Plan.”

Lines of Communication

The first step to improve information flow is to document the current information flow.
This should be limited to information obtained and/or needed by a software testing
team in the performance of their tasks. However, other information flows can be docu-
mented, if needed, such as the flow of information to improve the software testing
process.

You can document the lines of communication using the communication graph. To
complete this graph, you need to do the following:

1. Identify the individual/groups involved in communication. All the stake-
holders in the success of the tasks, such as software testing, need to be identi-
fied. The agile implementation team can determine whether the graph should
show a specific individual, such as the project leader, or the function such as
users of the software. Figure 24-12 is an example of a communication graph
showing the five different parties involved in communication (in this case,
identified as A, B, C, D, and E). 

2. Identify each type of communication going between the individuals/

functions. Each type of communication, such as reporting the results of a test,
is indicated on the graph as a line between the parties. For example, if Party D
did the testing and reported the results to Party C, the line going between D
and C represents that communication. Each type of communication should be
documented. This can be done on the graph or separately. 

3. Determine the importance of the communication. A decision needs to be
made about how important the information communicated is to the overall
success of the project. If it is considered very important, it would be given a 
rating of 3; if it was important, a rating of 2; and if it was merely informative, a
rating of 1. For example, if the goal of informing Party C of the results of testing
was just to keep that party informed, it would get a rating of 1. A rating of 3 is
normally given if not having that information would have a negative impact on
the system; a rating of 2 is given if it would have a minor impact on the project,
and a rating of 1 is given if it would have little or no impact but would be help-
ful to the success of the project.

4. Develop a communication score for each party. A communication score is
developed for each party by adding the importance rating for each line of com-
munication. In the Figure 24-12 example, Party A has a score of 4, and Party C
has a score of 9. The objective of developing a party score is to determine which
parties are most important to the flow of communication. In Figure 24-12, Party
C is the most important individual. This would probably be the software test-
ing manager in the lines of communication for conducting testing for a specific
software project.

Building Agility into the Testing Process 881



Figure 24-12 Lines of communication graph.

Information/Communication Barriers

To identify the barriers to effective and open communication, the agile implementation
team should analyze their lines of communication graph (see Figure 24-12) to deter-
mine whether there is adequate communication, nonexistent communication, commu-
nication to the wrong individual, and/or information that is needed by an individual
but not provided to that individual. These barriers to effective and open communica-
tion should be recorded on Work Paper 24-21. To complete the work paper, you must
address the following:

■■ Information needed. Indicate information that is needed but not communi-
cated, or any information that is available but not communicated to the right
individual, or from the right individual.

■■ Importance. The importance of the information communicated using the rank-
ing of 3, 2, and 1 should be communicated; indicate the appropriate person to
communicate it, and the appropriate person to receive it.

■■ Barrier. The barrier the agile implementation believes is inhibiting the open
and effective communication.

■■ How to address barrier. The agile implementation team’s recommendation of
what they might do to overcome this communication barrier.

Effective Communication 

Communication involves dealing with expectations and responsibilities of individuals
and groups. Effective communication must occur down, across, and up an organization,

1–Merely informative
2–Important
3–Very important

3

3
3

3

3

2
1

1
1

1

B C

D

E

A

882 Chapter 24



and with parties external to the IT organization. Effective communication to manage
testing activities requires the following:

■■ Management is provided with the necessary reports on the tester’s perfor-
mance relative to established objectives. For example, consider whether:

■■ Mechanisms are in place to obtain relevant information on project develop-
ment changes.

■■ Internally generated information critical to achievement of the testing objec-
tives, including that relative to critical success factors, is identified and reg-
ularly reported.

■■ The information that managers need to carry out their responsibilities is
reported to them.

■■ Information is provided to the right people in sufficient detail and on time to
enable them to carry out their responsibilities efficiently and effectively. For
example, consider whether:

■■ Managers receive analytical information that enables them to identify what
action needs to be taken.

■■ Information is provided at the right level of detail for different levels of the
test effort.

■■ Information is summarized appropriately, providing pertinent information
while permitting closer inspection of details as needed rather than just large
amounts of data.

■■ Information is available on a timely basis to allow effective monitoring of
events and activities—and so that prompt reaction can be taken to business
factors and control issues.

■■ Management’s support for the development of necessary information systems
is demonstrated by the commitment of appropriate resources (human and
financial). For example, consider whether:

■■ Sufficient resources (managers, analysts, programmers, all with the requi-
site technical abilities) are provided as needed to develop new or enhanced
information systems.

■■ Effectiveness with which employees’ duties and control responsibilities are
communicated. For example, consider whether:

■■ Communication vehicles—formal and information training sessions, 
meetings and on-the-job supervision—are sufficient in effecting such 
communication.

■■ Employees know the objectives of their own activity and how their duties
contribute to achieving those objectives.

■■ Employees understand how their duties affect, and are affected by, duties of
other employees.

■■ Receptivity of management to employee suggestions of ways to enhance produc-
tivity, quality, or other similar improvements. For example, consider whether:

Building Agility into the Testing Process 883



■■ Realistic mechanisms are in place for employees to provide recommenda-
tions for improvement.

■■ Management acknowledges good employee suggestions by providing cash
awards or other meaningful recognition.

■■ Adequacy of communication across the organization (for example, between
testers and users) and the completeness and timeliness of information and its
sufficiency to enable people to discharge their responsibilities effectively. For
example, consider whether:

■■ Salespeople inform engineering, production, and marketing of customer
needs.

■■ Accounts receivable personnel advise the credit approval function of slow
payers.

■■ Information on competitors’ new products or warranties reaches engineer-
ing, marketing, and sales personnel.

■■ Openness and effectiveness of channels with and among all parties communi-
cating information on changing customer needs. For example, consider whether:

■■ Feedback mechanisms with all pertinent parties exist.

■■ Suggestions, complaints and other input are captured and communicated to
relevant internal parties.

■■ Information is reported upstream as necessary and follow-up action taken.

■■ Timely and appropriate follow-up action by project and user management
resulting from communications received from testers. For example, consider
whether:

■■ Personnel are receptive to reported problems regarding defects or other
matters.

■■ Errors in software are corrected and the source of the error is investigated
and corrected.

■■ Appropriate actions are taken and there is follow up communication with
the appropriate stakeholders.

■■ IT management is aware of the nature and volume of defects.

Quality Control Checklist

Work Paper 24-22 is a quality control checklist for Step 5. The investigation should
focus on determining whether a specific aspect of the step was performed correctly or
incorrectly.

The agile implementation team should review these questions as a team. A consen-
sus Yes or No response should be determined. “No” responses should be explained
and investigated. If the investigation indicates that the particular aspect of the step was
incorrectly performed, it should be repeated. (Note: Some teams prefer to review the
quality control checklist before they begin the step to give them a fuller understanding
of the intention of this step.)

884 Chapter 24



Conclusion

This step, like Step 4, has identified some of the barriers and obstacles that need to be
addressed to compress software testing time. Whereas Step 4 identified the root cause
of the people and organizational barriers, the root cause of the culture barriers is
known; it is the culture itself. It is the culture that primarily determines what informa-
tion is shared and to whom it is shared. Ineffective and closed communication inhibits
the building of an agile software testing process. Knowing these culture and commu-
nication barriers, and how to address the barriers, is an important part of the plan to
compress software testing time.

Step 6: Identify Implementable Improvements

The best idea for compressing software testing time is one that is “implementable”
(that is, “doable”). Implementable means that it will receive appropriate management
support, have the needed resources for implementation, and have the acceptance of
those who will be using the improved software testing process. This step describes
what an implementable is and provides a process on how to identify the most-imple-
mentable ideas from the idea list developed from Steps 1 through 3. Those ideas will
then be ranked by importance in jumpstarting an agile software testing process.

What Is an Implementable?

An implementable refers to something that can actually be realized in an organization. It
may not be the most effective or most efficient idea, but it is doable. The implementable
is not the idea that is easiest or the quickest to realize, but it is doable. It is not the idea
that will compress software testing time by the most workdays, necessarily, but it is
doable.

Experience from IT organizations that have been effective in compressing software
testing time show there are four criteria for implementables, as follows:

■■ User acceptance. Those individuals who will be required to use the improved
process in software testing are willing to use the idea. If the users do not want
to use the idea, they will find a way to stop the idea from being effective. An
idea can be stopped by blaming problems on the idea, or by taking extra time
and then attributing it to the new idea. However, when the users like the idea
and want to use it (i.e., it is acceptable to them), they will make the idea work.

■■ Barrier free. The greater the number of obstacles/barriers imposed on an idea,
the greater the probability the idea will not be effective. As discussed in the pre-
vious two steps, the barriers can be people oriented, cultural, communicational,
administrative, or organizational. The more barriers that need to be overcome,
the less chance the idea has of being successful. In addition, not all barriers and
obstacles are equal. Some barriers and obstacles are almost insurmountable,
whereas others are easily overcome. For example, if the senior manager does not
like a particular idea, implementing it is almost insurmountable. On the other

Building Agility into the Testing Process 885



hand, if the barrier is just paperwork, then by completing the paperwork effec-
tively, the barrier can be overcome.

■■ Obtainable. Ideas that are easy to implement are more obtainable than ideas
that are difficult to implement. The difficulty can be lack of competency, the
amount of resources and time to implement it, or if the implementation team
does not have the motivation to successfully implement the idea.

■■ Effective. Effectiveness is the number of workdays that can be reduced by
implementing the idea. If the number of workdays reduced is significant, the
implemented idea will be more effective. A less-effective idea is one that might
only eliminate a part of a single workday from software testing. Ideas from
which no estimate can be made for the number of workdays that can be
reduced should not be considered effective.

Obviously, other criteria affect whether an idea is doable. However, the preceding
four criteria are most commonly associated with effective ideas.

Identifying Implementables via Time Compression

Ultimately the decision about what is implemented to compress testing time must be
based on the judgment of the agile implementation team. The team has knowledge of
the software testing process and the IT organization. They should be motivated to do
the job, and responsible for the success of the effort. However, many organizations use
a process that may help in determining which are the better ideas for implementation.

This process uses the four criteria previously mentioned: user acceptance, barrier free,
attainability, and effectiveness. By using a simple scoring system, organizations can score
an idea based on these four criteria; that score will help determine how doable an idea is.

The recommended scoring system is to allocate a maximum of three points for each of
the four criteria. The agile implementation team evaluates each criterion on a scale of 0 to
3. For a specific idea, 3 is the most desirable state of the criteria, and a 0 is an unaccept-
able state for the criteria. For each idea, the score for each of the four criteria should be
multiplied. Multiplication is used rather than addition because when you multiply by 0
(zero), you eliminate any idea that is awarded a 0 in any of the four criteria.

Listed here is a scoring guide for the four criteria:

■■ Criteria 1: User acceptability. Acceptability will be evaluated on the stake-
holder’s four quadrants. The most significant stake among the stakeholders
must be determined. This does not mean who is in what stake, but the desired
stake by the majority of the stakeholders.

SCORE HOW THE SCORE IS ALLOCATED

0 Stakeholders want to stop it from happening

1 Stakeholders will let it happen

2 Stakeholders will help it happen

3 Stakeholders will make it happen

886 Chapter 24



■■ Criteria 2: Barrier free. Barrier/obstacles need to be classified as major or
minor. A major barrier/obstacle is one with little probability of overcoming the
barrier, or it would take extensive effort to overcome the barrier/obstacle. A
minor barrier is one that can be overcome by the team. The determination of
the score for barrier free is as follows:

SCORE HOW THE SCORE IS ALLOCATED

0 Two or more major barriers

1 One major barrier or three minor barriers

2 One to two minor barriers

3 No barriers

■■ Criteria 3: Obtainable. The agile implementation team has to decide on how
obtainable the idea is. The easier it is to obtain or implement, the higher the
score. Based on the size of the organization and the skill sets of the imple-
menters, the difficulty to implement should be placed into one of four groups.

SCORE HOW THE SCORE IS ALLOCATED

0 Very difficult to implement

1 Difficult to implement

2 Some difficulty to implement

3 Easy to implement

■■ Criteria 4: Effectiveness. Effectiveness should be measured on the estimated
reduction in workdays needed to test a project. The more “compression” that
occurs, the higher the score. The agile implementation team must estimate for
each idea how much that idea will compress delivery time. The percent of
reduction should be based on the total software testing effort. For example, if it
takes 100 workdays to write a test plan, a 2 percent reduction is a two-workday
reduction. The scoring for effectiveness is as follows:

SCORE HOW THE SCORE IS ALLOCATED

0 No known reduction or reduction cannot be
estimated

1 Less than 1 workday reduction

2 1 to 3 workday reduction

3 Over 3 day workday reduction

To complete the scoring, the agile implementation team should first list the high-
priority improvement ideas developed in Steps 1 through 3 and post them to Work
Paper 24-23. For each idea, they should then determine the score for the four criteria

Building Agility into the Testing Process 887



used to select an improvement idea for implementation. These four individual criteria
scores are multiplied to obtain a doable score. The result will be an overall score
between 0 and 81 (zero meaning the idea will be discarded, and 81 is the best possible
idea identified through performing Steps 1 through 3).

At the end of this process, the ideas for compressing the software testing process
would be ranked from 0 to 81 based on the actual scores. The idea getting the highest
overall doable score should be considered the first idea to implement. The idea with
the second highest score should be the second idea to implement.

You need to recognize that this selection process is not statistically valid. It includes
judgment, but it does help rank the ideas by the probability of success. Obviously, a
score of 27 may not be significantly different from a score of 24. However, the score of
24 would be significantly different from a score of 54.

The purpose of this selection process is to help the agile implementation team select
the best overall idea for implementation. They should look at the ideas with the high-
est overall doable score as the ones they should select first for implementation. How-
ever, judgment would still apply, and one with a slightly lower score might be
determined the better one for implementation even though it has a lower effectiveness
score than the idea with the highest score.

After the ideas have been selected, a plan needs to be developed for implementa-
tion. It is generally recommended that a single idea be implemented. Then its results
are evaluated before the next idea is implemented. This assumes the ideas can be
implemented in a relatively short time span. Another advantage to implementing
ideas in a series rather than many simultaneously is that it makes it easier for the soft-
ware testing staff to assimilate the change and support it.

Prioritizing Implementables

A scoring process that ranks implementables is an effective way to select ideas. How-
ever, the agile implementation team may want to prioritize the better ideas. Prioritiza-
tion might prove beneficial in jumpstarting the agile software testing process, by
implementing the ideas that could quickly add some agility to the existing test process.

Three sets of guidelines are provided to the agile implementation team to help iden-
tify the best doable ideas. These are as follows:

■■ The top-six best testing process workbench improvements. If it is determined
that the best approach to achieving agility in a software testing process is to
remove variability from the software testing process workbenches, these six
ideas should be selected first.

■■ The top-six idea categories for use in building an agile testing process. If the
agile implementation team believes that the best approach to add agility to the
software testing process is to focus on the environment in which testers per-
form work, these six categories will help place ideas in the category ranked
highest by the agile implementation team (see Table 24-1). To use these guide-
lines, the categories must be ranked from one through six in a sequence the
team believes will best achieve agility in the software testing process. The team
should work on the top-ranked categories first. To do this, the ideas scored in
sequence of doability need to be cross-referenced to the six categories.

888 Chapter 24



Table 24-1 Top Six for Compressing Software Testing Delivery Time

1 Remove non-essential tasks from the software testing critical plan.

2 Reduce rework if it occurs frequently in a workbench activity.

3 Verify the entrance criteria before starting a workbench activity.

4 Verify the exit criteria before starting a workbench activity.

5 Move testing activities to the front end of software testing.

6 Substitute an in-house best practice for a less effective work practice.

Because these have been discussed throughout this book, they are not
described individually. 

■■ The top-ten approaches effective for building an agile testing process. If the
majority of the test agility team wants to go back to the basics, these concepts
should be their implementation focus (see Table 24-2). To do this, the team
needs to rank the ten approaches from 1 to 10 and then focus on the highest-
rated approaches first.

Because these approaches are discussed extensively in this book, they are not
individually described.

