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Abstract—Sparse representation based Classification (SRC)
has gained the attention of pattern recognition and computer
vision researchers, especially researchers working on face recog-
nition. On SRC’s algorithm, it is necessary to find a solution to
an optimization problem to recover x from the equation y = Ax.
Only a few studies reported the reconstruction of the signals on
SRC’s algorithm. Therefore, this paper studies the comparison
of OMP, LASSO, and CVX to help the readers understand the
reconstruction algorithm’s effect on SRC. The simulation result
is that LASSO and CVX algorithms have the same recognition
rate, but LASSO can compute twice faster as CVX. On the other
hand, the OMP algorithm can give the highest recognition rate
on a specific dimension of the image with a faster computation
time than LASSO.

Index Terms—SRC, Sparse Representation, Reconstruction

I. INTRODUCTION

Over the past few decades, Compressive Sensing (CS) has
emerged as one of the fascinating areas of study in signal
processing and optimization. Donoho originally applied this
theory in 2006 [1], then popularized by Candés et al. in
2008 [2]. Shannon theory-based conventional signal acquisi-
tion methods are being challenged by the revolutionary way
that CS has changed the paradigm for sensing or sampling
[3]. Numerous natural signals are either sparse or can be
compressed given the appropriate basis [4].

Numerous aspects of signal processing, require the solution
of a sparse approximation problem such as denoising [5],

image-inpainting [6], target detection [7], computer vision
[8] and pattern recognition [9], etc. Sparse representation
refers to solving the system of equations y = Ax when the
matrix A has more columns than rows, and the vector x is
sparse. They must recover a sparse signal from a collection of
undersampled measurements. There are many sparse recov-
ery algorithms have been proposed. Non-convex optimization
techniques, convex relaxations, and greedy algorithms are the
most common types of sparse recovery algorithm [10]. Fig.
1 depicted the classification of the sparse recovery algorithm
based on these categories.

Two well-known methods for requiring sparsity in the
solution are the ℓ0-quasinorm (number of components in the
vector that are not zero), which results in an implausibly
challenging numerical problem, and the ℓ1-norm. It is common
knowledge that applying a regularization term like the ℓ0-
quasinorm is necessary to recover vectors with more nonzero
coefficients than the ℓ1-norm. Standard convex optimization
techniques can be used to solve the ℓ1-min problem [11]

Finding sparse solutions has become increasingly important
in computer vision, pattern recognition, and image analysis. In
particular, in the context of Face Recognition (FR), the primary
objective of determining a person’s identity based on an image
of their face is given a collection of example faces. The
sparse representation-based classification (SRC) suggested by
Wright et al. provides a robust answer for FR problems. Such

978-1-6654-5594-7/22/$31.00 ©2022 IEEE20
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as dimensionality reduction using the downscale technique,
handling occlusion, and image corruption [12].

The SRC technique is based on the fundamental idea that
other examples of the same class can linearly represent an
image of a face. Linearly, each class is distinct from the others.
A face data set is a collection of images of people’s faces that
are organized into a matrix with the notation A ∈ Rw×h as a
representation of the data training samples. In numerous image
processing techniques, the vector representation version of the
matrix A is denoted by v ∈ Rm, and m = w × h, where
w and h respectively represent the width and height of the
face image. The accuracy in FR problems is determined by
calculating this x value. The desired solution x is as sparse
as possible. The majority of SRC’s modification algorithms
employ ℓ1-norm minimization. However, to classify the test
image more accurately, we must use the most sparse value of
x.

In this paper, we study and simulated the reconstruction
algorithm based on the ℓ1-norm minimization using convex
optimization and ℓ0-norm minimization using the greedy al-
gorithm. We compared the performance based on the accuracy
and computation time. As far as we know, the SRC method’s
comparison of ℓ0-norm and ℓ1-norm reconstruction is not yet
available.

example faces. The sparse representation-based classification
(SRC) suggested by Wright et al.. provides a robust answer
for FR problems. Such as dimensionality reduction using the
downscale technique, handling occlusion, and image corrup-
tion [12].

The SRC technique is based on the fundamental idea that
other examples of the same class can linearly represent an
image of a face. Linearly, each class is distinct from the others.
A face data set is a collection of images of people’s faces that
are organized into a matrix with the notation A 2 Rw⇥h as a
representation of the data training samples. In numerous image
processing techniques, the vector representation version of the
matrix A is denoted by v 2 Rm, and m = w ⇥ h, where
w and h respectively represent the width and height of the
face image. The accuracy in FR problems is determined by
calculating this x value. The desired solution x is as sparse
as possible. The majority of SRC’s modification algorithms
employ `1-norm minimization. However, to classify the test
image more accurately, we must use the most sparse value of
x.

