
10
Accessing Data in

Multiple Tables

In earlier chapters, you learned how to use SELECT statements to retrieve data from a database.
As you recall, MySQL supports a number of options that allow you to create statements that are as
precise as you need them to be. You can retrieve specific rows and columns, group and summarize
data, or use expressions that include literal values, operators, functions, and column names. In
learning about these options, most of the examples that you looked at retrieved data from only one
table. MySQL also allows you to retrieve data from multiple tables and then produce one result
set, as you would see when retrieving data from a single table. In fact, you can also access multiple
tables from within UPDATE and DELETE statements.

MySQL supports several methods that you can use to access multiple tables in a single SQL state-
ment. The first of these is to create a join in the statement that defines the tables to be linked
together. Another method that you can use is to embed a subquery in your statement so that you
can use the data returned by the subquery in the main SQL statement. In addition, you can create
a union that joins together two SELECT statements in order to produce a result set that contains
data retrieved by both statements. In this chapter, you learn about all three methods for accessing
data in multiple tables. This chapter covers the following topics:

❑ Using full and outer joins in SELECT, UPDATE, and DELETE statements that link together
two or more tables

❑ Adding subqueries to your SELECT, UPDATE, and DELETE statements that retrieve data
that can be used by those statements

❑ Create unions that join together two SELECT statements

Creating Joins in Your SQL Statements
In a normalized database, groups of data are stored in individual tables, and relationships are
established between those tables to link related data. As a result, often when creating SELECT,
UPDATE, or DELETE statements, you want to be able to access data in different tables to carry out
an operation affected by those relationships.

13_579509 ch10.qxd 3/1/05 9:59 AM Page 369

TEAM LinG - Live, Informative, Non-cost and Genuine !

To support the capability to access data in multiple tables, MySQL allows you to create joins in a state-
ment that define how data is accessed in multiple tables. A join is a condition defined in a SELECT,
UPDATE, or DELETE statement that links together two or more tables. In this section, you learn how to
create joins in each of these types of statements. Although much of the discussion focuses on creating
joins in a SELECT statement, which is where you will most commonly use joins, many of the elements
used in a SELECT join are the same elements used for UPDATE and DELETE joins.

Joining Tables in a SELECT Statement
As you’re creating your SELECT statements for your applications, you may want to create statements
that return data stored in different tables. The result set, though, cannot contain data that appears arbi-
trary in nature. In other words, the result set must be displayed in a way that suggests that the data
could have been retrieved from one table. The data must be integrated and logical, despite the fact that
it might come from different tables.

To achieve this integration, MySQL allows you to add joins to your SELECT statements that link together
two or more tables. To illustrate how to add joins to a SELECT statement, return to the SELECT statement
syntax that you first saw in Chapter 7:

<select statement>::=
SELECT
[<select option> [<select option>...]]
{* | <select list>}
[

FROM {<table reference> | <join definition>}
[WHERE <expression> [{<operator> <expression>}...]]
[GROUP BY <group by definition>]
[HAVING <expression> [{<operator> <expression>}...]]
[ORDER BY <order by definition>]
[LIMIT [<offset>,] <row count>]

]

<join definition>::=
{<table reference>, <table reference> [{, <table reference>}...]}
| {<table reference> [INNER | CROSS] JOIN <table reference> [<join condition>]}
| {<table reference> STRAIGHT_JOIN <table reference>}
| {<table reference> LEFT [OUTER] JOIN <table reference> [<join condition>]}
| {<table reference> RIGHT [OUTER] JOIN <table reference> [<join condition>]}
| {<table reference> NATURAL [{LEFT | RIGHT} [OUTER]] JOIN <table reference>}

<table reference>::=
<table name> [[AS] <alias>]
[{USE | IGNORE | FORCE} INDEX <index name> [{, <index name>}...]]

<join condition>::=
ON <expression> [{<operator> <expression>}...]
| USING (<column> [{, <column>}...])

