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Abstract—Sparse representation has gained the attention of
pattern recognition and computer vision researchers, especially
researchers working on face recognition. Many different al-
gorithms have been proposed for sparse representation. It is
necessary to find a solution to an optimization problem to recover
x from the equation y = Ax, Only a few studies reported the
reconstruction of the signals on SRC’s algorithm. Therefore, this
paper studies the comparison of OMP, LASSO, and CVX to help
the readers understand the reconstruction algorithm’s effect on
SRC. The simulation result is that LASSO and CVX algorithms
have the same recognition rate, but LASSO can compute twice
faster than CVX. On the other hand, the OMP algorithm can
give the highest recognition rate on a specific dimension of the
image with a faster computation time than LASSO.

Index Terms—Sparse Representation, Compressive Sensing,
Reconstruction

I. INTRODUCTION

In signal processing and optimization, Compressive Sensing
(CS) has been one of the most interesting topics over the
past few decades. This theory was implemented for the first
time by Donoho in 2006 [1] and popularized by Candés er
al. in 2008 [2]. CS revolutionary transformed the paradigm
for sensing or sampling, which challenges traditional signal
acquisition techrffgues that use Shannon Theory [3]. can take
advantage of the fact that many natural signals are either sparse
or compressible by choosing the appropriate basis [4].

Numerous aspects of signal processing, require the solution
of a sparse approximation problem such as denoising [5],
image-inpainting [6], target detection [7], computer vision
[8] and pattern recognition [9], etc. Sparse representation
refers to solving the system of equations y = Ax when the
matrix A has more columns than rows, and the vector x is
sparse. They must recover a sparse signal from a collection of
undersampled measurements. There are many sparse recov-
ery algorithms have been proposed. Non-convex optimization
techniques, convex relaxations, and greedy algorithms are the
most common types of sparse recovery algorithm [10]. Fig.
1 depicted the classification of the sparse recovery algorithm
based on these categories.

Two popular techniques for enforcing sparsity in the so-
lution are the f;-quasinorm (number of nonzero elements in
the vector), which leads to an impossibly difficult numerical
issue, and the /)-norm. It is generally known that recovering
vectors with more nonzero coefficients than the £;-norm re-
pllires a regularization term like the fy-quasinorm. The £ -min
problem can be resolved using standard convex optimization
techniques. [11].

In computer vision, pattern recognition, and image analysis,
finding spda solutions has become an increasingly important
technique. In particular, in the context of Face Recognition
(FR), where the primary objective is to determine a person’s
identity based on an image of their face given a collection of
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example faces. The %rse representation-based classification
(SRC) suggested by Wright et al.. provides a robust answer
for FR problems. Such as dimensionality reduction using the
downscale technique, handling occlusion, and image corrup-
tion [12].

The SRC technique is based on the fundamental idea that
other examples of the same class can linearly represent an
image of a face. Linearly, each class is distinct from the others.
A face data set is a collection of images of people’s faces that
are organized into a matrix with the notation A € R**" as a
representation of the data training samples. In numerous image
processing techniques, the vector representation version he
matrix A is denoted by v € R™, and m = w x h, where
w and h respectively represent the width and height of the
face image. The accuracy in FR problems is determined by
calculating this x value. The desired solution x is as sparse
as possible. The majority of SRC’s modification algorithms
employ {;-norm minimization. However, to classify the test
Image more accurately, we must use the most sparse value of
]

In this paper, we study and simulated the reconstruction
algorithm based on the f,-norm minimization using convex
optimization and £5-norm minimization using the greedy algo-
rithm. We compared these algorithm and saw the performance
based on the accuracy and computation time. As far as we
know, the SRC method’s comparison of £y-norm and ¢;-norm
reconstruction is not yet available.
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Fig. 1. Classification of Sparse Recovery Algorithm Adopted From [10]

II. MATHEMATICAL OPTIMIZATION

SRC recognition method belongs to mathematical opti-
mization problem. The form of a mathematical optimization
problem, or optimization prghlem, is given by [13]:

minimize fy(z n
subject to  f;(z) < b;,i=1,...,m
where = = (z,,7y,..,2,) is the optimization variables,
fo : R"™ — R is the objective function and fi : R" —

R.i=1,2,...m is the constraint functions, and the constants
by, ...,b,, are the linfy®, or bounds, for the constraints. The
optimal solution of = has smallest value of f, among all
vectors that satisfy the constraints. The optimization problems,
in general, are generally difficult to solve, and many of
the proposed solutions come with undesirable trade-offs—for
example, extremely lengthy calculation times or an inability
to reliably locate the optimal answer. However, there are some
problem classes that can be handled in an effective manner and
with a high degree of reliability by employing techniques such
as least-squares, linear programming, and convex optimization.
A. Least-Squares
aim of a problem known as the least-squares problem is
the sum of squares of terms represented by the form a?z — b;
[13]. This type of optimization issue does not involve any
constraints.
“.
minimize|| Az — b||Z = Z(a?r —b;)?
1 i=1
where A € R™*™ (with m > n), a? are the rows of A, and
the vector = € R™ is the optimization variable. The solution

of problem (2):
(AT Az = AT
= (AT At ATy

In a time approximately proportional to n*k, the least-squares
problem can be solved.

