
7
Retrieving Data from

a MySQL Database

One of the most important functions that a relational database management system (RDBMS)
must support is the ability to access data in the databases managed by that system. Data access must
extend beyond the mere retrieval of information as it is stored in the tables. You must be able to
choose which data you want to view and how that data is displayed. To support this functionality,
MySQL provides an SQL statement that is both powerful and flexible in its implementation. The
SELECT statement is the primary SQL statement used in MySQL — and in most RDBMSs — to
retrieve specific data from one or more tables in a relational database.

By using a SELECT statement, you can specify which columns and which rows to retrieve from one
or more tables in your MySQL database. You can also link values together across multiple tables,
perform calculations on those values, or group values together in meaningful ways in order to
provide summarized information. When you execute a SELECT statement, the values returned by
that statement are presented in the form of a result set, which is an unnamed temporary table that
contains the information retrieved from the tables. In this chapter, you will learn how to create
SELECT statements that allow you to retrieve exactly the information that you need. Specifically,
the chapter covers the following topics:

❑ The SELECT statement and its syntax, as used in MySQL. You learn how to create statements
that retrieve all columns in a table or only specific columns. You also learn how to add
expressions and define variables in your SELECT statements.

❑ How to add options to a SELECT statement that determine how the statement is executed.

❑ How to add optional clauses to your SELECT statement that allow you to limit which rows
are returned, to group together rows in order to summarize information, and to specify
the order in which rows are displayed.

10_579509 ch07.qxd 3/1/05 9:58 AM Page 229

TEAM LinG - Live, Informative, Non-cost and Genuine !

The SELECT Statement
Whenever you want to retrieve data from a MySQL database, you can issue a SELECT statement that
specifies what data you want to have returned and in what manner that data should be returned. For
example, you can specify that only specific columns or rows be returned. You can also order the rows
based on the values in one or more columns. In addition, you can group together rows based on
repeated values in a column in order to summarize data.

The SELECT statement is one of the most powerful SQL statements in MySQL. It provides a great deal of
flexibility and allows you to create queries that are as simple or as complex as you need to make them.
The syntax for a SELECT statement is made up of a number of clauses and other elements, most of which
are optional, that allow you to refine your query so that it returns only the information that you’re looking
for. The following syntax describes the elements that make up a SELECT statement:

<select statement>::=
SELECT
[<select option> [<select option>...]]
{* | <select list>}
[<export definition>]
[

FROM <table reference> [{, <table reference>}...]
[WHERE <expression> [{<operator> <expression>}...]]
[GROUP BY <group by definition>]
[HAVING <expression> [{<operator> <expression>}...]]
[ORDER BY <order by definition>]
[LIMIT [<offset>,] <row count>]
[PROCEDURE <procedure name> [(<argument> [{, <argument>}...])]]
[{FOR UPDATE} | {LOCK IN SHARE MODE}]

]

<select option>::=
{ALL | DISTINCT | DISTINCTROW}
| HIGH_PRIORITY
| {SQL_BIG_RESULT | SQL_SMALL_RESULT}
| SQL_BUFFER_RESULT
| {SQL_CACHE | SQL_NO_CACHE}
| SQL_CALC_FOUND_ROWS
| STRAIGHT_JOIN

<select list>::=
{<column name> | <expression>} [[AS] <alias>]
[{, {<column name> | <expression>} [[AS] <alias>]}...]

<export definition>::=
INTO OUTFILE ‘<filename>’ [<export option> [<export option>]]
| INTO DUMPFILE ‘<filename>’

<export option>::=
{FIELDS

[TERMINATED BY ‘<value>’]
[[OPTIONALLY] ENCLOSED BY ‘<value>’]
[ESCAPED BY ‘<value>’]}

| {LINES

230

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 230

TEAM LinG - Live, Informative, Non-cost and Genuine !

[STARTING BY ‘<value>’]
[TERMINATED BY ‘<value>’]}

<table reference>::=
<table name> [[AS] <alias>]
[{USE | IGNORE | FORCE} INDEX <index name> [{, <index name>}...]]

<group by definition>::=
<column name> [ASC | DESC]
[{, <column name> [ASC | DESC]}...]
[WITH ROLLUP]

<order by definition>::=
<column name> [ASC | DESC]
[{, <column name> [ASC | DESC]}...]

As you can see from the syntax, a SELECT statement can contain a number of elements. For most of these
elements, the chapter discusses each one in detail, providing the necessary examples to illustrate how
they work; however, some elements are covered in later chapters. For example, the <export definition>
option is discussed in Chapter 11, and the FOR UPDATE and the LOCK IN SHARE MODE options are
discussed in Chapter 12. In addition, the PROCEDURE clause, which is used to call C++ procedures, is not
discussed; it is beyond the scope of the book. It is included here only to provide you with the complete
SELECT statement syntax.

Referring back to the syntax, notice that a SELECT syntax requires only the following clause:

SELECT
{* | <select list>}

The SELECT clause includes the SELECT keyword and an asterisk (*) or the select list, which is made up
of columns or expressions, as shown in the following syntax:

<select list>::=
{<column name> | <expression>} [[AS] <alias>]
[{, {<column name> | <expression>} [[AS] <alias>]}...]

As you can see, the select list must include at least one column name or one expression. If more than one
column/expression element is included, they must be separated by commas. In addition, you can assign
an alias to a column name or expression by using the AS subclause. That alias can be then be used in
other clauses in the SELECT statement; however, it cannot be used in a WHERE clause because of the way
in which MySQL processes a SELECT statement.

As the syntax indicates, the AS keyword is optional when assigning an alias to a column. For the sake of
clarity and to avoid confusion with other column names, it is generally recommended that you include
the AS keyword.

Although the SELECT clause is the only required element in a SELECT statement, you cannot retrieve
data from a table unless you also specify a FROM clause and the appropriate table references. The FROM
clause requires one or more table references, separated by commas, as shown in the following syntax:

231

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 231

TEAM LinG - Live, Informative, Non-cost and Genuine !

FROM <table reference> [{, <table reference>}...]

<table reference>::=
<table name> [[AS] <alias>]
[{USE | IGNORE | FORCE} INDEX <index name> [{, <index name>}...]]

Each table reference is made up of a table name and an optional AS subclause that allows you to assign
an alias to a table. The FROM clause can include more than one table reference; however, multiple refer-
ences are included only if you are joining two or more tables in your SELECT statement. In addition, you
would generally assign a table alias or include a {USE | IGNORE | FORCE} INDEX clause only when
joining a table. (Table joins are discussed in detail in Chapter 10.) When creating a SELECT statement that
does not include joined tables, your FROM clause normally includes only the FROM keyword and the
name of the target table.

As the syntax shows, creating a basic SELECT statement that retrieves data from only one table requires
few components. To demonstrate how this works, take a look at a few examples. The examples in this
chapter are all based on a table named CDs, which is shown in the following table definition:

CREATE TABLE CDs
(

CDID SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
CDName VARCHAR(50) NOT NULL,
InStock SMALLINT UNSIGNED NOT NULL,
OnOrder SMALLINT UNSIGNED NOT NULL,
Reserved SMALLINT UNSIGNED NOT NULL,
Department ENUM(‘Classical’, ‘Popular’) NOT NULL,
Category VARCHAR(20) NOT NULL,
RowUpdate TIMESTAMP NOT NULL

);

For the purposes of this chapter, you can assume that the following INSERT statement has been used to
add data to the CDs table:

INSERT INTO CDs (CDName, InStock, OnOrder, Reserved, Department, Category)
VALUES (‘Bloodshot’, 10, 5, 3, ‘Popular’, ‘Rock’),
(‘The Most Favorite Opera Duets’, 10, 5, 3, ‘Classical’, ‘Opera’),
(‘New Orleans Jazz’, 17, 4, 1, ‘Popular’, ‘Jazz’),
(‘Music for Ballet Class’, 9, 4, 2, ‘Classical’, ‘Dance’),
(‘Music for Solo Violin’, 24, 2, 5, ‘Classical’, ‘General’),
(‘Cie li di Toscana’, 16, 6, 8, ‘Classical’, ‘Vocal’),
(‘Mississippi Blues’, 2, 25, 6, ‘Popular’, ‘Blues’),
(‘Pure’, 32, 3, 10, ‘Popular’, ‘Jazz’),
(‘Mud on the Tires’, 12, 15, 13, ‘Popular’, ‘Country’),
(‘The Essence’, 5, 20, 10, ‘Popular’, ‘New Age’),
(‘Embrace’, 24, 11, 14, ‘Popular’, ‘New Age’),
(‘The Magic of Satie’, 42, 17, 17, ‘Classical’, ‘General’),
(‘Swan Lake’, 25, 44, 28, ‘Classical’, ‘Dance’),
(‘25 Classical Favorites’, 32, 15, 12, ‘Classical’, ‘General’),
(‘La Boheme’, 20, 10, 5, ‘Classical’, ‘Opera’),
(‘Bach Cantatas’, 23, 12, 8, ‘Classical’, ‘General’),
(‘Golden Road’, 23, 10, 17, ‘Popular’, ‘Country’),
(‘Live in Paris’, 18, 20, 10, ‘Popular’, ‘Jazz’),
(‘Richland Woman Blues’, 22, 5, 7, ‘Popular’, ‘Blues’),

232

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 232

TEAM LinG - Live, Informative, Non-cost and Genuine !