The syntax is not presented in its entirety and contains only those elements that are relevant to defining
a join in a SELECT statement. (Refer to Chapter 7 for more information about the SELECT statement.) In
addition, the syntax includes elements that you have not seen before. These elements are based on the

370

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 370

TEAM LinG - Live, Informative, Non-cost and Genuine !

FROM clause, which has been modified from the original definition. As you can see, the FROM clause
syntax is now as follows:

FROM {<table reference> | <join definition>}

When you originally learned about the SELECT statement syntax in Chapter 7, the clause was quite
different:

FROM <table reference> [{, <table reference>}...]

Originally, the clause included only the <table reference> placeholders, and there was no mention
of the <join definition> placeholder. This was done for the sake of brevity and to avoid presenting
too much information at one time. As a result, the original syntax suggested that the FROM clause could
include only one or more table references. Another way to describe the FROM clause is by also including
the <join definition> placeholder, which defines how to add joins to a SELECT statement.

As you can see from the updated syntax of the FROM clause, the clause can include either a table refer-
ence or a join definition. You’ve already seen numerous examples of SELECT statements that use the
<table reference> format. These are the SELECT statements that include only one table name in the
FROM clause. If you plan to reference multiple tables in your FROM clause, you are defining some type of
join, in which case the <join definition> placeholder applies.

The <join definition> placeholder refers to a number of different types of joins, as the following
syntax shows:

<join definition>::=
{<table reference>, <table reference> [{, <table reference>}...]}
| {<table reference> [INNER | CROSS] JOIN <table reference> [<join condition>]}
| {<table reference> STRAIGHT_JOIN <table reference>}
| {<table reference> LEFT [OUTER] JOIN <table reference> [<join condition>]}
| {<table reference> RIGHT [OUTER] JOIN <table reference> [<join condition>]}
| {<table reference> NATURAL [{LEFT | RIGHT} [OUTER]] JOIN <table reference>}

The first of these is the basic join, which is made up of only table references separated by commas. The
other joins are the inner and cross joins, the straight join, the left join, the right join, and the natural join.
Later in this section, you learn about each type of join. For now, the most important point to know is that
you can define a FROM clause with a table reference or with one of several join definitions. It’s also worth
noting that each join definition includes one or two <table reference> placeholders. This is the same
<table reference> placeholder used when the FROM clause includes no join definition. The following
syntax describes the table reference:

<table reference>::=
<table name> [[AS] <alias>]
[{USE | IGNORE | FORCE} INDEX <index name> [{, <index name>}...]]

As you recall from Chapter 7, the <table reference> placeholder refers not only to the table name,
but also to the syntax used to assign an alias to that table or define index-related options. You use table
references in your joins in the same way you use a table reference directly in a FROM clause. At the very
least, you must provide a table name, but you can also use any of the other options.

371

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 371

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you move through this section, you learn how to create each type of join. To demonstrate how to cre-
ate joins, the section provides a number of examples. The examples are based on three tables: Books,
Authors, and AuthorBook. The table definition for the Books table is as follows:

CREATE TABLE Books
(

BookID SMALLINT NOT NULL PRIMARY KEY,
BookTitle VARCHAR(60) NOT NULL,
Copyright YEAR NOT NULL

)
ENGINE=INNODB;

For the purposes of the examples, you can assume that the following INSERT statement populated the
Books table:

INSERT INTO Books
VALUES (12786, ‘Letters to a Young Poet’, 1934),
(13331, ‘Winesburg, Ohio’, 1919),
(14356, ‘Hell\’s Angels’, 1966),
(15729, ‘Black Elk Speaks’, 1932),
(16284, ‘Noncomformity’, 1996),
(17695, ‘A Confederacy of Dunces’, 1980),
(19264, ‘Postcards’, 1992),
(19354, ‘The Shipping News’, 1993);

The Authors table is the next that you use, which is shown in the following CREATE TABLE statement:

CREATE TABLE Authors
(

AuthID SMALLINT NOT NULL PRIMARY KEY,
AuthFN VARCHAR(20),
AuthMN VARCHAR(20),
AuthLN VARCHAR(20)

)
ENGINE=INNODB;

The following INSERT statement shows the values that have been inserted in the Authors table:

INSERT INTO Authors
VALUES (1006, ‘Hunter’, ‘S.’, ‘Thompson’),
(1007, ‘Joyce’, ‘Carol’, ‘Oates’),
(1008, ‘Black’, NULL, ‘Elk’),
(1009, ‘Rainer’, ‘Maria’, ‘Rilke’),
(1010, ‘John’, ‘Kennedy’, ‘Toole’),
(1011, ‘John’, ‘G.’, ‘Neihardt’),
(1012, ‘Annie’, NULL, ‘Proulx’),
(1013, ‘Alan’, NULL, ‘Watts’),
(1014, ‘Nelson’, NULL, ‘Algren’);

Finally, the table definition for the AuthorBook table is as follows:

CREATE TABLE AuthorBook
(

AuthID SMALLINT NOT NULL,

372

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 372

TEAM LinG - Live, Informative, Non-cost and Genuine !

BookID SMALLINT NOT NULL,
PRIMARY KEY (AuthID, BookID),
FOREIGN KEY (AuthID) REFERENCES Authors (AuthID),
FOREIGN KEY (BookID) REFERENCES Books (BookID)

)
ENGINE=INNODB;

The following INSERT statement has been used to add data to the AuthorBook table:

INSERT INTO AuthorBook
VALUES (1006, 14356), (1008, 15729), (1009, 12786), (1010, 17695),
(1011, 15729), (1012, 19264), (1012, 19354), (1014, 16284);

Now that you’ve seen the table definitions for the Books, Authors, and AuthorBook tables, take a look
at Figure 10-1, which illustrates how these three tables are related to one another. Notice that a one-to-
many relationship exists between the Books and AuthorBook tables, and one exists between the Authors
and AuthorBook tables. What this implies is that each book may have been written by one or more
authors and that each author may have written one or more books.

Figure 10-1

As you learn more about each type of join, you might want to refer to these table definitions and the
illustration as a reference. In the meantime, take a look at the different types of joins supported by
MySQL. You can divide these joins into two broad categories: full joins and outer joins. Full joins and
outer joins are distinguished from one another in the way that they match rows in the tables that are
being joined. In a full join, the SELECT statement returns only rows that match the join condition. In an
outer join, the rows that match the join condition are returned as well as additional rows. As you work
your way through the chapter, you better understand how the two types of joins differ from one another.
Keep in mind, however, that the term “full join” is used here only as a way to group together similar
types of nonouter joins. The term used to describe these types of joins varies greatly in different docu-
mentation and in different RDBMS products. In some cases, the two types of joins are differentiated by
referring to inner joins and outer joins. Because one type of full join that MySQL supports is referred to
as an inner join, categorizing the joins in this way can lead to confusion. The important point to remem-
ber is that the terms “full join” and “outer join” are based on the results returned by the SELECT state-
ment, with full joins being the more common of the two.

Creating Full Joins
MySQL supports several types of full joins: the basic join, the inner and cross joins, and the straight join.
Of these, the basic join is the one most commonly used, so that is where the discussion begins.

Books

BookID:SMALLINT

BookTitle:VARCHAR(60)
Copyright:YEAR

AuthorBook

AuthID:SMALLINT-FK1
BookID:SMALLINT-FK2

Authors

AuthID:SMALLINT

AuthFN:VARCHAR(20)
AuthMN:VARCHAR(20)
AuthLN:CHAR(20)

373

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 373

TEAM LinG - Live, Informative, Non-cost and Genuine !

Creating Basic Joins
In some of the examples provided earlier in the book, you saw how to use basic joins. As you recall, you
simply specified a FROM clause, along with multiple table names, separated by commas. The following
syntax shows how a basic join is defined in the FROM clause:

<table reference>, <table reference> [{, <table reference>}...]