2

(3

B. Linear Programming
Linear programming is another major sub-field of opti-
mization problems; in this of 1ssue, both the constraint

functions and the objective functions are linear.

T

minimize ¢ T

: T ‘ “
subject to a, < b i=1,...m
where the vectors =, ay, ..., a,, € R™ and scalars by, ..., b, €
R are problem parameters that specify the objective and
constraint functions respectively. It is not possible to solve
a linear program using a straightforward analytical method in
the same way that a least-squares problem may be solved.
However, there are many very effective ways to solve linear
programs, such as Dantzig’s simplex method.
C. Convex Optimization

One of the following formulations can represent a convex

optimization n:blem [13]:
minimize fy(x) )
subject to  f;(z) < b;,i=1,..,m

where the functions fy, ..., f, : R" — R are convex, satisfy:
filax + By) < afi(z) + Bfi(y) (6)

forall z,y € R" and all o, 3 € R witha+ 3 = 1,a >
0,820




III. SPARSE REPRESENTATION BASED CLASSIFICATION

The robust FR using sparse representation was written by
Wright et al. as follows [12]:

y = Ax (7

In the case of classification on face recognition, y € RMx1

represented the image that needed to be identified, A €
RM*N ig training sample colllin-wise database matrix and
x € RY*! is a sparse matrix. If only K(K < N) elements
of x are non zero and the rest elements in x are zero, we call
the signal y is K -sparse. We want to find x if y and A are
known. The sparsest solution X is, there fore given by problem
(8):

X =argmin|[x|[p st Ax=y (8)

":R,\'

Despite the fact that this problem is NP-hard, it is possible
to solve it using greedy methods under certain conditions
(depending on the values of N, M, K, and A) [14].

Recent studies have demonstrated that if a representative
solution is produced by applying the f1-n minimization
with adequate sparsity, then the solution can be equal to
the solution obtained by fy-norm a high probability
[15]. In addition, the problem of f;-norm optimization has
an analytical solution and can be handled in polynomial
time. As a result, esive sparse representation approaches
that incorporate {,-norm minimization have been presented
to enhance theory of sparse representation. The most
common and popular structures of sparse representation with
the ¢;-norm minimization, which are very similar to sparse
representation with the fj-norm minimization, are typically
employed to solve the following problems:

X =argmin |[x||; st Ax=y 9

xeRN
In the case of noisy measurement, the optimization problem
given in pablcm (9) is relaxed to the following problem [15]:

X =argmin|[x|; st |[y—Ax|Z<¢ (10)
=

xR’
The test im: is classify based on the approximation by
assigning it to the class of object with minimum residual
between y and ¥:

minr(y) = |[y = Adi(x)||2 (1n

Wright er al. studied the implication of feature extraction,
which camries over the SRC framework, by reducing the
dimensionality of data and computational cost [12]. One key
element in the practical application of SRC is the dimension
reduction of the training samples. The number of calculations
directly influences the initial size of the training samples,
affecting the algorithm’s complexity. This dimension reduction
is also perceived as feature extraction from original sample
images. A formula for reduction factor (p) from the raw

image’s EM to a lower-dimensional feature R? (d << M)

as follows: .
M (raw image)

=" =° 12
P d (reduced image) (12)

IV. GREEDY APPROACH

The task of addressing sparse representation with {,-norm
regularization, often known as the problem (8), is considered
an NP-hard problem. The greedy strategy offers a method for
obtaining an approximate solution for sparse representation
problems. In reality, the greedy approach cannot directly
resolve the optimization problem; all it can do is search for
an approximation of a solution to a problem (8). Greedy
algorithms use the notion of dictionary atomic matching to
seek the optimal global solution from the local optimal. This
algorithm is utilized by gradually raising the practical column
to achievhe closest answer to the initial signal. The initial
practical set is the empty set, which is updated column by
column by locating the minimum reconstruction residual; the
operation concludes when this residual is smaller than a
threshold value.