(‘Morimur (after J. S. Bach)’, 28, 17, 16, ‘Classical’, ‘General’),
(‘The Best of Italian Opera’, 10, 35, 12, ‘Classical’, ‘Opera’),
(‘Runaway Soul’, 15, 30, 14, ‘Popular’, ‘Blues’),
(‘Stages’, 42, 0, 8, ‘Popular’, ‘Blues’),
(‘Bach: Six Unaccompanied Cello Suites’, 16, 8, 8, ‘Classical’, ‘General’);

As you work your way through the chapter, you might want to refer to this CREATE TABLE statement
and INSERT statement to reference the table and its contents as example SELECT statements are pre-
sented. Now take a look at a SELECT statement that accesses data in the CDs table:

SELECT * FROM CDs;

The statement includes a SELECT clause and a FROM clause. The SELECT clause includes the SELECT
keyword and an asterisk. The asterisk indicates that the query should return all columns. The FROM
clause includes the FROM keyword and the name of the CDs table. When you execute this statement,
you should receive results similar to the following:

+------+--------------------------------------+---------+---------+----------+-----
| CDID | CDName | InStock | OnOrder | Reserved | Depa
+------+--------------------------------------+---------+---------+----------+-----
| 1 | Bloodshot | 10 | 5 | 3 | Popu
| 2 | The Most Favorite Opera Duets | 10 | 5 | 3 | Clas
| 3 | New Orleans Jazz | 17 | 4 | 1 | Popu
| 4 | Music for Ballet Class | 9 | 4 | 2 | Clas
| 5 | Music for Solo Violin | 24 | 2 | 5 | Clas
| 6 | Cie li di Toscana | 16 | 6 | 8 | Clas
| 7 | Mississippi Blues | 2 | 25 | 6 | Popu
| 8 | Pure | 32 | 3 | 10 | Popu
| 9 | Mud on the Tires | 12 | 15 | 13 | Popu
| 10 | The Essence | 5 | 20 | 10 | Popu
| 11 | Embrace | 24 | 11 | 14 | Popu
| 12 | The Magic of Satie | 42 | 17 | 17 | Clas
| 13 | Swan Lake | 25 | 44 | 28 | Clas
| 14 | 25 Classical Favorites | 32 | 15 | 12 | Clas
| 15 | La Boheme | 20 | 10 | 5 | Clas
| 16 | Bach Cantatas | 23 | 12 | 8 | Clas
| 17 | Golden Road | 23 | 10 | 17 | Popu
| 18 | Live in Paris | 18 | 20 | 10 | Popu
| 19 | Richland Woman Blues | 22 | 5 | 7 | Popu
| 20 | Morimur (after J. S. Bach) | 28 | 17 | 16 | Clas
| 21 | The Best of Italian Opera | 10 | 35 | 12 | Clas
| 22 | Runaway Soul | 15 | 30 | 14 | Popu
| 23 | Stages | 42 | 0 | 8 | Popu
| 24 | Bach: Six Unaccompanied Cello Suites | 16 | 8 | 8 | Clas
+------+--------------------------------------+---------+---------+----------+-----
24 rows in set (0.00 sec)

Because the rows are so long, only a part of each row is displayed here. How these rows would appear on
your system varies; however, the basic components should be the same. The important point to remember
is that a SELECT clause that contains only an asterisk returns all columns in the table. In addition, all rows
are returned as well because the SELECT statement has not been qualified in any way other than adding
the optional FROM clause, which defines the table to access.

233

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 233

TEAM LinG - Live, Informative, Non-cost and Genuine !

Although using an asterisk in the SELECT clause is an easy way to retrieve every column from a table, it
is not a recommended method to use when embedding a SELECT statement in a programming language.
Columns can change or be added or deleted from a table. Consequently, unless you’re simply perform-
ing an ad hoc query and want to view a table’s contents quickly, you should normally specify the col-
umn names, as shown in the following SELECT statement:

SELECT CDID, CDName, Category
FROM CDs;

Notice that, in this case, the query specifies three column names in the SELECT clause: CDID, CDName,
and Category. Because these names are specified, only data from these three columns is returned by your
query, as shown in the following results:

+------+--------------------------------------+----------+
| CDID | CDName | Category |
+------+--------------------------------------+----------+
1	Bloodshot	Rock
2	The Most Favorite Opera Duets	Opera
3	New Orleans Jazz	Jazz
4	Music for Ballet Class	Dance
5	Music for Solo Violin	General
6	Cie li di Toscana	Vocal
7	Mississippi Blues	Blues
8	Pure	Jazz
9	Mud on the Tires	Country
10	The Essence	New Age
11	Embrace	New Age
12	The Magic of Satie	General
13	Swan Lake	Dance
14	25 Classical Favorites	General
15	La Boheme	Opera
16	Bach Cantatas	General
17	Golden Road	Country
18	Live in Paris	Jazz
19	Richland Woman Blues	Blues
20	Morimur (after J. S. Bach)	General
21	The Best of Italian Opera	Opera
22	Runaway Soul	Blues
23	Stages	Blues
24	Bach: Six Unaccompanied Cello Suites	General
+------+--------------------------------------+----------+
24 rows in set (0.01 sec)

Notice that the same number of rows are returned here as were returned in the previous example;
however, only three columns of data are displayed. Later in the chapter, you learn how to use the
other optional clauses in the SELECT statement to refine your query even further. For now, return to
the SELECT clause. If you refer to the select list syntax, you notice that for each element in the select
list you can assign an alias, as shown in the following SELECT statement:

234

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 234

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT CDName AS Title, OnOrder AS Ordered
FROM CDs;

Notice that the CDName column is assigned the alias Title and the OnOrder column is assigned the alias
Ordered. When you execute this statement, the alias names are used as column headings in your query
results, as shown in the following results:

+--------------------------------------+---------+
| Title | Ordered |
+--------------------------------------+---------+
Bloodshot	5
The Most Favorite Opera Duets	5
New Orleans Jazz	4
Music for Ballet Class	4
Music for Solo Violin	2
Cie li di Toscana	6
Mississippi Blues	25
Pure	3
Mud on the Tires	15
The Essence	20
Embrace	11
The Magic of Satie	17
Swan Lake	44
25 Classical Favorites	15
La Boheme	10
Bach Cantatas	12
Golden Road	10
Live in Paris	20
Richland Woman Blues	5
Morimur (after J. S. Bach)	17
The Best of Italian Opera	35
Runaway Soul	30
Stages	0
Bach: Six Unaccompanied Cello Suites	8
+--------------------------------------+---------+
24 rows in set (0.02 sec)

In a situation like this, in which column names are used rather than expressions and the column names
are short and simple, supplying an alias isn’t particularly beneficial. As you add expressions to your
SELECT clause, create join conditions, or decide to clarify column names, aliases become very useful.

Once you’ve mastered the SELECT clause and the FROM clause, you can create a basic SELECT statement
to query data in any table. In most cases, however, you want to limit the number of rows returned and
control how data is displayed. For this, you need to add more clauses. These clauses, which are explained
throughout the rest of the chapter, must be added to your statement in the order they are listed in the
syntax. MySQL processes the clauses in a SELECT statement in a very specific order, so you must be
aware of how clauses are defined in order to receive the results that you expect.

In the following Try It Out exercise, you create three SELECT statements, each of which retrieves data
from the Employees table in the DVDRentals database.

235

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 235

TEAM LinG - Live, Informative, Non-cost and Genuine !

Try It Out Creating a SELECT Statement
The following steps describe how to create these statements:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating the switch to the DVDRentals database.

2. The first SELECT statement that you create retrieves all columns and all records from the
Employees table. To retrieve the records, execute the following SELECT statement at the mysql
command prompt:

SELECT * FROM Employees;

You should receive results similar to the following:

+-------+--------+-------+-----------+
| EmpID | EmpFN | EmpMN | EmpLN |
+-------+--------+-------+-----------+
1	John	P.	Smith
2	Robert	NULL	Schroader
3	Mary	Marie	Michaels
4	John	NULL	Laguci
5	Rita	C.	Carter
6	George	NULL	Brooks
+-------+--------+-------+-----------+
6 rows in set (0.23 sec)

3. Next, retrieve values only from the EmpFN and EmpLN columns of the Employees table. To
retrieve the values, execute the following SELECT statement at the mysql command prompt:

SELECT EmpFN, EmpLN
FROM Employees;

You should receive results similar to the following:

+--------+-----------+
| EmpFN | EmpLN |
+--------+-----------+
John	Smith
Robert	Schroader
Mary	Michaels
John	Laguci
Rita	Carter
George	Brooks
+--------+-----------+
6 rows in set (0.00 sec)

4. Now retrieve values from the same columns as the last step, but this time provide aliases for
those columns. To retrieve the values, execute the following SELECT statement at the mysql
command prompt:

236

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 236

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT EmpFN AS ‘First Name’, EmpLN AS ‘Last Name’
FROM Employees;

You should receive results similar to the following:

+------------+-----------+
| First Name | Last Name |
+------------+-----------+
John	Smith
Robert	Schroader
Mary	Michaels
John	Laguci
Rita	Carter
George	Brooks
+------------+-----------+
6 rows in set (0.01 sec)

How It Works
Whenever you create a SELECT statement that retrieves data from a table in a MySQL database, you
must, at the very least, include a SELECT clause and a FROM clause. The SELECT clause determines which
columns of values are returned and the FROM clause determines from which tables the data is retrieved.
For example, the first SELECT statement that you created retrieves all columns from the Employees table,
as shown in the following statement:

SELECT * FROM Employees;

This statement uses an asterisk to indicate that all columns should be retrieved. Your second SELECT
statement specified which columns of data should be returned:

SELECT EmpFN, EmpLN
FROM Employees;

In this case, the query returns only values in the EmpFN and EmpLN columns because those are the
columns specified in the SELECT clause. And as with the first SELECT statement in this exercise, the
values were retrieved from the Employees table because that is the table specified in the FROM clause.

The last SELECT statement that you created in this exercise assigns aliases to the columns names, as
shown in the following statement:

SELECT EmpFN AS ‘First Name’, EmpLN AS ‘Last Name’
FROM Employees;

Notice that you assigned the EmpFN column the alias First Name and that you assigned the EmpLN
column the alias Last Name. In both cases, you enclosed the aliases in a single quote because they were
each made up of more than one word and the quotations were necessary to ensure that both words
were considered part of the alias name.

