
9
Using Functions in

Your SQL Statements

In earlier chapters, you learned how to use expressions in your SQL statements to make those state-
ments more robust and specific. As you recall, one of the elements that you can use in an expression
is a function. Each function performs a specific task and then returns a value that represents the out-
put resulting from the performance of that task. For many functions, you must provide one or more
arguments that supply the parameters used by the functions to perform the necessary tasks. These
tasks can include calculating numeric data, manipulating string data, returning system data, con-
verting and extracting data, and performing numerous other operations.

In this chapter, you learn about many of the functions included in MySQL. The chapter explains
the purpose of each of these functions, describes the results you can expect when a statement
includes a function, and provides numerous examples that demonstrate how to use each function.
Although this chapter doesn’t describe every function included with MySQL, it covers many of
them, focusing on those that you’re most likely to use when creating SQL statements. Specifically,
the chapter covers the following types of functions:

❑ Comparison, control flow, and cast functions that allow you to compare and convert data

❑ String, numeric, and date/time functions that allow you to manipulate, calculate, convert,
extract, and concatenate data

❑ Aggregate functions that you can use in SELECT statements to summarize data that has
been grouped together by a GROUP BY clause

❑ Encryption, system-related, and query and insert functions that allow you to perform
system operations

12_579509 ch09.qxd 3/1/05 9:59 AM Page 309

TEAM LinG - Live, Informative, Non-cost and Genuine !

Comparing and Converting Data
MySQL provides three types of functions that allow you to compare and convert data. These include
comparison functions, control flow functions, and cast functions. In this section, you learn about these
types of functions and review examples that demonstrate how they’re used.

The functions included as part of the MySQL installation are referred to as built-in functions. These are
the type of functions that you learn about in this chapter. MySQL also supports the creation of user-
defined functions, which are functions that you can write in C or C++ and then use in MySQL SQL
statements. To use user-defined functions, you must compile the mysqld server program dynamically,
not statically, and your operating system must support dynamic loading. Because user-defined func-
tions are beyond scope of this book, you should refer to the MySQL product documentation for more
information about how to create and use them.

Comparison Functions
Comparison functions are similar to the comparison operators that you saw in Chapter 8. These functions
allow you to compare different values and, from those comparisons, return one of the values or return a
condition of true, false, or NULL. If either argument or both arguments in a comparison are NULL, NULL is
returned. This section covers many of the more common comparison functions supported by MySQL.

GREATEST() and LEAST() Functions
Two functions that are useful for comparing values are the GREATEST() and LEAST() functions, which
allow you to compare two or more values and return the value that is either the highest or lowest,
depending on the function used. The values specified can be numeric, string, or date/time values and
are compared based on the current character set. The GREATEST() function uses the following syntax:

GREATEST(<value1>, <value2> [{, <value>}...])

When you use this function, you must specify at least two values, although you can specify as many
additional values as necessary. As with most arguments in a function, the arguments are separated by
commas.

One other thing to note about this and any function is that the arguments are enclosed by parentheses
and the opening parenthesis follows directly after the function name. A space after the function name is
not permitted. For example, a basic SELECT statement might use the GREATEST() function as follows:

SELECT GREATEST(4, 83, 0, 9, -3);

If you were to execute this statement, the value 83 would be returned because it is the highest number
in the set of values. Of course, you do not need to use the GREATEST() function to see that the highest
number is 83. The example here merely demonstrates the format used when including the GREATEST()
function in your SQL statement. In actuality, you would probably pass the function arguments to the
statement through your application or through variables. For example, suppose that you are working
with a database that includes a table that lists books and another table that lists publishers. Now sup-
pose that you had used SELECT statements to assign PublisherID values to several variables. You can
then use the GREATEST() function to compare the values represented by those variables. For example,
the following SELECT statement uses the GREATEST() function in the WHERE clause:

310

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 310

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT BookID, BookTitle, PublisherID
FROM Books
WHERE PublisherID=GREATEST(@id1, @id2, @id3, @id4, @id5)
ORDER BY BookTitle;

This statement retrieves only those books that have the highest PublisherID value. To retrieve those
books, you don’t have to know the PublisherID values because those values were assigned to the vari-
ables in a separate process.

For the purposes of this chapter, the majority of the function examples shown are based on the most
basic SELECT statement, where only the SELECT clause is included. This is done for the sake of brevity
and in order to cover as many functions as reasonably possible. Keep in mind, though, that you may
find that these functions provide you with far greater value when used in other ways in your SQL state-
ments, as this chapter’s Try It Out sections demonstrate.

Now take a look at the LEAST() function. As the following syntax shows, the function is identical to the
GREATEST() function except that the LEAST keyword is used rather than GREATEST:

LEAST(<value1>, <value2> [{, <value>}...])

Again, you must include at least two values and separate those values with a comma, as shown in the
following example:

SELECT LEAST(4, 83, 0, 9, -3);

As you would expect, this statement returns a value of -3. If you specify string values, then the lowest
value alphabetically (for example, a before b) is returned, and if you specify date/time values, the earli-
est date is returned.

COALESCE() and ISNULL() Functions
The COALESCE() function returns the first value in the list of arguments that is not NULL. If all values are
NULL, then NULL is returned. The following syntax shows how this function is used:

COALESCE(<value> [{, <value>}...])

For the COALESCE() function, you must specify at least one value, although the function is more useful
if multiple values are provided, as shown in the following example:

SELECT COALESCE(NULL, 2, NULL, 3);

In this case, the value 2 is returned because it is the first value that is not NULL. The ISNULL() function
is also concerned with null values, although the output is not one of the specified values. Instead,
ISNULL() returns a value of 1 if the expression evaluates to NULL; otherwise, the function returns a
value of 0. The syntax for the ISNULL() function is as follows:

ISNULL(<expression>)

311

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 311

TEAM LinG - Live, Informative, Non-cost and Genuine !

When using this function, you must specify an expression in the parentheses, as shown in the following
example:

SELECT ISNULL(1*NULL);

The expression in this statement is 1*NULL. As you recall, an expression evaluates to NULL if either argu-
ment is NULL. Because the expression evaluates to NULL, the ISNULL() function returns a value of 1,
rather than 0.

A function such as ISNULL() can be handy when developing an application if your application includes
conditional logic that needs to determine whether a value is NULL before taking an action. For example,
suppose that you have a form that updates data in a table. You want the form to ask for a user’s date of
birth only if that user already hasn’t provided a date of birth. You can use the ISNULL() function to
check the appropriate column in the database table to determine whether a value exists. If a value of 1
is returned, then your application should ask the user for a date of birth. If a value of 0 is returned, the
user should not be asked.

INTERVAL() and STRCMP() Functions
The INTERVAL() function compares the first integer listed as an argument to the integers that follow the
first integer. The following syntax shows how to use this function:

INTERVAL(<integer1>, <integer2> [{, <integer>}...])

Starting with <integer2>, the values must be listed in ascending order. If <integer1> is less than
<integer2>, a value of 0 is returned. If <integer1> is less than <integer3>, a value of 1 is returned.
If <integer1> is less than <integer4>, a value of 2 is returned, and so on. The following SELECT state-
ment demonstrates how the INTERVAL() function works:

SELECT INTERVAL(6, -2, 0, 4, 7, 10, 12);

In this case, <integer1> is greater than <integer2>, <integer3>, and <integer4>, but less than
<integer5>, so a value of 3 is returned, which represents the position of <integer5>. In other words, 7
is the first value in the list that 6 is less than.

The STRCMP() is different from the INTERVAL() function in that it compares string values that can be
literal values or derived from expressions, as shown in the following syntax:

STRCMP(<expression1>, <expression2>)

As the syntax shows, the STRCMP() function compares exactly two values. The function returns a 0
if <expression1> equals <expression2> and returns -1 if <expression1> is smaller than
<expression2>. If <expression1> is larger than <expression2>, or if a NULL is returned by the com-
parison, the function returns a 1. For example, the following SQL statement compares two literal values:

SELECT STRCMP(‘big’, ‘bigger’);

The values are compared based on the current character set. Because big is smaller than bigger (it is first
alphabetically), the statement returns a -1.

312

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 312

TEAM LinG - Live, Informative, Non-cost and Genuine !

In the following exercise, you create two SELECT statements that each define a variable based on a
DVDID value in the DVDs table of the DVDRentals database. Once you’ve assigned values to the vari-
ables, you include them in a SELECT statement that uses the LEAST() comparison function to compare
values stored in the variables.

Try It Out Passing Values to a Comparison Function
The following steps describe how to create statements that use comparison functions:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement that you create assigns a value to the @dvd1 variable. Execute the
following SQL statement at the mysql command prompt:

SELECT @dvd1:=DVDID
FROM DVDs
WHERE DVDName=’White Christmas’;

You should receive results similar to the following:

+--------------+
| @dvd1:=DVDID |
+--------------+
| 1 |
+--------------+
1 row in set (0.05 sec)

3. Next assign a value to the @dvd2 variable. Execute the following SQL statement at the mysql
command prompt:

SELECT @dvd2:=DVDID
FROM DVDs
WHERE DVDName=’Out of Africa’;

You should receive results similar to the following:

+--------------+
| @dvd2:=DVDID |
+--------------+
| 3 |
+--------------+
1 row in set (0.00 sec)

4. Now use the variables that you created in steps 2 and 3 in the WHERE clause of a SELECT state-
ment. Execute the following SQL statement at the mysql command prompt:

SELECT OrderID, TransID, DVDID
FROM Transactions
WHERE DVDID=LEAST(@dvd1, @dvd2)
ORDER BY OrderID, TransID;

313

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 313

TEAM LinG - Live, Informative, Non-cost and Genuine !

You should receive results similar to the following:

+---------+---------+-------+
| OrderID | TransID | DVDID |
+---------+---------+-------+
1	1	1
3	6	1
6	11	1
8	14	1
9	17	1
+---------+---------+-------+
7 rows in set (0.10 sec)

How It Works
In Chapter 7, you learned how to create SELECT statements that assigned values to variables. You were
then able to use those variables in other SQL statements executed in the same user session. To complete
this exercise, you created the same type of SELECT statements so that the LEAST() comparison function
could use variables to compare values in the WHERE clause of the following SELECT statement:

SELECT OrderID, TransID, DVDID
FROM Transactions
WHERE DVDID=LEAST(@dvd1, @dvd2)
ORDER BY OrderID, TransID;

In this statement, @dvd1 and @dvd2 are used as arguments in the LEAST() function. Because you
assigned the @dvd1 variable a value of 1 and the @dvd2 variable a value of 3, the LEAST() function com-
pares the value of 1 to the value of 3. As a result, the WHERE clause expression is interpreted as DVDID=1
because 1 is the lower of the two values. The rest of the SELECT statement is then executed as other
SELECT statements you have seen. The SELECT list indicates that the result set should include only the
OrderID, TransID, and DVDID columns. The WHERE clause indicates that the only rows returned should
be those that contain a DVDID value of 1. The ORDER BY clause indicates that the result set should be
ordered first by the values in the OrderID column and then by the values in the TransID column.

Control Flow Functions
The types of functions that you look at next are those that return a result by comparing conditions.
The returned value is determined by which condition is true.

IF() Function
The IF() function compares three expressions, as shown in the following syntax:

IF(<expression1>, <expression2>, <expression3)

If <expression1> evaluates to true, then the function returns <expression2>; otherwise, the function
returns <expression3>. Take a look at an example to demonstrate how this works. The following
SELECT statement evaluates the first expression and then returns one of the two literal values:

SELECT IF(10>20, ‘expression correct’, ‘expression incorrect’);

314

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 314

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this statement, literal values are used for the second and third expressions. Because the first expres-
sion (10>20) evaluates to false, the third expression is returned. This function is useful if you want to
return a specific response based on the value returned by the IF() function. For example, suppose that
you’re developing an application for a bookstore. The application should be able to check the database
to determine whether requested books are in stock. If the book is in stock, the results should return the
department in which the book can be found. If the book is not in stock, the results should return the
International Standard Book Number (ISBN) of the book so that it can be ordered. You can use the IF()
function to check a column that retrieves the number of books in stock. Based on the value returned, the
function can then return either a value from a column that specifies the department where the book can
be found or a value from a different column that specifies the book’s ISBN.

IFNULL() and NULLIF() Functions
The IFNULL() function returns a value based on whether a specified expression evaluates to NULL.
The function includes two expressions, as shown in the following syntax:

IFNULL(<expression1>, <expression2>)

The function returns <expression1> if it is not NULL; otherwise, it returns <expression2>. For exam-
ple, the following SELECT statement includes an IFNULL() function whose first expression is NULL:

SELECT IFNULL(10*NULL, ‘expression incorrect’);

Because the first expression (10*NULL) evaluates to NULL, the NULL value is not returned. Instead, the
second expression is returned. In this case, the second expression is a literal value, so that is the value
returned.

To get a better idea of how this function works, suppose that you are developing an application that
tracks profile information about a company’s customers. The profile data is stored in a database that
includes a table for contact information. The table includes a column for a home phone number and a
column for a cell phone number. Along with other details about the employee, the application should
display the customer’s home phone number if that is known. If not, the application should display the
cell phone number. You can use the IFNULL() function to specify that the home number should be
returned unless that value is NULL, in which case the cell phone number should be returned.

The NULLIF() function is a little different from the IFNULL() function. The NULLIF() function returns
NULL if <expression1> equals <expression2>; otherwise, it returns <expression1>. The syntax for
the NULLIF() function is as follows:

NULLIF(<expression1>, <expression2>)

The following SELECT statement demonstrates how this works:

SELECT NULLIF(10*20, 20*10);

As you can see, the statement specifies two expressions. Because they are equal (they both return a value
of 200), NULL is returned, rather than the value of 200 returned by the first expression.

315

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 315

TEAM LinG - Live, Informative, Non-cost and Genuine !

CASE() Function
The CASE() function is a little more complicated than the previous control flow functions that you
looked at. This function, though, provides far more flexibility in terms of the number of conditions that
you can evaluate and the type of results that you can provide.

