
MODERN OPERATING SYSTEMS
Third Edition

ANDREW S. TANENBAUM

Chapter 3
Memory Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-1. Three simple ways of organizing memory with an
operating system and one user process.

No Memory Abstraction

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-3. Base and limit registers can be used to give each
process a separate address space.

Base and Limit Registers

Figure 3-4. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

Swapping (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-5. (a) Allocating space for growing data segment. (b)
Allocating space for growing stack, growing data segment.

Swapping (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-6. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The

shaded regions (0 in the bitmap) are free. (b) The corresponding
bitmap. (c) The same information as a list.

Memory Management with Bitmaps

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• First Fit
• Next Fit
• Best Fit

Memory Management with Holes

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-8. The position and function of the MMU – shown as
being a part of the CPU chip (it commonly is nowadays). Logically

it could be a separate chip, was in years gone by.

Virtual Memory – Paging (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-9. Relation between virtual addresses and
physical memory addresses given by page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging (2)

Figure 3-11. A typical page table entry.

Structure of Page Table Entry

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging implementation issues:

• The mapping from virtual address to physical
address must be fast.

• If the virtual address space is large, the page table
will be large.

Speeding Up Paging

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multilevel Page Tables

Figure 3-13. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.

• Optimal page replacement algorithm
• Not recently used page replacement
• First-In, First-Out page replacement
• Second chance page replacement
• Clock page replacement
• Least recently used page replacement
• Working set page replacement
• WSClock page replacement

Page Replacement Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Sequence of Pages: 1 2 3 4 1 2 5 1 2 3 4 5

Optimal Page Replacement

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

FIFO Page Replacement Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Sequence of Pages: 1 2 3 4 1 2 5 1 2 3 4 5

Clock Page Replacement Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-17. LRU using a matrix when pages are referenced in the
order 0, 1, 2, 3, 2, 1, 0, 3, 2, 3.

LRU Page Replacement Algorithm

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-22. Page replacement algorithms discussed in the text.

Summary of Page Replacement Algorithms

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

If we have multiple processes running on the system

(A, B, C, D, ...), when A has a page fault, should we

remove one of A's pages in memory (local),

or should we look at all of the pages in memory (global).

Local vs Global Allocation Policies

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-25. (a) One address space.
(b) Separate I and D spaces.

Separate Instruction and Data Spaces

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-26. Two processes sharing the same program
sharing its page table.

Shared Pages

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-27. A shared library being used by two processes.

Shared Libraries

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• The hardware traps to the kernel, saving the
program counter on the stack.

• An assembly code routine is started to save the
general registers and other volatile information.

• The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page is needed.

• Once the virtual address that caused the fault is
known, the system checks to see if this address
is valid and the protection consistent with the
access

Page Fault Handling (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• If the page frame selected is dirty, the page is
scheduled for transfer to the disk, and a context
switch takes place.

• When page frame is clean, operating system
looks up the disk address where the needed
page is, schedules a disk operation to bring it in.

• When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.

Page Fault Handling (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

• Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

• Faulting process scheduled, operating system
returns to the (assembly language) routine that
called it.

• This routine reloads registers and other state
information and returns to user space to
continue execution, as if no fault had occurred.

Page Fault Handling (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

A compiler has many tables that are built up as
compilation proceeds, possibly including:

• The source text being saved for the printed listing (on
batch systems).

• The symbol table – the names and attributes of variables.
• The table containing integer, floating-point constants

used.
• The parse tree, the syntactic analysis of the program.

• The stack used for procedure calls within the compiler.

Segmentation (1)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-31. In a one-dimensional address space with growing
tables, one table may bump into another.

Segmentation (2)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Figure 3-32. A segmented memory allows each table to grow or
shrink independently of the other tables.

Segmentation (3)

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

