MODERN OPERATING SYSTEMS
Third Edition

ANDREW S. TANENBAUM

Chapter 3
Memory Management

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

User
program

Operating
system in
RAM

(@)

OxFFF ...

Operating
system in
ROM

No Memory Abstraction

Device

drivers in ROM

User
program

User
program

(b)

Operating
system in
RAM

()

Figure 3-1. Three simple ways of organizing memory with an

operating system and one user process.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Base and Limit Registers
| 16384 |—>

f | 0 | 32764
Limit register :

CMP 16412
16408
16404
16400
16396
16392
16388
| 16384 |—> JUMP28 |16384

/ 0 16380

Base register

ADD 28
MOV 24
20
16
12

JMP 24 | ©
(c)

Figure 3-3. Base and limit registers can be used to give each
process a separate address space.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Swapping (1)

Time —>
% Z [0 W iz sz ez
/ / c C C C c
2
/// B B B B 7/
Z . u A
% D D D
Operating Operating Operating Operating Operating Operating Operating
system system system system system system system

(@)

(b)

(c)

(d)

(e)

(f)

(9)

Figure 3-4. Memory allocation changes as processes come into
memory and leave it. The shaded regions are unused memory.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Swapping (2)

B-Stack
r Room for growth ~ [----- [A
t A } Room for growth
B-Data
B > Actually in use
B-Program
7 ’ :
A-Stack
r Room for growth ~ f----- [B
t \ } Room for growth
A-Data
A > Actually in use
A-Program
Operating Operating
system system
(a) (b)

Figure 3-5. (a) Allocating space for growing data segment. (b)
Allocating space for growing stack, growing data segment.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management with Bitmaps

1 IAI 1 /// I 1 B 1 1 C 7]/ D E %

11111000 P|O|5] —4+—>|H|5]|3

11111111)
11001111 C
H

e W
(e -

18| 2| —4+—>|P|20|6 | —4—| P |26 3| —&—>| H|29| 3 | X
11111000 / f \ ‘f
T T Hole Starts Length Process
at 18 2

(b) ()

Figure 3-6. (a) A part of memory with five processes and three
holes. The tick marks show the memory allocation units. The

shaded regions (0 in the bitmap) are free. (b) The corresponding
bitmap. (c) The same information as a list.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Memory Management with Holes

. First Fit
. Next Fit
. Best Fit

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Virtual Memory — Paging (1)

The CPU sends virtual

CPU addresses to the MMU
package /
CPU 1>
/ Memory \ Disk
ot management emory controller
unit
'\ l l Bus

X

The MMU sends physical
addresses to the memory

Figure 3-8. The position and function of the MMU — shown as
being a part of the CPU chip (it commonly is nowadays). Logically
it could be a separate chip, was in years gone by.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Paging (2)

Virtual
address
space
60K—-64K X
56K-60K [X | } Virtual page
52K-56K X
48K-52K X
44K—-48K 7
40K—44K X .
36K-40K | 5 Ej';ﬁf;'
32K-36K X address
28K-32K X 28K-32K
24K-28K X 24K-28K
20K—24K 3 20K-24K
16K—20K 4 - 16K-20K
12K-16K 0 \ 12K-16K
8K-12K 6 8K-12K
4K-8K 1 - 4K—-8K
OK-4K 2 / \ 0K—-4K
Page frame

Figure 3-9. Relation between virtual addresses and
physical memory addresses given by page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Structure of Page Table Entry

Caching
disabled Modified Present/absent

[/ /

% | | | Page frame number

N\

Referenced Protection

Figure 3-11. A typical page table entry.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Speeding Up Paging

Paging implementation issues:

The mapping from virtual address to physical
address must be fast.

If the virtual address space is large, the page table
will be large.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Multilevel Page Tables

oecoria-ievel

page tables

Page
table for
the top
4M of
memory

(ANEEEEEEEARA]

FRPTTRY

Top-leve
page table

1023 / | __—

Bits 10 10 12

(a)

EEERREE

1023

To
pages

EEERRR

Figure 3-13. (a) A 32-bit address with two page table fields.
(b) Two-level page tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Replacement Algorithms

Optimal page replacement algorithm
Not recently used page replacement
First-In, First-Out page replacement
Second chance page replacement
Clock page replacement

Least recently used page replacement
Working set page replacement
WSClock page replacement

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Optimal Page Replacement

Sequence of Pages: 123412512345

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

FIFO Page Replacement Algorithm

Sequence of Pages: 123412512345

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Clock Page Replacement Algorithm