Table 24-2 Top Ten Approaches for Building an Agile Testing Process

CONCEPT RANK

1 Eliminate the readiness barriers to building an agile testing 
process

2 Minimize process variability

3 Identify and use the best testing practices

4 Expand the tester’s role to test needs, not just specifications

5 Restrict test process compliance activities to those activities 
proven to be effective

6 Bypass the barriers to building an agile testing process

7 Incorporate the agile testing process into the existing IT 
culture

8 Build the agile testing process by performing the most 
doable tasks first

9 Identify and improve the flow of information

10 Develop and follow a plan to build the agile testing process

Building Agility into the Testing Process 889



Documenting Approaches

If the agile implementation team determines that it wants to apply judgment to the
scored implementables, they should document the basis of that selection process. Work
Paper 24-24 can be used for that purpose. To complete this work paper, the following
needs to be documented:

■■ Implementable improvement idea ranked by doable score. All of the imple-
mentables scored high on Work Paper 24-23 should be transposed to Work
Paper 24-24. In the transcription, they should be ranked. Note that the team
may decide to eliminate some of the ideas in this transition; they should also
eliminate those low-scoring ideas that do not appear to have the probability of
making a significant change to the software testing process.

■■ Prioritization considerations. In determining priority beyond the doable score,
the team should indicate the basis on which they want to prioritize a specific
implementable. This step has provided three categories of guidelines for mak-
ing this determination. However, the team should feel free to use other meth-
ods for prioritization.

■■ Prioritization rank. It is suggested that the team rank ideas for prioritization
into these three categories:

■■ High. Those ideas they will implement first.

■■ Medium. Those ideas that will be implemented after the high-priority ideas.

■■ Low. Ideas that may or may not be implemented.

Quality Control Checklist

Work Paper 24-25 is a quality control checklist for Step 6. The investigation should
focus on determining whether a specific aspect of the step was performed correctly or
incorrectly.

The agile implementation team should review these questions as a team. A consen-
sus Yes or No response should be determined. “No” responses should be explained
and investigated. If the investigation indicates that the particular aspect of the step was
incorrectly performed, it should be repeated. (Note: Some teams prefer to review the
quality control checklist before they begin the step to give them a fuller understanding
of the intention of this step.)

Conclusion

Action must be taken if the time required to build software is to be reduced. The action
proposed is to select and implement doable ideas to reduce time. This step has provided
a process to help the agile implementation team determine which idea to implement
first. After that idea has been identified and implemented, the agile implementation
team will come back to this process and select another idea for implementation. Thus, the
time required for testing software will continue to compress.

890 Chapter 24



Step 7: Develop and Execute 
an Implementation Plan

A software testing organization can use three approaches to achieve agile software test-
ing. The first is to acquire the agile testing process from a supplier. The second is to
build the agile testing process from the bottom up. The third is to convert the current
software testing process to an agile process. 

I am unaware of any agile testing processes on the market; therefore, that approach
won’t work. Building an agile testing process from the bottom up is a large, time-
consuming, and risky project. Because IT management in general has not been willing
to invest large sums of money in the software testing processes, it is unlikely they will
support the time and resources needed to build such a process. Experience has shown
that it normally costs ten times as much to deploy a new process as it does to build it.
Thus, the bottom-up approach would barely get IT management’s support or enough
support and resources to make it work. The bottom line is that the only realistic and
effective approach to acquiring an agile testing process is to go through a continuous
change to the current testing process to build more and more agility into that process.

An old but true saying is “If you fail to plan, plan to fail.” Having a good idea to
compress software testing time is not enough. That idea must be put into action. A
good plan will help facilitate action.

The process for planning to compress testing time should be viewed as a project.
Thus, the planning process used for software projects is applicable to the planning
process to compress software testing time. However, because the compression project
is normally a small project, the planning does not have to be nearly as comprehensive.
This step provides a simplified, but effective, planning process for implementing an
idea to compress software testing time.

Planning

The planning process should start with the assumption that the process of building
agility into the software testing process will take time. A pilot project should be used
because piloting means there will be an opportunity to evaluate and “kill” the com-
pressing effort. The effort you start should be continuous. Everyone involved in a com-
pressing process must buy in to this concept.

Each idea to be implemented involves all of the four PDCA (Plan, Do, Check, Act)
components discussed in detail in Chapter 1. If the implemented idea does not meet its
objective, the PDCA cycle may have to be repeated based on the action taken to
improve and expand/modify the implemented idea. 

Implementing Ideas

In the proposed plan implementation, we use much of the information gathered in
Steps 1 through 6. Using this information, the plan will involve modifying the testing
environment and the workbench(es) involved in implementing the idea. For example,
if the idea relates to the test plan, the implemented idea will modify the test planning

Building Agility into the Testing Process 891



workbench. The components of a workbench can be deleted, modified, or expanded
(i.e., the input criteria, do procedures, check procedures, skills competency, tools, and
exit criteria). Addressing management commitment and overcoming impediments
may require changes to the IT management process.

Work Paper 24-26 is used to document the implementation work plan. The work
plan should include the following:

■■ Improvement idea. The name of the idea (from the idea list) that is to be 
implemented.

■■ Objective. The objective to be accomplished by implementing the idea. (Note:
This should be stated as a measurable objective.) In most instances, the measur-
able objective is the number of workdays to be compressed by implementing
this idea. (Note: In evaluating the ideas for selection for implementation, an
estimate has already been made of the number of workdays that could be 
compressed by using this idea.) If the objective is focused on the management
process, the objective is a prerequisite to implementing an idea.

■■ Current results. This is normally the number of workdays now required to
complete the involved workbench (this comes from Step 2). Note that if the
software testing process is immature, the current results most likely will be
expressed in average days, including the variance associated with that 
workbench.

■■ Expected results. This is the number of workdays to complete the task after the
time-compression idea has been implemented. The variance between current
and expected results should be the same as the measurable objective.

■■ Method of measurement. The method is typically workdays. However, if 
there is a significant variance in the average workdays for the workbench, the
method of measurement may need to account for that variance. For example,
the method of measurement may measure four or five projects to get the new
average and the new variance.

■■ Work tasks. Two types of work tasks are involved. One is to adjust the obstacles/
barriers associated with implementing this idea. The other type of work task is
the actual tasks to implement the improvement idea. The barriers and obstacles
that need to be overcome will be those identified in Steps 4 and 5, which are
applicable to this specific improvement idea. (Note: The work papers included
in Steps 4 and 5 have also identified how to address the barrier/obstacle. Thus,
the task is the process to address the barrier/obstacle from the Step 4 and 5
work papers.)

The task to implement the improvement normally involves modifying a work-
bench. These may add new Do or Check procedures to the workbench, may
change the entrance and exit criteria, which may affect the amount of rework
required and may involve additional training for the individuals performing
the workbench. It may also add a new tool to the workbench.

The changed workbench should change the work processes used in that seg-
ment of the software testing process. Modifications to the organization’s work

892 Chapter 24



processes must be coordinated with the standards committee/process engi-
neering committee (i.e., the group responsible for defining, implementing, and
modifying IT work processes).

■■ Resources. The resources to perform a task will be the people’s time and any
other resources involved in implementing the work task. Normally, it will just
be the people’s time, but it may require some test time if automated procedures
are modified.

■■ Time frame. The time frame for starting the work task and the target completion
date for the work task should also be documented as part of the work plan.

Preparing the Work Plan

The work plan as defined in Work Paper 24-26 should be executed. The plan as written
should be followed. If the plan is being executed, the actual start date and the actual com-
pletion date should be recorded. If the resources were inadequate or too extensive, a note
should be made in the Resources column to indicate the actual resources expended.

Checking the Results

When the work plan is complete, the actual results from the improved workbench
should be measured and recorded. The method of measurement in the work plan
should be used to record the actual results. If the actual results approximate the
expected results, the improvement idea should be considered successful. If the actual
results exceeded the expected results, the improvement idea was very successful.
However, if the actual results are less than the current results, the implementation idea
can be considered unsuccessful. In that instance, an assessment needs to be made as to
whether the idea was effectively implemented, whether some modification to the idea
can be made to make it successful, or whether the idea should be dropped for now and
a new improvement idea be implemented.

Taking Action 

If the results are successful, action should be taken to make a permanent modification
to the workbench to incorporate the improvement idea. If the improvement idea was
not successful, the action can be to modify the plan, re-execute the plan, or not to
implement the improvement idea in a workbench. At that point, the team can either re-
execute the PDCA cycle using a modified improvement idea, or implement the next
improvement idea.

You must identify a leader to implement the plan. Ideally, that leader would be a
member of the agile implementation team; however, if the IT organization has a process
to change processes, the plan should be led by someone in that improvement process.

Requisite Resources 

Time-compression efforts should be considered projects. Therefore, they need to be
budgeted and scheduled like any other project. However, the budgetary resources for
implementing these projects can derive from any of the following:

Building Agility into the Testing Process 893



1. Change the current test budget. The idea implementation costs can be charged
to the testing project for which the implementers are currently assigned. The
assumption being that if the idea works, that project’s workdays will be reduced
and that reduction should pay for the time compression project.

2. Change the resources to an appropriate IT budget category. IT management
can make the decision that time compression projects are worthwhile. They can
review their budget and make a decision for an appropriate budgetary account
to record the resources. If resources are budgeted for building/improving work
processes, that budgetary account is the logical one to record time compression
projects. Another potential budgetary account is training.

3. Establish a special budgetary account for time compression. IT management
can allocate a certain percentage of their budget for time-compression projects.
If they do this, they can have project personnel develop a test process work
improvement plan and submit it to IT management for approval. Thus, staff
members from different projects can become involved in suggesting and imple-
menting ideas to compress software testing delivery time. IT management can
control the work by approving the implementation work plan proposals. (Note:
Some IT organizations allocate 2 to 5 percent of their testing budget for testing
process improvement projects such as building an agile testing process.)

Quality Control Checklist

Work paper 24-27 is a quality control checklist for Step 7. The investigation should
focus on determining whether a specific aspect of the step was performed correctly or
incorrectly.

The agile implementation team should review these questions as a team. A consen-
sus Yes or No response should be determined. “No” responses should be explained
and investigated. If the investigation indicates that the particular aspect of the step was
incorrectly performed, it should be repeated. (Note: Some teams prefer to review the
quality control checklist before they begin the step to give them a fuller understanding
of the intention of this step.)

Conclusion

An idea is not valuable until it is implemented. This step has examined the process for
taking the highest-priority recommended idea and developing a plan to implement
that idea. The plan needs to involve both modifying the work tasks of the affected
workbench, and addressing any obstacles/barriers that might impede the implemen-
tation of the improvement idea. The process proposed is the “Plan, Do, Check, Act”
cycle. At the end of this cycle, action is taken on whether to make the idea permanent,
whether to modify and re-execute a revised plan for the implementation idea, or
whether to eliminate the idea and move on to the next high-priority improvement idea.

894 Chapter 24



Summary

Agile processes are more effective than highly structured processes. Because agile
processes seem to work best with small teams, and because most software testing pro-
jects are performed by small teams, testing is an ideal candidate to incorporate agility
into their processes.

The process proposed in this chapter was built on these time-proven concepts:

■■ It is far better to change the current process than to acquire/build and imple-
ment an entirely new process.

■■ Focusing on time compression (i.e., reducing the time required to perform a
task) has, as its by-product, testing effectiveness and process agility.

■■ The quickest way to compress time in a testing process is to reduce process
variability.

■■ It is more important to determine that ideas are implementable than to select
the best idea, which may not be doable.

■■ Continuous small improvements are superior to a few major improvements.

■■ Don’t make any improvements until you know that the organization, and those
involved, will support the improvement (i.e., don’t begin a task that you know
has a high probability of failure).

Building Agility into the Testing Process 895



WORK PAPER 24-1 Define the Timeline Software Testing Workbenches

WORKBENCH WORKBENCH WORKBENCH WORKBENCH WORKBENCH 

1 2 3 4 5

Input(s)

Workbench 

Name

Workbench 

Objective(s)

Output(s)

Approximate 

Estimated 

Workdays 

Timeline

896 Chapter 24



WORK PAPER 24-2 Workbench Completion Calendar Day Timeline

Workbench Name:

Project Timelines:

Date “Do” Minimal 

Procedures Date Timeline 

Completed Workbench Calendar Actual Timeline 

Project(s) Start Date First Time Completed Days Calendar Days

Average No Rework Calendar Days Timeline: No Rework Calendar Days Variability:

Average Actual Calendar Days Timeline: Actual Calendar Days Variability:

Building Agility into the Testing Process 897



WORK PAPER 24-3 Completion Timeline Variability Analysis

Workbench Name:

Variability Analyzed: Below Average Above Average

Source of Variability

Workbench Component Yes No Root Cause

Input Criteria

Checking Input Criteria

Do Procedures

Check Procedures

Toolbox

Worker Competency

Internal Rework

External Rework

Exit Criteria

Other (specify)

898 Chapter 24



WORK PAPER 24-4 Software Testing Completion Timeline Process

Ideas for Completion Timeline Improvement Reference Number Priority

High Low

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Building Agility into the Testing Process 899



WORK PAPER 24-5 Quality Control Checklist for Step 1

YES NO COMMENTS

1. Has an agile implementation team been established?

2. If so, are the members of the team respected individuals in the 

IT organization?

3. If so, does the team comprise no less than two members and 

no more than five members?

4. Does the agile implementation team understand the 

relationship of process variability to performing processes 

effectively?

5. Does the agile implementation team understand that the skill 

sets of the individual performing a professional process are 

assumed and not incorporated into the software testing 

process?

6. Does the agile implementation team understand that a process 

is broken up into steps/tasks?

7. Does the agile implementation team understand the concept 

of a process workbench and the various components in the 

workbench?

8. Does the agile implementation team understand the 

time-compression workbench?

9. Has the agile implementation team identified the key 

workbenches in the software testing process?

10. Has the agile implementation team eliminated from 

consideration those software testing workbenches that do not 

affect the time to complete the software testing process?

11. Have the inputs and outputs for each identified workbench 

been defined?

12. Have the objectives for each identified workbench been stated 

in a manner in which the results are measurable?

13. Is there general consensus on the approximate estimated 

completion timeline for each of the key workbenches?

14. Has a reasonable number of workbenches been selected to 

provide reliable information on the completion timeline for 
that workbench? (Note: This assumes a reasonable process is 

used for selecting the workbenches for investigation)

900 Chapter 24



WORK PAPER 24-5 (continued)

YES NO COMMENTS

15. For the workbenches selected for completion time analysis,  

has a reasonable number of projects been identified and the 

calendar dates for those projects been documented?

16. Have the projects for the identified workbenches that are 

significantly better or significantly worse than the average 

calendar days been identified?

17. For each workbench where projects have been identified that 

were implemented more efficiently than the average timeline, 

has a variability completion timeline analysis been performed?

18. For each workbench where projects have been identified that 

were implemented less efficiently than the average timeline, 

has a variability completion timeline analysis been performed?

19. For each of the workbench components for the identified 

projects, have the source of variability and the probable cause 

been determined?

20. Has a reasonable process been followed to identify ideas for 
completion time improvement?

21. For those ideas identified for completion timeline improvement, 

has the agile implementation team assigned a high or low 

priority to that idea?

22. Are measurements and analysis performed for testing 

workbenches executed for software project of equal size and 

complexity?

Building Agility into the Testing Process 901



WORK PAPER 24-6 Criteria Recommended to Measure Software
Testing Effectiveness and Efficiency

Measuring

Criteria Description Efficiency Effectiveness Rank

902 Chapter 24



WORK PAPER 24-7 Measuring Software Testing Effectiveness/Efficiency

Software Project Name:

Method to Calculate 

Efficiency Criteria Criteria Score Weight Efficiency Score

Total 100%

Total Efficiency Score

Effectiveness Method to Calculate 

Criteria Criteria Score Weight Effectiveness Score

Total 100%

Total Effectiveness Score

Building Agility into the Testing Process 903



WORK PAPER 24-8 Recording Efficiency and Effectiveness Scores

100% (High)

100% (High)Effective Software Testing
(meets customer needs)

Efficient
Software
Testing

0% (Low)

0% (Low)

904 Chapter 24



WORK PAPER 24-9 Potential Best Practices for Compressing Software
Testing Completion Time

Application Application 

Best Practice Description Project Used In Efficiency Effectiveness

Building Agility into the Testing Process 905



WORK PAPER 24-10 Best Practices Shopping List

Priority

Best Practices for Time Improvement Reference # High Low

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

906 Chapter 24



WORK PAPER 24-11 Quality Control Checklist for Step 2

YES NO COMMENTS

1. Have the roles and responsibilities of the testers been identified?

2. Does an appropriate relationship exist between the customer/
user, project development team, testers, and IT management 

to ensure that the project is tested correctly?