237

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 237

TEAM LinG - Live, Informative, Non-cost and Genuine !

Using Expressions in a SELECT Statement
Recalling from the select list syntax, your select list can include column names or expressions. Up to this
point, the example SELECT statements that you’ve seen have included columns names. Expressions are also
very useful in creating robust SELECT statements that can return the data necessary to your applications.

An expression, as you learned in Chapter 6, is a type of formula that helps define the value that the
SELECT statement will return. An expression can include column names, literal values, operators, and
functions. An operator is a symbol that represents the action that should be taken, such as comparing
values or adding values together. For example, the minus (-) sign is an arithmetic operator that is used to
subtract one value from another. Another example is the greater than (>) operator, which is a comparison
operator used to compare values to determine if one value is greater than the other. (A comparison oper-
ator is a type of operator that compares two values.) A function is an object that carries out a predefined task.
For example, you can use a function to specify the current date.

Although Chapter 8 discusses operators in greater detail and Chapter 9 discusses functions, both operators
and functions are often an integral part of an expression, so some operators and functions are included
here so that you can better understand how to use an expression in a SELECT clause. Keep in mind,
however, that after you’ve learned more about operators and functions in Chapters 8 and 9, you will be
able to create even more robust expressions in your SELECT clause or anywhere else that you can use
expressions.

Now take a look at a SELECT statement that contains an expression in its select list. The statement is
based on the table definition for the CDs table that you saw earlier in the chapter. The following
statement retrieves information from several columns in the table:

SELECT CDName, InStock+OnOrder AS Total
FROM CDs;

The first element of the select list is the CDName column, which is included here in the same way that
you’ve seen other column names added to a select list. The second element is an expression, though, rather
than a column name. The expression (InStock+OnOrder) adds together the values from the InStock and
OnOrder columns for each row returned by the SELECT statement. The expression is assigned the name
Total, which is the name used in the query results to display the values, as the following results show:

+--------------------------------------+-------+
| CDName | Total |
+--------------------------------------+-------+
Bloodshot	15
The Most Favorite Opera Duets	15
New Orleans Jazz	21
Music for Ballet Class	13
Music for Solo Violin	26
Cie li di Toscana	22
Mississippi Blues	27
Pure	35
Mud on the Tires	27
The Essence	25
Embrace	35
The Magic of Satie	59
Swan Lake	69

238

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 238

TEAM LinG - Live, Informative, Non-cost and Genuine !

25 Classical Favorites	47
La Boheme	30
Bach Cantatas	35
Golden Road	33
Live in Paris	38
Richland Woman Blues	27
Morimur (after J. S. Bach)	45
The Best of Italian Opera	45
Runaway Soul	45
Stages	42
Bach: Six Unaccompanied Cello Suites	24
+--------------------------------------+-------+
24 rows in set (0.00 sec)

As you can see, the query returns two columns: the CDName column and the Total column. The values
in the Total column are based on the expression defined in the SELECT clause. If you refer back to the
original values that you added to the table, you would see that these values are based on the total from
the two columns. For example, in the first row, the CDName value is Bloodshot and the Total value is 15.
Currently in the CDs table, the InStock value is 10 and the OnOrder value is 5. When added together, the
total is 15, which is the amount inserted in the Total column of the result set.

You can also create expressions in your select list that are more complex than the one in the last statement.
For example, the following SELECT statement is similar to the last, except that the expression in the
select list now subtracts the Reserved value from the total:

SELECT CDName, InStock+OnOrder-Reserved AS Total
FROM CDs;

To arrive at the value in the Total column, the InStock and OnOrder values are added together, and then
the Reserved value is subtracted from this total, as shown in the following results:

+--------------------------------------+-------+
| CDName | Total |
+--------------------------------------+-------+
Bloodshot	12
The Most Favorite Opera Duets	12
New Orleans Jazz	20
Music for Ballet Class	11
Music for Solo Violin	21
Cie li di Toscana	14
Mississippi Blues	21
Pure	25
Mud on the Tires	14
The Essence	15
Embrace	21
The Magic of Satie	42
Swan Lake	41
25 Classical Favorites	35
La Boheme	25
Bach Cantatas	27
Golden Road	16
Live in Paris	28

239

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 239

TEAM LinG - Live, Informative, Non-cost and Genuine !

Richland Woman Blues	20
Morimur (after J. S. Bach)	29
The Best of Italian Opera	33
Runaway Soul	31
Stages	34
Bach: Six Unaccompanied Cello Suites	16
+--------------------------------------+-------+
24 rows in set (0.00 sec)

For each row that the SELECT statement returns, the expression is calculated and the result inserted
in the Total column. When you use arithmetic operators in an expression, the components of that expres-
sion are evaluated according to the basic formulaic principles of mathematics. In Chapter 8, where
operators are discussed in greater detail, you learn more about how an expression is evaluated based
on the operators used in that expression.

As you have seen, you can specify column names or expressions in the SELECT clause. In the following
exercise, you create a SELECT statement that includes an expression.

Try It Out Adding Expressions to Your Select List
Follow these steps to add expressions to your select list:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. To retrieve the records from the Employees table, execute the following SELECT statement at the
mysql command prompt:

SELECT EmpID, EmpFN, EmpLN
FROM Employees;

You should receive results similar to the following:

+-------+--------+-----------+
| EmpID | EmpFN | EmpLN |
+-------+--------+-----------+
1	John	Smith
2	Robert	Schroader
3	Mary	Michaels
4	John	Laguci
5	Rita	Carter
6	George	Brooks
+-------+--------+-----------+
6 rows in set (0.03 sec)

How It Works
In this exercise, you created a SELECT statement that included a SELECT clause that contained three
select list elements, as shown in the following statement:

SELECT EmpID, EmpFN, EmpLN
FROM Employees;

240

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 240

TEAM LinG - Live, Informative, Non-cost and Genuine !

The three select list elements consist of the name of columns in the Employees table. Because the
columns are included here, the SELECT statement returns values from those columns (as they appear in
the Employees table).

Using Variables in a SELECT Statement
One type of expression that you can include in your select list is one that allows you to define a variable.
A variable is a type of placeholder that holds a value for the duration of a client session. This is useful if
you want to reuse a value in later SELECT statements.

You define a variable by using the following structure:

@<variable name>:={<column name> | <expression>} [[AS] <alias>]

The variable name must always be preceded by the at (@) symbol, and the variable value must always
be specified by using the colon/equal sign (:=) symbols. In addition, a variable can be associated with
only one value, so your SELECT statement should return only one value per variable. If your SELECT
statement returns more than one value for a variable, the last value returned is used by the variable. If
you want to define more than one variable in a SELECT statement, you must define each one as a separate
select list element. For example, the following SELECT statement defines two variables:

SELECT @dept:=Department, @cat:=Category
FROM CDs
WHERE CDName=’Mississippi Blues’;

When you execute this statement, the values from the Department column and the Category column are
stored in the appropriate variables. For example, the row in the CDs table that contains a CDName of
Mississippi Blues contains a Department value of Popular and a Category value of Blues. As a result, the
Popular value is assigned to the @dept variable, and the Blues value is assigned to the @cat variable.
When you execute the SELECT statement, you should receive results similar to the following:

+-------------------+----------------+
| @dept:=Department | @cat:=Category |
+-------------------+----------------+
| Popular | Blues |
+-------------------+----------------+
1 row in set (0.26 sec)

As you can see, your result set displays the values assigned to your variables. Once you’ve assigned
values to your variables, you can then use them in other SELECT statements, as shown in the following
example:

SELECT CDID, CDName, InStock+OnOrder-Reserved AS Available
FROM CDs
WHERE Department=@dept AND Category=@cat;

The first thing that you might notice in this SELECT statement is that it contains a WHERE clause.
Although WHERE clauses are discussed in greater detail later in the chapter — see the section “The
WHERE Clause” — they are used here to demonstrate how to use the variables to refine your SELECT
statement. In this case, the WHERE clause includes two conditions. In the first (Department=@dept),
the condition specifies that any rows returned must contain a Department value that equals the @dept

241

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 241

TEAM LinG - Live, Informative, Non-cost and Genuine !

variable value, which is Popular. The second condition (Category=@cat) specifies that any rows
returned must also contain a Category value that equals the @cat variable value of Blues. When you
execute this statement, you should receive results similar to the following:

+------+----------------------+-----------+
| CDID | CDName | Available |
+------+----------------------+-----------+
7	Mississippi Blues	21
19	Richland Woman Blues	20
22	Runaway Soul	31
23	Stages	34
+------+----------------------+-----------+
4 rows in set (0.07 sec)

Notice that four rows are returned. If you refer to the original values that were inserted in the CDs table,
you’ll find that each of these rows has a Department value of Popular and a Category value of Blues.

Also note that, in addition to a SELECT statement, you can use a SET statement to define a variable. For
example, the following SET statement defines the same two variables you saw previously:

SET @dept=’Popular’, @cat=’Blues’;

In this case, rather than setting the variable values based on values returned by a SELECT statement, you
can specify the values directly, as shown here. You can then use the variables in subsequent SELECT
statements in your client session, as you would variables defined in a SELECT statement. In either case,
the variables are usable for only as long as the client session lasts.

In the following Try It Out, you create a SELECT statement that defines a variable, and you then use that
variable in a second SELECT statement.