A
L B
K C
When a page fault occurs,
the page the hand is
pointing to is inspected.
J D The action taken depends
on the R bit:
R = 0: Evict the page
c R = 1: Clear R and advance hand
H F
G

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

LRU Page Replacement Algorithm

Page Page Page Page Page
o 1 2 3 1 2 1 2 3 1 2 3 1 2 3
ofoj1|1]1 011 0]0 0O(o0]o0 0100
110[0]0|O 1101 11001 0o(o]o0 110]0]|0
2l0]j]0(0]O0 01]0]0 111011 110]0 11|01
3lojofo]o 0|l]0]0 0O(o0jJo0o0|oO 11110 111100

(a) (b) () (d) (e)
0O(0]0]|O o111 o(1]111|0 110]0 oOl1]0{(o0
110111 0|10|1 O(0]|11|0 0O(o0]o0 Olojof|o
110]10]|1 0]1]0]0 0O(0]0|O 1101 111100
1{0]10]|0 01010 1|1]11]0 110]0 111110

(f) (9) (h) (i) (i)

Figure 3-17. LRU using a matrix when pages are referenced in the
order0,1,2,3,2,1,0, 3, 2, 3.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Summary of Page Replacement Algorithms

Algorithm Comment
Optimal Not implementable, but useful as a benchmark
NRU (Not Recently Used) Very crude approximation of LRU
FIFO (First-In, First-Out) Might throw out important pages
Second chance Big improvement over FIFO
Clock Realistic

LRU (Least Recently Used) | Excellent, but difficult to implement exactly
NFU (Not Frequently Used) | Fairly crude approximation to LRU

Aging Efficient algorithm that approximates LRU well
Working set Somewhat expensive to implement
WSClock Good efficient algorithm

Figure 3-22. Page replacement algorithms discussed in the text.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Local vs Global Allocation Policies

If we have multiple processes running on the system

(A, B, C, D, ...), when A has a page fault, should we
remove one of A's pages in memory (local),

or should we look at all of the pages in memory (global).

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Separate Instruction and Data Spaces

032

Data <

Program -<

Single address

space

Figure 3-25. (a) One address space.

232

Program {
0

| space

D space

(b) Separate | and D spaces.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

} Unused page

> Data

Shared Pages

[111}

Process
table

Program Data 1 Data 2
L J
'

Page tables

Figure 3-26. Two processes sharing the same program
sharing its page table.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Shared Libraries

36K

12K

Process 1 RAM Process 2

Figure 3-27. A shared library being used by two processes.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Page Fault Handling (1)

The hardware traps to the kernel, saving the
program counter on the stack.

An assembly code routine is started to save the
general registers and other volatile information.

The operating system discovers that a page
fault has occurred, and tries to discover which
virtual page is needed.

Once the virtual address that caused the fault is
known, the system checks to see if this address
IS valid and the protection consistent with the
access

Page Fault Handling (2)

If the page frame selected is dirty, the page is
scheduled for transfer to the disk, and a context
switch takes place.

When page frame is clean, operating system
looks up the disk address where the needed
page is, schedules a disk operation to bring it in.

When disk interrupt indicates page has arrived,
page tables updated to reflect position, frame
marked as being in normal state.

Page Fault Handling (3)

Faulting instruction backed up to state it had
when it began and program counter reset to
point to that instruction.

Faulting process scheduled, operating system
returns to the (assembly language) routine that
called it.

This routine reloads registers and other state
information and returns to user space to
continue execution, as if no fault had occurred.

Segmentation (1)

A compiler has many tables that are built up as
compilation proceeds, possibly including:

* The source text being saved for the printed listing (on
batch systems).

* The symbol table — the names and attributes of variables.

* The table containing integer, floating-point constants
used.

* The parse tree, the syntactic analysis of the program.
* The stack used for procedure calls within the compiler.

Segmentation (2)

Virtual address space

Call stack *

} Free

Address space
allocated to the
parse tree

Space currently being

Parse tree used by the parse tree

Constant table +

Source text +

Symbol table has

Symbol table bumped into the
source text table

Figure 3-31. In a one-dimensional address space with growing
tables, one table may bump into another.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

20K

16K

12K

8K

4K

oK

Figure 3-32. A segmented memory allows each table to grow or

12K
Symbol
table
8K
4K
0K
Segment
0

Segmentation (3)

Source
text

Segment
1

oK

Constants

Segment
2

16K

12K

8K

4K

oK

— Parse
tree

Segment
3

12K

8K

4K

0K

shrink independently of the other tables.

Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639

Call
stack

Segment
4

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