3. Are the quality factors understood by the agile implementation 

team?

4. Are the quality factors applicable to the projects being tested 

in your IT organization?

5. Are the quality factors complete for assessing the quality of the 

projects in your IT organization, or are additional factors needed?

6. Is the concept of trade-offs understood by the agile 

implementation team?

7. In each software development project is someone responsible 

for making trade-offs? (It may be more than one group, 

depending on the type of trade-off.)

8. Does the time-compression team understand the type of 

trade-offs that exist in all software testing projects? 

9. Does the software testing team understand the impact of not 

making the trade-offs during software testing?

10. Does the agile implementation team understand the criteria 

that can be used to evaluate effectiveness and efficiency of a 

software testing project?

11. Does the agile implementation team understand the software 

testing capability barrier chart?

12. Does the agile implementation team understand why a 

capability barrier exists, and why it is difficult to break 

through that barrier?

13. Has the agile implementation team developed an inventory of 

criteria they believe will be applicable for measuring 

testing efficiency and effectiveness?

14. Has the agile enhancement team selected 3–5 criteria to 

evaluate projects for efficiency?

(continues)

Building Agility into the Testing Process 907



WORK PAPER 24-11 (continued)

YES NO COMMENTS

15. Has the agile enhancement team selected 3–5 criteria to 

evaluate projects for effectiveness?

16. Has the agile implementation team determined how they will 

create a score for each criterion?

17. Has the agile implementation team weighted the criteria for 
both effectiveness and efficiency?

18. Has the agile implementation team developed efficiency and 

effectiveness scores for a reasonable number of projects?

19. Are the projects selected by the agile implementation team 

representative of the type of testing projects undertaken 

by the IT organization?

20. Has the agile implementation team posted the scored projects 

to the capability barrier chart?

21. Using the capability barrier chart, has the agile implementation 

team identified some best practices for both efficiency and 

effectiveness?

22. Has the agile implementation team identified which of those 

best practices they believe has the greatest probability for 
time compression?

23. Have the selected best practices been recorded on the 

improvement shopping list work paper?

908 Chapter 24



WORK PAPER 24-12 Software Testing Process Self-Assessment

Criteria 1: Management Commitment to Software Testing

YES NO COMMENTS

1. Does management devote as much personal attention and 

involvement to software testing as it does for software 

development?

2. Does management understand the challenges and impediments 

it will face in moving their IT organization to a quality software 

testing culture?

3. Does IT management demonstrate its belief in the software 

testing process by allocating adequate resources to ensure the 

testing process is used effectively?

4. Does management support processes such as management 

checkpoints, software reviews, inspections, checklists, and other 
methods that support implementing software testing principles 

and concepts in day-to-day work?

5. Does management, on a regular basis, make decisions that 

reinforce and reward software testing initiatives, such as 

ensuring that quality will not be compromised for schedule 

and budget constraints? (Note: This does not mean that 

requirements and standards will not be negotiated; it means 

there will be agreement on quality if it conflicts with schedule 

or budget.)

Number of Yes Responses

(continues)

Building Agility into the Testing Process 909



WORK PAPER 24-12 (continued)

Criteria 2: Software Testing Environment

YES NO COMMENTS

1. Does the IT organization have a software testing policy that 

clearly defines the responsibilities and objectives as the 

software testing function?

2. Are the software testers organizationally independent from the 

software developers, except for unit testing?

3. Does the IT organization allot as many resources for acquisition 

and development of software testing process and tools as it 

does for software development processes and tools?

4. Does the IT organization have a detailed plan to promote and 

improve software testing throughout the IT organization?

5. Does the IT organization have an educational plan for all staff 

members in software testing principles, concepts, and other 
methods; and is that plan operational?

Number of Yes Responses

Criteria 3: Process to Do Work 

YES NO COMMENTS

1. Are there formal work processes outlining the detailed 

step-by-step procedures to perform all software testing projects 

within the IT organization?

2. If so, are those work processes comprised of a policy, standards, 

and procedures to both do and check work?

3. Does management both enforce compliance to work processes 

and reward compliance to work processes?

4. Are the work processes developed and/or approved by those 

that will use the work processes in their day-to-day work?

5. Are IT staff members hired to use specific work processes, and 

then trained sufficiently so that they can perform those work 

processes to a high level of competence?

Number of Yes Responses

910 Chapter 24



WORK PAPER 24-12 (continued)

Criteria 4: Processes to Check Work

YES NO COMMENTS

1. Are check procedures developed in a formal manner for each 

work process?

2. Is the combination of the work and check procedures integrated 

so that they are included in the project budget, and executed 

in a manner so that both become part of the day-to-day work 

of the IT staff?

3. Are the check procedures developed commensurate with the 

degree of risk associated with not performing the “do work 

procedures” correctly?

4. Are the results of the check procedures provided to the 

appropriate decision-makers so they can make any needed 

changes to the software in order to ensure they will meet the 

customer’s needs?

5. Are the workers adequately trained in the performance of the 

check procedures so that they can perform them in a highly 

competent manner?

Number of Yes Responses

Criteria 5: Continuous Improvement to the Software Testing Process 

YES NO COMMENTS

1. Is information regarding defects associated with the software 

testing products and processes regularly gathered, recorded, 

and summarized?

2. Is an individual or an organizational unit such as quality 

assurance charged with the responsibility of maintaining defect 

information and initiating quality improvement efforts?

3. Does the IT budget include the money and staff necessary to 

perform continuous quality improvement?

4. Is there a process in place that establishes a baseline for the 

current process, and then measures the variance from that 

baseline once the processes are improved?

5. Are resources and programs in place to adequately train workers 
to effectively use the new and improved work processes?

Number of Yes Responses

Building Agility into the Testing Process 911



WORK PAPER 24-13 Software Testing Process Assessment Footprint
Chart

5

4

3

2

1

Test Environment

Test Planning

Test Execution

Test Analysis & Reporting

Test Improvement

Footprint may look

similar to this:

912 Chapter 24



WORK PAPER 24-14 Delivery Timeline Process Improvement
Shopping List

Priority

Ideas for Delivery Timeline Improvement Reference # High Low

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Building Agility into the Testing Process 913



WORK PAPER 24-15 Quality Control Checklist for Step 3

YES NO COMMENTS

1. Is the software testing process self-assessment being performed 

by the agile implementation team?

2. Does the agile implementation team know the software testing 

process?

3. Does the agile implementation team know management’s 

attitude about the use of the software testing process 

(e.g., rewarding for use of the process)?

4. Does the agile implementation team know the type of support 
a tester would get if they use the software testing process 

(e.g., type of training, who can answer the questions, etc.)?

5. Did the agile implementation team follow the self-assessment 

process as described in this chapter?

6. Does the agile implementation team understand the meaning 

of Yes and No responses?

7. For items in which the agile implementation team could not 

arrive at a consensus, was a No response given?

8. Did the agile implementation team prepare the software 

testing process footprint and then discuss and draw conclusions 

about that footprint?

9. Was each category item that had a No response evaluated as a 

potential improvement idea to compress the software testing 

delivery timeline?

914 Chapter 24



WORK PAPER 24-16 Stakeholder Analysis

Stakeholder

(Name of 

Function) Current Stake Reason(s) Desired Stake How to Address

Building Agility into the Testing Process 915



WORK PAPER 24-17 Barrier/Obstacles

Barrier/Obstacle Source Root Cause How to Address

916 Chapter 24



WORK PAPER 24-18 Barrier/Obstacle (“Why-Why”) Analysis

Poor Performance Appraisal

(Barrier/Obstacle)

Job results not known

(why did it occur)

Personal conflict

(why did it occur)

Lack of planning

(why did it occur)

Challanged boss

(why did it occur)

Different work styles

(why did it occur)

Building Agility into the Testing Process 917



WORK PAPER 24-19 Quality Control Checklist for Step 4

YES NO COMMENTS

1. Does the agile implementation team recognize the impact that 

a barrier/obstacle can have on implementing a time 

compression idea?

2. Does the agile implementation team understand the various 

views a stakeholder can have on a proposed time compression 

idea?

3. Has the agile implementation team identified all of the potential 

stakeholders in compressing the software testing delivery time?

4. Has the agile implementation team determined which 

stakeholders have to be individually identified and which 

stakeholders can be identified by job position?

5. Has the current stake for each stakeholder been identified?

6. Has the agile implementation team defined what they believe 

is the reason the person holds that specific stake?

7. Has the desired stake for each individual/job position been 

determined?

8. Has the agile implementation team developed a solution on 

how to address moving an individual from a current stake to a 

desired stake?

9. Have the barriers associated with staff competency been 

identified?

10. Have the barriers associated with individual’s red flags/hot 

buttons been identified?

11. Does the agile implementation team understand that the 

individual looks at an idea from the viewpoint of “What’s In It 

For Me?”

12. Have the administrative/organizational barriers been identified?

13. Does the agile implementation team understand how to 

determine the root cause of each administrative/

organizational barrier?

14. Has a reasonable solution been developed for each root cause 

to address that root cause should it become necessary?

15. Is the agile implementation team in agreement that the 

important people, administrative, and organizational barriers 
that can affect time compression projects have been identified?

918 Chapter 24



WORK PAPER 24-20 Cultural Barrier Work Paper

Current IT management culture

Barrier posed by culture

What can be done in current culture

Desired culture for time compression

How to address cultural barriers

Building Agility into the Testing Process 919



WORK PAPER 24-21 Information and Communication Flow Barrier

Information Flow

Should Be 

Information
Communicated

How to 

Needed Importance By             To Barrier Address Barrier

920 Chapter 24



WORK PAPER 24-22 Quality Control Checklist for Step 5

YES NO COMMENTS

1. Does the agile implementation team have a good understanding 

of how an IT management culture affects the operation of 

the IT organization?

2. Does the agile implementation team understand the five 

different cultures that can exist in an IT organization?

3. Did the agile implementation team reach consensus on the 

current IT organization’s management culture?

4. Given the discussion of why IT management would want to 

keep their current culture, can the agile implementation team 

identify barriers posed by the current IT culture?

5. Can the agile implementation team convert those barriers into 

positive statements of how time compression solutions must 

be implemented?

6. Has the agile implementation team determined whether or not 

a different culture would be more advantageous in 

implementing the proposed time compression solutions?

7. For each of the barriers identified, has the agile implementation 

team determined whether those barriers can be adequately 

addressed in implementing time compression solutions?

8. For those barriers that the agile implementation team believes 

can be adequately addressed in the time compression solutions, 

have they determined a potential solution for addressing those 

culture barriers?

9. Does the agile implementation team recognize the importance 

of information and communication in building an agile 

software testing process?

10. Does the agile implementation team understand the three 

components of effective communication?

11. Has the team developed a lines of communication graph for 
software testing?

12. Has the graph been analyzed to determine:

a. Information missing from the graph

b. Information not communicated to the right individual

(continues)

Building Agility into the Testing Process 921



WORK PAPER 24-22 (continued)

YES NO COMMENTS

13. Has the team determined the importance of each 

communication and developed a communication score for each 

individual/function identified on the communication graph?

14. Has the team studied and understood the guidelines for 
information and communication?

15. Has the team identified the barriers for effective communication 

in the performance of software testing?

922 Chapter 24



WORK PAPER 24-23 Software Testing Time Compression Idea

Improvement User 

Idea Acceptable × Barrier Free × Attainability × Effectiveness = Doable Score

Building Agility into the Testing Process 923



WORK PAPER 24-24 Establishing the Priority of Doable Ideas for
Jumpstarting an Agile Software Testing Process

Implementable 

Improvement Idea 
Prioritization Rank

Ranked by Doable Score Prioritization Considerations High Medium Low

924 Chapter 24



WORK PAPER 24-25 Quality Control Checklist for Step 6

YES NO COMMENTS

1. Has the agile implementation team agreed upon a list of 

improvement ideas they will consider?

2. Does the agile implementation team believe that an algorithm 

to score each idea from best to worst would assist them in 

selecting the best ideas?

3. Does the agile implementation team understand the four 
criteria proposed for the selection for the best idea?

4. Does the agile implementation team understand and accept 

the 0 to 3 scoring method for each of the four criteria?

5. Has the agile implementation team scored each idea using the 

selection process criteria?

6. Has the agile implementation team then ranked all the ideas 

from highest score to lowest score?

7. Does the agile implementation team believe that the best idea 

is among the highest scoring ideas?

8. Has the agile implementation team reviewed the few highest 

scoring ideas to determine which of those they believe are the 

best regardless of the final score?

9. Has the agile implementation team reviewed the top six ideas 

for compressing software testing time to determine if the idea 

they selected is consistent with the top six?

10. Has the agile implementation team agreed upon one idea 

for implementation?

11. If the agile implementation team wants to do further 
prioritization to select doable ideas to implement, have team 

members determined how they will do that additional 

prioritization?

Building Agility into the Testing Process 925



WORK PAPER 24-26 Software Testing Time Compression Tactical 
Work Plan

Objective to Accomplish:

Improvement Idea:

Method of 

Objective Current Results Expected Results Actual Results Measurement

Work Plan

Time Frame

Target 

Tasks Resources Start Date Completion Date

926 Chapter 24



WORK PAPER 24-27 Quality Control Checklist for Step 7

YES NO COMMENTS

1. Has the agile implementation team gathered all the appropriate 

information related to a selected improvement idea from 

Steps 1 through 6?

2. Does the agile implementation team have a project planning 

process that it can use to implement the improvement idea?

3. Does the agile implementation team understand the 

“Plan-Do-Check-Act” cycle and its relationship to planning 

and implementing a time compression improvement idea?

4. Can the agile implementation team express the improvement 

objective in measurable terms?

5. Does the agile implementation team know the current results 

from the workbench that is designated to be improved?

6. Has the agile implementation team agreed upon a method for 
measuring the expected results from implementing the time 

compression idea?

7. Do the work tasks include both tasks to modify the workbench 

and tasks to address the obstacle/barrier that may impede 

implementing the improvement idea?

8. Has the agile implementation team been authorized the 

resources needed to implement the improvement idea?

9. After implementation, have the actual results from 

implementation been documented?

10. Was a reasonable process used to record the actual results?

11. If the actual results indicate a successful implementation of an 

improvement idea, has the agile implementation team taken 

the action necessary to make that improvement idea in part 
of the affected workbench?