Try It Out Defining Variables in Your SELECT Statement
To create these statements, follow these steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. You must first define the variable. To define the variable, execute the following SELECT statement
at the mysql command prompt:

SELECT @rating:=RatingID
FROM DVDs
WHERE DVDName=’White Christmas’;

You should receive results similar to the following:

+-------------------+
| @rating:=RatingID |
+-------------------+
| NR |
+-------------------+
1 row in set (0.00 sec)

242

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 242

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. After creating the variable, you can use it in a SELECT statement. To use the variable to retrieve
records from the DVDs table, execute the following SELECT statement at the mysql command
prompt:

SELECT DVDID, DVDName, MTypeID
FROM DVDs
WHERE RatingID=@rating;

You should receive results similar to the following:

+-------+-------------------------------+---------+
| DVDID | DVDName | MTypeID |
+-------+-------------------------------+---------+
1	White Christmas	mt16
4	The Maltese Falcon	mt11
6	The Rocky Horror Picture Show	mt12
7	A Room with a View	mt11
+-------+-------------------------------+---------+
4 rows in set (0.00 sec)

How It Works
As you have seen, you can use a SELECT statement to define a variable that you can then use in later
SELECT statements. In the first SELECT statement that you created in this exercise, you defined the
@rating variable, as shown in the following statement:

SELECT @rating:=RatingID
FROM DVDs
WHERE DVDName=’White Christmas’;

The @rating variable is assigned a value based on the RatingID value in the DVDs table. Because
the WHERE clause specifies that only the row with a DVDName value of White Christmas should be
returned, the RatingID value in that row is the one that is assigned to the @rating variable. As a result,
@rating is assigned a value of NR. (Had the SELECT statement returned more than one value, the last
value returned would have been used by the variable.)

The next SELECT statement uses the @rating variable to specify that only columns that contain a
RatingID value equal to the @rating variable value should be returned, as shown in the following
SELECT statement:

SELECT DVDID, DVDName, MTypeID
FROM DVDs
WHERE RatingID=@rating;

Because @rating is assigned a value of NR, this SELECT statement returns only rows that contain a
RatingID value of NR.

Using a SELECT Statement to Display Values
When this chapter first introduced you to the SELECT statement syntax, you may have noticed that
nearly all elements of the statement are optional. Although your SELECT statements normally include a

243

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 243

TEAM LinG - Live, Informative, Non-cost and Genuine !

FROM clause, along with other optional clauses and options, these elements are all considered optional
because you can use a SELECT statement to return values that are not based on data in a table.

When using only the required elements of a SELECT statement, you need to specify only the SELECT
keyword and one or more elements of the select list. The select list can contain literal values, operators,
and functions, but no column names. For example, the following SELECT statement includes three select
list elements:

SELECT 1+3, ‘CD Inventory’, NOW() AS ‘Date/Time’;

The first select list element (1+3) demonstrates how you can use a SELECT statement to perform
calculations. The second select list element (‘CD Inventory’) is a literal value that simply returns
the string enclosed in the single quotes. The third select list element (NOW() AS ‘Date/Time’) uses
a NOW() function to return the current date and time. The element also includes an AS subclause that
assigns the name Date/Time to the column returned by the statement. If you execute the SELECT
statement, you should receive results similar to the following:

+-----+--------------+---------------------+
| 1+3 | CD Inventory | Date/Time |
+-----+--------------+---------------------+
| 4 | CD Inventory | 2004-08-24 11:39:40 |
+-----+--------------+---------------------+
1 row in set (0.00 sec)

As you can see, the first select list element is calculated and a value is returned, the second element
returns the literal value, and the third element returns the date and time. Notice that the names of the
first two columns in the results set are based on the select list elements because you assigned no alias to
those expressions.

As you have seen, you can use a SELECT statement to return values that are not tied to a specific table.
The following Try It Out describes how to create SELECT statements that return values.

Try It Out Returning Values from a SELECT Statement
Follow these steps to create a SELECT statement that returns values:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement that you create includes one expression. Execute the following
SELECT statement at the mysql command prompt:

SELECT 1+8+2;

You should receive results similar to the following:

+-------+
| 1+8+2 |
+-------+
| 11 |
+-------+
1 row in set (0.00 sec)

244

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 244

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. The next SELECT statement includes two expressions. Execute the following SELECT statement
at the mysql command prompt:

SELECT ‘DVDRentals Database’, NOW();

You should receive results similar to the following:

+---------------------+---------------------+
| DVDRentals Database | NOW() |
+---------------------+---------------------+
| DVDRentals Database | 2004-08-25 14:07:07 |
+---------------------+---------------------+
1 row in set (0.03 sec)

How It Works
In this exercise, you created two SELECT statements that return values other than data contained in a
table. The first table simply added several numbers together to produce a total, as shown in the following
statement:

SELECT 1+8+2;

As you can see, you needed to specify only the SELECT keyword and the select list element, which
added the numbers 1, 8, and 2 together. When you executed the statement, you should have received a
total value of 11.

The next SELECT statement that you executed included two select list elements, as the following statement
shows:

SELECT ‘DVDRentals Database’, NOW();

The first select list element was a literal value enclosed in single quotes. The second element was the
NOW() function. When you executed the SELECT statement, the results included the literal string value of
DVDRentals Database and the current date and time.

The SELECT Statement Options
When you create a SELECT statement, your SELECT clause can include one or more options that are specified
before the select list. The options define how a SELECT statement is processed and, for the most part, how it
applies to the statement as a whole, rather to the specific data returned. As the following syntax shows, you
can include a number of options in a SELECT statement:

<select option>::=
{ALL | DISTINCT | DISTINCTROW}
| HIGH_PRIORITY
| {SQL_BIG_RESULT | SQL_SMALL_RESULT}
| SQL_BUFFER_RESULT
| {SQL_CACHE | SQL_NO_CACHE}
| SQL_CALC_FOUND_ROWS
| STRAIGHT_JOIN

The following table describes each of the options that you can include in a SELECT statement.

245

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 245

TEAM LinG - Live, Informative, Non-cost and Genuine !

Option Description

ALL DISTINCT DISTINCTROW The ALL option specifies that a query should return
all rows, even if there are duplicate rows. The DIS-
TINCT and DISTINCTROW options, which have the
same meaning in MySQL, specify that duplicate rows
should not be included in the result set. If neither
option is specified, ALL is assumed.

HIGH_PRIORITY The HIGH_PRIORITY option prioritizes the SELECT
statement over statements that write data to the target
table. Use this option only for SELECT statements
that you know will execute quickly.

SQL_BIG_RESULT SQL_SMALL_RESULT The SQL_BIG_RESULT option informs the MySQL
optimizer that the result set will include a large number
of rows, which helps the optimizer to process the
query more efficiently. The SQL_SMALL_RESULT
option informs the MySQL optimizer that the result
set will include a small number of rows.

SQL_BUFFER_RESULT The SQL_BUFFER_RESULT option tells MySQL to
place the query results in a temporary table in order
to release table locks sooner than they would normally
be released. This option is particularly useful for
large result sets that take a long time to return to the
client.

SQL_CACHE SQL_NO_CACHE The SQL_CACHE option tells MySQL to cache the
query results if the cache is operating in demand
mode. The SQL_NO_CACHE option tells MySQL not to
cache the query results.

SQL_CALC_FOUND_ROWS You use the SQL_CALC_FOUND_ROWS option in con-
junction with the LIMIT clause. The option specifies
what the row count of a result set would be if the
LIMIT clause were not used.

STRAIGHT_JOIN You use the STRAIGHT_JOIN option when joining
tables in a SELECT statement. The option tells the
optimizer to join the tables in the order specified in
the FROM clause. You should use this option to speed
up a query if you think that the optimizer is not joining
the tables efficiently.

To specify an option in a SELECT statement, you must add it after the SELECT keyword, as shown in the
following SELECT statement:

SELECT ALL Department, Category
FROM CDs;

This statement uses the ALL option to specify that all rows should be included in the result set, even if
there are duplicates. The select list follows the ALL keyword. The list includes the Department and

246

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 246

TEAM LinG - Live, Informative, Non-cost and Genuine !

Category columns of the CDs table. As a result, all rows are returned from these two columns, as shown
in the following results:

+------------+----------+
| Department | Category |
+------------+----------+
Popular	Rock
Classical	Opera
Popular	Jazz
Classical	Dance
Classical	General
Classical	Vocal
Popular	Blues
Popular	Jazz
Popular	Country
Popular	New Age
Popular	New Age
Classical	General
Classical	Dance
Classical	General
Classical	Opera
Classical	General
Popular	Country
Popular	Jazz
Popular	Blues
Classical	General
Classical	Opera
Popular	Blues
Popular	Blues
Classical	General
+------------+----------+
24 rows in set (0.00 sec)

As you can see, there are duplicate rows in the result set. For example, there are a number of rows that
contain a Department value of Popular and a Category value of Blues. You can eliminate these duplicates
by using the DISTINCT option, rather then the ALL option, as shown in the following statement:

SELECT DISTINCT Department, Category
FROM CDs;

As you can see, this SELECT statement is identical to the previous statement except for the DISTINCT
option. If you execute this statement, you should receive results similar to the following:

+------------+----------+
| Department | Category |
+------------+----------+
Popular	Rock
Classical	Opera
Popular	Jazz
Classical	Dance
Classical	General
Classical	Vocal
Popular	Blues
Popular	Country
Popular	New Age
+------------+----------+
9 rows in set (0.02 sec)

247

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 247

TEAM LinG - Live, Informative, Non-cost and Genuine !

Notice that only 9 rows are returned (as opposed to 24 rows in the previous statement). Also notice that
the result set no longer contains duplicate rows. Although values are repeated in the Department column,
no rows, when the values are taken as a whole, are repeated.

You can also specify multiple options in your SELECT clause, as the following example shows:

SELECT DISTINCT HIGH_PRIORITY Department, Category
FROM CDs;

Notice that the SELECT clause includes the DISTINCT option and the HIGH_PRIORITY option. Because
the HIGH_PRIORITY option has no impact on the values returned, your result set looks the same as the
result set in the previous example.