The CASE() function supports two slightly different formats. The first of these is shown in the following
syntax:

CASE WHEN <expression> THEN <result>
[{WHEN <expression> THEN <result>}...]
[ELSE <result>]

END

As the syntax shows, you must specify the CASE keyword, followed by at least one WHEN...THEN clause.
The WHEN...THEN clause specifies the expression to be evaluated and the results to be returned if that
expression evaluates to true. You can specify as many WHEN...THEN clauses as necessary. The next
clause is the ELSE clause, which is also optional. The ELSE clause provides a default result in case none
of the expressions in the WHEN...THEN clauses evaluate to true. Finally, the CASE() function construc-
tion must be terminated with the END keyword.

The following SELECT statement demonstrates how this form of the CASE() function works:

SELECT CASE WHEN 10*2=30 THEN ‘30 correct’
WHEN 10*2=40 THEN ‘40 correct’
ELSE ‘Should be 10*2=20’

END;

As you can see, the first WHEN...THEN clause specifies an expression (10*2=30) and a result (‘30 cor-
rect’). The result is returned if the expression evaluates to true. The statement includes two WHEN...THEN
clauses; if the expression in the first one evaluates to true, that result is returned. If the expression in the
second WHEN...THEN clause evaluates to true, that result is returned. If neither clause evaluates to true, the
result in the ELSE clause is returned. In this case, the result in the ELSE clause is returned because neither
WHEN...THEN clause expression evaluates to true.

The next version of the CASE() function is slightly different from the first, as shown in the following
syntax:

CASE <expression>
WHEN <value> THEN <result>
[{WHEN <value> THEN <result>}...]
[ELSE <result>]

END

The main difference in this version of the CASE() function is that the expression is specified after the key-
word CASE, and the WHEN...THEN clauses include the possible values that result from that expression.
The following example demonstrates how this form of the CASE() function works:

SELECT CASE 10*2
WHEN 20 THEN ‘20 correct’
WHEN 30 THEN ‘30 correct’
WHEN 40 THEN ‘40 correct’

END;

316

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 316

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, the CASE() function includes the expression (10*2) after the CASE keyword. Three
WHEN...THEN clauses follow the CASE keyword, each of which contains a possible value that represents
the value returned by the expression. In this case, the first WHEN...THEN clause evaluates to true because
it contains the correct value (20) returned by the expression. Also notice that the CASE() function doesn’t
include an ELSE clause. The assumption here is that one of the WHEN...THEN clauses contains the correct
values. If you do include an ELSE clause, it works the same way as the ELSE clause in the previous form
of the CASE() function. The ELSE clause provides a default result in case none of the expressions in the
WHEN...THEN clauses evaluates to true.

The CASE() function is similar to the logic found in application languages. By using the CASE(), you’re
switching the conditional logic from the application side to the database side. This can be useful if you
want to shift some of the business logic to the back end, helping to minimize some of the front-end pro-
cessing. In this way, the database determines what value to return, rather than the application itself.

For example, suppose that you are developing an application that retrieves data about different car mod-
els. If a model is available in different editions, a list of the editions should be returned, as well as the
basic details about the model; otherwise, only basic details should be returned. You can use the CASE()
function to first determine how many editions are available for a model. If the amount is greater than
one, then the list of editions should be included in the results; otherwise, no edition information should
be included.

In the next exercise you try out some of the control flow functions that you learned about in this section.
To use these functions, you create SELECT statements that retrieve data from the DVDs table in the
DVDRentals database.

Try It Out Using Control Flow Functions in a SELECT Statement
The following steps describe how to create statements that use control flow functions:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement uses the IF() function in the SELECT clause to retrieve data. Execute
the following SQL statement at the mysql command prompt:

SELECT DVDName AS Title, StatID AS Status, RatingID AS Rating,
IF(NumDisks>1, ‘Check for extra disks!’, ‘Only 1 disk.’) AS Verify

FROM DVDs
ORDER BY Title;

You should receive results similar to the following:

+-------------------------------+--------+--------+------------------------+
| Title | Status | Rating | Verify |
+-------------------------------+--------+--------+------------------------+
A Room with a View	s1	NR	Only 1 disk.
Amadeus	s2	PG	Only 1 disk.
Mash	s2	R	Check for extra disks!
Out of Africa	s1	PG	Only 1 disk.
The Maltese Falcon	s2	NR	Only 1 disk.
The Rocky Horror Picture Show	s2	NR	Check for extra disks!

317

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 317

TEAM LinG - Live, Informative, Non-cost and Genuine !

| What’s Up, Doc? | s2 | G | Only 1 disk. |
| White Christmas | s1 | NR | Only 1 disk. |
+-------------------------------+--------+--------+------------------------+
8 rows in set (0.00 sec)

3. Now try out the CASE() function. Execute the following SQL statement at the mysql command
prompt:

SELECT DVDName, RatingID AS Rating,
CASE

WHEN RatingID=’R’ THEN ‘Under 17 requires an adult.’
WHEN RatingID=’X’ THEN ‘No one 17 and under.’
WHEN RatingID=’NR’ THEN ‘Use discretion when renting.’
ELSE ‘OK to rent to minors.’

END AS Policy
FROM DVDs
ORDER BY DVDName;

You should receive results similar to the following:

+-------------------------------+--------+------------------------------+
| DVDName | Rating | Policy |
+-------------------------------+--------+------------------------------+
A Room with a View	NR	Use discretion when renting.
Amadeus	PG	OK to rent to minors.
Mash	R	Under 17 requires an adult.
Out of Africa	PG	OK to rent to minors.
The Maltese Falcon	NR	Use discretion when renting.
The Rocky Horror Picture Show	NR	Use discretion when renting.
What’s Up, Doc?	G	OK to rent to minors.
White Christmas	NR	Use discretion when renting.
+-------------------------------+--------+------------------------------+
8 rows in set (0.01 sec)

4. In the next statement, you also use the CASE() function, but you use a different form of that
function. Execute the following SQL statement at the mysql command prompt:

SELECT DVDName, RatingID AS Rating,
CASE RatingID

WHEN ‘R’ THEN ‘Under 17 requires an adult.’
WHEN ‘X’ THEN ‘No one 17 and under.’
WHEN ‘NR’ THEN ‘Use discretion when renting.’
ELSE ‘OK to rent to minors.’

END AS Policy
FROM DVDs
ORDER BY DVDName;

You should receive the same results that you received when you executed the statement in Step 3.

How It Works
You should be well familiar with most of the elements in the SELECT statement that you created in this
exercise. If you have any questions about how the statement is used, refer back to Chapter 7 for an expla-
nation of SELECT statements. These statements include functions that you have not used before, so indi-
vidual examinations of each one follow. In the first SELECT statement that you created, you included the
IF() function:

318

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 318

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT DVDName AS Title, StatID AS Status, RatingID AS Rating,
IF(NumDisks>1, ‘Check for extra disks!’, ‘Only 1 disk.’) AS Verify

FROM DVDs
ORDER BY Title;

The IF() function is used as one of the elements in the SELECT list. The function includes three argu-
ments. The first argument is an expression (NumDisks>1) that determines whether the second or third
argument in the function is returned. For each row in which the NumDisks value is greater than 1, the
first message is returned. For all other rows, the second message is returned. Notice that the column in
the result set that includes the data returned by the IF() function is named Verify. You can assign aliases
to select list elements constructed with functions as you would any other select list element. (For details
about assigning an alias to an element in the select list, see Chapter 7.)

The next SELECT statement that you created uses a CASE() function to specify a set of results to return
depending on the value in the RatingID column:

SELECT DVDName, RatingID AS Rating,
CASE

WHEN RatingID=’R’ THEN ‘Under 17 requires an adult.’
WHEN RatingID=’X’ THEN ‘No one 17 and under.’
WHEN RatingID=’NR’ THEN ‘Use discretion when renting.’
ELSE ‘OK to rent to minors.’

END AS Policy
FROM DVDs
ORDER BY DVDName;

The CASE() function includes three WHEN...THEN clauses and one ELSE clause. This means that the
function can return four possible results, depending on the value in the RatingID column. Specific
results are assigned to the values R, X, and NR, but all other RatingID values are assigned the result in
the ELSE clause. Notice that the CASE() function is one of the elements in the select list of the SELECT
clause. Also notice that it is assigned the name Policy. For each row returned by the SELECT statement,
the Policy column includes one of the four results returned by the CASE() function.

The last SELECT statement that you created in this exercise uses a different form of the CASE() function
than you used in the previous statement; however, the outcome is the same. In the updated SELECT
statement, the expression is specified after the CASE keyword:

SELECT DVDName, RatingID AS Rating,
CASE RatingID

WHEN ‘R’ THEN ‘Under 17 requires an adult.’
WHEN ‘X’ THEN ‘No one 17 and under.’
WHEN ‘NR’ THEN ‘Use discretion when renting.’
ELSE ‘OK to rent to minors.’

END AS Policy
FROM DVDs
ORDER BY DVDName;

As you can see, the expression specified after CASE is made up only of the RatingID column name.
No other elements are necessary to qualify as an expression. In addition, the WHEN...THEN clauses no
longer contain expressions, but contain only the values returned by the RatingID column.

319

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 319

TEAM LinG - Live, Informative, Non-cost and Genuine !

Cast Functions
Cast functions allow you to convert values to a specific type of data or to assign a character set to a
value. The first of these functions is the CAST() function, which is shown in the following syntax:

CAST(<expression> AS <type>)

The function converts the value returned by the expression to the specified conversion type, which fol-
lows the AS keyword. The CAST() function supports a limited number of conversion types. These types
are similar to data types, but they are specific to the CAST() function (and the CONVERT() function) and
serve a slightly different purpose, which is to specify how the data is converted. Data types, on the other
hand, specify the type of data that can be inserted in a column. (For more information about data types,
see Chapter 5.)

The conversion types available to the CAST() function are as follows:

❑ BINARY

❑ CHAR

❑ DATE

❑ DATETIME

❑ SIGNED [INTEGER]

❑ TIME

❑ UNSIGNED [INTEGER]

For example, you might have a numeric value (either a literal value or one returned by an expression)
that you want converted to the DATE conversion type. The following SELECT statement demonstrates
how you might do this:

SELECT CAST(20041031 AS DATE);

As you can see, the value is specified, followed by the AS keyword, and then followed by the DATE
conversion type. The value returned by this function will be in a DATE format (2004-10-31).

The CONVERT() function allows you to convert dates in the same way as the CAST() function, only the
format is a little different, as shown in the following syntax:

CONVERT(<expression>, <type>)

Notice that you need to specify only the expression and the conversion type, without the AS keyword, but
you must separate the two by a comma. The conversion types you can use in the CONVERT() function are
the same as those you can use for the CAST() function. For example, the following SELECT statement pro-
duces the same results as the last example:

SELECT CONVERT(20041031, DATE);

Notice that you need to specify only the numeric value and the DATE conversion type. The CONVERT()
function, however, also includes another form, as shown in the following syntax:

320

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 320

TEAM LinG - Live, Informative, Non-cost and Genuine !

CONVERT(<expression> USING <character set>)

This form is used to assign a character set to the specified expression. For example, the following
SELECT statement converts a string to the latin2 character set:

SELECT CONVERT(‘cats and dogs’ USING latin2);

In this statement, the CONVERT() function includes the expression (which is a literal string), followed by
the USING keyword and the name of the character set (latin2). The value returned is the string value in
the new character set. (In this case, the value is the same as it appears in the function.)

The CAST() and CONVERT() functions are particularly useful when you want to convert data stored in a
MySQL database to a format that can be used by an application. For example, suppose that you have a
table in a MySQL database that includes a DATETIME column. You also have an application that needs to
use those values, but it cannot work with them as DATETIME values. As a result, you need to convert those
values to numerical (UNSIGNED INTEGER) values that can be used by the application. To achieve this con-
version, you can use the CAST() or CONVERT() function as you’re retrieving data from the database. This
next exercise allows you to try out the CAST() and CONVERT() functions in SELECT statements. You con-
vert a date value to an integer.

Try It Out Converting Data to Different Types
To create statements that convert values, follow these steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement that you create includes the CAST() function. Execute the following
SQL statement at the mysql command prompt:

SELECT OrderID, TransID, DVDID,
CAST(DateOut AS UNSIGNED INTEGER) AS DateOut_INT

FROM Transactions
WHERE DVDID=4 OR DVDID=5 OR DVDID=7
ORDER BY OrderID, TransID, DVDID;

You should receive results similar to the following:

+---------+---------+-------+-------------+
| OrderID | TransID | DVDID | DateOut_INT |
+---------+---------+-------+-------------+
1	2	4	20041007
3	5	4	20041007
3	7	7	20041007
4	8	4	20041007
7	12	4	20041007
9	16	7	20041007
10	18	5	20041007
12	22	5	20041007
13	23	7	20041007
+---------+---------+-------+-------------+
9 rows in set (0.10 sec)

321

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 321

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. Next modify the SELECT statement to use the CONVERT() function. Execute the following SQL
statement at the mysql command prompt:

SELECT OrderID, TransID, DVDID,
CONVERT(DateOut, UNSIGNED) AS DateOut_INT

FROM Transactions
WHERE DVDID=4 OR DVDID=5 OR DVDID=7
ORDER BY OrderID, TransID, DVDID;

You should receive the same results that you received when you executed the SELECT statement
in Step 2.

How It Works
In this exercise, you created two SELECT statements. The first of these included the CAST() function as
an element in the select list of the SELECT clause:

SELECT OrderID, TransID, DVDID,
CAST(DateOut AS UNSIGNED INTEGER) AS DateOut_INT

FROM Transactions
WHERE DVDID=4 OR DVDID=5 OR DVDID=7
ORDER BY OrderID, TransID, DVDID;

The CAST() function extracts the values from the DateOut column in the Transactions table and
converts them to UNSIGNED INTEGER values. The converted values are included in the result set in the
DateOut_INT column.

The next SELECT statement that you created produces the same results as the first, only this time you
used the CONVERT() function:

SELECT OrderID, TransID, DVDID,
CONVERT(DateOut, UNSIGNED) AS DateOut_INT

FROM Transactions
WHERE DVDID=4 OR DVDID=5 OR DVDID=7
ORDER BY OrderID, TransID, DVDID;

As you can see, the DateOut column is again specified as the first argument; however, the second argu-
ment consists only of the keyword UNSIGNED. When you specify UNSIGNED, it is the same as specifying
UNSIGNED INTEGER. You do not need to include the keyword INTEGER in this case.