Building Agility into the Testing Process 927





929

Index

A
acceptance criteria, post-implementation

analysis, 578
acceptance testing

administrative procedures, 498
concerns, 493–494
data components, 492
execution, 499
functionality requirements, 497
input, 495–496
interface quality requirements, 497
objectives, 492–493
overview, 491
people components, 492
performance requirements, 497
plan contents, 498–499
programming testing, 324
project description contents, 498
RAD testing, 637
rules, 492
software quality requirements, 497
structure components, 492
tester roles, 44
use cases, 500–503
user responsibilities, 498
validation, 221
V-concept testing, 158–159

work papers
acceptance criteria, 527
acceptance plan form creation,

544–545
automated application criteria,

566–567
change control forms, 546
checklist, 550–551
data change forms, 547–548
deletion instructions, 538–539
installation phase, 531
inventory material, 552–553
production change instructions,

536–537
program change form completion,

540–541, 549
program change history, 534–535
quality control checklist, 560–563
recovery planning data, 532–533
system boundary diagram, 528
system problem form completion,

542–543
test cases, 530
training checklist form completion,

558–559
training failure notification, 568–569
training module form completion,

556–557



930 Index

acceptance testing (continued)

training plan form completion,
554–555

training quality control checklist,
564–565

use cases, 504–507, 529
workbench concept, 494

access control
best practices, 850
configuration management, 602
data warehouse testing, 770–771, 777
risk assessment, 216
test factors, 41–42
unauthorized, 766
Web-based systems testing, 803

access denied
security testing, 223
verification testing, 301, 319

accidental versus intentional losses,
738–739

accuracy, best practices, 849
acquisition, system processing, 76
activities, Project Status reports, 469
ad hoc process level, client/server

systems testing, 616–617
adequacy evaluation, software security

testing, 761
administration

administrative components
acceptance testing, 498
CM (configuration management),

602–603
test plan development, 250–251

barriers, 865–866
development activities, 753

agile testing process
DRE (Defect Removal Efficiency), 822
flexibility, 820–821
importance of, 819–820
mature processes, 821
MTBF (mean time between failures),

822–823
MTTF (mean time to failure), 822–823

MTTR (mean time to repair), 822–823
objective-driven processes, 821
quality, 821
team representatives, 820–821
tester agility, 842–843
time-compression efforts

best practices, 825
calendar-day efficient, 823–824
challenges, 824
readiness criteria, 826
solutions to, 825
V-concept testing, 826–827
workbench concept, 834

variability and, 820
work papers, 923–927

algebraic specification, 237
alliance, business innovation, 878
allocation of resources, management

support needs, 51
annual report preparation, 120
applications

internal controls testing, 666–669
risks, verification testing, 304–308
system activities, 752

assessment objectives, post-
implementation analysis, 574–575

assessment questionnaires, baseline
development, 10

assessment teams, baseline
development, 10

asset value, post-implementation
analysis, 579

assistant tool managers, 119
audience criteria, documentation, 179
audit trails

corrective controls, 665
inadequate, 766
programming testing, 327
risk assessment, 216
test factors, 40, 42
validation testing, 435
verification testing, 319

auditors, roles and responsibilities, 6



Index 931

audits, configuration management, 602
authorization

cycle control objectives, 675
internal controls testing, 658
programming testing, 326
risk assessment, 215
test factors, 40, 42
transactions, 755
validation testing, 434
verification testing, 301, 318
Web-based systems testing, 803

authors, inspection process
responsibilities, 258

automated applications
operational fit tests, 697
operational testing, 522–523
tools, 104, 221

availability, baseline information, 741
Average Age of Uncorrected Defects by

Type report, 475
average prioritized objectives, 245
awareness concerns, baseline

information, 743
axiomatic specification, 238

B
back-end processing, 611, 800
background and reference data, test

plan development, 251
backup data

data warehouse testing, 773–774, 778
recovery testing, 223

balance checks, preventive controls, 
662

bandwidth access, Web-based systems
testing, 805

barrier identification
communication barriers

conflict-resolution methods, 880
effective communication process,

882–884
how to address, 882
lines of communication, 881
management support solutions, 883

objectives, understanding consensus
of, 880

open channel concept, 884
quality control, 884
realistic mechanism solutions, 884
respect for others, 880

cultural barriers
business innovation management,

878
competencies, 874–876
discussed, 869
how to address, 879–880
manage by fact concept, 876–877
manage by process concept, 873–874
management cultures, 870
people management, 871–872

improvement barriers
administrative/organizational

barriers, 865–866
quality control, 869
red flag/hot button barriers, 864
root cause, 866–869
staff-competency barriers, 865
stakeholder perspective, 861–864

work papers
communication barriers, 920–922
cultural barriers, 919
stakeholder analysis, 915–918

base case, verification testing, 293
baselines

accurate and precise information, 741
analysis, 750
availability, 741
awareness concerns, 743
awareness training, 747
categories, 739
collection methods training, 747
configuration management, 604
corporate language, adjustments for,

741
data collection methods, 744–747
development

assessment questionnaires, 10
assessment teams, 10



932 Index

baselines (continued)

capabilities assessment, 13–14
cause-effect diagram, 9
drivers, 8
environment assessment, 8
footprint charts, 10
implementation procedures, 9
results assessments, 11–12
tester competency assessment, 14–16
verification, 13

forms completion training, 747–748
methods, 743
objectives, 751
one-time data collection procedures,

741
reasons for, 740
resources protected concerns, 743
security sources, 740
status, reporting, 749
support concerns, 744
team member selection, 742–743
training concerns, 743
what to collect, 740

batch jobs, system processing, 76
batch tests, 248
best practices

access control, 850
accuracy, 849
audits, 850
capability chart, 847
communication, 850
completeness, 849
consistency, 849
data commonality, 850
effectiveness and efficiency measures,

848–849, 852–854
error tolerance, 849
execution efficiency, 850
expandability, 850
generality, 850
identifying from best projects, 854–856
instrumentation, 850
machine independence, 850

modularity, 850
operability, 850
operational software, 843
quality control, 856–857
quality factors, 843–846
quality in fact perspective, 843
quality in perspective, 843
self-descriptiveness, 850
simplicity, 850
storage efficiency, 850
system independence, 850
tester agility, 842–843
time-compression efforts, 825
traceability, 849
training, 850
work papers, 906–908

black box testing
COTS software testing challenges, 689
discussed, 69

boundary value analysis tools, 105
branch testing, description of, 239
browser compatibility concerns, Web-

based systems testing, 800, 805–806
budgets

administrative/organizational
barriers, 865

client/server testing readiness, 614
efficiency measures, 853
facts, managing, 162
inadequate, 39
people management through, 871
post-implementation analysis, 578
Project Status reports, 468–469
Summary Status reports, 467

business innovation management,
cultural barriers, 878

business logic techniques
COTS software testing concerns, 692
testing guidelines, 67–68

business requirements, methodologies,
592

business transaction control points,
software security testing, 755–756



Index 933

C
caching, Web-based systems testing, 

805
calculation correctness, Web-based

systems testing, 804
capabilities assessment, baseline

development, 13–14
capability chart, best practices, 847
Capability Maturing Model Integrated

(CMMI), 596–597, 824
capture/playback tools, 105
cause-effect

diagram, baseline development, 9
graphing tools, 105

CBOK (Common Body of Knowledge)
categories, 127–128
code of ethics, 125
continuing education, 125
discussed, 14–15
tester competency, 125–126
work papers

individual competency evaluation,
149

new information technology, 148
project management, 135–138
security procedure assessment,

146–147
software controls, 146
test environment, building, 133–135
test planning, 138–142
test status and analysis, 143–144
test team competency evaluation, 150
testing principles and concepts,

132–133
user acceptance testing, 144–145

central computer sites, software security
testing, 746

central processors, vulnerabilities, 738
Certified Software Tester. See CSTE

certificate
champion, barrier/obstacle solution, 

868
change characteristics, post-

implementation analysis, 576

change control
development activities, 753
operational testing, 517–518

change estimation, timelines, 837
change in scope criteria, documentation,

174
change recommendation, tester roles, 44
check procedures

client/server systems testing, 624
COTS software testing, 705
data warehouse testing, 780
edit checks, 414
multiplatform environment testing,

726
operational testing, 522
organization, 200
post-implementation analysis, 580
RAD testing, 642
results analysis, 482
software security testing, 762
test plan development, 262
validation testing, 439
variability measures, 834
verification testing, 330
Web-based systems testing, 809

checklist
process preparation, 86
quality control, 207–209
testing tactics, 100–101
tools, 105

CI (configuration identification), 601
clarity of communication, COTS

software testing, 700
class, classifying defects by, 258
classification objectives, cycle control

objectives, 675
clearness, requirements measures, 594
client/server systems testing

ad hoc process level, 616–617
back-end processing, 611
check procedures, 624
client needs assessment, 622–623
concerns, 612–613
consistent process level, 618–619



934 Index

client/server systems testing (continued)

footprint chart, 621
guidelines, 624
installations, 622
maturity levels, 615–616
measured process level, 619–620
optimized process level, 620–621
output, 624
readiness assessment, 614–615, 621
repeatable process level, 617–618
security, 622
work papers

client data, 627–628
footprint chart, 631
quality control checklist, 632
readiness results, 630
security, 626–627
standards, 628–629
system installation, 625

workbench concept, 613
CM (configuration management)

administrative activities, 602–603
audits, 602
baselines, 604
basic requirements, 600
CI (configuration identification), 601
configuration control, 601
CSA (configuration-status accounting)

system, 601–602
data distribution and access, 602
document library, 604
initial release, 604
interface requirements, 605
marking and labeling, 604–605
planning, 602
software development library, 604
technical reviews, 603
WBS (Work Breakdown Structure), 603

CMMI (Capability Maturity Model
Integrated), 596–597, 824

code
comparison tools, 105
verification concerns, Web-based

systems testing, 800
walkthrough, program verification, 55

code of ethics, CBOK, 125
coding errors, undetected defects, 66
collection methods training, baseline

information, 747
combination teams

advantages/disadvantages, 171
communication concerns, 170

commands, operations activities, 754
commercial off-the-shelf software. See

COTS software testing
Common Body of Knowledge. See

CBOK
communication

barriers/obstacle solutions
conflict-resolution methods, 880
effective communication process,

882–884
how to address, 882
lines of communication, 881
management support solutions, 883
objectives, understanding consensus

of, 880
open channel concept, 884
quality control, 884
realistic mechanism solutions, 884
respect for others, 880

best practices, 850
combination team concerns, 170
communication lines and networks,

software security testing, 746
development activities, 753
failed, application risks, 308–309

compatibility
COTS implementation risks, 688
Web-based systems testing, 804–805,

808–809
competency

barriers, 865
baseline development, 14–16
building software skills, 598
client needs assessment, 623
competent-programmer hypothesis,

242
cultural barriers, 874–876
efficiency measures, 852–853



Index 935

inadequate, 39
people management skills, 598
process-selection skills, 598
project management skills, 598
testers

baseline development, 14–16
CBOK (Common Body of

Knowledge), 125–128
competent assessment, 128
CSTE (Certified Software Tester)

certificate, 125, 127–128
fully competent assessment, 128
job performance roles, 126–127
negative attitudes, 130
not competent assessment, 128, 130
training curriculum development,

128–130
work papers, 28–32

of tests, assessing, 14–16
variability measures, 835
work papers, 28–32

competition, barrier/obstacle solutions,
868

compiler-based analysis tools, 105
completeness evaluation

best practices, 849
client needs assessment, 623
documentation, 179–180
preventive controls, 660
requirements measures, 594

complexity measures, structural
analysis, 238

compliance testing
examples of, 223
how to use, 228
with methodology, 299
objectives, 227
parallel testing, 229
post-implementation analysis, 575
test factors, 41–42
validation testing, 434
when to use, 228

component testing, Web-based systems
testing, 807

computation faults, error-based testing,
241

computer operations, vulnerabilities,
738

computer processing
operations activities, 754
testing without, 669

computer programs, vulnerabilities, 736
computer software, system 

processing, 77
computer store demonstration, COTS

software testing, 700–701
conciseness, best practices, 850
concurrency testing, Web-based systems

testing, 804
concurrent software development

criteria, documentation, 175
conditional testing, 240
conditions, validation testing results,

436, 438–439
configuration identification (CI), 601
configuration management. See CM
configuration-status accounting (CSA)

system, 601–602
confirmation tools, 105
conflict-resolution methods, 880
consensus policies, 46–47
consistency

best practices, 849
process advantages, 153
requirements measures, 594

consistent process level, client/server
systems testing, 618–619

constraint method, software cost
estimation, 182–183

constraints
methodologies, 592
profile information, 214

content criteria, documentation, 
179–180

contingency planning
programming testing, 327
test plan development, 222
verification testing, 319



936 Index

continuing education, CBOK, 125
continuity of processing

risk assessment, 216
test factors, 41–42

contracted software
COTS versus, 686
test tactics, 75
testing efforts, 704–705
vendor reputation importance, 

690–691
contracting officers, roles and

responsibilities, 591
control flow analysis tools, 105
control testing

examples of, 229
how to use, 234
objectives, 234
when to use, 234

controllability, requirements measures,
594

controlled demonstration, COTS
software testing, 700–701

controls
corrective, 665
detective

control totals, 664
data transmission, 663
discussed, 662
documentation, 664
logs, 663
output checks, 664–665

objectives, verification testing, 303
preventive

balance checks, 662
completeness tests, 660
control data, 661
control totals, 660
data input, 659
file auto-updating, 661
has totals, 661
input validation, 659–661
limit tests, 660
logical tests, 660

overflow tests, 662
prenumbered forms, 659
project checks, 660
record counts, 661
self-checking digits, 660
source-data, 658–659
turnaround documents, 659
validity tests, 660

project status calculation, 191
risks, 64

conversion, cycle control objectives, 675
core business areas, test plan

development, 221
corporate language, adjustments for, 741
corrected conditions, undetected

defects, 66, 155
corrective controls, internal controls

testing, 665
correctness

programming testing, 327
requirements measures, 594
risk assessment, 217
software quality factors, 844
test factors, 40, 42
tools, 105
validation testing, 435
Web-based systems testing, 800, 804

costs
cost/benefit analysis, 172
cost-effectiveness of testing, 47–48
critical success factors, 695
defects, 67, 154
internal controls testing, 665
profile information, 214
software cost estimation

inflation, 188
labor rates, 188
parametric models, 183–184
personnel, 187
prudent person test, 189
recalculation, 188–189
resources, 188
schedules, 187



Index 937

strategies for, 182–183
validation, 185–189

tools, 114–116
COTS (commercial off-the-shelf)

software testing
advantages, 687
challenges, 689–690
check procedures, 705
clarity of communication, 700
concerns, 691–692
contracted software versus, 686
CSFs (critical success factors), 695–696
data compatibility, 698
demonstrations, 700–701
disadvantages, 687–688
disk storage, 704
ease of use, 700
functional testing, 702–703
guidelines, 706
hardware compatibility, 697–698
help routines, 701
input, 693
knowledge to execute, 701
management information, 694
objectives, 691
operating system compatibility, 698
operational fit tests, 696–697
output, 705
overview, 685
people fit tests, 701–702
probability, 694
products/reports output, 693
program compatibility, 698
risk assessment, 688–689
software functionality, 700
structural testing, 703–704
work flow, 698–699
work papers

completeness tests, 707–708
functional testing, 710
quality control checklist, 712–715
structural testing, 711
test of fit, 709

workbench concept, 692

coupling
coupling-effect hypothesis, 242
programming testing, 328
risk assessment, 218
test factors, 41, 43
validation testing, 434

courses, training curriculum, 128–129
crashes, Web-based systems testing, 807
critical criteria

documentation, 174
requirements measures, 594

critical path definition, timelines, 836
cross-references, inspection process, 260
CSA (configuration-status accounting)

system, 601–602
CSFs (critical success factors), 695–696
CSTE (Certified Software Tester)

certificate
defined, 14–15
tester competency, 125, 127–128
uses for, 127

cultural barriers
business innovation management, 878
competencies, 874–876
discussed, 869
how to address, 879–880
manage by fact concept, 876–877
manage by process concept, 873–874
management cultures, 870
people management, 871–872

culture, client/server testing readiness,
614

curriculum, training, 128–130
customers

profile information, 213
roles of, 6
satisfaction measures, 852
and user involvement, lack of, 210

customer-site demonstration, COTS
software testing, 700–701

customization, V-concept testing,
160–161

cycle control objectives, internal controls
testing, 675



938 Index

D
data

accessibility, enterprise-wide
requirements, 767

commonality, best practices, 850
compatibility, COTS software testing,

698
components, acceptance testing, 492
distribution, configuration

management, 602
generation aids, test verification, 55
improper use of, 766
incomplete, risk factors, 39
requirements, document development,

173
data acquisition, system processing, 76
data collection

baseline information, 744–747
post-implementation analysis, 577

data dictionary tools, 105, 770
data entry

errors, undetected defects, 66, 155
operational fit tests, 697

data exchange issues, test plan
development, 222

data flow analysis tools, 105, 238–239
data formats, client needs assessment,

623
data handling areas, vulnerabilities, 738
data input

preventive controls, 659
problems, 39
response time criteria, documentation,

175
data integrity controls

data warehouse testing, 771–772,
778–779

programming testing, 326
verification testing, 318

data transmission, detective controls,
663

data warehouse testing
access control processes, 770–771, 777

backup/recovery processes, 
773–774, 778

check procedures, 780
concerns, 765–766, 768–769
data integrity processes, 771–772,

778–779
documentation processes, 769, 771, 776
enterprise-wide requirements, 767–768
front-end planning, 770
guidelines, 780
input, 767–768
operations processes, 772–773, 777
organizational processes, 769, 775–776
output, 780
overview, 765
statistics, 773
system development processes,