As you have seen, you can add one or more options to your SELECT statement that define the behavior
of that statement. For this exercise, you use the ALL and DISTINCT options to return data from the DVDs
table of the DVDRentals database.

Try It Out Adding Options to Your SELECT Statement
To create the necessary SELECT statement, use the following steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. In the first SELECT statement, you specify the ALL option to retrieve records from the DVDs
table. Execute the following SELECT statement at the mysql command prompt:

SELECT ALL RatingID, StatID
FROM DVDs;

You should receive results similar to the following:

+----------+--------+
| RatingID | StatID |
+----------+--------+
NR	s1
G	s2
PG	s1
NR	s2
PG	s2
NR	s2
NR	s1
R	s2
+----------+--------+
8 rows in set (0.00 sec)

3. Now execute the same SELECT statement as in the last step, only this time use the DISTINCT
option, rather than the ALL option. Execute the following SELECT statement at the mysql com-
mand prompt:

248

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 248

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT DISTINCT RatingID, StatID
FROM DVDs;

You should receive results similar to the following:

+----------+--------+
| RatingID | StatID |
+----------+--------+
NR	s1
G	s2
PG	s1
NR	s2
PG	s2
R	s2
+----------+--------+
6 rows in set (0.01 sec)

How It Works
In this exercise, you created two SELECT statements, one that included the ALL option and one that
included the DISTINCT option. The first statement was as follows:

SELECT ALL RatingID, StatID
FROM DVDs;

By specifying the ALL option, all rows were returned, whether or not there were duplicates. Each row was
made up of values from the RatingID column and the StatID column. Overall, eight rows were returned.
The second statement, however, included the DISTINCT keyword rather than the ALL keyword, as shown
in the following statement.

SELECT DISTINCT RatingID, StatID
FROM DVDs;

When you executed this statement, only six rows were returned, and no rows were duplicated, although
values were duplicated in the individual columns.

The Optional Clauses of a SELECT
Statement

As you saw earlier in the chapter, the SELECT statement syntax includes a number of optional clauses that
help you define which rows your SELECT statement returns and how those rows display. Of particular
importance to creating an effective SELECT statement are the WHERE, GROUP BY, HAVING, ORDER BY, and
LIMIT clauses. As you learned earlier, any of these clauses that you include in your SELECT statement must
be defined in the order that they are specified in the syntax. The remaining part of the chapter discusses
each of these clauses and explains how they must be defined to include them in your SELECT statements.

249

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 249

TEAM LinG - Live, Informative, Non-cost and Genuine !

The WHERE Clause
Earlier in the chapter, you saw how you can use a SELECT clause to identify the columns that a SELECT
statement returns and how to use a FROM clause to identify the table from which the data is retrieved. In
this section, you look at the WHERE clause, which allows you to specify which rows in your table are
returned by your query.

The WHERE clause is made up of one or more conditions that define the parameters of the SELECT
statement. Each condition is an expression that can consist of column names, literal values, operators,
and functions. The following syntax describes how a WHERE clause is defined:

WHERE <expression> [{<operator> <expression>}...]

As you can see, a WHERE clause must contain at least one expression that defines which rows the SELECT
statement returns. When you specify more than one condition in the WHERE clause, those conditions are
connected by an AND or an OR operator. The operators specify which condition or combination of conditions
must be met.

Now take a look at an example to help demonstrate how a WHERE clause is defined in a SELECT statement.
The following SELECT statement contains a WHERE clause that defines a single condition:

SELECT CDName, InStock+OnOrder-Reserved AS Available
FROM CDs
WHERE Category=’Blues’;

The WHERE clause indicates that only rows with a Category value of Blues should be returned as part
of the result set. Because the SELECT clause specifies the CDName column and an expression that is
assigned the alias Available, only those two columns are included in the result set, as shown in the fol-
lowing results:

+----------------------+-----------+
| CDName | Available |
+----------------------+-----------+
Mississippi Blues	21
Richland Woman Blues	20
Runaway Soul	31
Stages	34
+----------------------+-----------+
4 rows in set (0.01 sec)

Although the Category column is not displayed in the result set, each of these rows has a Category
value of Blues. Because only four rows in the table have a Category value of Blues, only four rows are
returned.

In this last example, the WHERE clause defined only one condition. You can define multiple conditions in
a clause, though, as the following example demonstrates:

SELECT CDName, InStock+OnOrder-Reserved AS Available
FROM CDs
WHERE Category=’Blues’ AND (InStock+OnOrder-Reserved)>30;

250

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 250

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, the WHERE clause first specifies that the Category value for each row must be Blues.
The WHERE clause also includes a second condition, which contains an expression that adds the values
of the InStock and OnOrder columns and then subtracts the value in the Reserved column. This total
is then compared to the literal value of 30. The comparison is based on the greater than (>) comparison
operator (covered in greater detail in Chapter 8), which indicates that the value on the left must be
greater than the value on the right in order for the condition to evaluate to true. Because the two
conditions are connected by an AND operator, both conditions must be true in order for a row to be
returned. In other words, for each row, the Category value must equal Blues and the calculation
derived from InStock, OnOrder, and Reserved columns must equal an amount greater than 30.

As you might have noticed, the SELECT clause includes an expression that calculates the same three
columns in the same way as they are calculated in the WHERE clause. In addition, the expression in the
SELECT clause is assigned the name Available. You would think that, because the same format is used in
the WHERE clause, you should be able to refer to the Available expression in the WHERE clause so that you
can simply write the expression as Available>30. Because of the way in which MySQL processes SELECT
statements, you cannot use column aliases in the WHERE clause. Consequently, you must write out the
expression as it is done here.

Another alternative is to add a HAVING clause to your SELECT statement. In that clause, you can use
column aliases. HAVING clauses are discussed later in the chapter.

If you were to execute the SELECT statement, you would receive results similar to the following:

+--------------+-----------+
| CDName | Available |
+--------------+-----------+
| Runaway Soul | 31 |
| Stages | 34 |
+--------------+-----------+
2 rows in set (0.00 sec)

In this case, only two rows are returned. For each row, the Category value equals Blues and the calculation
of the three columns returns an amount greater than 30.

The next example SELECT statement is similar to the last, except that it adds an additional condition to
the WHERE clause and the calculated columns must have a total greater than 20, rather than 30, as shown
in the following statement:

SELECT CDName, Category, InStock+OnOrder-Reserved AS Available
FROM CDs
WHERE (Category=’Blues’ OR Category=’Jazz’)

AND (InStock+OnOrder-Reserved)>20;

As you can see, the WHERE clause now specifies that the Category value can equal Jazz. Because the OR
operator is used to connect the first two conditions, either condition can be met in order for a row to be
returned. In other words, a row must contain a Category value of Blues, or it must contain a Category
value of Jazz. In addition, the three calculated columns must include a total greater than 20. When you
execute this query, you should receive results similar to the following:

251

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 251

TEAM LinG - Live, Informative, Non-cost and Genuine !

+-------------------+----------+-----------+
| CDName | Category | Available |
+-------------------+----------+-----------+
Mississippi Blues	Blues	21
Pure	Jazz	25
Live in Paris	Jazz	28
Runaway Soul	Blues	31
Stages	Blues	34
+-------------------+----------+-----------+
5 rows in set (0.00 sec)

For each row included in the results set, the Category value is Blues or Jazz, and the Available value is
greater than 20. One thing to note about the WHERE clause in this statement is that the first two condi-
tions are enclosed in parentheses. This is done to ensure that these conditions are grouped together and
processed properly. Without the parentheses, MySQL would interpret this to mean that each row must
contain a Category value of Blues, or each row must contain a Category value of Jazz and an Available
value greater than 20. This would return a result set that included every row with a Category value of
Blues and only those rows that had a Category value of Jazz and an Available value greater than 20. The
Available value would apply only to the Jazz rows, not the Blues rows.

In general, when specifying more than two conditions in a WHERE clause, it is often a good idea to use
parentheses to make the meaning clear, unless the meaning of the clauses is absolutely certain (for example,
if you use three conditions connected by OR operators).

In the following exercise, you create SELECT statements that each contain a WHERE clause that determines
which rows are returned from the DVDs table.

Try It Out Defining a WHERE Clause in Your SELECT Statement
To create these statements, follow these steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement includes a WHERE clause that contains one condition. Execute the
following SELECT statement at the mysql command prompt:

SELECT DVDName, MTypeID
FROM DVDs
WHERE StatID=’s2’;

You should receive results similar to the following:

+-------------------------------+---------+
| DVDName | MTypeID |
+-------------------------------+---------+
What’s Up, Doc?	mt12
The Maltese Falcon	mt11
Amadeus	mt11
The Rocky Horror Picture Show	mt12
Mash	mt12
+-------------------------------+---------+
5 rows in set (0.00 sec)

252

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 252

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. Now amend the SELECT statement that you created in the previous step to include multiple
conditions in the WHERE clause. Execute the following SELECT statement at the mysql command
prompt:

SELECT DVDName, MTypeID
FROM DVDs
WHERE StatID=’s1’ OR StatID=’s3’ OR StatID=’s4’;

You should receive results similar to the following:

+--------------------+---------+
| DVDName | MTypeID |
+--------------------+---------+
White Christmas	mt16
Out of Africa	mt11
A Room with a View	mt11
+--------------------+---------+
3 rows in set (0.00 sec)

4. The next SELECT statement also includes multiple conditions in the WHERE clause; this time use
an OR and an AND operator. Execute the following SELECT statement at the mysql command
prompt:

SELECT DVDName, MTypeID
FROM DVDs
WHERE StatID=’s2’ AND (RatingID=’NR’ OR RatingID=’G’);

You should receive results similar to the following:

+-------------------------------+---------+
| DVDName | MTypeID |
+-------------------------------+---------+
What’s Up, Doc?	mt12
The Maltese Falcon	mt11
The Rocky Horror Picture Show	mt12
+-------------------------------+---------+
3 rows in set (0.00 sec)

How It Works
In this exercise, you created three SELECT statements that each contained a WHERE clause. In the first
statement the WHERE clause included only one condition, as shown in the following statement:

SELECT DVDName, MTypeID
FROM DVDs
WHERE StatID=’s2’;

The condition in this WHERE clause specifies that the query should return only rows with a StatID value
of s2. As a result, this query returned only five rows, and each of those rows had a StatID value of s2.