As you can see, the basic join must include at least two table references, but you can add as many table
references as necessary. Just remember that commas must separate the table references. For example, the
following SELECT statement creates a join on the Books and AuthorBook tables:

SELECT BookTitle, Copyright, AuthID
FROM Books, AuthorBook
ORDER BY BookTitle;

This statement is very similar to many of the SELECT statements that you’ve already seen, except that
the FROM clause includes two tables: Books and AuthorBook. Because the FROM clause references the
Books and the AuthorBook tables, these are the tables that are joined together.

Now take a look at the SELECT clause. The clause references three columns: BookTitle, Copyright, and
AuthID. The first two columns, BookTitle and Copyright, are in the Books table, and the third column,
AuthID, is in the Authors table.

The only other clause in the SELECT statement is the ORDER BY clause, which specifies that the query
results be sorted according to the values in the BookTitle column.

In the previous example SELECT statement, a join is defined on two tables; however, the join is not quali-
fied in any other way. (The columns referenced in the SELECT clause or the column referenced in the
ORDER BY clause do not affect how the join itself is defined.) When a basic join is not qualified in any
way, it returns a result set that matches every row in one table to every row in the joined table. This type
of result set is referred to as a Cartesian product. For example, the previous SELECT statement returns the
following Cartesian product:

+-------------------------+-----------+--------+
| BookTitle | Copyright | AuthID |
+-------------------------+-----------+--------+
A Confederacy of Dunces	1980	1008
A Confederacy of Dunces	1980	1009
A Confederacy of Dunces	1980	1010
A Confederacy of Dunces	1980	1011
A Confederacy of Dunces	1980	1012
A Confederacy of Dunces	1980	1012
A Confederacy of Dunces	1980	1014
A Confederacy of Dunces	1980	1006
Black Elk Speaks	1932	1012
Black Elk Speaks	1932	1012
Black Elk Speaks	1932	1014
Black Elk Speaks	1932	1006
Black Elk Speaks	1932	1008
Black Elk Speaks	1932	1009
Black Elk Speaks	1932	1010

374

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 374

TEAM LinG - Live, Informative, Non-cost and Genuine !

Black Elk Speaks	1932	1011
Hell’s Angels	1966	1014
Hell’s Angels	1966	1006
Hell’s Angels	1966	1008

The results shown here are only part of the rows returned by the SELECT statement. The statement
returns 64 rows in all. This is based on the fact that each table named in the FROM clause contains 8 rows.
If each row in the Books table is matched to each row in the AuthorBook table, there are 8 AuthorBook
rows for each Books row, or a total of 64 rows. For example, in the previous result set, you can see that
the first 8 rows have a BookTitle value of A Confederacy of Dunces. Each of these rows is matched with 1
row from the AuthorBook table. Because the SELECT clause specifies that the AuthID value from the
AuthorBook table should be displayed, that value from each row is displayed.

Using a join to return a Cartesian product is normally not very useful, and it could potentially return a
great many rows. For example, if you joined 3 tables that each included 100 rows (relatively small tables in
today’s world of databases), the Cartesian product returned by joining these tables would be made up of 1
million rows (100 x 100 x 100). As a result, most joins must be qualified in some way to limit the number of
rows returned and to ensure that the result set contains only data that is both useful and manageable.

When using a basic join to retrieve data from multiple tables, you can qualify the join by adding the nec-
essary conditions in the WHERE clause. For example, the following SELECT statement is similar to the last,
except for the addition of a WHERE clause:

SELECT BookTitle, Copyright, AuthID
FROM Books AS b, AuthorBook AS ab
WHERE b.BookID=ab.BookID
ORDER BY BookTitle;

The WHERE clause includes a condition that defines the join’s limitations. In this case, the values in the
BookID column in the Books table (b.BookID) are matched to the values in the BookID column of the
AuthorBook table (ab.BookID). As a result, the only rows that are returned are those in which the
BookID values in both tables are equal.