770–771, 779
work papers

access control, 785
activity process, 797
audio trails, 784
concerns rating, 788, 795–796
continuity of processing, 792
data, placing in wrong calendar

period, 787
documentation, 791
fraud, 789
inadequate responsibility

assignment, 781
inadequate service levels, 786
incomplete data concerns, 782
management support concerns, 794
performance criteria, 793
quality control checklist, 798
reviews, 790
update concerns, 783

workbench concept, 766–767
database management

multiplatform environment testing, 717
system processing, 76

databases
built/used, profile information, 214
sources, validation testing, 413



Index 939

specifications, document development,
173

tools, 105
date controls

enterprise-wide requirements, 768
Project Status reports, 468
Summary Status reports, 467

debugging
programming testing, 325–326
verification testing, 292

decision and planning aids, system
processing, 76

decision tables
as documentation, 180
functional testing, 238

Defect Distribution report, 475–476
Defect Removal Efficiency (DRE), 822
defects

classifying, 258
corrected conditions, 155
costs, 67, 154
data entry errors, 155
efficiency measures, 853
error correction mistakes, 155
extra requirements, 65, 471
failures versus, 65–66
hard to find, 66–67
improperly interpreted requirements,

155
incorrectly recorded requirements, 155
inspection process, 258–259
instructional errors, 155
missing requirements, 65, 471
naming, 471
post-implementation analysis, 

576–578, 580
program coding errors, 155
program specification, 155
results analysis, 462
severity levels, 471
testing errors, 155
testing guidelines, 65–67
undetected, 66
wrong specifications, 65, 471

Defects Uncovered versus Correlated
Gap Timeline report, 473–474

definition, document development, 172
degree of generality criteria,

documentation, 174
deliverables

efficiency measures, 853
inspection process, 256
profile information, 213–214

demonstrations, COTS software testing,
700–701

descriptions, system test plan standards,
81–82

design
bad design problems, 39
changes, regression testing, 55
document development, 172
specifications, undetected defects, 66
verification, SDLC, 53–54

design phase, verification testing,
296–297

design-based functional testing tools,
105

desk checking tools, 106
desk debugging, 325–326
desk reviews, inspection process,

259–260
destruction, transaction, 756
detective controls, internal controls

testing
control totals, 664
data transmission, 663
discussed, 662
documentation, 664
logs, 663
output checks, 664–665

developers
functional testing phases, 70
roles and responsibilities, 6

development
document verification, 171–174
documentation development phase,

172
phases, test strategies, 56



940 Index

development (continued)

process profiles, 212–215
software security testing, 753–754
test process improvement, 44
tester roles and responsibilities, 6

development project types, V-concept
testing, 75

developmental costs criteria,
documentation, 174

deviation, validation testing results, 427
diagnostic software, system 

processing, 76
digital storage facilities, vulnerabilities,

738
disaster planning

operations activities, 754
test tools, 106
validation testing, 436

disk space allocation, stress testing, 223
disk storage

COTS software testing, 704
multiplatform environment testing,

724
document library, configuration

management, 604
documentation

audience criteria, 179
change in scope criteria, 174
client needs assessment, 623
combining and expanding documents

types, 179–180
completeness evaluation, 179–180
concurrent software development

criteria, 175
content criteria, 179–180
cost/benefit analysis, 172
critical criteria, 174
data dictionaries, 770
data input response time criteria, 175
data requirements, 173
data warehouse testing, 769, 771, 776
database specifications, 173
decision tables, 180
degree of generality criteria, 174

detective controls, 664
development activities, 753
development phases, 171–174
developmental costs criteria, 174
enterprise-wide requirements, 768
equipment complexity criteria, 174
feasibility studies, 172
flexibility criteria, 179
flowcharts, 180
formal publication, 178
format criteria, 180
forms, 180
functional requirements, 173
implementation procedures, 890
inadequate, 766
internal, 177–178
levels, 177–178
minimal, 177
multiple programs/files, 180
need for, 174–175
operations manual, 174
organization, 167
originality required criteria, 174
personnel assigned criteria, 174
problems, 513
program change response time criteria,

174
program maintenance manuals, 174
program specification, 173
programming language criteria, 175
project requests, 172
redundancy criteria, 179
section titles, 180
size criteria, 179
software summary, 172
span of operation criteria, 174
specification requirements, tester 

roles, 44
standards, 770
stress testing, 223
system/subsystem specifications, 173
test analysis reports, 174
test plans, 174
timelines, 180–181



Index 941

tool use, 124
user manuals, 174
validation testing, 412
weighted criteria score, 175–177
work papers

documentation completeness, 202
estimation, 203–205
quality control checklist, 207–209
weighted criteria calculation, 201

working document, 178
domain testing, error-based testing, 241
domino effects, revised testing

approach, 50
downloads, Web-based systems testing,

806
DRE (Defect Removal Efficiency), 822
drivers, baseline development, 8
dropped lines, Web-based systems

testing, 807
dynamic analysis

program verification, 55
programming testing, 324

dynamic page generation, Web-based
systems testing, 806

E
ease of operation

risk assessment, 218
test factors, 41, 43
validation testing, 436

ease of use
client needs assessment, 623
COTS software testing, 700
critical success factors, 695
programming testing, 327
risk assessment, 217
scoring success factors, 317
test factors, 41, 43
validation testing, 435

e-commerce activities, 878
edit checks, 414
education, barrier/obstacle solutions,

868
effect, validation testing results, 436, 438

effectiveness measures
best practices, 848–849, 852–854
communication process, 882–884
testing guidelines, 65

efficiency
best practices, 848–849
results analysis, 463
software quality factors, 844

e-learning courses, QAI, 129
electronic device reliance, revised

testing approach, 50
e-mail functions, Web-based systems

testing, 806
end dates, timelines, 838
enterprise-wide requirements

data warehouse testing, 767–768
methodologies, 592

environment assessment criteria, 8
environment controls, internal controls

testing, 656
equipment complexity criteria,

documentation, 174
equivalence partitioning, 236–237
errors

accidental versus intentional losses,
738–739

application risks, 305–307
corrective controls, 665
data entry, 155
error correction mistakes, 155
error guessing tools, 106, 721–722
error handling testing

examples of, 229
how to use, 232
objectives, 231
operations activities, 754
when to use, 232

error tolerance, best practices, 849
error-based testing, 241–242
fault estimation, 241
fault-based testing, 242–243
instructional, 155
perturbation testing, 242
program coding, 155



942 Index

errors (continued)

statistical testing, 241
undetected defects, 66

estimation
parametric models, 183–184
resources, availability, 181–182, 221
software cost

inflation, 188
labor rates, 188
parametric models, 183–184
personnel, 187
prudent person test, 189
recalculation, 188–189
resources, 188
schedules, 187
strategies for, 182–183
validation, 185–189

troubled project characteristics,
181–182

evaluation
policy criteria, 45
system test plan standards, 81–82

events
event control, system processing, 76
test script development, 431

examination tools, 105
executable spec tools, 106
execution

acceptance testing, 499
best practices, 850
execution testing

examples of, 223
how to use, 225
objectives, 225
when to use, 225

validation testing, 434–436
expandability

best practices, 850
critical success factors, 695

Expected versus Actual Defects
Uncovered Timeline report, 472–473

expenditure, cycle control objectives,
675

expenses, Project Status reports, 468

experience evaluation, staffing, 600
expression testing, description of, 240
extensions, project status calculation,

193–194
external team

advantages/disadvantages, 170
external/internal work processes,

variability measures, 835
extra requirements

COTS software testing concerns, 692
defects, 65, 471

F
facility requirements, test plan

development, 222
fact finding tools, 106
fact management, V-concept testing, 

162
failures

COTS software testing concerns, 691
defects versus, 65–66

fault design problems, bad design
decisions, 39

fault estimation, error-based training,
241

fault-based testing, 242–243
feasibility reviews, 70, 172
file auto-updating, preventive controls,

661
file design, validation testing, 413–414
file downloads, Web-based systems

testing, 806
file handling, multiplatform

environment testing, 724–725
file integrity

programming testing, 326–327
risk assessment, 215
test factors, 40, 42
validation testing, 435
verification testing, 301

file reconciliation, control testing, 229
final planning iteration, RAD testing,

642
final reports, walkthroughs, 314



Index 943

financial planning objectives, internal
controls testing, 674–675

first priority, probable penetration
points, 760

flexibility
agile testing process, 820–821
documentation criteria, 179
software quality factors, 844
test plan development, 262

flowcharts
as documentation, 180
tools, 106

follow-ups, inspection process, 261
footprint charts

baseline development, 10
client/server systems testing, 621
work papers, 23

formal publication documentation, 178
format criteria, documentation, 180
forms

completion training, 747–748
as documentation, 180

fraud studies, software security testing,
761

front-end planning, data warehouse
testing, 770

fully competent assessment, tester
competency, 128

functional desk debugging, 326
functional problems, COTS

implementation risks, 688
functional requirements, document

development, 173
functional testing. See also structural

testing
advantages/disadvantages, 69
algebraic specification, 237
analysis, 236
axiomatic specification, 238
black box testing, 69
COTS software testing, 702–703
decision tables, 238
equivalence partitioning, 236–237
functional analysis, 236

input domain testing, 236
interface-based, 236–237
output domain coverage, 237
reasons for, 69
special-value testing, 237
state machines, 238
syntax checking, 237
system testing, 70
user acceptance, 70
validation techniques, 69–70
verification techniques, 69–70

functionality requirements, acceptance
testing, 497

Functions Working Timeline report, 472
function/test matrix, reporting, 

470–472
funding, administrative/organizational

barriers, 865

G
generality, best practices, 850
global extent, fault-based testing,

242–243
graphics filters, Web-based systems

testing, 805
guidelines, testing

business logic techniques, 67–68
defects, uncovering, 65–67
effective test performance, 65
functional testing, 69–71
life-cycle testing, 68
reasons for, 63–64
risk reduction, 64–65
structural testing, 69–71

H
hacking, 757
hardware compatibility

COTS software testing, 697–698
Web-based systems testing, 805

hardware configurations, multiplatform
environment testing, 717

hardware constraints, operational fit
tests, 696



944 Index

has totals, preventive controls, 661
help it happen concept, stakeholder

perspective, 861–862
help routines

client needs assessment, 623
COTS software testing, 701

heuristic models, estimation, 183
hierarchical organization, people

management, 871
high positive correlation, scoring

success factors, 317
high prioritized objectives, 245
high readiness assessment, client/server

systems testing, 621
hot button barriers, 864
hotlines, tool manager duties, 119
HTML tools, Web-based systems testing,

809

I
ICS (internal control specialist), 591
IEEE (Institute of Electrical and

Electronics Engineers) standards, 595
image processing, 76
impersonation, vulnerabilities, 736
implementation procedures

baseline development, 9
discussed, 891
documentation approaches, 890
measurability, 892
methodologies, 592
objectives, 892
obtainable ideas, 886
planning process, 891
prioritization, 888–889
profile information, 214
quality control, 890, 894
requisite resources, 893–894
results, 892–893
test plan development, 251
time-compression efforts, 886–888
user acceptance, 885

improperly interpreted requirements,
defects, 155

improvement barriers
administrative/organizational

barriers, 865–866
quality control, 869
red flag/hot button barriers, 864
root cause, 866–869
staff-competency barriers, 865
stakeholder perspective, 861–864

improvement planning
criteria, 16
processes, 154
self-assessment practices, 17–18

in control processes, variability
measures, 832

inadequate assignment concerns, data
warehouse testing, 765

inadequate audit trails, 766
inadequate documentation, 766
inadequate service levels, 766
incomplete data

data warehouse testing, 766
risk factors, 39

incorrectly recorded requirements,
defects, 155

incremental methodology, 588
industry issues, profile information, 214
inefficient testing, 857–860
inflation, software cost estimation, 188
in-house courses, QAI, 129
initial release, configuration

management, 604
initiation, documentation development

phase, 171
in-phase agreement, RAD testing, 641
input

acceptance testing, 495–496
COTS software testing, 693
data warehouse testing, 767–768
documentation, 167
multiplatform environment testing,

720–721
organization, 167
post-implementation analysis, 574



Index 945

RAD (rapid application development)
testing, 636

results analysis, 461–463
software security testing, 735
test plan development, 212
timelines, 837
validation testing, 411
verification testing, 296–297
vulnerabilities, 736
Web-based systems testing, 801–802

input component, workbench 
concept, 71

input domain testing, 236
inspection process

author responsibilities, 258
concerns, 255
cross-references, 260
defect classification, 258–259
design deliverables, 322
desk reviews, 259–260
follow-ups, 261
importance of, 254
individual preparation, 259–260
inspectors responsibilities, 258
meetings, 260–261
moderator responsibilities, 256–257
overview sessions, 259
planning and organizing procedures,

259
products/deliverables, 256
reader responsibilities, 257
recorder responsibilities, 257
tools, 106
validation testing, 436
verification testing, 292

installation phase, operational testing,
508–509

installations
client/server systems testing, 622
verification, SDLC, 53, 55

Institute of Electrical and Electronics
Engineers (IEEE), 595

instructional errors, 155

instructions coverage, post-
implementation analysis, 578

instrumentation
best practices, 850
tools, 106

integration
COTS implementation risks, 689
revised testing approach, 50
Web-based systems testing, 800

integration scripting, 431
integration testing

as functional tests, 70
RAD testing, 637
tools, 106
validation, 221
Web-based systems testing, 807

integrity, software quality factors, 844
intentional versus accidental losses,

738–739
interfaces

activities, software security testing, 752
design complete factor, verification

testing, 320
interface-based functional testing,

236–237
multiplatform environment testing,

725–726
profile information, 214–215
quality, acceptance testing, 497
requirements, configuration

management, 605
Interim Test report, 478
internal control specialist (ICS), 591
internal controls testing

application background information,
666–667

application controls, 668–669
corrective controls, 665
cost/benefit analysis, 665
cycle control objectives, 675
detective controls

control totals, 664
data transmission, 663
discussed, 662



946 Index

internal controls testing (continued)

documentation, 664
logs, 663
output checks, 664–665

environment controls, 656
financial planning objectives, 674–675
master records, 671
mini-company approach, 672
multiple exposures, 657
non-effective controls, 678
objectives, 657
overview, 655
password protection, 656
preventive controls

balance checks, 662
completeness tests, 660
control data, 661
control totals, 660
data input, 659
file auto-updating, 661
has totals, 661
input validation, 659–661
limit tests, 660
logical tests, 660
overflow tests, 662
prenumbered forms, 659
project checks, 660
record counts, 661
self-checking digits, 660
source-data, 658–659
turnaround documents, 659
validity tests, 660

quality control checklist, 678
results of, 677
risk assessment, 668
strong controls, 677
system control objectives, 674
test-data approach, 669–672
transaction flow testing, 672–673
weak controls, 678
without computer processing, 669
work papers

documentation, 679
file control, 683

input controls, 679–681
output controls, 682
program and processing controls,

681–682
workbench concept, 667

internal documentation, 177–178
internal team

advantages/disadvantages, 169–170
international standards, 594–595
Internet. See Web-based systems testing
interoperability

implementation risks, 689
software quality factors, 844

intersystems testing
examples of, 229
how to use, 233
objectives, 233
when to use, 233

intrusion concerns, Web-based systems
testing, 803

invalid data, tests using, 413
inventory process, reporting, 465
IT operations

management
policy criteria, managing, 45
roles and responsibilities, 6, 591

vulnerabilities, 736
iterative development, test tactics, 75

J
joint policy development, 47
judgment evaluation approach, post-

implementation analysis, 575

K
knowledge to execute, COTS software

testing, 701

L
labeling and marking, configuration

management, 604
labor rates, software cost estimation, 188
lack of training concerns, 210
LAN (local area network), 800



Index 947

legal/industry issues, profile
information, 214

legend information
Project Status reports, 470
Summary Status reports, 468

let it happen concept, stakeholder
perspective, 862

licensing issues, COTS implementation
risks, 689

life cycle phases
SDLC, 52–53
tool selection, 109–111

life-cycle testing, testing guidelines, 68
limit tests, preventive controls, 660
limited space, inspection process

concerns, 255
lines of communication, 881
load testing, Web-based systems testing,