In this paper, we study and simulated the reconstruction
algorithm based on the `1-norm minimization using convex
optimization and `0-norm minimization using the greedy algo-
rithm. We compared these algorithm and saw the performance
based on the accuracy and computation time. As far as we
know, the SRC method’s comparison of `0-norm and `1-norm
reconstruction is not yet available.

Sparse
Recovery
Algorithms

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Convex
Relaxation

8
>>>>>><
>>>>>>:

Basis Pursuit (BP)
Least Absolute Shrinkage & Selection Operator (LASSO)
Least Angle Regression (LARS)
Approximate Message Passing (AMP)
Gradient Descent with Sparsification (GraDes)
Iterative Soft Thresholding (IST)

Non-Convex
Optimization

8
<
:

Bayesian Compressive Sensing (BCS)
Focal Underdetermined System Solution (FOCUSS)
Iterative Reweighted Least Squares (IRLS)

Greedy
Algorithm

8
>>>>>>>>>>>>><
>>>>>>>>>>>>>:

Matching Pursuit (MP)
Matching Pursuit based on Least Squares (MPLS)
Orthogonal Matching Pursuit (OMP)
Subspace Pursuit (SP)
Stagewise Orthogonal Matching Pursuit (SOMP)
Compressive Sampling Matching Pursuit (CoSaMP)
Regulatized OMP (ROMP)
Generalized Orghogonal Matching Pursuit (GOAMP)
Gradient Pursuit (GP)
Multipath Matching Pursuit (MMP)

Fig. 1. Classification of Sparse Recovery Algorithm Adopted From [10]

II. MATHEMATICAL OPTIMIZATION

SRC recognition method belongs to mathematical opti-
mization problem. The form of a mathematical optimization
problem, or optimization problem, is given by [13]:

minimize f0(x)

subject to fi(x)  bi, i = 1, ..., m
(1)

where x = (x1, x2, ..., xn) is the optimization variables,
f0 : Rn ! R is the objective function and fi : Rn !

R, i = 1, 2, ...m is the constraint functions, and the constants
b1, ..., bm are the limits, or bounds, for the constraints. The
optimal solution of x̂ has smallest value of f0 among all
vectors that satisfy the constraints. The optimization problems,
in general, are generally difficult to solve, and many of
the proposed solutions come with undesirable trade-offs—for
example, extremely lengthy calculation times or an inability
to reliably locate the optimal answer. However, there are some
problem classes that can be handled in an effective manner and
with a high degree of reliability by employing techniques such
as least-squares, linear programming, and convex optimization.

A. Least-Squares
The aim of a problem known as the least-squares problem is

the sum of squares of terms represented by the form aT
i x� bi

[13]. This type of optimization issue does not involve any
constraints.

minimize||Ax � b||22 =

kX

i=1

(aT
i x � bi)

2 (2)

where A 2 Rm⇥n (with m � n), aT
i are the rows of A, and

the vector x 2 Rn is the optimization variable. The solution
of problem (2):

(AT A)x = AT b

x = (AT A)�1AT b
(3)

In a time approximately proportional to n2k, the least-squares
problem can be solved.

B. Linear Programming
Linear programming is another major sub-field of opti-

mization problems; in this type of issue, both the constraint
functions and the objective functions are linear.

minimize cT x

subject to aT
x  bi, i = 1, ..., m

(4)

where the vectors x, a1, ..., am 2 Rn and scalars b1, ..., bm 2
R are problem parameters that specify the objective and
constraint functions respectively. It is not possible to solve
a linear program using a straightforward analytical method in
the same way that a least-squares problem may be solved.
However, there are many very effective ways to solve linear
programs, such as Dantzig’s simplex method.

C. Convex Optimization
One of the following formulations can represent a convex

optimization problem [13]:

minimize f0(x)

subject to fi(x)  bi, i = 1, ..., m
(5)

where the functions f0, ..., fm : Rn ! R are convex, satisfy:

fi(↵x + �y)  ↵fi(x) + �fi(y) (6)

for all x, y 2 Rn and all ↵,� 2 R with ↵ + � = 1,↵ �
0,� � 0

Fig. 1. Classification of Sparse Recovery Algorithm Adopted From [10]

II. MATHEMATICAL OPTIMIZATION

SRC recognition method belongs to mathematical opti-
mization problem. A mathematical problem formulation, also
known as an optimization problem, presented in this form [13]:

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m
(1)

where x = (x1, x2, ..., xn) is the optimization variables,
f0 : Rn → R is the objective function and fi : Rn →
R, i = 1, 2, ...m is the constraint functions, and the constants
b1, ..., bm are the limits, or bounds, for the constraints. The
optimal solution of x̂ has smallest value of f0 among all

vectors that satisfy the constraints. The optimization problems,
in general, are generally difficult to solve, and many of
the proposed solutions come with undesirable trade-offs—for
example, extremely lengthy calculation times or an inability
to reliably locate the optimal answer. However, there are some
problem classes that can be handled in an effective manner and
with a high degree of reliability by employing techniques such
as least-squares, linear programming, and convex optimization.