Managing Different Types of Data
MySQL includes functions that allow you to manage string, numeric, and date/time data. Unlike the
functions that you’ve already looked at, the next set of functions is specific to a type of data. You can use
these functions in conjunction with the functions you’ve already seen. In many cases, a function can be
embedded as an argument in other functions, which makes the use of functions all the more powerful.
In several of the Try It Out sections that follow, you see how to embed functions as arguments in other
functions.

322

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 322

TEAM LinG - Live, Informative, Non-cost and Genuine !

String Functions
As you would guess, string functions allow you to manipulate and extract string values. MySQL supports
numerous string functions. This section covers those that you’re most likely to use in your applications
and provides examples of each of them.

ASCII() and ORD() Functions
The ASCII() function allows you to identify the numeric value of the first character in a string. The syn-
tax for the function is as follows:

ASCII(<string>)

To use the ASCII() function, you need only to identify the string, as shown in the following example:

SELECT ASCII(‘book’);

The SELECT statement returns the numeric value for the first character, which is the letter b. The numeric
value for the letter b is 98.

The ASCII() function works only for single-byte characters (with values from 0 to 255). For multi-byte
characters, you should use the ORD() function, which is shown in the following syntax:

ORD(<string>)

The ORD() function works just like the ASCII() function except that it also supports multibyte charac-
ters. To use the ORD() function, specify a string (which can include numerals), as shown in the following
example:

SELECT ORD(37);

As with the ASCII() function, the ORD() function returns the numeric value of the first character. For
the number 3, the numeric value is 51. If you specify a number, rather than a regular string, you do not
need to include the single quotes. In addition, if the function argument is a single-byte character, the
results are the same as what you would see when using the ASCII() function.

CHAR_LENGTH(), CHARACTER_LENGTH(), and LENGTH() Functions
The CHAR_LENGTH() and CHARACTER_LENGTH() functions, which are synonymous, return the number
of characters in the specified string. The following syntax shows how to use either function:

CHAR_LENGTH(<string>)

As you can see, you need only to specify the string to determine the length of that string, as shown in the
following example:

SELECT CHAR_LENGTH(‘cats and dogs’);

The statement returns a value of 13, which is the number of characters in the string, including spaces.

323

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 323

TEAM LinG - Live, Informative, Non-cost and Genuine !

The LENGTH() function also returns the length of a string, only the length is measured in bytes, rather
than characters. The syntax for the LENGTH() function is similar to the CHAR_LENGTH() and CHARAC-
TER_LENGTH functions:

LENGTH(<string>)

If you use the LENGTH() function with single-byte characters, the results are the same as with the
CHAR_LENGTH() function, as shown in the following example:

SELECT LENGTH(‘cats and dogs’);

In this case, the result is once again 13. If this were a double-byte character string, though, the result
would be 26 because the LENGTH() function measures in bytes, not characters.

The CHAR_LENGTH() and LENGTH() functions can be useful if you need to return values that are greater
than or less than a specific length. For example, suppose that you have a table that includes a list of pet-
related products. The table includes a Description column that provides a brief description of each prod-
uct. You want all descriptions to be no longer than 50 characters; however, some descriptions exceed this
amount, so you plan to cut content in those columns. To determine which columns exceed 50 characters,
you can use the CHAR_LENGTH() function to retrieve those rows whose Description value is greater than
50 characters.

CHARSET() and COLLATION() Functions
The CHARSET() function identifies the character set used for a specified string, as shown in the follow-
ing syntax:

CHARSET(<string>)

For example, the following SELECT statement uses the CHARSET() function to return the character set
used for the ‘cats and dogs’ string:

SELECT CHARSET(‘cats and dogs’);

If you are running a default installation of MySQL, the SELECT statement returns a value of latin1.

You can also identify the collation used for a string by using the COLLATION() function, shown in the
following syntax:

COLLATION(<string>)

As with the CHARSET() function, you need only to specify the string, as the following SELECT statement
demonstrates:

SELECT COLLATION(‘cats and dogs’);

In this case, if working with a default installation of MySQL, the SELECT statement returns a value of
latin1_swedish_ci.

Using the CHARSET() and COLLATION() functions to identify the character set or collation of a string
can be useful when you want to find this information quickly, without having to search column, table,

324

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 324

TEAM LinG - Live, Informative, Non-cost and Genuine !

database, and system settings. By simply using the appropriate function when you retrieve the data, you
can avoid the possibility of having to take numerous steps to find the information you need, allowing
you to determine exactly what you need with one easy step.

CONCAT() and CONCAT_WS() Functions
MySQL provides two very useful functions that allow you to concatenate data. The first of these is the
CONCAT() function, which is shown in the following syntax:

CONCAT(<string1>, <string2> [{, <string>}...])

As the syntax demonstrates, you must specify two or more string values, which are separated by commas.
For example, the following statement concatenates five values:

SELECT CONCAT(‘cats’, ‘ ‘, ‘and’, ‘ ‘, ‘dogs’);

Notice that the second and fourth values are spaces. This ensures that a space is provided between each
of the three words. As a result, the output from this function (cats and dogs) is shown correctly.
Another way you can include the spaces is by using the CONCAT_WS() function, which allows you to
define a separator as one of the arguments in the function, as shown in the following syntax:

CONCAT_WS(<separator>, <string1>, <string2> [{, <string>}...])

By using this function, the separator is automatically inserted between the values. If one of the values is
NULL, the separator is not used. Except for the separator, the CONCAT_WS() function is the same as the
CONCAT() function. For example, the following SELECT statement concatenates the same words as in the
last example:

SELECT CONCAT_WS(‘ ‘, ‘cats’, ‘and’, ‘dogs’);

Notice that the CONCAT_WS() function identifies the separator (a space) in the first argument and that
the separator is followed by the string values to be concatenated. The output from this function (cats and
dogs) is the same as the output you saw in the CONCAT() example.

The CONCAT() and CONCAT_WS functions can be useful in a number of situations. For example, suppose
that you have a table that displays employee first names and last names in separate columns. You can
use one of these functions to display the names in a single column, while still sorting them according to
the last names. You can also use the functions to join other types of data, such as a color to a car model
(for instance, red Honda) or a flavor to a food (for instance, chocolate ice cream). There are no limits to
the types of string data that you can put together.

INSTR() and LOCATE() Functions
The INSTR() function takes two arguments, a string and a substring, as shown in the following syntax:

INSTR(<string>, <substring>)

The function identifies where the substring is located in the string and returns the position number. For
example, the following INSTR() function returns the position of dogs in the string:

SELECT INSTR(‘cats and dogs’, ‘dogs’);

325

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 325

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this case, the substring dogs begins in the tenth position, so the function returns a value of 10. You can
achieve the same results by using the LOCATE() function, shown in the following syntax:

LOCATE(<substring>, <string>)

As you can see, the syntax for the LOCATE() and INSTR() functions is similar except that, with
LOCATE(), the substring is listed first, as shown in the following example:

SELECT LOCATE(‘dogs’, ‘cats and dogs’);

Again, the function returns a value of 10. The LOCATE() function, however, provides another alterna-
tive, as the following syntax demonstrates:

LOCATE(<substring>, <string>, <position>)

The function includes a third argument, <position>, which identifies a starting position in the func-
tion. This is the position at which the function should start looking for the substring. For example, sup-
pose that you create the following SELECT statement:

SELECT LOCATE(‘dogs’, ‘cats and dogs and more dogs’, 15);

Notice that the LOCATE() function includes a third argument: 15. This is the position at which the func-
tion should begin looking for the substring dogs. As a result, the function disregards the first occurrence
of dogs because it is before position 15 and returns a value of 24, which is where the second dogs begins.

LCASE(), LOWER(), UCASE(), and UPPER() Functions
MySQL also includes functions that allow you to change string values to upper or lowercase. For exam-
ple, the LCASE() and LOWER() functions, which are synonymous, change the case of the specified string,
as shown in the following syntax:

LOWER(<string>)

As you can see, you need to include the string as a function argument. For example, the following
SELECT statement uses the LOWER() function to remove the initial capitalizations from the string:

SELECT LOWER(‘Cats and Dogs’);

The output from this statement is cats and dogs. Notice that the string value now includes no upper-
case letters. You can also change lowercase to uppercase by using the UPPER() or UCASE() functions,
which are also synonymous. The following syntax shows the UPPER() function:

UPPER(<string>)

Notice that, as with the LOWER() function, you need only to supply the string, as shown in the following
example:

SELECT UPPER(‘cats and dogs’);

By using the UPPER() function, all characters in the string are returned as uppercase (CATS AND DOGS).

326

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 326

TEAM LinG - Live, Informative, Non-cost and Genuine !

The LOWER() and UPPER() functions are useful whenever you need to change the case of a value. For
example, suppose that you have an application that allows customers to register online for product
information. The registration information is stored in a table in your database. When the customers enter
their e-mail addresses, the addresses are stored as they are entered by the customers, so some are stored
as all lowercase, some all uppercase, and some mixed case. When you retrieve those e-mail addresses,
you want them displayed as all lowercase. You can use the LOWER() function when you retrieve the
e-mail addresses to provide a uniform display.

LEFT() and RIGHT() Functions
MySQL also provides functions that return only a part of a string value. For example, you can use the
LEFT() function to return only a specific number of characters from a value, as shown in the following
syntax:

LEFT(<string>, <length>)

The <length> value determines how many characters are returned, starting at the left end of the string.
For example, the following SELECT statement returns only the first four characters of the string:

SELECT LEFT(‘cats and dogs’, 4);

Because the value 4 is specified in the function arguments, the function returns the value cats.

You can also specify which characters are returned starting at the right end of the string by using the fol-
lowing RIGHT() function:

RIGHT(<string>, <length>)

Notice that the syntax is similar to the LEFT() function. You must again specify the length of the sub-
string that is returned. For example, the following SELECT statement returns only the last four characters
of the specified string:

SELECT RIGHT(‘cats and dogs’, 4);

In this case, the statement returns the value dogs.

The LEFT() and RIGHT() functions are useful when you want to use only part of values from multiple
columns. For example, suppose that you want to create a user ID for your employees based on their first
and last names. You can use the LEFT() function to take the first three letters of their first names and the
first four letters of their last names and then use the CONCAT() function to join these extracted values
together.

REPEAT() and REVERSE() Functions
The REPEAT() function, shown in the following syntax, is used to repeat a string a specific number of
times:

REPEAT(<string>, <count>)

327

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 327

TEAM LinG - Live, Informative, Non-cost and Genuine !

To use this function, you must first specify the string and then the number of times that the string should
be repeated. The values are then concatenated and returned. For example, the following SELECT state-
ment uses the REPEAT() function to repeat CatsDogs three times:

SELECT REPEAT(‘CatsDogs’, 3);

The result from this function is CatsDogsCatsDogsCatsDogs.

In addition to repeating string values, you can reverse their order by using the following REVERSE()
function:

REVERSE(<string>)

In this case, you need to specify only the string, as the following SELECT statement shows:

SELECT REVERSE(‘dog’);

The value returned by this function is god, which, as anyone with a dog will tell you, is exactly what you
should expect.

SUBSTRING() Function
The final string function that you examine in this section is the SUBSTRING() function. The function,
which includes several forms, returns a substring from the identified string. The first form of the SUB-
STRING() function is shown in the following syntax:

SUBSTRING(<string>, <position>)

In this form of the SUBSTRING() function, you must specify the string and the starting position. The
function then returns a substring that includes the rest of the string value, starting at the identified posi-
tion. You can achieve the same results by using the following syntax:

SUBSTRING(<string> FROM <position>)

In this case, you must separate the two arguments with the FROM keyword, rather than a comma; however,
either method works. For example, you can use the following SELECT statement to return the substring
dog, which starts at the tenth position.

SELECT SUBSTRING(‘cats and dogs’, 10);

As you might have noticed, the SUBSTRING() function, when used this way, is a little limiting because
it provides only a starting position but no ending position. MySQL does support another form of the
SUBSTRING() function:

SUBSTRING(<string>, <position>, <length>)

This form includes the <length> argument, which allows you to specify how long (in characters) the
substring should be. You can also use the following format to specify the length:

SUBSTRING(<string> FROM <position> FOR <length>)

328

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 328

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this case, instead of using commas to separate the arguments, you use the FROM and FOR keywords,
but the results are the same. The following example demonstrates how to specify a length:

SELECT SUBSTRING(‘cats and dogs and more dogs’, 10, 4);

Notice that, after defining the string, the function arguments identify the starting position (10) and the
length of the substring (4). As a result, the function returns a value of dogs.

As you have seen, string functions allow you to manipulate and extract string values. In the following
Try It Out, you try out several of these functions by creating SELECT statements that retrieve data from
the DVDRentals database.

Try It Out Using String Functions in Your SQL Statements
To create statements employing string functions, follow these steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first statement that you create uses the CHAR_LENGTH() function to specify the length of a
retrieved value. Execute the following SQL statement at the mysql command prompt:

SELECT DVDName, CHAR_LENGTH(DVDName) AS CharLength
FROM DVDs
WHERE CHAR_LENGTH(DVDName)>10
ORDER BY DVDName;

You should receive results similar to the following:

+-------------------------------+------------+
| DVDName | CharLength |
+-------------------------------+------------+
A Room with a View	18
Out of Africa	13
The Maltese Falcon	18
The Rocky Horror Picture Show	29
What’s Up, Doc?	15
White Christmas	15
+-------------------------------+------------+
6 rows in set (0.00 sec)

3. The next SELECT statement that you create uses the CONCAT_WS() function to concatenate the
employee names. Execute the following SQL statement at the mysql command prompt:

SELECT EmpID, CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN) AS Name
FROM Employees
ORDER BY EmpLN;

329

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 329

TEAM LinG - Live, Informative, Non-cost and Genuine !