808
local area network (LAN), 800
local extent, fault-based testing, 242–243
logging tools, 107
logical tests, preventive controls, 660
logs, detective controls, 663
lose-lose situations, test plan

development, 211
lost connections, Web-based systems

testing, 807
low prioritized objectives, 245
low readiness assessment, client/server

systems testing, 621

M
maintainability

critical success factors, 695
risk assessment, 217
software quality factors, 844
test factors, 41, 43
validation testing, 436

maintenance
test tactics, 75
verification, SDLC, 53, 55

make it happen concept, stakeholder
perspective, 861

manage by fact concept, cultural
barriers, 876–877

manage by process concept, cultural
barriers, 873–874

manageable processes, 154
management

COTS software testing, 694
cultural barriers, 870
IT operations

policy criteria, managing, 45
roles and responsibilities, 6, 591

management support
communication barrier solutions, 

883
time-compression readiness criteria,

826
risk appetite, 38
roles and responsibilities, 6–7
support for testing, 50–51
test manager responsibilities, 167–168
tool managers

assistant, 119
mentors, 119
need for, 117
positions, prerequisites to creating,

118
responsibilities of, 117, 119–120
skill levels, 118–119
tenure, 120

manual applications, operational
testing, 523–524

manual support testing
examples of, 229
how to use, 232–233
objectives, 232
when to use, 233

manual tools, 104
mapping tools, 106
marketing, barrier/obstacle solutions,

868
marking and labeling, configuration

management, 604
master records, internal controls 

testing, 671



948 Index

mathematical models, system
processing, 76

mature test processes, agile testing, 821
maturity levels, client/server systems

testing, 615–616
MBTI (Myers Briggs Type Indicator), 

130
mean time between failures (MTBF),

822–823
mean time to failure (MTTF), 822–823
mean time to repair (MTTR), 822–823
measurability

implementation procedures, 892
requirements measures, 594

measured process level, client/server
systems testing, 619–620

measurement first, action second
concept, 581

measurement units, reporting, 464–465
media libraries, 754
media, vulnerabilities, 736
medium readiness assessment,

client/server systems testing, 621
meetings, inspection process, 260–261
memory, Web-based systems testing, 

805
mentors, tool managers, 119
message processing, system 

processing, 76
methodologies, software development

business requirements, 592
CMMI (Capability Maturity Model

Integrated), 596–597
competencies required, 598–599
compliance with, 299
constraint requirements, 592
enterprise-wide requirements, 592
implementation requirements, 592
incremental methodology, 588
international standards, 594–595
overview, 586
prototyping, 587
RAD (rapid application development)

methodology, 587–588

risk assessment, 215–218
SDLC (software development life

cycle), 588–589
SEI (Software Engineering Institute),

596
self-assessment, 605–606
spiral methodology, 588
sponsor responsibilities, 590
SRS (System Requirements

Specifications), 595
staff experience, 600
state of requirements, 592
systems analyst perspective, 593
user responsibilities, 590
V-concept testing, 588
waterfall methodology, 587
work papers

analysis footprint, 609
self-assessment, 607–608

methods, baseline information, 743
milestones

design verification, 54
project status calculation, 191
test plan development, 251

mini-company approach, internal
controls testing, 672

minimal documentation, 177
misinterpretation, undetected 

defects, 66
missing requirements

COTS software testing concerns, 691
defects, 65, 471

modeling tools, 106
moderators, inspection process

responsibilities, 256–257
modifiability, requirements measures,

594
modularity, best practices, 850
monitors, Web-based systems testing,

805
motivation

client/server testing readiness, 614
management support needs, 51
motivation factors, testers, 51



Index 949

MTBF (mean time between failures),
822–823

MTTF (mean time to failure), 822–823
MTTR (mean time to repair), 822–823
multimedia support, Web-based

systems testing, 805
multiplatform environment testing

challenges, 718–719
check procedures, 726
concerns, 718
disk storage, 724
error guessing, 721–722
file handling, 724–725
guidelines, 726–727
hardware configurations, 717
input, 720–721
interfaces, 725–726
needed platforms, listing, 723
objectives, 718
output, 726
overview, 717
structural testing, 723–725
test room configurations, 723
transaction processing events, 724
V-concept testing, 725–726
work papers

concerns, 728
configurations, 728
quality control checklist, 731–732
validity, 729–730

workbench concept, 719–720
multiple exposures, internal controls

testing, 657
mutation testing, 242
Myers Briggs Type Indicator (MBTI), 130

N
navigation correctness, Web-based

systems testing, 804
needs gap and risks, 38
negative attitudes, tester competency, 130
network and telephone switching

equipment, test plan development,
222

new systems development, project
scope, 77

non-effective controls, internal controls
testing, 678

non-IT teams
advantages/disadvantages, 170
vulnerabilities, 738

no-rework day timelines, 839
Normalized Defect Distribution report,

476–477
not competent assessment, tester

competency, 128, 130

O
objectives

acceptance testing, 492–493
average prioritized, 245
compliance testing, 227
control testing, 234
COTS testing, 691
error handling testing, 231
execution testing, 225
implementation procedures, 892
internal controls testing, 657
intersystems testing, 233
itemizing, 245
manual support testing, 232
multiplatform environment testing,

718
objectives-driven processes, agile

testing, 821
operations testing, 227
parallel testing, 234
priority assignment, 245
profile information, 213
RAD testing, 634
recovery testing, 226
regression testing, 231
requirements testing, 230
security testing, 228
software security testing, 228
stress testing, 224
test plan development, 210, 213
understanding consensus of, 880



950 Index

objectives (continued)

V-concept testing, 159–160
verification testing, 293

object-oriented (OO) system
developments, 500–501, 802

obsolete data, risk factors, 39
obtainable ideas, implementation

procedures, 886
office equipment, software security

testing, 746
online system tests, 248
online terminal systems, vulnerabilities,

738
OO (object-oriented) system

developments, 500–501, 802
open channel concept, communication

barrier solutions, 884
operability, best practices, 850
operating systems

access and integrity, vulnerabilities,
736

compatibility, COTS software testing,
697–698

flaws, application risks, 308
multiplatform environment testing,

717
operational fit tests, COTS software

testing, 696–697
operational needs, COTS software

testing concerns, 692
operational profiles, validation testing,

413
operational software, best practices, 843
operational status, parallel testing, 229
operational testing

automated applications, 522–523
change control, 517–518
check procedures, 522
discussed, 503
guidelines, 525–526
installation phase, 508–509
manual applications, 523–524
output, 522
problems, documenting, 513

production monitoring, 512–513
software version changes, 509–511
test data development, 515–517
test plan development and updates,

514–515
training failures, 524
training materials, 519–522
V-concept testing, 158–159

operations
activities, software security testing,

754–755
documentation development, 172
manuals, document development, 174
operations testing

examples of, 223
how to use, 227
objectives, 227
when to use, 227

processes, data warehouse testing,
772–773, 777

optimized process level, client/server
systems testing, 620–621

organization
check procedures, 200
document verification, 171–175
input, 167
output, 200
project scope, defining, 168
project status calculation, 189–193
software testing model definition, 7
teams, appointing, 168–171
test estimation, 181–185
test managers, appointing, 167–168
V-concept testing, 157
workbench concept, 166

organizational barriers, 865–866
organizational processes, data

warehouse testing, 769, 775–776
origin, classifying defects by, 258
originality required criteria,

documentation, 174
origination, transactions, 755
out of control processes, variability

measures, 832



Index 951

out-of-phase agreement, RAD testing,
642

output
client/server systems testing, 624
components, workbench concept, 71
COTS software testing, 705
data warehouse testing, 780
multiplatform environment testing,

726
operational testing, 522
organization, 200
output checks, detective controls,

664–665
post-implementation analysis, 580–581
RAD testing, 643
results analysis, 482
software security testing, 762
test plan development, 262
timelines, 837
validation testing, 439
verification testing, 331
vulnerabilities, 736
Web-based systems testing, 810

output domain coverage, 237
outside users, revised testing 

approach, 50
outsourcing, people management, 871
overflow tests, preventive controls, 662
overlooked details, undetected 

defects, 66
over-reliance, test plan development,

210
overview sessions, inspection process,

259

P
paperwork,

administrative/organizational
barriers, 865–866

parallel operation tools, 106
parallel simulation tools, 107
parallel testing

examples of, 229
how to use, 235

objectives, 234
when to use, 235

parametric models
heuristic models, 183
phenomenological models, 183
regression models, 183–184

password protection, internal controls
testing, 656

path domains, error-based testing, 241
path testing, 240
paths coverage, post-implementation

analysis, 578
pattern processing, 76
payroll application example, validation

testing, 416–429
PDCA (plan-do-check-act) cycle, 4–5, 

64, 891
peer reviews

programming testing, 328–330
tools, 107

penalties, risk assessment, 58
penetration points, software security

testing
business transaction control points,

755–756
characteristics of, 756
development activities, 753–754
first priority, 760
interface activities, 752
operations activities, 754–755
second priority, 760
staff activities, 751
third priority, 760

people components, acceptance testing,
492

people fit tests, COTS software testing,
701–702

people management skills
competencies required, 598
cultural barriers, 871–872

people needs, COTS software testing
concerns, 692

percentage-of-hardware method,
software cost estimation, 183



952 Index

performance
acceptance testing, 497
inspection process concerns, 255
methods, project status calculation,

190–192
people management through, 871
programming testing, 328
RAD testing, 635
risk assessment, 218
test factors, 41, 43
validation testing, 434
Web-based systems testing, 800,

803–804, 808
personnel

design reviews, 321
software cost estimation, 187

personnel assignment criteria,
documentation, 174

perturbation testing, error-based testing,
242

phenomenological models, estimation,
183

physical access, vulnerabilities, 736
plan-do-check-act (PDCA) cycle, 4–5, 

64, 891
planning

CM (configuration management), 602
implementation procedures, 891

platforms. See multiplatform
environment testing

playback tools, 105
point system, project status calculation,

192–193
policies

consensus, 46–47
criteria for, 45
development activities, 753
good practices, 45
joint development, 47
management directive method, 46
methods for establishing, 46–47

portability
programming testing, 328
risk assessment, 217–218

software quality factors, 844
test factors, 41, 43
validation testing, 436
verification testing, 320

post-implementation analysis
acceptance criteria, 578
assessment objectives, 574–575
asset value, 579
budgets, 578
change characteristics, 576
check procedures, 580
compliance, 575
concerns, 572
data collection, 577
defects, 576–578, 580
guidelines, 581
input, 574
instructions coverage, 578
judgment evaluation approach, 575
measurement assignment

responsibilities, 575
measurement first, action second

concept, 581
output, 580–581
overview, 154, 571
paths coverage, 578
rerun analysis, 579
scale of ten, 580
schedules, 580
source code analysis, 579
startup failure, 579
system complaints, 576
termination analysis, 579
test costs, 578
test to business effectiveness, 578
testing metrics, 576–579
user participation, 578
user reaction evaluation approach, 576
V-concept testing, 159
what to measure, 575
work papers, 582
workbench concept, 572–573

potential failures, assessing severity of,
221



Index 953

pre-implementation, 154
prenumbered forms, preventive

controls, 659
presentations

system processing, 76
walkthroughs, 313–314

preventive controls, internal controls
testing

balance checks, 662
completeness tests, 660
control data, 661
control totals, 660
data input, 659
file auto-updating, 661
has totals, 661
input validation, 659–661
limit tests, 660
logical tests, 660
overflow tests, 662
prenumbered forms, 659
project checks, 660
record counts, 661
self-checking digits, 660
source-data, 658–659
turnaround documents, 659
validity tests, 660

print handling, 805
priorities

administrative/organizational
barriers, 866

implementation procedures, 888–889
objectives, 245

privileged users, interface activities, 
752

probability, COTS software testing, 694
problems, documenting, 513
procedures

development activities, 753
procedure control, system 

processing, 76
procedures in place, security testing,

223
workbench concept, 71

process control, system processing, 76

process management, V-concept testing,
161–162

process preparation checklist, 86
process requirements, reporting, 464–466
processes

advantages of, 153
improvements, 44, 65, 154
manageable, 154
teachable, 154

process-selection skills, 598
procurement, COTS implementation

risks, 689
production

installation verification, 55
validation testing, 413

production library control, operations
activities, 754

production monitoring, operational
testing, 512–513

products
inspection process, 256
output, COTS software testing, 693

profiles, project, 212–215
program change response time criteria,

documentation, 174
program coding errors, undetected

defects, 66, 155
program compatibility, COTS software

testing, 698
program errors, application risks,

306–307
program maintenance manuals,

document development, 174
program specification

defects, 155
document development, 173

program users, interface activities, 752
program verification, SDLC, 53, 55
programming, document development,

172
programming language criteria,

documentation, 175
programming phase, verification

testing, 297, 323–324



954 Index

programming skills, tool selection
considerations, 111–113

programming testing
acceptance testing, 324
complexity of, 323
desk debugging, 325–326
dynamic testing, 324
importance of, 323
peer reviews, 328–330
static analysis, 324
test factor analysis, 326–328

programs, vulnerabilities, 736, 738
project description contents, acceptance

testing, 498
project leader assessment

configuration management plans,
602–603

verification testing, 317
project management

roles and responsibilities, 6–7, 590, 910
skills, competencies required, 598

project phases, V-concept testing, 79
project requests, document

development, 172
project scope

new systems development, 77
organization techniques, 168
V-concept testing, 77

project status calculation
controls, 191
discussed, 189
extensions, 193–194
milestone method, 191
performance methods, 190–192
point system, 192–193
reports, 195
rolling baseline, 195
target dates, 194
tracking systems, 190

project types, V-concept testing, 75
projects

checks, preventive controls, 660
profiling, 212–215

project information
Project Status reports, 468
Summary Status reports, 467

protection points, software security
testing, 746

prototyping
methodology, 587
test tactics, 75

pseudo-concurrency scripting, 431
purchased software, test tactics, 75
pureness, requirements measures, 594

Q
QA specialist roles and responsibilities,

591
QAI (Quality Assurance Institute)

discussed, 5
e-learning courses, 129
in-house courses, 129
management support for testing, 

50–51
Web site, 15, 125

QFD (quality function deployment), 292
Quality Assurance Institute. See QAI
quality control

agile testing process, 821
best practices, 856–857
checklist, 207–209
communication barriers, 884
implementation procedures, 890, 894
improvement barriers, 869
internal controls testing, 678
unit testing, 244
variability measures, 841

quality factors, best practices, 843–846
quality function deployment (QFD), 292
quality in fact perspective, best

practices, 843
quality in perspective, best practices,

843
questionnaires, baseline development, 10
questions/recommendations,

responding to, 314



Index 955

R
RAD (rapid application development)

testing
acceptance testing, 637
check procedures, 642
concerns, 634–635
defined, 587–588
discussed, 210
final planning iteration, 642
guidelines, 643
in-phase agreement, 641
input, 636
integration testing, 637
objectives, 634
out-of-phase agreement, 642
output, 643
overview, 633
performance, 635
spiral testing, 638
strengths/weaknesses, 639
subsequent testing iterations, 640–642
test planning iterations, 640
testing components, 635
work papers

applicability checklist, 644
conceptual model development,

646–647
logical data model development, 647
production system development,

651–652
production system release, 652
quality control checklist, 653
scope and purpose of system

definition, 645–646
specifications, revising, 650–651
system development, 648–649
test system release, 652

workbench concept, 635–636
ratio tools, 107
reactionary environment, people

management, 871
readability, test plan development, 262
readers, inspection process

responsibilities, 257

readiness assessment
client/server systems testing, 614–615,

621
time-compression efforts, 826

realistic mechanism solutions,
communication barriers, 884

record counts, preventive controls, 661
recorders, inspection process

responsibilities, 257
records

records-retention program, 753
undetected defects, 66

recoverability concerns, Web-based
systems testing, 807

recovery testing
data warehouse testing, 773–774, 778
examples of, 223
how to use, 226
importance of, 225
objectives, 226
validation testing, 435
when to use, 226

red flag/hot button barriers, 864
reduction, variability measures, 835
redundancy criteria, documentation, 

179
regression models, estimation, 183
regression scripting, 431
regression testing