Notice that the Books and AuthorBook tables have been assigned alias names, b and ab, respectively.
Aliases are assigned to table names to make referencing those tables easier in other parts of the state-
ment. For example, each BookID reference in the WHERE clause is qualified with the alias for the table
name. The aliases are assigned to the table names in the FROM clause. Thereafter, any references to the
tables are through the use of the aliases. If there is no chance of confusing a column name with another
column, you do not need to qualify the column name. If the same column name is used in more than one
table, the name must be qualified so that MySQL knows which column is being referenced.

By adding the WHERE clause to the statement, the number of rows returned by the statement is drastically
reduced, as shown in the following result set:

+-------------------------+-----------+--------+
| BookTitle | Copyright | AuthID |
+-------------------------+-----------+--------+
A Confederacy of Dunces	1980	1010
Black Elk Speaks	1932	1008
Black Elk Speaks	1932	1011
Hell’s Angels	1966	1006
Letters to a Young Poet	1934	1009

375

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 375

TEAM LinG - Live, Informative, Non-cost and Genuine !

Noncomformity	1996	1014
Postcards	1992	1012
The Shipping News	1993	1012
+-------------------------+-----------+--------+
8 rows in set (0.00 sec)

As you can see, this is a very different result from the Cartesian product returned by the first example
you looked at. Now only rows that have the same BookID value in both columns are returned. For
example, the row in the Books table that contains a BookTitle value of A Confederacy of Dunces is
matched to the row in the AuthorBook table that contains an AuthID value of 1010. The rows in both
tables have the same BookID value, which is 17695.

In addition to the WHERE clause containing a condition that specifies the extent of the join, the WHERE
clause can include additional logical operators and expressions that further limit the results returned by
the SELECT statement. For example, the following SELECT statement returns only those rows that con-
tain a Copyright value less than 1980:

SELECT BookTitle, Copyright, ab.AuthID
FROM Books AS b, AuthorBook AS ab
WHERE b.BookID=ab.BookID AND Copyright<1980
ORDER BY BookTitle;

As you can see, this SELECT statement is identical to the preceding one, except for the addition of an
expression in the WHERE clause. Now the statement returns only those rows with matching BookID
values and whose Copyright value is less than 1980, as shown in the following query results:

+-------------------------+-----------+--------+
| BookTitle | Copyright | AuthID |
+-------------------------+-----------+--------+
Black Elk Speaks	1932	1008
Black Elk Speaks	1932	1011
Hell’s Angels	1966	1006
Letters to a Young Poet	1934	1009
+-------------------------+-----------+--------+
4 rows in set (0.00 sec)

As you can see, the statement returns only 4 rows, which is quite a difference from the 64 rows returned
by the first statement. As this last example demonstrates, the more specific you can be in your SELECT
statement, the more precise the results.

In the last few examples that you’ve seen, the SELECT statements included joins that linked two tables
together. As you can see from the query results, returning only an AuthID value might not always be
very useful. Wouldn’t it be better to know the author’s name for that book?

Fortunately, MySQL allows you to join more than two tables together. The basic statement is similar to
what you’ve already seen; only a few supplemental elements are added to bring in the additional table,
as shown in the following SELECT statement:

SELECT BookTitle, Copyright, CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Books AS b, AuthorBook AS ab, Authors AS a
WHERE b.BookID=ab.BookID AND ab.AuthID=a.AuthID AND Copyright<1980
ORDER BY BookTitle;

376

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 376

TEAM LinG - Live, Informative, Non-cost and Genuine !