You should receive results similar to the following:

+-------+---------------------+
| EmpID | Name |
+-------+---------------------+
6	George Brooks
5	Rita C. Carter
4	John Laguci
3	Mary Marie Michaels
2	Robert Schroader
1	John P. Smith
+-------+---------------------+
6 rows in set (0.00 sec)

4. Next, use the CONCAT() and LEFT() functions to create registration codes for the employees.
Execute the following SQL statement at the mysql command prompt:

SELECT EmpID, CONCAT(LEFT(EmpFN, 2), LEFT(EmpLN, 3), EmpID) AS RegID
FROM Employees
ORDER BY EmpID;

You should receive results similar to the following:

+-------+--------+
| EmpID | RegID |
+-------+--------+
1	JoSmi1
2	RoSch2
3	MaMic3
4	JoLag4
5	RiCar5
6	GeBro6
+-------+--------+
6 rows in set (0.00 sec)

5. Now create a SELECT statement that uses the UPPER(), CONCAT_WS(), CONCAT(), LOWER(), and
LEFT() functions to manipulate retrieved data from the Employees table. Execute the following
SQL statement at the mysql command prompt:

SELECT EmpID, UPPER(CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN)) AS Name,
CONCAT(LOWER(LEFT(EmpFN, 2)), LOWER(LEFT(EmpLN, 3)), EmpID) AS RegID

FROM Employees
ORDER BY EmpID;

You should receive results similar to the following:

+-------+---------------------+--------+
| EmpID | Name | RegID |
+-------+---------------------+--------+
1	JOHN P. SMITH	josmi1
2	ROBERT SCHROADER	rosch2
3	MARY MARIE MICHAELS	mamic3
4	JOHN LAGUCI	jolag4
5	RITA C. CARTER	ricar5
6	GEORGE BROOKS	gebro6
+-------+---------------------+--------+
6 rows in set (0.00 sec)

330

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 330

TEAM LinG - Live, Informative, Non-cost and Genuine !

6. Your final SELECT statement includes the UPPER(), CONCAT_WS(), CONCAT(), LOWER(), and
SUBSTRING() functions to use on data from the Employees table. Execute the following SQL
statement at the mysql command prompt:

SELECT EmpID, UPPER(CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN)) AS Name,
CONCAT(LOWER(SUBSTRING(EmpFN, 2, 2)),
LOWER(SUBSTRING(EmpLN, 2, 3)), EmpID) AS RegID

FROM Employees
ORDER BY EmpID;

You should receive results similar to the following:

+-------+---------------------+--------+
| EmpID | Name | RegID |
+-------+---------------------+--------+
1	JOHN P. SMITH	ohmit1
2	ROBERT SCHROADER	obchr2
3	MARY MARIE MICHAELS	arich3
4	JOHN LAGUCI	ohagu4
5	RITA C. CARTER	itart5
6	GEORGE BROOKS	eoroo6
+-------+---------------------+--------+
6 rows in set (0.00 sec)

How It Works
The first statement that you created uses the CHAR_LENGTH() function, as shown in the following
statement:

SELECT DVDName, CHAR_LENGTH(DVDName) AS CharLength
FROM DVDs
WHERE CHAR_LENGTH(DVDName)>10
ORDER BY DVDName;

The function appears as one of the elements of the select list in the SELECT clause and in an expression
in the WHERE clause. The function retrieves the number of characters in a value. Notice that, in this case,
the <string> argument is the name of the DVDName column. As a result, the string values are taken
from that column. In addition, the WHERE clause specifies that the result set should include only those
DVDName values with a length greater than 10.

The next statement that you created uses the CONCAT_WS() function to concatenate the employee names:

SELECT EmpID, CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN) AS Name
FROM Employees
ORDER BY EmpLN;

The function contains four arguments. The first argument is the separator, which in this case is a space.
As a result, a space is added between all concatenated values, except those that are NULL. The next three
arguments are the names of the columns from which the string values are extracted. For each row the
SELECT statement returns, the employee’s first name, middle name (in some cases), and last name
appear together, with a space between values.

331

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 331

TEAM LinG - Live, Informative, Non-cost and Genuine !

In the next statement, you used a CONCAT() function to concatenate the employee names and IDs. As the
following statement shows, you used only part of the first and last names:

SELECT EmpID, CONCAT(LEFT(EmpFN, 2), LEFT(EmpLN, 3), EmpID) AS RegID
FROM Employees
ORDER BY EmpID;

The LEFT() function extracts only part of the first and last names. In the first usage, a 2 is specified as the
second argument, so only the first two characters are retrieved from the first name. In the second usage of
the LEFT() function, a 3 is specified as the second argument, so only the first three characters are retrieved.
The retrieved characters are then concatenated to create one value made up of the first two letters of the
first name, the first three letters of the last name, and the employee ID.

One thing to notice about the last statement is that you embedded one function as an argument within
another function. You can embed functions to as many levels as necessary. For example, in the next state-
ment that you created, you embedded functions to an additional level:

SELECT EmpID, UPPER(CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN)) AS Name,
CONCAT(LOWER(LEFT(EmpFN, 2)), LOWER(LEFT(EmpLN, 3)), EmpID) AS RegID

FROM Employees
ORDER BY EmpID;

In the second element of the select clause, you used the familiar CONCAT_WS() construction to concatenate
the employee name. Then you embedded the function as an argument in the UPPER() function so that
the value returns in upper case. In the third element of the select list, you first used LEFT() functions to
retrieve the first two letters from the first name and the first three letters from the last name. You then
embedded each of these functions as an argument in a LOWER() function. As a result, the values retrieved
by the LEFT() function changed to all lowercase. From these values, you used the CONCAT() function to
concatenate the three arguments. As a result, one value is created that consists of the first two letters of the
first name (in lowercase), the first three letters of the last name (in lowercase), and the employee ID.

The last SELECT statement that you created deviated from the previous statement by using a SUB-
STRING() function rather than a LEFT() function:

SELECT EmpID, UPPER(CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN)) AS Name,
CONCAT(LOWER(SUBSTRING(EmpFN, 2, 2)),
LOWER(SUBSTRING(EmpLN, 2, 3)), EmpID) AS RegID

FROM Employees
ORDER BY EmpID;

Because you used the SUBSTRING() function, you can be more specific about which characters are
retrieved from the first name and last name. For the first name, you retrieved two characters starting
with the character in the second position. For the last name, you retrieved three characters starting with
the character in the second position. The SUBSTRING() functions were then embedded in the LOWER()
functions, which were then embedded as arguments for the CONCAT() function. The result is a value for
each employee that is made up of the second and third letters of the first name (in lowercase), the sec-
ond, third, and fourth letters of the last name (in lowercase), and the employee ID.

332

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 332

TEAM LinG - Live, Informative, Non-cost and Genuine !

Numeric Functions
Now that you’ve had a good sampling of how string functions work, it’s time to look at numeric func-
tions. Numeric functions allow you to perform calculations on numeric values. MySQL supports various
numeric functions that allow you to perform advanced mathematical operations. This section covers
many of the more common numeric functions.

CEIL(), CEILING(), and FLOOR() Functions
The CEIL() and CEILING() functions, which are synonymous, return the smallest integer that is not
less than the specified number. As the following syntax shows, to use this function, you need to specify
only the number:

CEILING(<number>)

For example, the following SELECT statement returns a value of 10:

SELECT CEILING(9.327);

The value 10 is returned because it is the smallest integer that is not less than 9.327. However, if you
want to retrieve the largest integer that is not greater than a specified value, you can use the FLOOR()
function:

FLOOR(<number>)

The FLOOR() function is similar to the CEILING() function in the way that it is used. For example, the
following SELECT statement uses the FLOOR() function:

SELECT FLOOR(9.327);

Notice that the same value is specified as in the previous example. Because the FLOOR() function
retrieves the largest integer not greater than the specified value, a value of 9 is returned, rather than 10.

COT() Functions
MySQL includes numerous functions that allow you to calculate specific types of equations. For example,
you can use the COT() function to determine the cotangent of a number:

COT(<number>)

As you can see, you need to provide only the number whose cotangent you want to find. For example,
suppose you want to find the cotangent of 22. You can use the following SELECT statement:

SELECT COT(22);

MySQL returns a value of 112.97321035643, which is the cotangent of 22.

333

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 333

TEAM LinG - Live, Informative, Non-cost and Genuine !

MOD() Function
The MOD() function is similar to the percentage (%) arithmetic operator you saw in Chapter 8. The func-
tion returns the remainder derived by dividing two numbers. The following syntax shows how to use a
MOD() function:

MOD(<number1>, <number2>)

As you can see, you must specify the numbers that you want to divide as arguments, separated by a
comma. The first argument that you specify is divided by the second argument, as shown in the follow-
ing example.

SELECT MOD(22, 7);

In this statement, the MOD() function divides 22 by 7 and then returns the remainder. As a result, the
function returns a value of 1.

PI() Function
The PI() function returns the value of PI. As the following syntax shows, you do not specify any argu-
ments when using this function:

PI()

You can use the function to retrieve the value of PI to use in your SQL statement. At its simplest, you can
use a basic SELECT statement to retrieve PI:

SELECT PI();

The PI() function returns a value of 3.141593.

POW() and POWER() Functions
The POW() and POWER() functions, which are synonymous, raise the value of one number to the power
of the second number, as shown in the following syntax:

POW(<number>, <power>)

In the first argument, you must specify the root number. This is followed by the second argument (sepa-
rated from the first by a comma) that specifies the power by which you should raise the root number.
For example, the following SELECT statement raises the number 4 by the power of 2:

SELECT POW(4, 2);

The POW() function returns a value of 16.

ROUND() and TRUNCATE() Functions
There will no doubt be times when retrieving data from a MySQL database when you want to round
off numbers to the nearest integer. MySQL includes the following function to allow you to round off
numbers:

334

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 334

TEAM LinG - Live, Informative, Non-cost and Genuine !

ROUND(<number> [, <decimal>])

To round off a number, you must specify that number as an argument of the function. Optionally, you
can round off a number to a fractional value by specifying the number of decimal places that you want
the returned value to include. For example, the following SELECT statement rounds off a number to two
decimal places:

SELECT ROUND(4.27943, 2);

In this case, the ROUND() function rounds off 4.27943 to 4.28. As you can see, the number is rounded up.
Different implementations of the C library, however, might round off numbers in different ways. For
example, some might always round numbers up or always down. If you want to have more control over
how a number is rounded, you can use the FLOOR() or CEILING() functions, or you can use the TRUN-
CATE() function, which is shown in the following syntax:

TRUNCATE(<number>, <decimal>)

The TRUNCATE() function takes the same arguments as the ROUND() function, except that <decimal> is
not optional in TRUNCATE() functions. You can declare the decimal value as zero, which has the same
effect as not including the argument. The main functional difference between TRUNCATE() and ROUND()
is that TRUNCATE() always rounds a number toward zero. For example, suppose you modify the last
example SELECT statement to use TRUNCATE(), rather than ROUND(), as shown in the following example:

SELECT TRUNCATE(4.27943, 2);

This time, the value 4.27 is returned, rather than 4.28, because the original value is rounded toward zero,
which means, for positive numbers, it is rounded down, rather than up.

SQRT() Function
The SQRT() function returns to the square root of a specified number:

SQRT(<number>)

To use the function, you need to specify the original number as an argument of the function. For exam-
ple, the following SELECT statement uses the SQRT() function to find the square root of 36:

SELECT SQRT(36);

The statement returns a value of 6.

The following exercise allows you to try out several of the numeric functions that you learned about in
this section. Because the DVDRentals database doesn’t include any tables that are useful to test out these
functions, you first must create a table named Test and then add values to that table. From there, you can
create SELECT statements that use numeric functions to calculate data in the Test table.

335

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 335

TEAM LinG - Live, Informative, Non-cost and Genuine !

Try It Out Using Numeric Functions in Your SQL Statements
Follow these steps to create and populate the Test table and then use SELECT statements that employ
numeric functions:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. First, you create the Test table. Execute the following SQL statement at the mysql command
prompt:

CREATE TABLE Test
(

TestID SMALLINT NOT NULL PRIMARY KEY,
Amount SMALLINT NOT NULL

);

You should receive a message indicating that the statement executed successfully.

3. Next, add values to the Test table. Execute the following SQL statement at the mysql command
prompt:

INSERT INTO Test
VALUES (101, 12), (102, 1), (103, 139), (104, -37), (105, 0), (106, -16);

You should receive a message indicating that the statement executed successfully, affecting
five rows.

4. The first SELECT statement that you create includes the COT() function, which calculates the
cotangent of the values in the Amount column. Execute the following SQL statement at the
mysql command prompt:

SELECT TestID, Amount, COT(Amount) AS Cotangent
FROM Test
ORDER BY TestID;

You should receive results similar to the following:

+--------+--------+------------------+
| TestID | Amount | Cotangent |
+--------+--------+------------------+
101	12	-1.5726734063977
102	1	0.64209261593433
103	139	1.0314388663087
104	-37	1.1893841441106
105	0	NULL
106	-16	-3.3263231956354
+--------+--------+------------------+
6 rows in set (0.00 sec)

336

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 336

TEAM LinG - Live, Informative, Non-cost and Genuine !

5. The next statement that you create builds on the previous statement by adding a column to
the result set that rounds off the cotangent. Execute the following SQL statement at the mysql
command prompt:

SELECT TestID, Amount, COT(Amount) AS Cotangent, ROUND(COT(Amount)) AS Rounded
FROM Test
ORDER BY TestID;

You should receive results similar to the following:

+--------+--------+------------------+---------+
| TestID | Amount | Cotangent | Rounded |
+--------+--------+------------------+---------+
101	12	-1.5726734063977	-2
102	1	0.64209261593433	1
103	139	1.0314388663087	1
104	-37	1.1893841441106	1
105	0	NULL	NULL
106	-16	-3.3263231956354	-3
+--------+--------+------------------+---------+
6 rows in set (0.00 sec)

6. In the next SELECT statement, you use the MOD() function to divide the Amount values by 10
and then return the remainder from that division. Execute the following SQL statement at the
mysql command prompt:

SELECT TestID, Amount, MOD(Amount, 10) AS Modulo
FROM Test
ORDER BY TestID;

You should receive results similar to the following:

+--------+--------+--------+
| TestID | Amount | Modulo |
+--------+--------+--------+
101	12	2
102	1	1
103	139	9
104	-37	-7
105	0	0
106	-16	-6
+--------+--------+--------+
6 rows in set (0.00 sec)

7. Next you create a SELECT statement that uses the POW() function to raise the Amount values by
a power of 2. Execute the following SQL statement at the mysql command prompt:

SELECT TestID, Amount, POW(Amount, 2) AS Raised2
FROM Test
ORDER BY TestID;

337

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 337

TEAM LinG - Live, Informative, Non-cost and Genuine !