In the next SELECT statement that you created, you included a WHERE clause that specified three conditions,
as the following statement shows:

SELECT DVDName, MTypeID
FROM DVDs
WHERE StatID=’s1’ OR StatID=’s3’ OR StatID=’s4’;

253

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 253

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this case, you connected the three conditions with OR operators. This means that each row returned by
the SELECT statement had to contain a StatID value of s1 or s3 or s4. Because only three rows contained
any one of these values, only those rows were returned.

In the final SELECT statement that you created in this exercise, you also included three conditions in the
WHERE clause, as shown in the following statement:

SELECT DVDName, MTypeID
FROM DVDs
WHERE StatID=’s2’ AND (RatingID=’NR’ OR RatingID=’G’);

The first WHERE clause condition specifies that each row returned must have a StatID value of S2. In
addition, each row must also have a RatingID value of NR or a RatingID value of G. Notice that these
two conditions are enclosed in parentheses to ensure that MySQL evaluates the conditions correctly.
Another way to look at this is that any row returned by this statement must have a StatID value of s2
and a RatingID value of NR, or the row must have a StatID value of s2 and a RatingID value of G. In this
case, only three rows met the conditions specified in the WHERE clause.

The GROUP BY Clause
Up to this point in the chapter, the components of the SELECT statement that you have been introduced
to mostly have to do with returning values from columns and rows. Even when your SELECT clause
included an expression, that expression usually performed some type of operation on the values in a
column. The GROUP BY clause is a little different from the other elements in the SELECT statement in the
way that it is used to group values and summarize information.

Take a look at the syntax to see how this works:

GROUP BY <group by definition>

<group by definition>::=
<column name> [ASC | DESC]
[{, <column name> [ASC | DESC]}...]
[WITH ROLLUP]

The GROUP BY clause includes the GROUP BY keywords and the group by definition. The definition must
include at least one column, although it can include more than one. If multiple columns are specified,
you must separate them with commas.

When you specify a GROUP BY clause, rows are grouped together according to values in the column or
columns specified in the clause. As a result, you should group rows only for those columns that contain
repeated values. For example, you would not want to group a primary key column because each value is
unique, so the GROUP BY process would have no practical application. Columns that are more general in
nature, such as categories or types, make good candidates for GROUP BY operations because you can
derive meaningful summary values for these sorts of columns.

After you’ve seen a few examples of how to use a GROUP BY clause, you’ll get a better sense of how this
works. Before looking at any examples, return to the syntax. As you can see, for each column that you
specify in the GROUP BY clause, you can also specify that the grouped values be returned in ascending
order (the ASC option) or descending order (the DESC option). If neither option is specified, the ASC
option is assumed.

254

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 254

TEAM LinG - Live, Informative, Non-cost and Genuine !

In addition to a list of the grouped columns, a GROUP BY clause can include the WITH ROLLUP option.
This option provides additional rows of summary information, depending on the number of columns
specified. The WITH ROLLUP option is best explained through the use of examples. Later in this section,
you see how the option can provide additional summary information.

In order to use a GROUP BY clause effectively, you should also include a select list element that contains a
function that summarizes the data returned by the SELECT statement. For example, suppose you want to
know how many compact disk titles are listed in the CDs table for each category. To find out the number,
you can use the following SELECT statement:

SELECT Category, COUNT(*) AS Total
FROM CDs
WHERE Department=’Popular’
GROUP BY Category;

As the example shows, the SELECT clause includes the Category column and the COUNT(*) expression
(which is assigned the alias Total). The COUNT() function calculates the number of rows for the specified
column or for the table as a whole. Because you use an asterisk instead of a column name, all the rows in
the table are counted. If you specify a column name and that column contains NULL values, the rows that
contain NULL are not counted. (See Chapter 9 for more information about the COUNT() function and
other functions that you can use when working with summarized data.)

After the SELECT clause, the FROM clause specifies the CDs table, and the WHERE clause specifies that
only rows with a Department value that equals Popular should be returned. The GROUP BY clause then
specifies that the rows should be grouped together according to the values in the Category column. As a
result, only one row is returned for each unique Category value, as shown in the following result set:

+----------+-------+
| Category | Total |
+----------+-------+
Blues	4
Country	2
Jazz	3
New Age	2
Rock	1
+----------+-------+
5 rows in set (0.08 sec)

As you can see, each Category value is listed only once, and a total is provided for each category. For
example, the CDs table contains four Blues compact disks and two Country compact discs. Notice that
the values in the Category column are listed in ascending order (alphabetically) because this is the
default sort order for grouped columns.

Now take a look at an example that specifies two columns in the GROUP BY clause:

SELECT Department, Category, COUNT(*) AS Total
FROM CDs
GROUP BY Department, Category;

As you can see, the SELECT clause includes the Department and Category columns and the COUNT(*)
expression (assigned the alias Total). The GROUP BY clause also includes the Department and Category
columns. As a result, the SELECT statement first groups the result set according to the Department val-
ues and then according to the Category column, as shown in the following results:

255

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 255

TEAM LinG - Live, Informative, Non-cost and Genuine !

+------------+----------+-------+
| Department | Category | Total |
+------------+----------+-------+
Classical	Dance	2
Classical	General	6
Classical	Opera	3
Classical	Vocal	1
Popular	Blues	4
Popular	Country	2
Popular	Jazz	3
Popular	New Age	2
Popular	Rock	1
+------------+----------+-------+
9 rows in set (0.00 sec)

As the result set shows, the Classical department includes four categories, and the Popular department
includes five categories. For each category, the number of rows returned by that category is listed in the
Total column. For example, the Dance category in the Classical department contains two compact disk titles.

Now take this same statement and add the WITH ROLLUP option to the GROUP BY clause, as shown in
the following example:

SELECT Department, Category, COUNT(*) AS Total
FROM CDs
GROUP BY Department, Category WITH ROLLUP;

When you execute this statement, you should receive results similar to the following:

+------------+----------+-------+
| Department | Category | Total |
+------------+----------+-------+
Classical	Dance	2
Classical	General	6
Classical	Opera	3
Classical	Vocal	1
Classical	NULL	12
Popular	Blues	4
Popular	Country	2
Popular	Jazz	3
Popular	New Age	2
Popular	Rock	1
Popular	NULL	12
NULL	NULL	24
+------------+----------+-------+
12 rows in set (0.00 sec)

Notice the several additional rows in the result set. For example, the fifth row (the last Classical entry)
includes NULL in the Category column and 12 in the Total column. The WITH ROLLUP option provides
summary data for the first column specified in the GROUP BY clause, as well as the second column. As this
shows, there are a total of 12 Classical compact disks listed in the CDs table. A summarized value is also
provided for the Popular department. There are 12 Popular compact disks as well. The last row in the
result set provides a total for all compact disks. As the Total value shows, there are 24 compact disks in all.

256

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 256

TEAM LinG - Live, Informative, Non-cost and Genuine !

The type of summarized data included in your result set depends on the summary functions used in
the SELECT clause. MySQL supports a number of summary functions that work in conjunction with the
GROUP BY clause. Chapter 9 contains detailed information about these and other functions available in
MySQL.

In the following exercise, you create several SELECT statements, each of which includes a GROUP BY
clause. The first statement groups values by a single column, and the next two statements group values
by two columns.

Try It Out Defining a GROUP BY Clause in Your SELECT Statement
The following steps describe how to create these statements:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement groups together the values in the OrderID column. Execute the
following SELECT statement at the mysql command prompt:

SELECT OrderID, COUNT(*) AS Transactions
FROM Transactions
GROUP BY OrderID;

You should receive results similar to the following:

+---------+--------------+
| OrderID | Transactions |
+---------+--------------+
1	3
2	1
3	3
4	1
5	1
6	2
7	1
8	3
9	2
10	1
11	3
12	1
13	1
+---------+--------------+
13 rows in set (0.01 sec)

3. The next SELECT statement groups together values by the MTypeID and RatingID columns.
Execute the following SELECT statement at the mysql command prompt:

SELECT MTypeID, RatingID, COUNT(*) AS ‘DVD Totals’
FROM DVDs
GROUP BY MTypeID, RatingID;

You should receive results similar to the following:

257

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 257

TEAM LinG - Live, Informative, Non-cost and Genuine !

+---------+----------+------------+
| MTypeID | RatingID | DVD Totals |
+---------+----------+------------+
mt11	NR	2
mt11	PG	2
mt12	G	1
mt12	NR	1
mt12	R	1
mt16	NR	1
+---------+----------+------------+
6 rows in set (0.00 sec)

4. The third SELECT statement is similar to the one in the last step except that you now include
the WITH ROLLUP option in the GROUP BY clause. Execute the following SELECT statement
at the mysql command prompt:

SELECT MTypeID, RatingID, COUNT(*) AS ‘DVD Totals’
FROM DVDs
GROUP BY MTypeID, RatingID WITH ROLLUP;

You should receive results similar to the following:

+---------+----------+------------+
| MTypeID | RatingID | DVD Totals |
+---------+----------+------------+
mt11	NR	2
mt11	PG	2
mt11	NULL	4
mt12	G	1
mt12	NR	1
mt12	R	1
mt12	NULL	3
mt16	NR	1
mt16	NULL	1
NULL	NULL	8
+---------+----------+------------+
10 rows in set (0.00 sec)

How It Works
The first SELECT statement that you created in this exercise includes a GROUP BY column that groups
data according to the OrderID column of the Transactions table, as shown in the following statement:

SELECT OrderID, COUNT(*) AS Transactions
FROM Transactions
GROUP BY OrderID;

The SELECT clause in the statement specifies the OrderID column and the COUNT(*) expression, which
is assigned the alias Transactions. The GROUP BY clause then specifies that the result set be grouped
together based on the OrderID column. The result set returns the number of transactions per order.