Now the FROM clause includes three tables: Books, AuthorBook, and Authors. Each table is assigned an
alias, which is then used in the WHERE clause. The WHERE clause also contains an additional element,
which is a condition that specifies that the AuthID value in the AuthorBook table must match the
AuthID value in the Authors table. When all the conditions in the WHERE clause are taken together, the
result is that, for each row returned by the result set, the BookID value in the Books table must equal
the BookID value in the AuthorBook table and the AuthID value in the AuthorBook table must equal the
AuthID value in the Authors table and the Copyright value must be less than 1980, as shown in the fol-
lowing query results:

+-------------------------+-----------+--------------------+
| BookTitle | Copyright | Author |
+-------------------------+-----------+--------------------+
Black Elk Speaks	1932	Black Elk
Black Elk Speaks	1932	John G. Neihardt
Hell’s Angels	1966	Hunter S. Thompson
Letters to a Young Poet	1934	Rainer Maria Rilke
+-------------------------+-----------+--------------------+
4 rows in set (0.00 sec)

As you can see, the query results now show the name of the author rather than the AuthID value. The
author’s first, middle, and last names are taken from the Authors table and concatenated in one value.
As a result, the query returns information that is far more useful than you saw in the preceding state-
ments, and you no longer have to try to decipher primary key values to determine who the author is.

Creating Inner Joins and Cross Joins
When it comes to joins, MySQL provides numerous ways to accomplish the same results. For example,
you can create inner joins and cross joins that produce identical result sets as those generated by the
basic joins you saw in the previous section. As you recall from the Introduction, there are a number of
reasons why MySQL provides different methods for achieving the same results. For example, as MySQL
has tried to conform to the SQL standard, statements have evolved from one version of MySQL to the
next; however, the original statement is supported for legacy systems. In addition, by supporting differ-
ent ways to achieve different results, your code can be more portable in an application. For instance, one
version of the SQL statement might be supported in another RDBMS, so the statement can be used to
retrieve data from two different database systems. If you’re creating an application that accesses only a
MySQL database and that database is managed by a current version of MySQL, you’re usually safe
using the simplest statement available. For more complex joins, you might want to try different types of
joins to determine whether one performs better than the other. Normally, though, this isn’t necessary.

Now take a look at how an inner or cross join is created. The following syntax shows you how to add an
inner or cross join to your SELECT statement:

<table reference> [INNER | CROSS] JOIN <table reference> [<join condition>]

<join condition>::=
ON <expression> [{<operator> <expression>}...]
| USING (<column> [{, <column>}...])

As the syntax illustrates, you must include a table reference, the optional INNER or CROSS keyword, the
JOIN keyword, the second table reference, and an optional join condition. The join condition can consist
of an ON clause or a USING clause. The join condition defines the circumstances of the join. In the basic

377

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 377

TEAM LinG - Live, Informative, Non-cost and Genuine !

join, the circumstances are defined in the WHERE clause, but in the inner and cross joins, this is accom-
plished through the join condition.

For all practical purposes, specifying the INNER or CROSS keywords produces the same results as not
specifying either. (When neither the INNER nor the CROSS keywords are specified, the join is usually
referred to as a cross join.) In addition, if you don’t qualify the join in any way, the results produce the
same Cartesian product as their basic join counterpart. For example, the following four statements pro-
duce the same results:

SELECT BookTitle, AuthID FROM Books, AuthorBook;
SELECT BookTitle, AuthID FROM Books JOIN AuthorBook;
SELECT BookTitle, AuthID FROM Books INNER JOIN AuthorBook;
SELECT BookTitle, AuthID FROM Books CROSS JOIN AuthorBook;

Each statement returns 64 rows. Each row in the Books table is matched to each row in the AuthorBook
table. As a result, the join must be qualified in order to produce useful results. To qualify the inner or
cross join, you can use the ON or USING clause rather than the WHERE clause. For example, the following
SELECT statement uses an ON clause to qualify the join condition:

SELECT BookTitle, Copyright, ab.AuthID
FROM Books AS b JOIN AuthorBook AS ab

ON b.BookID=ab.BookID
ORDER BY BookTitle;