You should receive results similar to the following:

+--------+--------+---------+
| TestID | Amount | Raised2 |
+--------+--------+---------+
101	12	144
102	1	1
103	139	19321
104	-37	1369
105	0	0
106	-16	256
+--------+--------+---------+
6 rows in set (0.00 sec)

8. Execute the following SQL statement at the mysql command prompt:

DROP TABLE Test;

You should receive a message indicating that the statement executed successfully.

How It Works
The first SELECT statement that you created includes the COT() function:

SELECT TestID, Amount, COT(Amount) AS Cotangent
FROM Test
ORDER BY TestID;

The function is used as one of the elements in the select list. The Amount column is specified as the argu-
ment used by the COT() function. As a result, for each row returned, the cotangent of the Amount value
is calculated and returned in the Cotangent column.

The next SELECT statement that you created is similar to the previous one, except that it includes an
additional column in the result set:

SELECT TestID, Amount, COT(Amount) AS Cotangent, ROUND(COT(Amount)) AS Rounded
FROM Test
ORDER BY TestID;

The Rounded column takes the cotangent for each value and rounds the number to an integer. Notice
that the COT() function is embedded as an argument in the ROUND() function. This demonstrates that
numeric functions, like other functions, can be embedded to as many layers as necessary.

In the next SELECT statement that you created, you used a MOD() function on the Amount column:

SELECT TestID, Amount, MOD(Amount, 10) AS Modulo
FROM Test
ORDER BY TestID;

For each row returned by this statement, the Amount value is divided by 10. The remainder from this
value is then returned in the Modulo column.

338

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 338

TEAM LinG - Live, Informative, Non-cost and Genuine !

The final statement that you created is similar to the last statement except that it uses the POW() func-
tion, rather than the MOD() function:

SELECT TestID, Amount, POW(Amount, 2) AS Raised2
FROM Test
ORDER BY TestID;

In this case, for each row returned by the SELECT statement, the value in the Amount column is raised
by a power of 2 and then returned in the Rasied2 column.

Date/Time Functions
The next set of functions covered are those related to date and time values. These functions are handy
for comparing and calculating dates and times as well as returning the current dates and times. MySQL
supports numerous date/time functions, and this section covers many of those.

ADDDATE(), DATE_ADD(), SUBDATE(), DATE_SUB(),
and EXTRACT() Functions

The ADDDATE() and DATE_ADD() functions, which are synonymous, allow you to add date-related inter-
vals to your date values, as shown in the following syntax:

ADDDATE(<date>, INTERVAL <expression> <type>)

As you can see from the syntax, the function includes two arguments, the <date> value and the INTER-
VAL clause. The <date> value can be any date or date/time literal value or value derived from an
expression. This value acts as the root value to which time is added. The INTERVAL clause requires an
<expression>, which must be a time value in an acceptable format, and a <type> value. The following
table lists the types that you can specify in the INTERVAL clause and the format for the expression used
with that type:

<type> <expression> format

MICROSECOND <microseconds>

SECOND <seconds>

MINUTE <minutes>

HOUR <hours>

DAY <days>

MONTH <months>

YEAR <years>

SECOND_MICROSECOND ‘<seconds>.<microseconds>’

MINUTE_MICROSECOND ‘<minutes>.<microseconds>’

MINUTE_SECOND ‘<minutes>:<seconds>’

Table continued on following page

339

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 339

TEAM LinG - Live, Informative, Non-cost and Genuine !

<type> <expression> format

HOUR_MICROSECOND ‘<hours>.<microseconds>’

HOUR_SECOND ‘<hours>:<minutes>:<seconds>’

HOUR_MINUTE ‘<hours>:<minutes>’

DAY_MICROSECOND ‘<days>.<microseconds>’

DAY_SECOND ‘<days> <hours>:<minutes>:<seconds>’

DAY_MINUTE ‘<days> <hours>:<minutes>’

DAY_HOUR ‘<days> <hours>’

YEAR_MONTH ‘<years>-<months>’

The best way to understand how the types and expression formats work is to look at an example. The
following SELECT statement uses the ADDDATE() function to add 10 hours and 20 minutes to the speci-
fied date/time value:

SELECT ADDDATE(‘2004-10-31 13:39:59’, INTERVAL ‘10:20’ HOUR_MINUTE);

As you can see, the first argument in the ADDDATE() function is the base date/time value, and the sec-
ond argument is the INTERVAL clause. In this clause, the expression used (‘10:20’) is consistent with
the type used (HOUR_MINUTE). If you refer back to the table, notice that the expression is in the format
acceptable for this type. As a result, the value returned by this statement is 2004-10-31 23:59:59,
which is 10 hours and 20 minutes later than the original date/time value.

The ADDDATE() function also includes a second form, which is shown in the following syntax:

ADDDATE(<date>, <days>)

This form of the ADDDATE() syntax allows you to specify a date value as the first argument and a num-
ber of days as the second argument. These are the number of days that are to be added to the specified
date. For example, the following SELECT statement adds 31 days to the date in the first argument:

SELECT ADDDATE(‘2004-11-30 23:59:59’, 31);

The statement returns a result of 2004-12-31 23:59:59, which is 31 days after the original date.
Notice that the time value remains the same.

In addition to being able to add to a date, you can also subtract from a date by using the SUBDATE() or
DATE_SUB() functions, which are synonymous, as shown in the following syntax:

SUBDATE(<date>, INTERVAL <expression> <type>)

The arguments used in this syntax are the same as those used for the ADDDATE() syntax. For example,
the following statement subtracts 12 hours and 10 minutes from the specified date:

SELECT SUBDATE(‘2004-10-31 23:59:59’, INTERVAL ‘12:10’ HOUR_MINUTE);

340

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 340

TEAM LinG - Live, Informative, Non-cost and Genuine !

The statement returns a value of 2004-10-31 11:49:59, which is 12 hours and10 minutes earlier than
the original date.

The SUBDATE() function also includes a second form, which allows you to subtract a specified number
of days from a date:

SUBDATE(<date>, <days>)

For example, the following SELECT statement subtracts 31 days from the specified date:

SELECT SUBDATE(‘2004-12-31 23:59:59’, 31);

The value returned by this statement is 2004-11-30 23:59:59, 31 days earlier than the original date.

Functions like ADDDATE() and SUBDATE() are useful when you need to change a date value stored in a
database but you don’t know the new value, only the interval change of that value. For example, sup-
pose that you are building an application for a company that rents computers. You want the application
to include a way for users to be able to add days to the date that the equipment must be returned. For
example, suppose that the equipment is due back on November 8, but you want to add three days to
that date so that the due date is changed to November 11. You can use the ADDDATE() function along
with the DAY interval type and set up the application to allow users to enter the number of days. The
value returned by the ADDDATE() function can then be inserted in the appropriate column.

Another useful time-related function is the EXTRACT() function, which is shown in the following syntax:

EXTRACT(<type> FROM <date>)

The function uses the same <type> values that are used for the ADDDATE(), DATE_ADD(), SUBDATE(),
and DATE_SUB() functions. In this case, the type extracts a specific part of the date/time value. In addi-
tion, when using an EXTRACT() function, you must specify the FROM keyword and a date value. For
example, the following SELECT statement extracts the year and month from the specified date:

SELECT EXTRACT(YEAR_MONTH FROM ‘2004-12-31 23:59:59’);

The EXTRACT() function in this statement includes the type YEAR_MONTH. As a result, the year (2004)
and month (12) are extracted from the original value and returned as 200412.

The EXTRACT() function is handy if you have an application that must display only part of a date. For
example, suppose that a table in your database includes a TIMESTAMP column. Your application should
display only the date portion of the column value. You can use the EXTRACT() function to retrieve only
the date portion of the value and use that date portion in your application.

CURDATE(), CURRENT_DATE(), CURTIME(), CURRENT_TIME(),
CURRENT_TIMESTAMP(), and NOW() Functions

MySQL includes a number of functions that allow you to retrieve current date and time information. The
first of these are the CURDATE() and CURRENT_DATE() functions, which are synonymous. As the follow-
ing syntax shows, the functions do not require any arguments:

CURDATE()

341

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 341

TEAM LinG - Live, Informative, Non-cost and Genuine !

To use this function, you simply specify the function in your statement. For example, if you want to
retrieve the current date, you can use the following SELECT statement:

SELECT CURDATE();

The statement retrieves a value similar to 2004-09-08. Notice that the value includes first the year, then
the month, and then the day.

You can retrieve the current time by using the CURTIME() or CURRENT_TIME functions, which are also
synonymous:

CURTIME()

Again, you do not need to supply any arguments, as shown in the following SELECT statement:

SELECT CURTIME();

As you can see, you simply use the function as is to retrieve the information. The date returned is in the
same format as the following value: 16:07:46. The time value is listed by hour, then by minute, and then
by second.

In addition to retrieving only the date or only the time, you can retrieve both in one value by using the
NOW() or CURRENT_TIMESTAMP() functions, which are also synonymous:

NOW()

The function is used just like CURDATE() or CURTIME(), as shown in the following SELECT statement:

SELECT NOW();

The value returned by this function is in the same format as the following value: 2004-09-08 16:08:00. The
value contains two parts, first the date and then the time. The date value includes first the year, then the
month, and then the day. The time value includes first the hour, then the minute, and then the second.

The CURDATE(), CURTIME(), and NOW() functions are particularly useful if you need to insert a date in a
column that is based on the current date or time. For example, suppose that your application includes a
table that tracks when a user has checked a book out of the library and when that book is due back. You
can use the CURDATE() function to determine the current date and insert that function in the column
that tracks today’s date. You can then use the same function to calculate when the book is due back by
adding the correct number of days to today’s date. For example, if the book is due back 21 days from
today, you can add 21 to CURDATE() to return a date 21 days from today.

DATE(), MONTH(), MONTHNAME(), and YEAR() Functions
MySQL also includes a set of functions that allow you to extract specific information from a date or time
value. For example, you can use the following function to extract just the date:

DATE(<date>)

342

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 342

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this function, the <date> value usually represents a date/time value from which you want to extract
only the date, as in the following statement:

SELECT DATE(‘2004-12-31 23:59:59’);

This statement retrieves the full date value of 2004-12-31. You can extract only the month by using the
MONTH() function:

MONTH(<date>)

If you were to update the last SELECT statement to include MONTH() rather than DATE(), the statement
would be as follows:

SELECT MONTH(‘2004-12-31 23:59:59’);

This SELECT statement retrieves only the month number, which is 12. If you prefer to retrieve the actual
month name, you would use the following function:

MONTHNAME(<date>)

As you can see, you simply use the keyword MONTHNAME rather than MONTH, as shown in the following
SELECT statement:

SELECT MONTHNAME(‘2004-12-31 23:59:59’);

Now your result is the value December, instead of 12.

You can also extract the year from a date value by using the YEAR() function:

YEAR(<date>)

The function returns the year from any date or date/time value, as the following SELECT statement
demonstrates:

SELECT YEAR(‘2004-12-31 23:59:59’);

The statement returns the value 2004.

The DATE(), MONTH(), MONTHNAME(), and YEAR() functions are helpful when you want to retrieve a
portion of a date or a related value based on the date and use it in your application. For example, sup-
pose that you are developing an application that displays individual orders that your company has pro-
cessed. For each order processed, you want to display the name of the month that the order was taken.
You can use the MONTHNAME() function to extract the name of the month from the order date, as it’s
recorded in the database. That way, you don’t have to store all the month names in your database, but
they’re readily available when you retrieve an order.

343

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 343

TEAM LinG - Live, Informative, Non-cost and Genuine !

DATEDIFF() and TIMEDIFF() Functions
You can also use functions to determine the differences between dates and times. For example, the fol-
lowing function calculates the number of dates that separates two dates:

DATEDIFF(<date>, <date>)

To use the function, you must specify the dates as arguments. For example, the following SELECT state-
ment specifies two dates that are exactly one year apart:

SELECT DATEDIFF(‘2004-12-31 23:59:59’, ‘2003-12-31 23:59:59’);

The statement returns a value of 366 (because 2004 is a leap year). Notice that the most recent date is
specified first. You can specify them in any order, but if the less recent date is specified first, your results
are a negative number because of the way dates are compared.

You can also compare time values by using the TIMEDIFF() function:

TIMEDIFF(<time>, <time>)

This function works similarly to the way that the DATEDIFF() function works. You must specify two
time or date/time values, as shown in the follow SELECT statement:

SELECT TIMEDIFF(‘2004-12-31 23:59:59’, ‘2004-12-30 23:59:59’);

This time, the time difference is returned as 24:00:00, indicating that the time difference between the two
is exactly 24 hours.

The DATEDIFF() and TIMEDIFF() functions are useful when you have a table that includes two time/date
columns. For example, suppose that you have a table that tracks project delivery dates. The table includes
the date that the project started and the date that the project was completed. You can use the TIMEDIFF()
function to calculate the number of days that each project took. You can then use that information in your
applications or reports or however you want to use it.

DAY(), DAYOFMONTH(), DAYNAME(), DAYOFWEEK(),
and DAYOFYEAR() Functions

MySQL also allows you to pull day-related values out of date or date/time values. For example, the
DAY() and DAYOFMONTH() functions, which are synonymous, extract the day of the month out of a
value. The DAY() function is shown in the following syntax:

DAY(<date>)

As you can see, only one argument is required. For example, the following SELECT statement includes a
DAY() function with a time/date value as an argument:

SELECT DAY(‘2004-12-31 23:59:59’);

344

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 344

TEAM LinG - Live, Informative, Non-cost and Genuine !

The day in this case is 31, which is the value returned by this statement. You can also return the name of
the day by using the following function:

DAYNAME(<date>)

You can use the DAYNAME() function with any date or date/time value, as shown in the following example:

SELECT DAYNAME(‘2004-12-31 23:59:59’);

In this example, the function calculates which day is associated with the specified date and returns that
day as a value. In this case, the value returned is Friday. If you want to return the day of the week by
number, you would use the following function:

DAYOFWEEK(<date>)

The function returns a value from 1 through 7, with Sunday being 1. For example, the following SELECT
statement calculates the day of the week for December 31, 2004.

SELECT DAYOFWEEK(‘2004-12-31 23:59:59’);

The day in this case is Friday. Because Friday is the sixth day, the statement returns a value of 6. In addi-
tion, you can calculate a numerical value for the day, as it falls in the year, by using the DAYOFYEAR()
function:

DAYOFYEAR(<date>)

In this case, the day is based on the number of days in the year, starting with January 1. For example, the
following statement calculates the day of year for the last day of 2004:

SELECT DAYOFYEAR(‘2004-12-31 23:59:59’);

Because 2004 is a leap year, the statement returns the value 366.