COTS software testing challenges, 690
design changes, 55
examples of, 229
how to use, 231
importance of, 230
maintenance verification, 55
objectives, 231
Web-based systems testing, 808
when to use, 231

relationship tools, 107
relevance, requirements measures, 594
reliability

risk assessment, 215
software quality factors, 844
test factors, 41, 43



956 Index

reliability (continued)

validation testing, 434
Web-based systems testing, 806

reliability, critical success factors, 696
reload pages, Web-based systems

testing, 805
remote computer sites, software security

testing, 746
repeatable process level, client/server

systems testing, 617–618
reports. See also results

Average Age of Uncorrected Defects
by Type, 475

COTS software testing, 693
Defects Uncovered versus Correlated

Gap Timeline, 473–474
document development, 174
Expected versus Actual Defects

Uncovered Timeline, 472–473
Functions Working Timeline, 472
function/test matrix, 470–472
Interim Test, 478
inventory process, 465
measurement teams, 465
measurement units, 464–465
Normalized Defect Distribution,

476–477
preparation, tool manager duties, 120
process requirements, 464–466
Project Status, 468–470
project status calculation, 195
summaries, 479–480
Summary Status, 466–468
system test report example, 480–481
test verification, 55
Testing Action, 477
timeline development, 837
V-concept testing, 158
vulnerabilities, 737
work papers

defect reporting, 484–485
quality control, 486–487
writing guidelines, 488–489

requirement phase, verification testing,
296

requirements reviews, 70
requirements testing

examples of, 229
how to use, 230
objectives, 230
when to use, 230

requirements tracing, 292, 314–315
requirements verification, SDLC, 53–54
requisite resources, implementation

procedures, 893–894
rerun analysis, post-implementation

analysis, 579
resentment, inspection process concerns,

255
resources

allocation for, management support
needs, 51

estimation, 181–182, 221
resources needed, test plan

development, 221
resources protected concerns, baseline

information, 743
software cost estimation, 188

respect for others, communication
barriers, 880

responsibilities
test managers, 167–168
of tool managers, 119–120

resubmission, corrective controls, 665
results. See also reports

analysis
check procedures, 482
concerns, 460
defects, 462
efficiency, 463
guidelines, 482
input, 461–463
output, 482
overview, 459
test scripts, 433
workbench concepts, 460

assessments, baseline development,
11–12

implementation procedures, 892
internal controls testing, 677



Index 957

managing, V-concept testing, 162
software security testing, 760–761
test verification, 55
validation testing

conditions, 436, 438–439
deviation, 437
effect, 436, 438

retesting activity, maintenance
verification, 55

retrieval, transaction, 756
reusability, software quality factors, 844
revenue, cycle control objectives, 675
reviews

feasibility, 70
method selections, 329–330
programming testing, 328–330
requirements, 70
test plan development, 262
verification testing, 292

rewards
barrier/obstacle solutions, 868
management support needs, 51

rework factors, variability measures,
835, 839

risks
application, 304–308
bad design problems, 39
controls, 64
data input problems, 39
faulty design problems, 39
identifiable, 303
incomplete data, 39
needs gap, 38
risk appetite, 38
risk assessment

access control, 216
audit trails, 216
authorization, 215
continuity of processing, 216
correctness, 217
COTS (commercial off-the-shelf)

software, 688–689
coupling, 218
ease of operation, 218

ease of use, 217
file integrity, 215
internal controls testing, 668
maintainability, 217
methodology, 216–217
penalties, 58
performance, 218
portability, 217–218
reliability, 215
service levels, 216
software security testing, 752
test plan development, 27, 215–216
testing guidelines, 64–65
V-concept testing, 77–79
Web-based systems testing, 802–803
work papers, 61

risk matrix
tools, 107
verification testing, 293, 302

specifications gap, 38
team member establishment, 302–303
test plan development, 215–218

rolling baseline, project status
calculation, 195

root cause identification
improvement barriers, 866–869
red flag/hot button barriers, 864
variability measures, 840

rule establishment
acceptance testing, 492
programming testing, 329
walkthroughs, 312–313

S
sampling, scoring success factors, 316
Sarbanes-Oxley Act of 2002, 655
scale of ten, post-implementation

analysis, 580
schedules

COTS software testing challenges, 690
efficiency measures, 853
facts, managing, 162
inadequate, 39
people management through, 871



958 Index

schedules (continued)

post-implementation analysis, 580
profile information, 214
software cost estimation, 187
test plan development, 222
tool manager duties, 119

scheduling status
Project Status reports, 469
Summary Status reports, 467

scope. See project scope
scoring success factors, verification

testing, 316–318
scoring tools, 107
scripts. See test scripts
SDLC (system development life cycle)

design requirements, 53–54
economics of testing, 47–49
installation requirements, 53, 55
life cycle phases, 52–53
maintenance requirements, 53, 55
program requirements, 53, 55
requirements verification, 53–54
software development methodologies,

588–589
test requirements, 53, 55

second priority, probable penetration
points, 760

section titles, documentation, 180
security. See also software security

testing
application risks, 304–305
client/server systems testing, 622
COTS implementation risks, 688
critical success factors, 696
programming testing, 327
validation testing, 435
Web-based systems testing, 800, 803

SEI (Software Engineering Institute),
596, 824

self-assessment
improvement planning, 17–18
software development methodologies,

605–606
software testing model definition

on test processes, 24–27
work papers, 909–914

self-checking digits, preventive controls,
660

self-descriptiveness, best practices, 850
senior management roles and

responsibilities, 6
sensor processing, 76
service levels

inadequate, 766
programming testing, 327
risk assessment, 216
test factors, 41–42
validation testing, 435
verification testing, 319

seven-step software testing process. See

V-concept testing
severity

classifying defects by, 258
defect severity levels, 471

signal processing, 76
simplicity, best practices, 850
simulation

design verification, 54
software cost estimation, 183
system processing, 76

site validation tools, Web-based systems
testing, 809

size criteria, documentation, 179
skill levels

tool managers, 118–119
tool selection considerations, 111–114

snapshot tools, 107
Software Certifications Web site, 125
software cost estimation. See costs
software development library,

configuration management, 604
Software Engineering Institute (SEI),

596, 824
software functionality, COTS software

testing, 700
software methods, test matrix, 246
software packages, test script

development, 431



Index 959

software quality requirements,
acceptance testing, 497

software security testing. See also

security
accidental versus intentional losses,

738–739
adequacy evaluation, 761
baseline information

accurate and precise information, 741
analysis, 750
availability, 741
baseline awareness training, 747
categories, 739
collection method training, 747
corporate language adjustments, 741
data collection methods, 744–747
forms completion training, 747–748
methods, 743
objectives, 751
one-time data collection procedures,

741
reasons for, 740
resources protected concerns, 743
security sources, 740
status, reporting, 749
support concerns, 744
team member selection, 742–743
training concerns, 743
what to collect, 740

central computer sites, 746
check procedures, 762
communication lines and networks,

746
examples of, 223
fraud studies, 761
guidelines, 762
hacking, 757
how to use, 228
input, 735
objectives, 228, 734
office equipment, 746
output, 762
overview, 733

penetration points
business transaction control points,

755–756
characteristics of, 756
developing, 757–760
development activities, 753–754
first priority, 760
interface activities, 752
operations activities, 754–755
second priority, 760
staff activities, 751
third priority, 760

protection points, 746
remote computer sites, 746
results, 760–761
risk assessment, 752
storage areas, 746
vulnerabilities

central processors, 738
computer operations, 738
computer programs, 736–737
data and report preparation facilities,

737
data handling areas, 738
digital storage facilities, 738
discussed, 735
impersonation, 737
input data, 736
IT operations, 736
media, 737
non-IT areas, 738
online terminal systems, 738
operating system access and integrity,

737
output data, 736
physical access, 736
programming offices, 738
test processes, 736

when to use, 228
work papers, 763
workbench concept, 734–735

software summary, document
development, 172



960 Index

software systems, V-concept testing,
76–77

software version changes, operational
testing, 509–511

source code analysis, post-
implementation analysis, 579

source-data, preventive controls,
658–659

space allocation, monitoring, 773
span of operation criteria,

documentation, 174
special-value testing, 237
specifications

implementing, risks associated with,
38–39

system test plan standards, 81–82
variance from, 65

spiral testing
methodology, 588
RAD testing, 638

sponsor responsibilities, 590
SRS (System Requirements

Specifications), 595
SSS (system security specialist), 591
staff

administrative/organizational
barriers, 865

client/server testing readiness, 615
competency

barriers, 865
efficiency measures, 852–853
profile information, 214

experience evaluation, 600
people management through, 871
software security testing, 751
verification testing concerns, 294

stakeholder perspective, improvement
barriers, 861–864

standards
development activities, 753
documentation process, 770
policy criteria, 45
system test plan, 79–82
unit test plan, 83

start dates
Project Status reports, 468
timelines, 838

start time delays, inspection process
concerns, 255

starting early, test plan development, 262
startup failure, post-implementation

analysis, 579
state machines, functional testing, 238
state of requirements, 592
state of the art technology, tool use, 108
statement testing of, 239
static analysis

program verification, 55
programming testing, 324
verification testing, 293

statistics
operations process, 773
profile information, 215
statistical testing, 241

status. See project status calculation
stop it from happening concept,

stakeholder perspective, 862
storage areas, software security testing,

746
storage efficiency, best practices, 850
strategies

business innovation, 878
converting to testing tactics, 83–85
risk assessment, 56–57
system development phases,

identifying, 56
test factors, selecting and ranking, 56
V-concept testing, 74–75

strengths, building on, 857–860
stress testing

examples of, 223
how to use, 224
objectives, 224
test data for, 430
tools associated with, 104
validation testing, 435
Web-based systems testing, 804, 808
when to use, 224



Index 961

stress/performance scripting, 431
strong controls, internal controls testing,

677
structural desk debugging, 325
structural testing. See also functional

testing
advantages/disadvantages, 69
branch testing, 239
conditional testing, 234
COTS software testing, 703–704
defined, 69
expression testing, 240
feasibility reviews, 70
multiplatform environment testing,

723–725
path testing, 240
reasons for, 69
requirements reviews, 70
statement testing, 239
stress testing

examples of, 223
how to use, 224
objectives, 224
test data for, 430
tools associated with, 104
validation testing, 435
Web-based systems testing, 804, 808
when to use, 224

structural analysis, 238–239
types of
validation techniques, 69–70
verification techniques, 69–70
work papers, 87–91

structure components, acceptance
testing, 492

substantiation objectives, cycle control
objectives, 675

success factors
effectiveness measures, 852
people management, 871
verification testing, 293

summaries, report, 479–480
Summary Status reports, 466–468
symbolic execution tools, 107, 239

syntactical desk debugging, 325
system access, application risks, 304
system analyst perspective, software

development methodologies, 593
system boundary diagrams, 500–501
system building concepts, workbench

concept, 72
system chains, revised testing 

approach, 50
system component identification, test

plan development, 221
system control objectives, internal

controls testing, 674
system development life cycle. See

SDLC
system development processes, data

warehouse testing, 770–771, 779
system independence, best practices, 850
system log tools, 107
system maintenance, test tactics, 75
System Requirements Specifications

(SRS), 595
system security specialist (SSS), 591
system skills, tool selection

considerations, 111, 113–114
system testing

as functional tests, 70
validation, 221
Web-based systems testing, 807

system/subsystem specifications,
document development, 173

T
talking the talk, management support,

51
target dates, project status calculation,

194, 468
teachable processes, 154
teams

agile testing process, 820–821
appointing, 168–171
assessment

baseline development, 10
verification testing, 317



962 Index

teams (continued)

baseline information gathering,
742–743

combination, 170–171
composition, 169
cultural barriers, 875
design reviews, 321
external, 170
internal, 169–170
non-IT, 170
report measurement, 465
risk team establishment, 302–303
tester agility, 842
walkthroughs, 313

technical interface activities, 752
technical reviews, configuration

management, 603
technical risk assessment, work papers,

93–96
technical skills, tool selection

considerations, 111, 114
technical status, Summary Status

reports, 467
techniques versus tools, 103
technological developments, revised

testing approach, 50
technology issues, COTS software

testing challenges, 690
telephone and network switching

equipment, test plan development,
222

tenure, tool managers, 120
termination analysis, post-

implementation analysis, 579
test case generators, Web-based systems

testing, 809
test data generator tools, 107
test factors

programming testing, 326–328
selecting and ranking, 56
verification testing, 299–302
work papers, 62

test managers, 167–168

test matrix
batch tests, 248
defined, 245
online system test, 248
risk assessment, 57
software methods, 246
structural attributes, 246
test matrix example, 246
verification tests, 248–249

test plan development
administrative components, 250–251
automated test tools, 221
check procedures, 262
constraints, 214
contingency plans, 222
core business areas and processes, 221
cost/schedules, 214
customer and user involvement, lack

of, 210
data exchange issues, 222
databases built/used, 214
deliverables, 213
facility requirements, 222
flexibility, 262
implementation, 214, 251
input, 212
inspection, 254–258
interfaces, to other systems, 214
lack of testing tools, 210
lack of training concerns, 210
legal/industry issues, 214
lose-lose situations, 211
objectives, 210, 213, 245
output, 262
over-reliance, 210
potential failures, assessing severity of,

221
projects, profiling, 212–215
RAD (rapid application development),

210
readability, 262
resources needed, 221
reviews, 262



Index 963

risk assessment, 27, 215–218
schedule issues, 222
staff competency, 214
starting early, 262
statistics, 214
system component identification, 221
telephone and network switching

equipment, 222
test matrix development, 245–248
testing concerns matrix, 219–220
testing technique selection, 222–223
unit testing and analysis, 235
us versus them mentality, 210
validation strategies, 221
V-concept testing, 157–158
work papers

administrative checkpoint, 273–274
batch tests, 267
general information, 271
inspection report, 276–280
milestones, 272
moderator checklist, 275
objectives, 264
online system tests, 268
quality control, 283–287
software module, 265
structural attribute, 266
test matrix, 270
verification tests, 269

workbench concept, 211
written example, 252–254

test processes
vulnerabilities, 736
work papers, 24–27

test room configurations, multiplatform
environment testing, 723

test scripts
developing, 430–432
discussed, 104
execution, 433
integration scripting, 431
maintaining, 434
pseudo-concurrency scripting, 431
regression scripting, 431

results analysis, 433
stress/performance scripting, 431
tools, 107
unit scripting, 431

test to business effectiveness, 578
test verification, SDLC, 53, 55
testability, software quality factors, 844
test-data approach, internal controls

testing, 669–672
testers

acceptance testing roles, 44
change recommendation roles, 44
competency

baseline development, 14–16
CBOK (Common Body of

Knowledge), 125–128
competent assessment, 128
CSTE (Certified Software Tester)

certificate, 125, 127–128
fully competent assessment, 128
job performance roles, 126–127
negative attitudes, 130
not competent assessment, 128, 130
training curriculum development,

128–130
work papers, 28–32

developmental improvement roles, 44
documentation specification

requirement roles, 44
motivation factors, 51
process improvement roles, 44
requirements measures, 594
risk appetite, 38

tester’s workbench. See workbench
concept

Testing Action report, 477
testing guidelines. See guidelines, testing
testing methodology cube, 83, 85
testing metrics, post-implementation

analysis, 578
testing strategies. See strategies
testing tactical dashboard indicators, 7
third priority, probable penetration

points, 760



964 Index

throughput testing, Web-based systems
testing, 804

time improvement ideas, variability
measures, 841

time-compression efforts
best practices, 825
calendar-day efficient, 823–824
challenges, 824
implementation procedures, 886–888
readiness criteria, 826
solutions to, 825
V-concept testing, 826–827
work papers, 828–830
workbench concept, 834

timelines
change estimation, 837
critical path definition, 836
documentation, 180–181
end dates, 838
in control processes, 832
input, 837
no-rework days, 839
out of control processes, 832
output, 837
project name, 838
report generation, 837
start dates, 838
work papers, 896–905
workday, 839

timeouts, Web-based systems testing,
807

tool managers
assistant, 119
mentors, 119
need for, 117
positions, prerequisites to creating, 