Two examples of typical sparse representation greedy al-
gorithms are The matching pursuit (MP) and the orthogonal
matching pursuit (OMP) [16]. Both MP and OMP have speay
recovery times and inexpensive implementation costs. The
following table compares the characteristics of the two greedy
algorithms [17].

TABLE 1
COMPARISON OF GREEDY ALGORITHMS [16]
Algorithm Name | Samples of Observations | Complexity
MP Klog,N NlogaN
OMP 2Klog, N NK®

V. SIMULATION AND RESULT

The AT&T image library, which is the most well-known
face recognition library, is used in this simulation. This library
has 400 training images (40 subjects with each ten images).
The pictures were taken at different lighting, times, facial
expressions, and minor occlusion (glasses and no glasses). The
people were photographed standing straight in the uniform
background (with tolerance for some side movement) [18].

We tested the performance of the reconstruction algorithm:
OMP, LASSO, and CVX by reducing the image dimensions
by using the reduction factor (p) from 64 to 1024. The
dimensionality reduction aims to have the condition of an
underdetermined system and examine the effect of image size
on the accuracy and computational time of three reconstruction
algorithms. In this paper, we used the classical down-scaled
method. The simulation results in term of accuracy and relative
computation time as a function of dimensionality reduction is
shown in Table II and Table III respectively. This results are
also shown in Fig.2 and Fig.3 respectively.




TABLE 11
REDUCTION FACTOR V5 RECOGNITION RATE (%)

Reduction Recognition Rate (%)

Factor (p) [ OMP | LASSO | CVX
64 78 795 79.5
128 99 925 92.5
256 78 945 94.5
512 58 803 80.5
1024 3335 63 63

TABLE I

REDUCTION FACTOR Vs COMPUTATION TIME (5)

Reduction Computation Time (s)

Factor (p) | OMP | LASSO | CVX
64 23 37 70
128 23 25 45
256 18 22 45
512 23 20 40
1024 19 20 38

Average 21.2 248 47.6

Considering the experimental results depicted in Table.
II. the OMP algorithm achieve the highest recognition 99%
accuracy on g = 128, and declined on higher reduction factor.
On the other hand, LASSO and CVX algorithms have the
same recognition rate trend, which gets a maximum of 92.5%
accuracy at a reduction factor of 256. Table III shows that
the OMP algorithm has the fastest computation compared
to LASSO, with an average time of 21.2 seconds, which
is about 12% faster. Although LASSO and CVX give the
same accuracy, LASSO is twice faster than CVX. Fig. III
shows LASSO and CVX algorithm tends to be more stable
in accuracy than OMP. The selection of the reconstruction
algorithm can affect the accuracy and computation time.

VI. C LUSION

This paper observes that a signal has been reconstructed
using a reconstruction algorithm based on optimization studies.
The amount of time required to complete computations is
another metric that may be used to evaluate the effectiveness
of a particular algorithm. The computational time of the
OMP algorithm is lower than the other sparse representation
with #;-norm minimization algorithms, as we expect from
the Greedy Algorithm. Sparse representations with £;1-norm
minimization algorithms always solve the problem by going
through steps repeatedly. The OMP algorithms use the fast
and efficient least-squares method, meaning they take much
less time to run than other sparse representation algorithms
that use the #1-norm. On the recognition stability, however, ;-
norm algorithms such as LASSO and CVX produce a stable
result over a wide range of compression factors.
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Fig. 3. Computation Time on OMP, LASSO, and CVX Algorithm

REFERENCES

D. L. Donoho, “Compressed Sensing.” IEEE Transactions on Informa-
tion Theory, vol. 52, no. 4, pp. 1289 — 1306, Apr. 2006.

E. Candes and M. Wakin, “An Introduction To Compressive Sampling.”
IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21-30, Mar. 2008.
[Online]. Available: http:/fieeex plore.ieee.org/document/44 72240/

C. E. Shannon. “A mathematical theory of communication,” The Bell
Svstem Technical Jowmal, vol. 27, no. 3, pp. 379423, 1948,

E. J. Candés and M. B. Wakin, “An Introduction to Compressive
Sampling,” IEEE Signal Processing Magazine, Mar. 2008.

A Gholami and S. M. Hosseini, “A general framework for sparsity-based
denoising and inversion.” IEEE Transactions on Signal Processing,
vol. 59, no. 11, pp. 5202-5211, 2011.

M. Fadili, J-L. Starck. and F. Murtagh, “Inpainting and zooming using
sparse representations.” The Computer Jowmal, vol. 52, no. 1, pp. 64-79,
2009,

L. Yao and X. Du, “Identification of underwater targets based on sparse
representation.” IEEE Access, vol. 8, pp. 215-228, 2020.