The DAY(), DAYOFMONTH(), DAYNAME(), DAYOFWEEK(), and DAYOFYEAR() functions can be useful if you
want to extract specific types of information from a date. For example, suppose that you are developing
an application that tracks employee sick days. When the application pulls dates from the database, it
should also display the day of the week that the employee was sick. You can use the DAYOFWEEK() func-
tion when retrieving the date value from the database to display the day of the week in your application.

SECOND(), MINUTE(), HOUR(), and TIME() Functions
You can also use functions to extract time parts from a time or date/time value. For example, the follow-
ing function extracts the seconds from a time value:

SECOND(<time>)

As you would expect, the SECOND() function determines the seconds based on the value specified as an
argument in the function. For example, the following SELECT statement extracts 59 from the specified value.

SELECT SECOND(‘2004-12-31 23:59:59’);

345

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 345

TEAM LinG - Live, Informative, Non-cost and Genuine !

You can also extract the minutes by using the MINUTE() function:

MINUTE(<time>)

If you were to modify the last statement to use the MINUTE() function, it would extract the minutes from
the specified date. For example, the following statement would extract 59 from the time value:

SELECT MINUTE(‘2004-12-31 23:59:59’);

The following function allows you to extract the hour from the time value:

HOUR(<time>)

As shown in the following SELECT statement, the HOUR() function extracts 23 from the time value:

SELECT HOUR(‘2004-12-31 23:59:59’);

You can also extract the entire time value by using the TIME() function:

TIME(<time>)

Using this function returns the hour, minutes, and seconds. For example, the following SELECT state-
ment includes a date/time value as an argument in the TIME() function:

SELECT TIME(‘2004-12-31 23:59:59’);

In this case, the function returns the value 23:59:59.

The SECOND(), MINUTE(), HOUR(), and TIME() functions are similar to the DAY(), DAYOFMONTH(),
DAYNAME(), DAYOFWEEK(), and DAYOFYEAR() functions in how they can be used in your applications.
For example, suppose that you are creating an application to track orders. The order data is stored in a
table in your database. Each time an order is added to the table, a value is automatically inserted in the
TIMESTAMP column. For tracking purposes, you want your application to display the hour that each
order was taken as a field separate from the rest of the TIMESTAMP value. You can use the TIME() func-
tion to extract only the time from the TIMESTAMP value and use that time value in your application.

Now that you’ve seen how to use many of the date/time functions in MySQL, you’re ready to try some
out. This exercise uses a number of SELECT statements to retrieve date- and time-related data from the
DVDRentals database as well as to retrieve current date and time date.

Try It Out Using Date/Time Functions in Your SQL Statements
The following steps describe how to create statements that include date/time functions:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

346

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 346

TEAM LinG - Live, Informative, Non-cost and Genuine !

2. The first SELECT statement that you create uses the DATEDIFF() function to determine the dif-
ference between DateOut and DateDue values in the Transactions table. Execute the following
SQL statement at the mysql command prompt:

SELECT DVDID, DateOut, DateDue, DATEDIFF(DateDue, DateOut) AS TotalDays
FROM Transactions
WHERE TransID=11;

You should receive results similar to the following:

+-------+------------+------------+-----------+
| DVDID | DateOut | DateDue | TotalDays |
+-------+------------+------------+-----------+
| 1 | 2004-09-06 | 2004-09-09 | 3 |
+-------+------------+------------+-----------+
1 row in set (0.00 sec)

3. Next you use the DAYNAME() function to retrieve the name of a day for a specific date. Execute
the following SQL statement at the mysql command prompt:

SELECT DVDID, DateDue, DAYNAME(DateDue) AS DayDue
FROM Transactions
WHERE TransID=11;

You should receive results similar to the following:

+-------+------------+----------+
| DVDID | DateDue | DayDue |
+-------+------------+----------+
| 1 | 2004-09-09 | Thursday |
+-------+------------+----------+
1 row in set (0.00 sec)

4. In the next SELECT statement, you use the YEAR() function to extract the year from a date
value. Execute the following SQL statement at the mysql command prompt:

SELECT TransID, YEAR(DateOut) AS YearOut
FROM Transactions
WHERE TransID>15
ORDER BY TransID;

You should receive results similar to the following:

+---------+---------+
| TransID | YearOut |
+---------+---------+
16	2004
17	2004
18	2004
19	2004
20	2004
21	2004
22	2004
23	2004
+---------+---------+
8 rows in set (0.00 sec)

347

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 347

TEAM LinG - Live, Informative, Non-cost and Genuine !

5. Next, use the DATE_ADD() function to add four days to a DateDue value in the Transactions
table. Execute the following SQL statement at the mysql command prompt:

SELECT TransID, DateDue, DATE_ADD(DateDue, INTERVAL 4 DAY) AS Add4Days
FROM Transactions
WHERE TransID=11;

You should receive results similar to the following:

+---------+------------+------------+
| TransID | DateDue | Add4Days |
+---------+------------+------------+
| 11 | 2004-09-09 | 2004-09-13 |
+---------+------------+------------+
1 row in set (0.00 sec)

6. Your last SELECT statement retrieves the current date and time from your system. Execute the
following SQL statement at the mysql command prompt:

SELECT CURDATE(), CURTIME(), NOW();

You should receive results similar to the following:

+------------+-----------+---------------------+
| CURDATE() | CURTIME() | NOW() |
+------------+-----------+---------------------+
| 2004-09-08 | 16:26:42 | 2004-09-08 16:26:42 |
+------------+-----------+---------------------+
1 row in set (0.00 sec)

How It Works
The first SELECT statement that you created includes the DATEDIFF() function as an element in the
select list:

SELECT DVDID, DateOut, DateDue, DATEDIFF(DateDue, DateOut) AS TotalDays
FROM Transactions
WHERE TransID=11;

The function uses the values in the DateDue and DateOut columns of the Transactions table to provide
date values as arguments in the function. The difference in days is then displayed in the TotalDays col-
umn of the result set.

In the next SELECT statement, you used the DAYNAME() function to retrieve the name of the day from a
date in the DateDue column of the Transactions table:

SELECT DVDID, DateDue, DAYNAME(DateDue) AS DayDue
FROM Transactions
WHERE TransID=11;

The DAYNAME() function is used as an argument in the select list to return the name of the day to the
DayDue column of the result set.

348

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 348

TEAM LinG - Live, Informative, Non-cost and Genuine !

Next, you created a SELECT statement that includes a YEAR() function as an element in the select list:

SELECT TransID, YEAR(DateOut) AS YearOut
FROM Transactions
WHERE TransID>15
ORDER BY TransID;

The YEAR() function extracts the year from the DateOut values of the Transactions table and displays
those years in the YearOut column of the result set.

In the next SELECT statement, you used the DATE_ADD() function to add four days to the value in the
DateDue column:

SELECT TransID, DateDue, DATE_ADD(DateDue, INTERVAL 4 DAY) AS Add4Days
FROM Transactions
WHERE TransID=11;

As with the other functions used in this exercise, the DATE_ADD() function is an element in the select list.
The function’s first argument is the base date value, which is pulled from the DateDue column of the
Transactions table. The function’s second argument is the INTERVAL clause, which specifies that four days
should be added to the date. The new day is then displayed in the Add4Days columns of the result set.

Finally, the last SELECT statement that you created retrieved current date and time information from
your system:

SELECT CURDATE(), CURTIME(), NOW();

The statement includes three functions: CURDATE(), CURTIME(), and NOW(). Each function is an element
in the select list. The CURDATE() function returns the current date, the CURTIME() function returns the
current time, and the NOW() function returns both.

Summarizing Data
In Chapter 7, you learned how you can add the GROUP BY clause to a SELECT statement in order to sum-
marize data. To provide effective summarizing capabilities, MySQL includes a number of functions —
referred to as aggregate functions — that calculate or compare values based on the columns specified in
the GROUP BY clause. In this section, you learn about many of the aggregate functions and how they’re
used in a SELECT statement. The examples in this section are based on the following table definition:

CREATE TABLE Classes
(

ClassID SMALLINT NOT NULL PRIMARY KEY,
Dept CHAR(4) NOT NULL,
Level ENUM(‘Upper’, ‘Lower’) NOT NULL,
TotalStudents TINYINT UNSIGNED NOT NULL

);

349

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 349

TEAM LinG - Live, Informative, Non-cost and Genuine !

For the purposes of these examples, you can assume that the following INSERT statement populated the
Classes table:

INSERT INTO Classes
VALUES (1001, ‘ANTH’, ‘Upper’, 25),
(1002, ‘ANTH’, ‘Upper’, 25),
(1003, ‘MATH’, ‘Upper’, 18),
(1004, ‘ANTH’, ‘Lower’, 19),
(1005, ‘ENGL’, ‘Upper’, 28),
(1006, ‘MATH’, ‘Lower’, 23),
(1007, ‘ENGL’, ‘Upper’, 25),
(1008, ‘MATH’, ‘Lower’, 29),
(1009, ‘ANTH’, ‘Upper’, 25),
(1010, ‘ANTH’, ‘Lower’, 30),
(1011, ‘ENGL’, ‘Lower’, 26),
(1012, ‘MATH’, ‘Lower’, 22),
(1013, ‘ANTH’, ‘Upper’, 27),
(1014, ‘ANTH’, ‘Upper’, 21),
(1015, ‘ENGL’, ‘Lower’, 25),
(1016, ‘ENGL’, ‘Upper’, 32);

This section uses the Classes table to demonstrate how to add aggregate functions to your SELECT state-
ments. For the purposes of this discussion, the functions have been divided into two broad categories:
basic summary functions and bit functions.

Summary Functions
Summary functions are the basic functions that you’re most likely to use when using a GROUP BY clause
to group together columns of data. The summary functions allow you to perform such tasks as deter-
mining the average of a group of values or adding those values together.

AVG() Function
The first aggregate function that you learn about is the AVG() function, which averages the values
returned by a specified expression. The following syntax shows how to use the function:

AVG(<expression>)

Nearly all aggregate functions use similar syntax. Each one requires that you specify some type of
expression. In most cases, the expression is simply the name of a column that is significant in terms of
how data is being grouped together in the GROUP BY clause. For example, the following SELECT state-
ment uses the AVG() function to average the values in the TotalStudents column:

SELECT Dept, Level, ROUND(AVG(TotalStudents)) AS Average
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

As you can see, the statement includes a GROUP BY clause that specifies that the results be grouped
together first by the Dept column and then by the Level column. The AVG() function then calculates the

350

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 350

TEAM LinG - Live, Informative, Non-cost and Genuine !

values in the TotalStudents column. The TotalStudents column is the only column significant to the way
that the data is being grouped together. Finding the average of the ClassID column (the only other col-
umn in the Classes table) would have no meaning in this sense; however, the number of students is
meaningful to the groups. As a result, the values returned by the SELECT statement include an average
number of students for each department at each level, as shown in the following result set:

+------+-------+---------+
| Dept | Level | Average |
+------+-------+---------+
ANTH	Upper	25
ANTH	Lower	24
ANTH	NULL	25
ENGL	Upper	28
ENGL	Lower	25
ENGL	NULL	27
MATH	Upper	18
MATH	Lower	25
MATH	NULL	23
NULL	NULL	25
+------+-------+---------+
10 rows in set (0.00 sec)

As you can see, an average is provided for each group. For example, the average class size for an Upper
level ANTH class is 25, but the average class size for a Lower level ANTH class is 24.

One thing you might have also noticed is that the statement uses the ROUND() function to round the val-
ues returned by the AVG() function. If you had not used the ROUND() function, the values in the Average
column would have been fractional. Another aspect of the statement that you might have noticed is the
use of the WITH ROLLUP option in the GROUP BY clause. As a result, averages are provided for the
departments as a whole and for all classes added together. For example, the ANTH department has an
average class size of 25 students per class, while the ENGL department has an average class size of 27
students.

SUM() Function
The next aggregate function is the SUM() function, which is shown in the following syntax:

SUM(<expression>)

The SUM() function returns the sum of the expression. In most cases, this means that the values in a col-
umn are added together, based on how columns are grouped together in the GROUP BY clause. For
example, suppose you modify the last SELECT statement to include the SUM() function rather than the
AVG() and ROUND() functions:

SELECT Dept, Level, SUM(TotalStudents) AS Total
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

351

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 351

TEAM LinG - Live, Informative, Non-cost and Genuine !

By using the SUM() function, the values in the TotalStudents column are added together, as shown in the
following result set:

+------+-------+-------+
| Dept | Level | Total |
+------+-------+-------+
ANTH	Upper	123
ANTH	Lower	49
ANTH	NULL	172
ENGL	Upper	85
ENGL	Lower	51
ENGL	NULL	136
MATH	Upper	18
MATH	Lower	74
MATH	NULL	92
NULL	NULL	400
+------+-------+-------+
10 rows in set (0.00 sec)

Now each grouping includes the total number of students. For example, the total number of students
that attend the Upper level ANTH classes is 123, compared to 49 for the Lower level.

MIN() and MAX() Functions
In addition to calculating averages and sums, you can also find the minimum or maximum value in a col-
umn. For example, the following aggregate function returns the minimum value from a group of values:

MIN(<expression>)

If you modify the last SELECT statement to use MIN() instead of SUM(), your statement reads as follows:

SELECT Dept, Level, MIN(TotalStudents) AS Minimum
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

Notice that nothing has changed in the statement except the function keyword and the name assigned
to the column. Now the results include the minimum value for each group, as shown in the following
result set:

+------+-------+---------+
| Dept | Level | Minimum |
+------+-------+---------+
ANTH	Upper	21
ANTH	Lower	19
ANTH	NULL	19
ENGL	Upper	25
ENGL	Lower	25
ENGL	NULL	25
MATH	Upper	18
MATH	Lower	22
MATH	NULL	18
NULL	NULL	18
+------+-------+---------+
10 rows in set (0.00 sec)

352

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 352

TEAM LinG - Live, Informative, Non-cost and Genuine !