The next SELECT statement that you created groups together the values from two columns, as the fol-
lowing SELECT statement shows:

SELECT MTypeID, RatingID, COUNT(*) AS ‘DVD Totals’
FROM DVDs
GROUP BY MTypeID, RatingID;

258

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 258

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this case, the rows are grouped together first by the values in the MTypeID column and then by the
RatingID values. For each MTypeID/RatingID pair, a total number of DVDs is provided. For example,
for the MTypeID value of mt11, the RatingID value of NR includes two DVDs, and the RatingID value of
PG includes two DVDs.

The last SELECT statement that you created is identical to the previous one, except that it includes the
WITH ROLLUP option in the GROUP BY clause, as shown in the following statement:

SELECT MTypeID, RatingID, COUNT(*) AS ‘DVD Totals’
FROM DVDs
GROUP BY MTypeID, RatingID WITH ROLLUP;

The WITH ROLLUP option adds rows to the result set that provide additional summary values. In this
case, a total is provided for each MTypeID value as well as an overall total.

The HAVING Clause
The HAVING clause is very similar to the WHERE clause in that it consists of one or more conditions that define
which rows are included in a result set. The HAVING clause, though, has a couple of advantages over the
WHERE clause. For example, you can include aggregate functions in a HAVING clause. An aggregate function is
a type of function that summarizes data, such as the COUNT() function. You cannot use aggregate functions
in expressions in your WHERE clause. In addition, you can use column aliases in a HAVING clause, which you
cannot do in a WHERE clause.

Despite the disadvantages of the WHERE clause, whenever an expression can be defined in either a HAVING
clause or a WHERE clause, it is best to use the WHERE clause because of the way that MySQL optimizes
queries. In general, the HAVING clause is normally best suited to use in conjunction with the GROUP BY
clause.

To include a HAVING clause in your SELECT statement, you must include the HAVING keyword and at
least one expression, as shown in the following syntax:

HAVING <expression> [{<operator> <expression>}...]

A HAVING clause is constructed exactly like a WHERE clause, in terms of defining conditions and connect-
ing multiple conditions with operators. For example, the following SELECT statement includes a HAVING
clause that contains one condition:

SELECT Category, COUNT(*) AS Total
FROM CDs
WHERE Department=’Popular’
GROUP BY Category
HAVING Total<3;

You should be familiar with most of the elements in this statement. The SELECT clause includes the
name of the Category column and the expression COUNT(*), which summarizes the grouped data. The
WHERE clause specifies that all returned rows must have a Department value of Popular, and the GROUP
BY clause specifies that the rows should be grouped together based on the values in the Category column.

259

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 259

TEAM LinG - Live, Informative, Non-cost and Genuine !

The HAVING clause adds another element to the SELECT statement by specifying that the value in the
Total column in the result set must be less than 3. The Total column in the result set shows the values
that are returned by the COUNT(*) expression defined in the SELECT clause. The SELECT statement
should return the following results:

+----------+-------+
| Category | Total |
+----------+-------+
Country	2
New Age	2
Rock	1
+----------+-------+
3 rows in set (0.00 sec)

The result set includes only those rows that meet the criteria specified in the SELECT statement. As a
result, each row must have a Department value of Popular, the rows must be grouped together accord-
ing to the values in the Category column, and the result set must include the number of compact disks in
each category; however, as a result of the HAVING clause, only those categories that contain fewer than
three compact disks are included.

In this exercise, you create two SELECT statements that each include a HAVING clause. The HAVING
clauses are used in conjunction with GROUP BY clauses to further refine the search results.

Try It Out Defining a HAVING Clause in Your SELECT Statement
The following steps describe how to create these statements:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement restricts the rows returned to only those with a Total value greater
than 1. Execute the following SELECT statement at the mysql command prompt:

SELECT RatingID, COUNT(*) AS Total
FROM DVDs
GROUP BY RatingID
HAVING Total>1;

You should receive results similar to the following:

+----------+-------+
| RatingID | Total |
+----------+-------+
| NR | 4 |
| PG | 2 |
+----------+-------+
2 rows in set (0.00 sec)

3. The next SELECT statement includes a HAVING clause that restricts the rows to only those that
have an Amount value greater than 2. Execute the following SELECT statement at the mysql
command prompt:

260

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 260

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT EmpID, COUNT(*) AS Amount
FROM Orders
GROUP BY EmpID
HAVING Amount>2;

You should receive results similar to the following:

+-------+--------+
| EmpID | Amount |
+-------+--------+
| 2 | 3 |
+-------+--------+
1 row in set (0.09 sec)

How It Works
In this exercise, you created two SELECT statements, both of which contain GROUP BY and HAVING
clauses. In addition, both statements include the COUNT(*) expression in the SELECT clause. For example,
the first statement that you created determines the number of DVDs for each RatingID, as shown in the
following statement:

SELECT RatingID, Count(*) AS Total
FROM DVDs
GROUP BY RatingID
HAVING Total>1;

As you can see, the result set is grouped together based on the values in the RatingID column. In addition,
the total number of rows for each category is provided in the Total column. The result set includes only
rows with a Total value greater than 1.

The second SELECT statement that you created in this exercise is similar to the first one and contains the
same elements. The primary difference is that it groups data together in the Orders table, rather than
the DVDs table, and the returned rows must have an Amount value greater than 2. Otherwise, the elements
between the two statements are the same.

The ORDER BY Clause
In Chapter 6, you were introduced to the ORDER BY clause when you learned about UPDATE and DELETE
statements. As you’ll recall from both those statements, you could include an ORDER BY clause that
allowed you to sort rows that were updated or deleted by one or more columns. The SELECT statement
also includes an ORDER BY clause that allows you to determine the order in which rows are returned in a
results set. The following syntax describes the elements in an ORDER BY clause:

ORDER BY <order by definition>

<order by definition>::=
<column name> [ASC | DESC]
[{, <column name> [ASC | DESC]}...]

As the syntax indicates, the ORDER BY clause must include the ORDER BY keywords and at least one col-
umn name. You can also specify a column alias in place of the actual name. If you include more than one
column, a comma must separate them.

261

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 261

TEAM LinG - Live, Informative, Non-cost and Genuine !

For each column that you include in an ORDER BY clause, you can specify whether the rows are sorted
in ascending order (the ASC option) or descending order (the DESC option). If neither option is specified,
the ASC option is assumed. In addition, when more than one column is specified, the rows are sorted
first by the column that is listed first, then by the next specified column, and so on.

Now take a look at an example that uses the ORDER BY clause. The following SELECT statement includes
an ORDER BY clause that sorts the rows in the result set according to the values in the CDName column:

SELECT CDName, InStock, OnOrder
FROM CDs
WHERE InStock>20
ORDER BY CDName DESC;

Notice that the ORDER BY clause specifies that the values should be sorted in descending order, as
shown in the following results:

+----------------------------+---------+---------+
| CDName | InStock | OnOrder |
+----------------------------+---------+---------+
The Magic of Satie	42	17
Swan Lake	25	44
Stages	42	0
Richland Woman Blues	22	5
Pure	32	3
Music for Solo Violin	24	2
Morimur (after J. S. Bach)	28	17
Golden Road	23	10
Embrace	24	11
Bach Cantatas	23	12
25 Classical Favorites	32	15
+----------------------------+---------+---------+
11 rows in set (0.00 sec)

As you can see, the result set includes values from the CDName, InStock, and OnOrder columns. Only
rows with an InStock value greater than 20 are included here. In addition, the rows that are included are
sorted according to the values in the CDName column.

The next example SELECT statement includes an ORDER BY clause that sorts the result set according to
two columns:

SELECT Department, Category, CDName
FROM CDs
WHERE (InStock+OnOrder-Reserved)<15
ORDER BY Department DESC, Category ASC;

In this case, the returned rows are sorted first by the values in the Department column (in descending
order) and then by the values in the Category column (in ascending order). The following results show
you what you would expect if you executed this statement:

262

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 262

TEAM LinG - Live, Informative, Non-cost and Genuine !

+------------+----------+-------------------------------+
| Department | Category | CDName |
+------------+----------+-------------------------------+
Popular	Country	Mud on the Tires
Popular	Rock	Bloodshot
Classical	Dance	Music for Ballet Class
Classical	Opera	The Most Favorite Opera Duets
Classical	Vocal	Cie li di Toscana
+------------+----------+-------------------------------+
5 rows in set (0.00 sec)

As you can see, the rows that contain a Department value of Popular are listed first, followed by the
Classical rows. In addition, for each group of values, the Category values are sorted in ascending order.
For example, the Classical rows are sorted by the Category values Dance, Opera, and Vocal, in that order.

You can sort your result sets by as many columns as it is practical; however, this is useful only if the columns
listed first have enough repeated values to make sorting additional columns return meaningful results.

In the following Try It Out you create SELECT statements that use the ORDER BY clause to sort the values
returned by your queries.