Z. Wang, I. Yang, H. Zhang, Z. Wang, Y. Yang, D. Lin, and T. S. Huang,
Sparse Coding and Its Applications in Computer Vision. USA: Wodd
Scientific Publishing Co., Inc., 2015.

J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse
representation for computer vision and pattern recognition,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 1031-1044, 2010.




[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

E. Crespo Marques, N. Maciel, L. Naviner, H. Cai, and I. Yang, “A
review of sparse recovery algonthms” JEEE Access, vol. 7, pp. 1300~
1322, 2019.

F. Keinert, D. Lazzaro, and 5. Morigi, “A robust group-sparse represen-
tation variational method with applications to face recognition,” IEEE
Transactions on Image Processing, vol. 28, no. 6, pp. 2785-2798, 2019.
J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face
Recognition via Sparse Representation.” JEEE Transactions on Pattem
Analysis and Machine Intelligence, vol. 31, no. 2, pp. 210 - 227, Apr.
2008.

S. Boyd and L. Vandenberghe, Convexr Optimization.  Cambridge
University Press, 2004,

1. Tropp, “Greed is good: algorithmic results for sparse approximation,”
IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231-
2242, 2004,

——, “Just relax: convex programming methods for identifying sparse
signals in noise” JEEE Transactions on Information Theory, vol. 52,
no. 3, pp. 10301051, 2006.

1. Dong and L. Wu, “Comparison and simulation study of the sparse
representation matching pursuit algorithm and the orthogonal matching
pursuit algorithm,” in 2027 International Conference on Wireless Com-
munications and Smart Grid (ICWCSG), 2021, pp. 317-320.

R. Manchanda and K. Sharma, “A review of reconstruction algorithms
in compressive sensing.” in 2020 International Conference on Advances
in Computing, Communication & Materials (ICACCM), 2020, pp. 322-
32s.

“The ORL Dataset.” [Online]. Available: https:/feam-
orl.co.uk/facedatabase html




bu nia

ORIGINALITY REPORT

1 8w

SIMILARITY INDEX

PRIMARY SOURCES

: engi 0
www. pdf-search-engine.com 105 words — 4 )

Internet

. . . 0
Junshuo Dong, Lingda Wu. "Comparison and 50 words — 2 )0
Simulation Study of the Sparse Representation

Matching Pursuit Algorithm and the Orthogonal Matching
Pursuit Algorithm", 2021 International Conference on Wireless
Communications and Smart Grid (ICWCSG), 2021

Crossref

hdl.handle.net 50 words — 20/0

Internet

ul orXiv-ors 47 words — 2%

Internet

o

Fritz Keinert, Damiana L ,S Morigi. "A 0
ritz Keinert, Damiana Lazzaro erena prlgl 36 words — 1 A)
Robust Group-Sparse Representation Variational

Method With Applications to Face Recognition", IEEE

Transactions on Image Processing, 2019

Crossref

H Zheng Z"hang, Yong Xu, Jian Yang, XuelorTg Li, David 26 words — 1 /0
Zhang. "A Survey of Sparse Representation:

Algorithms and Applications", IEEE Access, 2015

Crossref



—_
o

Manal El Tanab, Walaa Hamouda. "Resource 1 %
. » . 24 words —

Allocation for Underlay Cognitive Radio Networks: A

Survey", [EEE Communications Surveys & Tutorials, 2017

Crossref

fr ntsonline.com 0
www eepatentsonline.co >3 words — 1 )0
www.esat.kuleuven.be 0
Internet 20 WordS - 1 /0
Imran Naseem. "Sparse Representation for Ear 0

. o P p . 16words—1 /0
Biometrics", Lecture Notes in Computer Science,
2008

Crossref

. . " . 0
Rachit Manc.handa, Kgnlka Sharma. A Rewew of 10 words — < 1 /0
Reconstruction Algorithms in Compressive

Sensing", 2020 International Conference on Advances in

Computing, Communication & Materials (ICACCM), 2020

Crossref

vdoc.pub 10 words — < 1 %

Internet

Zhe'a'ngyang Wang, Houqlapg Li, Qing Llngt Weiping 9 words — < 1 /0
Li. "Robust Temporal-Spatial Decomposition and
Its Applications in Video Processing", IEEE Transactions on

Circuits and Systems for Video Technology, 2013

Crossref

kth.diva-portal.org 9 words — < 1 %

Internet

. 0
pt.scribd.com 9 words — < 1 /0

Internet



—
(@)

Wwww.koreascience.or.kr

Internet

WWW.yongxu.org

Internet

ON
ON

9 words — < 1%

9 words — < 1%

<9 WORDS
<9 WORDS