A. Least-Squares

The aim of a problem known as the least-squares problem is
the sum of squares of terms represented by the form aTi x− bi
[13]. This type of optimization issue does not involve any
constraints.

minimize||Ax− b||22 =
k∑

i=1

(aTi x− bi)
2 (2)

where A ∈ Rm×n (with m ≥ n), aTi are the rows of A, and
the vector x ∈ Rn is the optimization variable. The solution
of problem (2):

(ATA)x = AT b

x = (ATA)−1AT b
(3)

In a time approximately proportional to n2k, the least-squares
problem can be solved.

B. Linear Programming

Linear programming is another major sub-field of opti-
mization problems; in this type of issue, both the constraint
functions and the objective functions are linear.

minimize cTx

subject to aTx ≤ bi, i = 1, ...,m
(4)

where the vectors x, a1, ..., am ∈ Rn and scalars b1, ..., bm ∈
R are problem parameters that specify the objective and
constraint functions respectively. It is not possible to solve
a linear program using a straightforward analytical method in
the same way that a least-squares problem may be solved.
However, there are many very effective ways to solve linear
programs, such as Dantzig’s simplex method.

C. Convex Optimization

One of the following formulations can represent a convex
optimization problem [13]:

minimize f0(x)

subject to fi(x) ≤ bi, i = 1, ...,m
(5)

where the functions f0, ..., fm : Rn → R are convex, satisfy:

fi(αx+ βy) ≤ αfi(x) + βfi(y) (6)

for all x, y ∈ Rn and all α, β ∈ R with α + β = 1, α ≥
0, β ≥ 0.

Authorized licensed use limited to: Institut Teknologi Bandung. Downloaded on March 31,2023 at 06:44:02 UTC from IEEE Xplore.  Restrictions apply. 



III. SPARSE REPRESENTATION BASED CLASSIFICATION

The robust FR using sparse representation was written by
Wright et al. as follows [12]:

y = Ax (7)

In the case of classification on face recognition, y ∈ RM×1

represented the image that needed to be identified, A ∈
RM×N is training sample column-wise database matrix and
x ∈ RN×1 is a sparse matrix. If only K(K ≪ N) elements
of x are non zero and the rest elements in x are zero, we call
the signal y is K-sparse. We want to find x if y and A are
known. The sparsest solution x̂ is, there fore given by problem
(8):

x̂ = argmin
x∈RN

||x||0 s.t Ax = y (8)

Despite the fact that this problem is NP-hard, it is possible
to solve it using greedy methods under certain conditions
(depending on the values of N , M , K, and A) [14].

Recent studies have demonstrated that if a representative
solution is produced by applying the ℓ1-norm minimization
with adequate sparsity, then the solution can be equal to
the solution obtained by ℓ0-norm with a high probability
[15]. In addition, the problem of ℓ1-norm optimization has
an analytical solution and can be handled in polynomial
time. As a result, extensive sparse representation approaches
that incorporate ℓ1-norm minimization have been presented
to enhance the theory of sparse representation. The most
common and popular structures of sparse representation with
the ℓ1-norm minimization, which are very similar to sparse
representation with the ℓ0-norm minimization, are typically
employed to solve the following problems:

x̂ = argmin
x∈RN

||x||1 s.t Ax = y (9)

In the case of noisy measurement, the optimization problem
given in problem (9) is relaxed to the following problem [15]:

x̂ = argmin
x∈RN

||x||1 s.t ||Ax− y||22 ≤ ε (10)

The test image y is classify based on the approximation by
assigning it to the class of object with minimum residual
between y and ŷ:

min
i

ri(y) = ||y −Aδi(x̂)||2 (11)

Wright et al. studied the implication of feature extraction,
which carries over the SRC framework, by reducing the
dimensionality of data and computational cost [12]. One key
element in the practical application of SRC is the dimension
reduction of the training samples. The number of calculations
directly influences the initial size of the training samples,
affecting the algorithm’s complexity. This dimension reduction
is also perceived as feature extraction from original sample
images. A formula for reduction factor (ρ) from the raw

image’s RM to a lower-dimensional feature Rd (d << M )
as follows:

ρ =
M (raw image)

d (reduced image)
(12)

IV. GREEDY APPROACH

The task of addressing sparse representation with ℓ0-norm
regularization, often known as the problem (8), is considered
an NP-hard problem. The greedy strategy offers a method for
obtaining an approximate solution for sparse representation
problems. In reality, the greedy approach cannot directly
resolve the optimization problem; all it can do is search for
an approximation of a solution to a problem (8). Greedy
algorithms use the notion of dictionary atomic matching to
seek the optimal global solution from the local optimal. This
algorithm is utilized by gradually raising the practical column
to achieve the closest answer to the initial signal. The empty
set serves as the starting point for the practical set, which
is then updated column by column by locating the minimum
reconstruction residual. The operation is complete when the
residual is below a predetermined threshold.

Two examples of typical sparse representation greedy al-
gorithms are The matching pursuit (MP) and the orthogonal
matching pursuit (OMP) [16]. Both MP and OMP have speedy
recovery times and inexpensive implementation costs. The
properties of the two greedy algorithms are contrasted and
compared in the Table I [17].

TABLE I
COMPARISON OF GREEDY ALGORITHMS [16]

Algorithm Name Samples of Observations Complexity
MP Klog2N Nlog2N
OMP 2Klog2N NK3

V. SIMULATION AND RESULT

The AT&T image library, which is the most well-known
face recognition library, is used in this simulation. This library
has 400 training images (40 subjects with each ten images).
The pictures were taken at different lighting, times, facial
expressions, and minor occlusion (glasses and no glasses). The
people were photographed standing straight in the uniform
background (with tolerance for some side movement) [18].

We tested the performance of the reconstruction algorithm:
OMP, LASSO, and CVX by reducing the image dimensions
by using the reduction factor (ρ) from 64 to 1024. The
dimensionality reduction aims to have the condition of an
underdetermined system and examine the effect of image size
on the accuracy and computational time of three reconstruction
algorithms. In this paper, we used the classical down-scaled
method. The simulation results in term of accuracy and relative
computation time as a function of dimensionality reduction is
shown in Table II and Table III respectively. This results are
also shown in Fig.2 and Fig.3 respectively.
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TABLE II
REDUCTION FACTOR VS RECOGNITION RATE (%)

Reduction Recognition Rate (%)
Factor (ρ) OMP LASSO CVX

64 78 79.5 79.5
128 99 92.5 92.5
256 78 94.5 94.5
512 58 89.5 89.5
1024 33.5 63 63

TABLE III
REDUCTION FACTOR VS COMPUTATION TIME (S)

Reduction Computation Time (s)
Factor (ρ) OMP LASSO CVX

64 23 37 70
128 23 25 45
256 18 22 45
512 23 20 40
1024 19 20 38

Average 21.2 24.8 47.6

Considering the experimental results depicted in Table.
II, the OMP algorithm achieve the highest recognition 99%
accuracy on ρ = 128, and declined on higher reduction factor.
On the other hand, LASSO and CVX algorithms have the
same recognition rate trend, which gets a maximum of 94.5%
accuracy at a reduction factor of 256. Table III shows that
the OMP algorithm has the fastest computation compared
to LASSO, with an average time of 21.2 seconds, which
is about 12% faster. Although LASSO and CVX give the
same accuracy, LASSO is twice faster than CVX. Fig. III
shows LASSO and CVX algorithm tends to be more stable
in accuracy than OMP. The selection of the reconstruction
algorithm can affect the accuracy and computation time.

VI. CONCLUSION

An observation made in this study is that a signal can
be rebuilt by making use of a reconstruction method that
is founded on optimization research. The amount of time
required to complete computations is another metric that may
be used to evaluate the effectiveness of a particular algorithm.
The computational time of the OMP algorithm is lower than
the other sparse representation with ℓ1-norm minimization
algorithms, as we expect from the Greedy Algorithm. Sparse
representations with ℓ1-norm minimization algorithms always
solve the problem by going through steps repeatedly. The OMP
algorithms use the fast and efficient least-squares method,
meaning they take much less time to run than other sparse rep-
resentation algorithms that use the ℓ1-norm. On the recognition
stability, however, ℓ1-norm algorithms such as LASSO and
CVX produce a stable result over a wide range of compression
factors.
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Fig. 2. Recognition Rate on OMP, LASSO and CVX Algorithm
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Fig. 3. Computation Time on OMP, LASSO, and CVX Algorithm
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