Try It Out Defining an ORDER BY Clause in Your SELECT Statement
The following steps describe how to create statements that employ the ORDER BY clause:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement retrieves rows from the DVDs table and orders those rows according
to the values in the DVDName column. Execute the following SELECT statement at the mysql
command prompt:

SELECT DVDName, MTypeID, RatingID
FROM DVDs
WHERE RatingID!=’NR’
ORDER BY DVDName;

You should receive results similar to the following:

+-----------------+---------+----------+
| DVDName | MTypeID | RatingID |
+-----------------+---------+----------+
Amadeus	mt11	PG
Mash	mt12	R
Out of Africa	mt11	PG
What’s Up, Doc?	mt12	G
+-----------------+---------+----------+
4 rows in set (0.00 sec)

263

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 263

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. The next SELECT statement also retrieves rows from the DVDs table, only this time, the rows are
ordered by values in the MTypeID column and the RatingID column. Execute the following
SELECT statement at the mysql command prompt:

SELECT MTypeID, RatingID, DVDName
FROM DVDs
WHERE RatingID!=’NR’
ORDER BY MTypeID, RatingID;

You should receive results similar to the following:

+---------+----------+-----------------+
| MTypeID | RatingID | DVDName |
+---------+----------+-----------------+
mt11	PG	Out of Africa
mt11	PG	Amadeus
mt12	G	What’s Up, Doc?
mt12	R	Mash
+---------+----------+-----------------+
4 rows in set (0.00 sec)

How It Works
The first SELECT statement that you created in this exercise retrieved data from the DVDs table. The data
returned by the statement was sorted according to the values in the DVDName column, as the following
statement shows:

SELECT DVDName, MTypeID, RatingID
FROM DVDs
WHERE RatingID!=’NR’
ORDER BY DVDName;

The SELECT statement returns values from the DVDName, MTypeID, and RatingID columns. In addition,
the statement returns all rows except those that have a RatingID value of NR. The exclamation point/equal
sign (!=) combination acts as a comparison operator that means not equal. In other words, the RatingID
value cannot equal NR. The SELECT statement goes on to define a sort order by including an ORDER BY
clause that specifies the DVDName column. As a result, the rows returned in the result set are sorted
according to the values in the DVDName column. In addition, because you specified no ASC or DESC
option in the ORDER BY clause, the rows are sorted in ascending order.

The next statement that you created in this exercise included two columns in the ORDER BY clause:

SELECT MTypeID, RatingID, DVDName
FROM DVDs
WHERE RatingID!=’NR’
ORDER BY MTypeID, RatingID;

In this case, the same columns are displayed as in the previous SELECT statement. The columns are
specified in a different order in the SELECT clause, however, and the ORDER BY clause includes two
columns. As a result, the rows are sorted first according to the values in the MTypeID column, then
sorted according to the values in the RatingID column.

264

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 264

TEAM LinG - Live, Informative, Non-cost and Genuine !

The LIMIT Clause
The final clause to review in this chapter is the LIMIT clause. As with the ORDER BY clause, you also saw
this clause used in Chapter 6 when you were introduced to the UPDATE and DELETE statements. As was
the case with those statements, the LIMIT clause is used most effectively in a SELECT statement when it
is used with an ORDER BY clause.

The LIMIT clause takes two arguments, as the following syntax shows:

LIMIT [<offset>,] <row count>

The first option, <offset>, is optional and indicates where to begin the LIMIT row count. If no value is
specified, 0 is assumed. (The first row in a result set is considered to be 0, rather than 1.) The second
argument, <row count> in the LIMIT clause, indicates the number of rows to be returned. For example,
the following SELECT statement includes a LIMIT clause that specifies a row count of 4.

SELECT CDID, CDName, InStock
FROM CDs
WHERE Department=’Classical’
ORDER BY CDID DESC
LIMIT 4;

As you can see in this statement, no offset value is specified, so 0 is assumed. The row count value is
specified as 4, though, so the first four rows of the result set are returned, as shown in the following
results:

+------+--------------------------------------+---------+
| CDID | CDName | InStock |
+------+--------------------------------------+---------+
24	Bach: Six Unaccompanied Cello Suites	16
21	The Best of Italian Opera	10
20	Morimur (after J. S. Bach)	28
16	Bach Cantatas	23
+------+--------------------------------------+---------+
4 rows in set (0.00 sec)

If you were to specify an offset value, the rows returned would begin with the first row indicated by the
offset value and end after the number of rows indicated by the row count is returned. For example, the
following SELECT statement includes a LIMIT clause that specifies an offset value of 3 and a row count
value of 4:

SELECT CDID, CDName, InStock
FROM CDs
WHERE Department=’Classical’
ORDER BY CDID DESC
LIMIT 3,4;

Because the offset value is 3, the result set begins with the fourth row returned by the results. (Remember
that the first row is numbered 0.) The result set then includes the four rows that begin with row number 3,
as shown in the following results:

265

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 265

TEAM LinG - Live, Informative, Non-cost and Genuine !

+------+------------------------+---------+
| CDID | CDName | InStock |
+------+------------------------+---------+
16	Bach Cantatas	23
15	La Boheme	20
14	25 Classical Favorites	32
13	Swan Lake	25
+------+------------------------+---------+
4 rows in set (0.00 sec)

As you can see, the result set includes only four rows, numbers 3 through 6. As you might also notice,
the rows returned are based on the sort order defined in the ORDER BY clause, which specifies that the
rows should be sorted by the values in the CDID column, in descending order. In other words, the result
set is limited only to the most recent orders that have been added to the table, excluding the first three
orders.

In this Try It Out, you create a SELECT statement that uses the LIMIT clause, in conjunction with the
ORDER BY clause, to limit the number of rows returned by your query.

Try It Out Defining a LIMIT Clause in Your SELECT Statement
To use the LIMIT clause in a SELECT statement, follow these steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. Now create a SELECT statement that uses an ORDER BY clause and a LIMIT clause to return the
last order added to the Orders table. Execute the following SELECT statement at the mysql
command prompt:

SELECT OrderID, CustID
FROM Orders
ORDER BY OrderID DESC
LIMIT 1;

You should receive results similar to the following:

+---------+--------+
| OrderID | CustID |
+---------+--------+
| 13 | 5 |
+---------+--------+
1 row in set (0.00 sec)

How It Works
In this exercise, you created one SELECT statement that included an ORDER BY clause and a LIMIT
clause, as shown in the following statement:

266

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 266

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT OrderID, CustID
FROM Orders
ORDER BY OrderID DESC
LIMIT 1;

The statement retrieves values from the OrderID and CustID columns of the Orders table. The returned
rows are sorted in descending order according to the values in the OrderID column. The LIMIT clause
limits the returned rows to only the first row of the results returned by the SELECT statement. As a
result, this statement returns only the most recent order added to the Orders table.

Summary
As the chapter has demonstrated, the SELECT statement can contain many components, allowing you to
create statements as simple or as complex as necessary to retrieve specific data from the tables in your
MySQL database. You can specify which columns to retrieve, which rows to retrieve, how the rows
should be sorted, whether the rows should be grouped together and summarized, and the number of
rows to return in your result set. To provide you with the information you need to create robust SELECT
statements, the chapter gave you the information necessary to perform the following tasks:

❑ Create SELECT statements that retrieve all columns and all rows from a table

❑ Create SELECT statements that retrieve specific columns from a table

❑ Assign aliases to column names

❑ Use expressions in the SELECT clauses of your SELECT statements

❑ Use SELECT statements to create variables that can be used in later SELECT statements

❑ Create SELECT statements that return information that is not based on data in a table

❑ Add options to your SELECT statements

❑ Add WHERE clauses to your SELECT statements that determine which rows the statements
would return

❑ Add GROUP BY clauses to your SELECT statements to generate summary data

❑ Add HAVING clauses to your SELECT statements to refine the results returned by summarized
data

❑ Add ORDER BY clauses to your SELECT statements to sort the rows returned by your statements

❑ Add LIMIT clauses to your SELECT statement to limit the number of rows returned by the
statement

In later chapters, you learn how to refine your SELECT statements even further. For example, you learn how
to join tables in a SELECT statement or to embed other SELECT statements in a parent SELECT statement. In
addition, you also learn more about using operators and functions to create powerful expressions in your
statements. To prepare for these chapters, the information in this chapter provided you with the foundation
necessary to perform these more advanced tasks. As a result, you might find it useful to refer to this chapter
as you progress through the book.

267

Retrieving Data from a MySQL Database

10_579509 ch07.qxd 3/1/05 9:58 AM Page 267

TEAM LinG - Live, Informative, Non-cost and Genuine !

Exercises
The following exercises are provided as a way for you to better acquaint yourself with the material
covered in this chapter. The exercises are based on the example CDs table used for the examples in this
chapter. To view the answers to these questions, see Appendix A.

1. You are creating a SELECT statement that retrieves data from the CDs table. Your query results
should include values from the CDName, InStock, OnOrder, and Reserved columns. In addi-
tion, the results should include all rows in the table. What SELECT statement should you create?

2. You want to modify the SELECT statement that you created in Exercise 1 so that the result set
includes an additional column. The column should add the values of the InStock and OnOrder
columns and then subtract the value in the Reserved column. You want to assign the Total alias
to the new column. What SELECT statement should you create?

3. Your next step is to modify the SELECT statement that you created in Exercise 2. You plan to
limit the rows returned to those rows that have a Department value of Classical and an InStock
value less than 20. What SELECT statement should you create?

4. You now want to create a SELECT statement that summarizes data in the CDs table. The result
set should include data that is grouped together by the Department column and then by the
Category column. The summary information should include the number of rows for each cate-
gory, as well as totals for all categories in each department. In addition, the summary column in
the result set should be assigned the alias Total, and all grouped columns should be sorted in
ascending order. What SELECT statement should you create?

5. You now want to modify the SELECT statement that you created in Exercise 4 to limit the rows
returned to those with a Total value less than 3. What SELECT statement should you create?

6. You are creating a SELECT statement that retrieves data from the CDs table. Your query results
should include values from the CDName column. The values should be sorted in descending
order. What SELECT statement should you create?

268

Chapter 7

10_579509 ch07.qxd 3/1/05 9:58 AM Page 268

TEAM LinG - Live, Informative, Non-cost and Genuine !