118
responsibilities of, 117, 119–120
skill levels, 118–119
tenure, 120

tools
automatic, 104
boundary value analysis, 105
capture, 105

cause-effect graphing, 105
checklist, 105
code comparison, 105
compiler-based analysis, 105
confirmation, 105
control flow analysis, 105
correctness proof, 105
costs, 114–116
data dictionary, 105, 770
data flow analysis, 105, 238–239
database, 105
design reviews, 105
design-based functional testing, 105
desk checking, 106
disaster testing, 106
documentation, 124
error guessing, 106, 721–722
examination, 105
executable specs, 106
fact finding, 106
flowchart, 106
inspection, 106
instrumentation, 106
integrated test facility, 106
lack of, 210
life cycle phase testing, 109–111
logging, 107
manual, 104
mapping, 106
matching to its use, 109
matching to skill levels, 111–114
modeling, 106
most used, 108
parallel operation, 106
parallel simulation, 107
peer review, 107
playback, 105
ratio, 107
relationship, 107
replacements, 120
risk matrix, 107
scoring, 107
selection considerations, 108–109,

121–123



Index 965

snapshot, 107
specialized use, 108
state of the art technology, 108
stress testing, 104
symbolic execution, 107, 239
system log, 107
techniques versus, 103
test data, 107
test script, 107
tracing, 108
use case, 108
utility program, 108
walkthrough, 108

traceability
best practices, 849
requirements measures, 594

tracking systems, project status
calculation, 190

traditional system development, test
tactics, 75

training
barriers/obstacle solutions, 868
baseline awareness, 747
best practices, 850
collection methods, 747
concerns, baseline information, 743
curriculum, 128–130
development activities, 753
failures, operational testing, 524
forms completion, 747–748
lack of, 210
management support needs, 51
manual support testing, 229
material, operational testing, 519–522
tool usage, 116–117

transaction flow testing, 672–673
transaction processing events, 414, 724
transactions

authorization, 755
destruction, 756
origination, 755
retrieval, 756
turnaround time, stress testing, 223
usage, 756

transferability, critical success factors,
696

treasury, cycle control objectives, 675
troubled projects, inadequate

estimation, 181–182
turnaround documents, preventive

controls, 659

U
unauthorized access, 766
undetected defects, 66
unit scripting, 431
unit testing

as functional tests, 70
quality control, 244
test plan standards, 83
validation, 221
Web-based systems testing, 807

unknown conditions
COTS software testing challenges, 689
undetected defects, 66

update controls, enterprise-wide
requirements, 767

upgrades, tool manager duties, 119–120
us versus them mentality, 210
usability

requirements measures, 594
software quality factors, 844
Web-based systems testing, 

800, 806, 808
usage

enterprise-wide requirements, 768
training testers in, 116–117
transaction, 756

use cases
acceptance testing, 500–503
tools, 108
validation testing, 412

user acceptance
as functional tests, 70
implementation procedures, 885
Web-based systems testing, 808

user education, client/server testing
readiness, 614



966 Index

user manuals, document development,
174

users
functional testing phases, 70
outside users, revised testing

approach, 50
participation, post-implementation

analysis, 578
profile information, 213
reaction evaluation, 576
roles and responsibilities, 6, 498, 590
skills, tool selection considerations,

111–112
utilities and commands, operations

activities, 754
utility program tools, 108

V
validation testing

acceptance testing, 221
audit trails, 435
authorization, 434
check procedures, 439
compliance, 434
concerns, 410
correctness, 435
coupling, 434
design goals, defining, 414
disaster testing, 436
ease of operation, 436
ease of use, 435
execution, 434–436
file design, 413–414
file integrity, 435
functional testing, 69–70
guidelines, 439–440
input, 411
inspections, 436
integration testing, 221
maintainability, 436
objectives, 410
output, 439
overview, 408
payroll application example, 416–429

performance, 434
portability, 436
preventive controls, 659–661
recovery testing, 435
reliability, 434
results, documenting

conditions, 436, 438–439
deviation, 437
effect, 436, 438

security, 435
service levels, 435
stress testing, 435
structural testing, 69–70
system testing, 221
test data

creating, 415–416
entering, 414
sources, 412
for stress testing, 430

test plan development, 221
test scripts

developing, 430–432
execution, 433
levels of, 430
maintaining, 434
results analysis, 433

transaction-processing programs, 414
unit testing, 221
V-concept testing, 158
work papers

audit trails, 445
compliance, 443, 450
correctness, 451
coupling, 455
ease of operations, 456
ease of use, 452
file integrity, 444
functional testing, 442
maintainability, 453
performance, 448
portability, 454
problem documentation, 457
quality control, 458
recovery testing, 446



Index 967

security, 449
stress testing, 447
test script development, 441

workbench concept, 410–411
value received,

administrative/organizational
barriers, 866

variability measures
agile testing and, 820
check procedures, 834
competency measures, 835
discussed, 831
external/internal work processes, 835
quality control, 841
reduction, 835
rework factors, 835
root cause identification, 840
time improvement ideas, 841
timelines

change estimation, 837
critical path definition, 836
end dates, 838
in control processes, 832
input, 837
no-rework days, 839
out of control processes, 832
output, 837
project name, 838
report generation, 837
start dates, 838
workday, 839

workbench concept, 833–834
variance from specifications, 65
V-concept testing

acceptance testing, 158–159
analysis, 158
customization, 160–161
development project types, 75
discussed, 72–73
facts, managing, 162
importance of, 68
multiplatform environment testing,

725–726
objectives, 159–160

operational testing, 158–159
organization, 157
overview, 156
post-implementation analysis, 159
process management, 161–162
project phases, 79
project scope, 77
reporting, 158
results management, 162
risk identification, 77–79
software system types, 76–77
strategic objectives, determining, 

74–75
strategies, converting to testing tactics,

83–85
test plan development, 157–158
test plan standards, 79–82
testing methodology cube, 83, 85
time-compression efforts, 826–827
unit test plan standards, 83
validation testing, 158
verification testing, 158
workbench concept with, 162–163

vendors
COTS implementation risks, 689
interface activities, 752
reputation importance, 690–691
tool manager duties, 119

verification testing
adequate control assessment, 310
application risks, 304–308
base case, 293
baseline development, 13
check procedures, 330
concerns, 294
control objectives, 303
debugging, 292
design deliverables, inspecting, 322
design phase, 296–297
design reviews, 320–322
discussed, 298
functional testing, 69–70
guidelines, 331–332
input, 296–297



968 Index

verification testing (continued)

inspections, 292
for large documents, 248–249
objectives, 293
output, 331
programming phase, 297, 323–324
programming testing

acceptance testing, 324
complexity of, 323
desk debugging, 325–326
dynamic testing, 324
importance of, 323
peer reviews, 328–330
static analysis, 324
test factor analysis, 326–328

project leader assessment, 317
requirements phase, 296
requirements tracing, 292, 314–315
reviews, 292
risk matrix, 293, 302
scoring success factors, 316–318
static analysis, 293
structural testing, 69–70
success factors, 293
team assessment, 317
test factor analysis, 310–312, 318–319
test factors, 299–302
V-concept testing, 158
walkthroughs, 292, 312
work papers

access defined, 347, 366
audit trails, 363, 394
authorization rules, 342, 359–360,

391–392
business system design review,

377–380
computer applications risk scoring

form, 349–353
computer processing control

procedure, 354
computer systems design review,

381–385
contingency planning, 364, 395
coupling, 404

data integrity controls, 357–358,
389–390

design compliance, 367–371
design criteria, 374–375
failure impact, 345
file integrity, 343, 361–362, 393
functional specifications, 334
interface design, 373
maintenance specifications, 336
needs communicated, 376
online processing controls, 355–356
operation procedure development,

405
operational needs, 340
output control, 355
performance criteria, 339
portability needs, 337
program compliance, 398–402
quality control, 348, 387–388, 405
reconstruction requirements, 344
requirements compliance with

methodology, 333
security implementation, 397
service levels defined, 346, 365, 396
system interface factors, 338
tolerances, 341
usability specifications, 335

workbench concept, 294–295
verification, validation, and testing

(VV&T), 589
version changes, operational testing,

509–511
video cards, Web-based systems testing,

805
viruses, Web-based systems testing, 803
vulnerabilities

central processors, 738
computer operations, 738
computer programs, 736–737
data and report preparation facilities,

737
data handling areas, 738
digital storage facilities, 738
discussed, 735



Index 969

impersonation, 737
input data, 736
IT operations, 736
media, 737
non-IT areas, 738
online terminal systems, 738
operating system access and integrity,

737
output data, 736
physical access, 736
programming offices, 738
test processes, 736

VV&T (verification, validation, and
testing), 589

W
walkthroughs

of customer/user area, 212–213
final reports, 314
presentations, 313–314
questions/recommendations,

responding to, 314
rules, establishing, 312–313
team selection, 313
tools, 108
verification testing, 292, 312

WAN (wide area network), 800
waterfall methodology, 587
WBS (Work Breakdown Structure), 603
weak controls, internal controls testing,

678
weaknesses, minimizing, 857–860
Web sites

QAI (Quality Assurance Institute), 
15, 125

Software Certifications, 125
Web-based systems testing

access control, 803
authorization, 803
back-end processing, 800
bandwidth access, 805
browser compatibility concerns, 800,

805–806
caching, 805

calculation correctness, 804
check procedures, 809
code verification concerns, 800
compatibility concerns, 804–805,

808–809
component testing, 807
concurrency testing, 804
correctness concerns, 800, 804
crashes, 807
dropped lines, 807
dynamic page generation, 806
e-mail functions, 806
file downloads, 806
graphics filters, 805
guidelines, 810
hardware compatibility, 805
HTML tools, 809
input, 801–802
integration concerns, 800
integration testing, 807
load testing, 808
lost connections, 807
memory, 805
monitors, 805
multimedia support, 805
navigation correctness, 804
output, 810
overview, 799
performance concerns, 800, 803–804
performance testing, 808
print handling, 805
recoverability concerns, 807
regression testing, 808
reliability concerns, 806
reload pages, 805
risk assessment, 802–803
security concerns, 800, 803
site validation tools, 809
stress testing, 804, 808
system testing, 807
test case generators, 809
throughput testing, 804
timeouts, 807
unit testing, 807



970 Index

Web-based systems testing (continued)

usability concerns, 800, 806
usability testing, 808
user acceptance testing, 808
video cards, 805
viruses, 803
work papers

quality control checklist, 815
risk assessment, 812
testing tool selection, 814
testing types, 813

workbench concept, 800–801
weighted criteria score, documentation,

175–177
wide area network (WAN), 800
Work Breakdown Structure (WBS), 603
work flow, COTS software testing,

698–699
work papers

acceptance testing
acceptance criteria, 527
acceptance plan form creation,

544–545
automated application criteria,

566–567
change control forms, 546
checklist, 550–551
data change forms, 547–548
deletion instructions, 538–539
installation phase, 531
inventory material, 552–553
production change instructions,

536–537
program change form completion,

540–541, 549
program change history, 534–535
quality control checklist, 560–563
recovery planning data, 532–533
system boundary diagram, 528
system problem form completion,

542–543
test cases, 530
training checklist form completion,

558–559

training failure notification, 568–569
training module form completion,

556–557
training plan form completion,

554–555
training quality control checklist,

564–565
use cases, 504–507, 529

agile testing process, 923–927
barriers

communication barriers, 920–922
cultural barriers, 919
stakeholder analysis, 915–918

best practices, 906–908
CBOK (Common Body of Knowledge)

individual competency evaluation,
149

new information technology, 148
project management, 135–138
security procedure assessment,

146–147
software controls, 146
test environment, building, 133–135
test planning, 138–143
test status and analysis, 143–144
test team competency evaluation, 

150
testing principles and concepts,

132–133
user acceptance testing, 144–145

client/server systems testing
client data, 627–628
footprint chart, 631
quality control checklist, 632
readiness results, 630
security, 626–627
standards, 628–629
system installation, 625

COTS (commercial off-the-shelf)
software testing

completeness tests, 707–708
functional testing, 710
quality control checklist, 712–715
structural testing, 711



Index 971

data warehouse testing
access control, 785
activity process, 797
audio trails, 784
concerns rating, 788, 795–796
continuity of processing, 792
data, placing in wrong calendar

period, 787
documentation, 791
fraud, 789
inadequate responsibility

assignment, 781
inadequate service levels, 786
incomplete data concerns, 782
management support concerns, 794
performance criteria, 793
quality control checklist, 798
reviews, 790
update concerns, 783

documentation
completeness, 202
estimation, 203–205
quality control checklist, 207–209
weighted criteria calculation, 201

footprint chart, 23
internal controls testing

documentation, 679
file control, 683
input controls, 679–681
output control, 682
program and processing controls,

681–682
methodologies, software development

analysis footprint, 609
self-assessment, 607–608

multiplatform environment testing
concerns, 728
configurations, 728
quality control checklist, 731–732
validity, 729–730

post-implementation analysis, 582
RAD (rapid application development)

testing
applicability checklist, 644

conceptual model development,
646–647

logical data model development, 647
production system development,

651–652
production system release, 652
quality control checklist, 653
scope and purpose of system

definition, 645–646
specifications, revising, 650–651
system development, 648–649
test system release, 652

reports
defect reporting, 484–485
quality control, 486–487
writing guidelines, 488–489

risk score analysis, 99
self-assessment, 909–914
size risk assessment, 97–98
software security testing, 763
software testing environment, 19–22
structural testing, 87–91
technical risk assessment, 93–96
test factor ranks, 58–59, 61
test plan development

administrative checkpoint, 273–274
batch tests, 267
general information, 271
inspection report, 276–280
milestones, 272
moderator checklist, 275
objectives, 264
online system tests, 268
quality control, 283–287
software module, 265
structural attribute, 266
test matrix, 270
verification tests, 269

tester competency assessment, 28–32
time-compression efforts, 828–830
timelines, 896–905
tool use

documentation, 124
selection considerations, 121–123



972 Index

work papers (continued)

validation testing
audit trails, 445
compliance, 443, 450
correctness, 451
coupling, 455
ease of operations, 456
ease of use, 452
file integrity, 444
functional testing, 442
maintainability, 453
performance, 448
portability, 454
problem documentation, 457
quality control, 458
recovery testing, 446
security, 449
stress testing, 447
test script development, 441

verification testing
access defined, 347, 366
audit trails, 363, 394
authorization rules, 342, 359–360,

391–392
business system design review,

377–380
computer applications risk scoring

form, 349–353
computer processing control

procedure, 354
computer systems design review,

381–385
contingency planning, 364, 395
coupling, 404
data integrity controls, 357–358,

389–390
design compliance, 367–371
design criteria, 374–375
failure impact, 345
file integrity, 343, 361–362, 393
functional specifications, 334
interface design, 373
maintenance specifications, 336
need communicated, 376

online processing controls, 355–356
operation procedure development,

405
operational needs, 340
output control, 355
performance criteria, 339
portability, 337, 372, 403
program compliance, 398–402
quality control, 348, 387–388, 405
reconstruction requirements, 344
requirements compliance with

methodology, 333
security implementation, 397
service levels defined, 346, 365, 396
system interface factors, 338
tolerances, 341
usability specifications, 335

Web-based systems testing
quality control checklist, 815
risk assessment, 812
testing tool selection, 814
testing types, 813

workbench concept
acceptance testing, 494
client/server systems testing, 613
COTS software testing, 692
data warehouse testing, 766–767
input component, 71
internal controls testing, 667
multiplatform environment testing,

719–720
multiple workbenches, 72
organization, 166
output components, 71
post-implementation analysis, 572–573
procedures to check, 71
procedures to do, 71
process advantages, 163
RAD (rapid application development)

testing, 635–636
results analysis, 460
software security testing, 734–735
system building concepts, 72
test plan development, 211



Index 973

testing tools and, 71
time-compression efforts, 834
validation testing, 410–411
variability measures, 833–834
with V-concept testing, 162–163
verification testing, 294–295
Web-based systems testing, 800–801

workday timelines, 839
working documents, 178
world-class testing organization

baseline development
assessment teams, 10
capabilities assessment, 13–14
cause-effect diagram, 9
drivers, 8

environment assessment, 8
footprint charts, 10
implementation procedures, 9
results assessments, 11–12
verification, 13

discussed, 3
improvement planning, 16–18
PDCA (plan-do-check-act) cycle, 4–5
software development process, 4
software testing model definition

discussed, 5
organization, 7
self assessment, 6

wrong specifications, defects, 65, 471