As the results show, the minimum number of students in an Upper level anthropology class is 21. You
can also calculate the maximum value by using the MAX() function:

MAX(<expression>)

You can then modify your SELECT statement as follows:

SELECT Dept, Level, MAX(TotalStudents) AS Maximum
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

Now your result set includes the maximum number of students in each type of class:

+------+-------+---------+
| Dept | Level | Maximum |
+------+-------+---------+
ANTH	Upper	27
ANTH	Lower	30
ANTH	NULL	30
ENGL	Upper	32
ENGL	Lower	26
ENGL	NULL	32
MATH	Upper	18
MATH	Lower	29
MATH	NULL	29
NULL	NULL	32
+------+-------+---------+
10 rows in set (0.00 sec)

As you can see, the largest ANTH class size is in the Lower level, with 30 students in that class.

COUNT() Function
Another very useful aggregate function is COUNT(), which is shown in the following syntax:

COUNT([DISTINCT] {<expression> | *})

The COUNT() function is the only aggregate function that deviates from the basic syntax used by the other
aggregate functions. As you can see, there are two differences. You can include the DISTINCT keyword,
and you can specify an asterisk (*) rather than an expression. You should use the DISTINCT keyword if
you want to eliminate duplicates from the count. The asterisk is useful if you want to count all the rows,
whether or not they contain NULL values. If you specify a column rather than an asterisk, and that column
contains NULL values, the rows that contain the NULL values are not included in the count. If the column
contains no NULL values, then the results are the same whether you specify a column name or an asterisk.

Return to the example SELECT statement and replace the MAX() function with the COUNT() function:

SELECT Dept, Level, COUNT(*) AS NumberClasses
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

353

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 353

TEAM LinG - Live, Informative, Non-cost and Genuine !

Notice that the statement uses the asterisk rather than specifying a column name. By using the COUNT()
function, the statement now returns the number of classes in each group, as shown in the following
result set:

+------+-------+---------------+
| Dept | Level | NumberClasses |
+------+-------+---------------+
ANTH	Upper	5
ANTH	Lower	2
ANTH	NULL	7
ENGL	Upper	3
ENGL	Lower	2
ENGL	NULL	5
MATH	Upper	1
MATH	Lower	3
MATH	NULL	4
NULL	NULL	16
+------+-------+---------------+
10 rows in set (0.01 sec)

As you can see, the COUNT() function adds together the number of rows in each group. For example, the
number of rows in the ANTH/Upper group is 5. Because each row in the table represents one class, the
ANTH/Upper group contains five classes.

Bit Functions
The bit aggregate functions work in the same way that bit operators work. (Refer to Chapter 8 for more
information about bit operators.) When values in a grouped column are calculated using a bit function,
the bits are compared and a value is returned. The way in which the bits are compared depends on the
bit function being used.

The first bit aggregate function is the BIT_AND() function. The function uses the following syntax:

BIT_AND(<expression>)

The BIT_AND() function is similar to the bitwise AND (&) comparison operator in the way in which the
function compares bits. For any two or more values, the bits in each bit position are compared. Based on
the comparison, a 1 is returned if all bits in a bit position equal 1; otherwise, a 0 is returned. For example,
suppose that the Classes table that you have been using in this section includes an additional column
that tracks attributes that describe the class, such as room requirements or special equipment. You are
developing an application that uses the Attributes column to determine class-specific needs. The follow-
ing SELECT statement uses the BIT_AND() function to compare bits in the Attributes column:

SELECT Dept, Level, BIT_AND(Attributes) AS BitwiseAND
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

As the statement shows, the BIT_AND() function takes the TotalStudents column as an argument. Your
application can then use this information to form a bigger picture of the class attributes. For example,
these results would tell you if every class is going to need special equipment of some type. As a result,
the bits for each value in this column are compared, and the following results are returned:

354

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 354

TEAM LinG - Live, Informative, Non-cost and Genuine !

+------+-------+------------+
| Dept | Level | BitwiseAND |
+------+-------+------------+
ANTH	Upper	17
ANTH	Lower	18
ANTH	NULL	16
ENGL	Upper	0
ENGL	Lower	24
ENGL	NULL	0
MATH	Upper	18
MATH	Lower	20
MATH	NULL	16
NULL	NULL	0
+------+-------+------------+
10 rows in set (0.00 sec)

The next bit aggregate function is the BIT_OR() function, which is shown in the following syntax:

BIT_OR(<expression>)

This function is similar to the bitwise OR (|) bit operator. The function compares bits in each bit position
and returns 1 if at least one bit is 1; otherwise, 0 is returned. You can use the BIT_OR() function as you
use the BIT_AND() function:

SELECT Dept, Level, BIT_OR(TotalStudents) AS BitwiseOR
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

By using the BIT_OR() function, your results are now similar to the following:

+------+-------+-----------+
| Dept | Level | BitwiseOR |
+------+-------+-----------+
ANTH	Upper	31
ANTH	Lower	31
ANTH	NULL	31
ENGL	Upper	61
ENGL	Lower	27
ENGL	NULL	63
MATH	Upper	18
MATH	Lower	31
MATH	NULL	31
NULL	NULL	63
+------+-------+-----------+
10 rows in set (0.01 sec)

As with bit operators, bit functions also provide an exclusive OR (XOR) function, as shown in the follow-
ing syntax:

BIT_XOR(<expression>)

This function is similar to the bitwise exclusive XOR (^) bit operator in that it compares bits and returns 1
only if exactly one of the bit equals 1; otherwise, 0 is returned. For example, suppose that you update
your SELECT statement to include the BIT_XOR() function:

355

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 355

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT Dept, Level, BIT_XOR(TotalStudents) AS BitwiseXOR
FROM Classes
GROUP BY Dept, Level WITH ROLLUP;

Now your results are different from either the BIT_AND() function or the BIT_OR() function, as shown
in the following result set:

+------+-------+------------+
| Dept | Level | BitwiseXOR |
+------+-------+------------+
ANTH	Upper	23
ANTH	Lower	13
ANTH	NULL	26
ENGL	Upper	37
ENGL	Lower	3
ENGL	NULL	38
MATH	Upper	18
MATH	Lower	28
MATH	NULL	14
NULL	NULL	50
+------+-------+------------+
10 rows in set (0.00 sec)

As illustrated in this section, aggregate functions are a useful way to summarize data that’s been
grouped together. In the following example, you try out a couple of these functions by creating SELECT
statements that group together data in the DVDRentals database.

Try It Out Using Aggregate Functions to Group Data
The following steps describe how to use aggregate functions in your SELECT statements:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. First, use the MAX() function to return the maximum value in the NumDisks column of the
DVDs table. Execute the following SQL statement at the mysql command prompt:

SELECT MTypeID, MAX(NumDisks) AS MaxDisks
FROM DVDs
GROUP BY MTypeID;

You should receive results similar to the following:

+---------+----------+
| MTypeID | MaxDisks |
+---------+----------+
mt11	1
mt12	2
mt16	1
+---------+----------+
3 rows in set (0.00 sec)

356

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 356

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. Now use the COUNT() function to determine the number of rows in each RatingID/MTypeID
group in the DVDs table. Execute the following SQL statement at the mysql command prompt:

SELECT RatingID, MTypeID, COUNT(*) AS Total
FROM DVDs
GROUP BY RatingID, MTypeID WITH ROLLUP;

You should receive results similar to the following:

+----------+---------+-------+
| RatingID | MTypeID | Total |
+----------+---------+-------+
G	mt12	1
G	NULL	1
NR	mt11	2
NR	mt12	1
NR	mt16	1
NR	NULL	4
PG	mt11	2
PG	NULL	2
R	mt12	1
R	NULL	1
NULL	NULL	8
+----------+---------+-------+
11 rows in set (0.01 sec)

How It Works
The first aggregate function that you used in this exercise is the MAX() function, as shown in the follow-
ing statement:

SELECT MTypeID, MAX(NumDisks) AS MaxDisks
FROM DVDs
GROUP BY MTypeID;

In this statement, you grouped together data based on the values in the MTypeID column. You then used
the MAX() function to retrieve the maximum value from the NumDisks column in each group. For exam-
ple, one of the groups of data is based on the MTypeID value of mt12. For this group, the maximum
value in the NumDisks column is 2, so that is the value the MAX() function returns.

In the next SELECT statement that you created, you grouped data together first by the RatingID column
and then by the MTypeID column:

SELECT RatingID, MTypeID, COUNT(*) AS Total
FROM DVDs
GROUP BY RatingID, MTypeID WITH ROLLUP;

You then used the COUNT() function to return the number of rows in each group. For example, one
group is made up of the NR value in the RatingID column and the mt11 value in the MTypeID column.
This group is made up of two rows, so the COUNT() functions returns a value of 2. In other words, two
rows contain a RatingID value of NR and an MTypeID value of mt11.

357

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 357

TEAM LinG - Live, Informative, Non-cost and Genuine !

Performing System Operations
The functions examined so far in this chapter have been specific to the data itself; however, a number of
functions are related to system operations. For example, you can use function to encrypt and decrypt
data, return system-related information, or provide details about executed query and insert operations.
This section covers many of these functions and provides examples that demonstrate how they are used.

Encryption Functions
The encryption functions are used to encrypt and decrypt data. These functions are useful when securing
the data in your database. You can use these functions in conjunction with MySQL security to secure your
database. (For more information about database security, see Chapter 14.)

ENCODE() and DECODE() Functions
The first encryption function that you look at is the ENCODE() function, which encrypts a specified string.
To use the function, you must specify two arguments, the string to be encrypted and a key (password), as
shown in the following syntax:

ENCODE(<string>, <key>)

When you use the ENCODE() function to encrypt a string, the string is stored in a column as a binary
string that is the same length as the original string value. To better understand how this function works,
take a look at an example, which is based on the following table definition:

CREATE TABLE UserAccounts
(

UserID SMALLINT NOT NULL PRIMARY KEY,
Password VARCHAR(20) NOT NULL

);

Suppose that you want to insert a row in the UserAccounts table, but you want to encrypt the Password
value. To encrypt the Password value, you can use an INSERT statement similar to the following:

INSERT INTO UserAccounts
VALUES (101, ENCODE(‘pw101’, ‘key101’));

In this statement, the ENCODE() function defines the second value in the VALUES clause. The function
contains two arguments. The first (pw101) is the string that is to be encrypted. The second (key101) is
the password that decrypts the string value if necessary. Once the row is inserted, you can use the fol-
lowing SELECT statement to view the values in the new row:

SELECT * FROM Users;

The SELECT statement returns something similar to the following results:

+--------+----------+
| UserID | Password |
+--------+----------+
| 101 | ¢-*’_ |
+--------+----------+
1 row in set (0.00 sec)

358

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 358

TEAM LinG - Live, Informative, Non-cost and Genuine !

The result set shows that the Password value is encrypted. The only way that you can read the actual
string value is to use the DECODE() function, which is shown in the following syntax:

DECODE(<encrypted string>, <key>)

As you can see, you must supply the encrypted value as well as the password that you used to encrypt that
value. For example, you can use the following SELECT statement to display the actual Password value:

SELECT UserID, DECODE(Password, ‘key101’) AS Password
FROM UserAccounts;

Notice that the DECODE() function serves as the second element in the select list. The first argument in
the function is the Password column, and the second argument is the password. The statement returns
the following results:

+--------+----------+
| UserID | Password |
+--------+----------+
| 101 | pw101 |
+--------+----------+
1 row in set (0.00 sec)

As you can see, the original string value is displayed in the result set. The value, however, is still stored
in the Users table in its encrypted state.

PASSWORD(), MD5(), SHA(), and SHA1() Functions
MySQL provides several functions that support one-way hashing encryption, as opposed to the
ENCODE() function, which facilitates two-way encryption. The advantage to one-way encryption over
two-way is that a one-way is less likely to be compromised as a result of a key value being discovered.
In addition, one-way encryption eliminates the need to track the decryption key.

The first of these one-way hashing encryption functions is the PASSWORD() function. The PASSWORD()
function, which is shown in the following syntax, encrypts a specified string as a 41-byte hash value:

PASSWORD(<string>)

For this function, you need to provide only one argument: the string value to be encrypted. You can test
how this function works by using a SELECT statement similar to the following:

SELECT PASSWORD(‘MyPassword’);

The PASSWORD() function encrypts the MyPassword string value and returns the following results:

+---+
| PASSWORD(‘MyPassword’) |
+---+
| *ACE88B25517D0F22E5C3C643944B027D56345D2D |
+---+
1 row in set (0.00 sec)

359

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 359

TEAM LinG - Live, Informative, Non-cost and Genuine !

MySQL uses the PASSWORD() function to encrypt passwords that are stored in the user grant table. These
are the passwords that are associated with specific MySQL user accounts. You should use this function if
you plan to modify those passwords directly, after a user account has been created. (You learn more about
setting passwords in Chapter 14.) If you’re planning to build an application that uses a MySQL database,
and you store the passwords that are used for that application in the database, you should use the MD5()
or SHA() functions, rather than the PASSWORD() function, because the MD5() and SHA() functions con-
form to widely accepted standards that are supported on multiple platforms. If you use the PASSWORD()
function to encrypt the passwords, the platform on which your application is running might not support
that particular format, preventing users from using the application.

You can use the MD5() function to create a 128-bit encrypted value that is based on the specified string.
You use the MD5() function just like the PASSWORD() function, as shown in the following syntax.

MD5(<string>)

As with the PASSWORD() function, you can try out the MD5() function by using a SELECT statement sim-
ilar to the following:

SELECT MD5(‘MyPassword’);

The following result set shows the value returned by using the MD5() to encrypt the MyPassword string
value:

+----------------------------------+
| MD5(‘MyPassword’) |
+----------------------------------+
| 48503dfd58720bd5ff35c102065a52d7 |
+----------------------------------+
1 row in set (0.00 sec)

If you want to create a 160-bit encrypted value based on a specified string, you can use the SHA() or
SHA1() functions, which are synonymous. The SHA() function is shown in the following syntax:

SHA(<string>)

You can use the SHA() function just as you use the MD5() function:

SELECT SHA(‘MyPassword’);

When you use the SHA() function to encrypt the MyPassword string value, the following value is
returned:

+--+
| SHA(‘MyPassword’) |
+--+
| daa1f31819ed4928fd00e986e6bda6dab6b177dc |
+--+
1 row in set (0.00 sec)

Now that you have an overview of how encryption functions work, you’re ready to learn about system-
related functions that provide you with information about the MySQL operation.

360

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 360

TEAM LinG - Live, Informative, Non-cost and Genuine !

System-Related Functions
The system-related functions return information about the current users on the system, the connection
ID being used, and the current database. You can also use system-related functions to convert IP
addresses to numerical values and numerical values to IP addresses.

CURRENT_USER(), SESSION_USER(), SYSTEM_USER(),
and USER() Functions

The CURRENT_USER(), SESSION_USER(), SYSTEM_USER(), and USER() functions all return the user-
name and the hostname under which the current session is authenticated. In each case, the functions
take no arguments. For example, the syntax for the USER() function is as follows:

USER()

You can use the functions in any SELECT statement to return the username and hostname, as shown in
the following example:

SELECT USER();

The value returned by these functions is in the form of <username>@<hostname>, such as root@localhost.

Note that, under some circumstances, the CURRENT_USER() function can sometimes return a value
different from the other three functions. For example, if a client specifies a username, but the client is
authenticated anonymously, a difference can occur. For more information about these functions, see the
MySQL product documentation.

CONNECTION_ID(), DATABASE(), and VERSION() Functions
MySQL also provides functions that return information about the current connection, database, and
MySQL version. For example, the following function returns the current connection ID:

CONNECTION_ID()

As you can see, the function takes no arguments. If you invoke this function through a SELECT state-
ment such as the following, the value returned is a digit that represents the connection ID:

SELECT CONNECTION_ID();

You can also retrieve the name of the current database by using the DATEBASE() function:

DATABASE()

Again, you can use the function in an SQL statement to retrieve the name of the database. For example,
the following SELECT statement returns the name of the current database:

SELECT DATABASE();

If you are using the mysql client tool but are not working in the context of a specific database, a NULL is
returned.

361

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 361

TEAM LinG - Live, Informative, Non-cost and Genuine !

MySQL also allows you to check which version of MySQL that you’re working on:

VERSION()

Once again, no arguments are required, as shown in the following SELECT statement:

SELECT VERSION();

The statement returns the current version number.

INET_ATON() and INET_NTOA() Functions
If you want to convert a network address to a numeric value, you can use the following INET_ATON()
function:

INET_ATON(<network address>)

The function takes one argument, which is the network address. For example, the following SELECT
statement returns the numeric value for the address 127.0.0.1:

SELECT INET_ATON(‘127.0.0.1’);

When you execute the statement, MySQL returns the value of 2130706433. You can also take a numeric
value such as this and convert it to an IP address by using the following function:

INET_NTOA(<network integer>)

This function also takes only one argument, which is the numeric representation of a network address.
For example, the following SELECT statement converts the value 2130706433 to an IP address:

SELECT INET_NTOA(2130706433);

The statement returns an IP address of 127.0.0.1.

The INET_ATON() and INET_NTOA() functions are useful if you want to store IP addresses as numerical
values, rather than string values. Storing IP addresses as numerical values requires only 4 bytes of stor-
age per value, whereas storing them as string values requires up to 15 bytes.

As you have seen, you can use system-related functions to return information about users, connections,
and databases. Now you can examine functions that can be used in conjunction with your query and
insert operations.

Query and Insert Functions
The query and insert functions are used for specific types of queries and inserts. They include two func-
tions: the FOUND_ROWS() function and the LAST_INSERT_ID() function.

FOUND_ROWS() Function
The FOUND_ROWS() function is used in conjunction with the LIMIT clause of a SELECT statement.
Recalling from Chapter 7, the LIMIT clause specifies the number of rows to be returned in a result set.

362

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 362

TEAM LinG - Live, Informative, Non-cost and Genuine !

There might be times, though, when you want to know how many rows would have been returned had
you not used the LIMIT. The FOUND_ROWS() function allows you to determine the number of the entire
result set. The function is shown in the following syntax:

FOUND_ROWS()

As you can see, the FOUND_ROWS() function requires no arguments. To use the function, the SELECT
statement that includes the LIMIT clause must also include the SQL_CALC_FOUND_ROWS option. (The
SQL_CALC_FOUND_ROWS option is a SELECT statement option that specifies what the row count of a result
set would be if the LIMIT clause were not used.) Once you execute that SELECT statement, you can execute
a second SELECT statement that calls the FOUND_ROWS() function, as shown in the following example:

SELECT FOUND_ROWS();

Executing this statement displays the number of rows that would have been returned by the original
SELECT statement, had you not used the LIMIT clause.

LAST_INSERT_ID() Function
The LAST_INSERT_ID() function allows you to retrieve the last value that was inserted in an
AUTO_INCREMENT column. For example, suppose you insert a row in a table whose primary key column
is configured with the AUTO_INCREMENT option. When you insert that row, a value is automatically
added to the primary key value. The value increments by one, based on the highest value that already
exists in the column. Once you insert a row, you might want to know the value that was inserted in the
primary key column. You can use the following function to retrieve that value:

LAST_INSERT_ID()

As you can see, the function takes no argument. You simply call the function after your last insert opera-
tion, as shown in the following SELECT statement:

SELECT LAST_INSERT_ID();

The value retrieved by the LAST_INSERT_ID() function is specific to a client connection. This way, you
won’t retrieve an AUTO_INCREMENT value that another client added. You can retrieve only the last value
that you generated, not one that someone else generated.

In the following Try It Out exercise, you use several of the system-related functions that you learned
about in this last section. To use the functions, you create a number of SELECT statements that include
the functions as elements in the select lists of those statements.

Try It Out Using Functions to Perform System-Related Operations
The following steps describe how to create the SELECT statements that use functions to perform system-
related operations:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

363

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 363

TEAM LinG - Live, Informative, Non-cost and Genuine !

2. First, create a SELECT statement that retrieves information about the current user. Execute the
following SQL statement at the mysql command prompt:

SELECT USER();

You should receive results similar to the following:

+----------------+
| USER() |
+----------------+
| root@localhost |
+----------------+
1 row in set (0.00 sec)

3. Now retrieve the name of the current database. Execute the following SQL statement at the
mysql command prompt:

SELECT DATABASE();

You should receive results similar to the following:

+------------+
| DATABASE() |
+------------+
| dvdrentals |
+------------+
1 row in set (0.00 sec)

4. Next, create a SELECT statement that returns the connection ID. Execute the following SQL
statement at the mysql command prompt:

SELECT CONNECTION_ID();

You should receive results similar to the following (with a connection ID specific to your
connection):

+-----------------+
| CONNECTION_ID() |
+-----------------+
| 12 |
+-----------------+
1 row in set (0.01 sec)

5. Now try out the FOUND_ROWS() function. Before you do that, you must create a SELECT state-
ment that includes the SQL_CALC_FOUND_ROWS option and the LIMIT clause. Execute the fol-
lowing SQL statement at the mysql command prompt:

SELECT SQL_CALC_FOUND_ROWS DVDName
FROM DVDs
WHERE StatID=’s2’
ORDER BY DVDName
LIMIT 2;

You should receive results similar to the following:

364

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 364

TEAM LinG - Live, Informative, Non-cost and Genuine !

+---------+
| DVDName |
+---------+
| Amadeus |
| Mash |
+---------+
2 rows in set (0.00 sec)

6. Now you can create a SELECT statement that includes the FOUND_ROWS() function. Execute the
following SQL statement at the mysql command prompt:

SELECT FOUND_ROWS();

You should receive results similar to the following:

+--------------+
| FOUND_ROWS() |
+--------------+
| 5 |
+--------------+
1 row in set (0.00 sec)

How It Works
The first SELECT statement that you created includes the USER() function, which returns the name of the
current user and host:

SELECT USER();

The next SELECT statement that you created includes the DATABASE() function, which returns the name
of the current database:

SELECT DATABASE();

The third SELECT statement that you created includes the CONNECTION_ID() function, which returns
the current connection ID:

SELECT CONNECTION_ID();

Next you created a SELECT statement that includes the SQL_CALC_FOUND_ROWS option and a LIMIT clause:

SELECT SQL_CALC_FOUND_ROWS DVDName
FROM DVDs
WHERE StatID=’s2’
ORDER BY DVDName
LIMIT 2;

The SQL_CALC_FOUND_ROWS option stores the number of actual rows that would have been returned
had you not used the LIMIT clause. Because you used the SQL_CALC_FOUND_ROWS option, you can now
use the FOUND_ROWS() function:

SELECT FOUND_ROWS();

365

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 365

TEAM LinG - Live, Informative, Non-cost and Genuine !

The SELECT statement returns the value that was stored as a result of specifying the SQL_CALC_FOUND_ROWS
option. In this case, five rows would have been returned had not the LIMIT clause limited the result set to
two rows.

Summary
This chapter introduced you to a number of functions that you can use to retrieve, extract, calculate, and
summarize data. The chapter also provided numerous examples that demonstrated how to use the func-
tions. Although the majority of these examples were SELECT statements, you can use most functions in
any statement or statement clause that supports expressions. In addition, you can often use expressions
as arguments in the functions themselves. The way in which you can use a function depends on the
function itself. For this reason, the chapter provided a description of a variety of functions supported by
MySQL. Specifically, the chapter described how to use functions to perform any of the following tasks:

❑ Use comparison functions to compare values in an expression and use cast functions to convert
data to a different type.

❑ Use control flow functions to return results based on specifications in the functions.

❑ Use data-specific functions to perform operations on string, numerical, and date/time data.

❑ Use aggregate functions to summarize data grouped together in a SELECT statement.

❑ Use system-related functions to encrypt and decrypt data, view system information, and
retrieve information about query and insert operations.

Although you learned how to use numerous types of functions in this chapter, you should consider
reviewing the MySQL product documentation for additional information on any functions that you
include in your code. In addition, whenever you upgrade to a newer version of MySQL, you should
verify that the functions still perform as you would expect them to perform. Subtle differences can exist
between versions of MySQL. Despite the difference, the basic functionality supported by the functions
described in this chapter is fairly consistent from one version to the next. Chapter 10 covers accessing
data in multiple tables through the use of joins, subqueries, and unions.

Exercises
For these exercises, you create a series of SELECT statements that use several of the functions described
in this chapter. The statements are based on the Produce table, which is shown in the following table
definition:

CREATE TABLE Produce
(

ProdID SMALLINT UNSIGNED NOT NULL PRIMARY KEY,
ProdName VARCHAR(40) NOT NULL,
Variety VARCHAR(40) NULL,
InStock SMALLINT UNSIGNED NOT NULL,
OnOrder SMALLINT UNSIGNED NOT NULL,
DateOrdered DATE NOT NULL

);

366

Chapter 9

12_579509 ch09.qxd 3/1/05 9:59 AM Page 366

TEAM LinG - Live, Informative, Non-cost and Genuine !

You can assume that the following INSERT statement populated the Produce table:

INSERT INTO Produce
VALUES (101, ‘Apples’, ‘Red Delicious’, 2000, 1000, ‘2004-10-12’),
(102, ‘Apples’, ‘Fuji’, 1500, 1200, ‘2004-10-11’),
(103, ‘Apples’, ‘Golden Delicious’, 500, 1000, ‘2004-10-12’),
(104, ‘Apples’, ‘Granny Smith’, 300, 800, ‘2004-10-12’),
(105, ‘Oranges’, ‘Valencia’, 1200, 1600, ‘2004-10-11’),
(106, ‘Oranges’, ‘Seville’, 1300, 1000, ‘2004-10-12’),
(107, ‘Grapes’, ‘Red seedless’, 3500, 1500, ‘2004-10-13’),
(108, ‘Grapes’, ‘Green seedless’, 3500, 1500, ‘2004-10-12’),
(109, ‘Carrots’, NULL, 4500, 1500, ‘2004-10-15’),
(110, ‘Broccoli’, NULL, 800, 2500, ‘2004-10-15’),
(111, ‘Cherries’, ‘Bing’, 2500, 2500, ‘2004-10-11’),
(112, ‘Cherries’, ‘Rainier’, 1500, 1500, ‘2004-10-12’),
(113, ‘Zucchini’, NULL, 1000, 1300, ‘2004-10-09’),
(114, ‘Mushrooms’, ‘Shitake’, 800, 900, ‘2004-10-10’),
(115, ‘Mushrooms’, ‘Porcini’, 400, 600, ‘2004-10-11’),
(116, ‘Mushrooms’, ‘Portobello’, 900, 1100, ‘2004-10-13’),
(117, ‘Cucumbers’, NULL, 2500, 1200, ‘2004-10-14’);

Use the Produce table to complete the following exercises. You can find the answers to these exercises in
Appendix A.

1. Create a SELECT statement that retrieves data from the ProdName and InStock columns. The
result set should also include a column named Signage whose values depend on the values in
the ProdName column. For apples, the Signage column should display a value that reads “On
Sale!” For oranges, the Signage column should display a value that reads “Just Arrived!” For all
other produce, the Signage column should display a value that reads “Fresh Crop!” In addition,
the result set should include only those rows whose InStock value is greater than or equal to
1000, and the result set should be sorted according to the values in the ProdName column.

2. Create a SELECT statement that retrieves data from the ProdName, Variety, and InStock columns.
The values in the InStock column should be converted to a CHAR type, and the column should be
named InStock_CHAR. In addition, the result set should include only those rows whose InStock
value is greater than or equal to 1000, and the result set should be sorted according to the values
in the ProdName column.

3. Create a SELECT statement that retrieves data from the ProdName, Variety, and InStock
columns. The values in the ProdName and Variety column should be concatenated and dis-
played in a column named ProduceVariety. The values in the column should be in the format
<ProdName> (<Variety>). In addition, the result set should include only those rows whose
InStock value is greater than or equal to 1000 and those rows whose Variety value is not NULL.
Also, the result set should be sorted according to the values in the ProdName column.

4. Create a SELECT statement that is identical to the one in Exercise 3, only return the ProdName
and Variety values in all uppercase.

5. Create a SELECT statement that retrieves data from the Variety, OnOrder, and DateOrdered
columns. The result set should also include a column named DeliveryDate, which should include
values that add four days to the DateOrdered values. In addition, the result set should include
only rows for apples, and the rows should be sorted according to the variety of the apples.

367

Using Functions in Your SQL Statements

12_579509 ch09.qxd 3/1/05 9:59 AM Page 367

TEAM LinG - Live, Informative, Non-cost and Genuine !