As you can see, the FROM clause defines the join. Rather than separating the joined tables with a comma,
the statement uses the JOIN keyword. In addition, the ON clause specifies that the BookID values in the
Books and AuthorBook tables must be equal in order for a row to be returned. By defining a join condi-
tion in an ON clause, the results are limited to eight rows, as shown in the following result set:

+-------------------------+-----------+--------+
| BookTitle | Copyright | AuthID |
+-------------------------+-----------+--------+
A Confederacy of Dunces	1980	1010
Black Elk Speaks	1932	1008
Black Elk Speaks	1932	1011
Hell’s Angels	1966	1006
Letters to a Young Poet	1934	1009
Noncomformity	1996	1014
Postcards	1992	1012
The Shipping News	1993	1012
+-------------------------+-----------+--------+
8 rows in set (0.00 sec)

You can produce the same results by using a USING clause to qualify the join, as shown in the following
statement:

SELECT BookTitle, Copyright, ab.AuthID
FROM Books JOIN AuthorBook AS ab

USING (BookID)
ORDER BY BookTitle;

378

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 378

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, the USING clause requires only that you specify the joined columns (in parentheses). You
can use this technique only when the joined columns in each table share the same name. If you create a
join that is based on more than one column, you must specify all those columns and separate them with
a comma.

As is the case with the basic join, you can also further qualify an inner or full join by specifying a condi-
tion in the WHERE clause, as shown in the following statement:

SELECT BookTitle, Copyright, ab.AuthID
FROM Books AS b JOIN AuthorBook AS ab

ON b.BookID=ab.BookID
WHERE Copyright<1980
ORDER BY BookTitle;

When defining inner or cross joins, you should specify the linked columns in the ON or USING clause and
any other conditions in the WHERE clause. You can also specify the join conditions in the WHERE clause, as
you do in a basic join, and not use ON or USING clauses. Your statements are generally easier to read,
however, if you use ON or USING clauses.

Returning now to the preceding SELECT statement, if you execute this statement, it produces the same
results as its basic join counterpart, as shown in the following result set:

+-------------------------+-----------+--------+
| BookTitle | Copyright | AuthID |
+-------------------------+-----------+--------+
Black Elk Speaks	1932	1008
Black Elk Speaks	1932	1011
Hell’s Angels	1966	1006
Letters to a Young Poet	1934	1009
+-------------------------+-----------+--------+
4 rows in set (0.00 sec)

You can also create inner and cross joins on more than two tables. As with the preceding example, you
should specify the necessary join conditions in an ON or USING clause. For example, the following
SELECT statement includes two ON clauses:

SELECT BookTitle, Copyright, CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Books AS b CROSS JOIN AuthorBook AS ab ON b.BookID=ab.BookID

CROSS JOIN Authors AS a ON ab.AuthID=a.AuthID
WHERE Copyright<1980
ORDER BY BookTitle;

In this statement, the FROM clause first joins the Books table to the AuthorBook table. The join is qualified
through the use of an ON clause that matches the values in the BookID column of each table. The FROM
clause then goes on to join the AuthorBook table to the Authors table. The second join is qualified
through the use of an ON clause that matches the values of the AuthID column of the Authors table and
the AuthorBook table. Consequently, the following results are produced:

379

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 379

TEAM LinG - Live, Informative, Non-cost and Genuine !

+-------------------------+-----------+--------------------+
| BookTitle | Copyright | Author |
+-------------------------+-----------+--------------------+
Black Elk Speaks	1932	Black Elk
Black Elk Speaks	1932	John G. Neihardt
Hell’s Angels	1966	Hunter S. Thompson
Letters to a Young Poet	1934	Rainer Maria Rilke
+-------------------------+-----------+--------------------+
4 rows in set (0.00 sec)

Finally, you can achieve the same results in the preceding statement by using two USING clauses, rather
than ON clauses, as shown in the following statement:

SELECT BookTitle, Copyright, CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Books JOIN AuthorBook USING (BookID)

JOIN Authors USING (AuthID)
WHERE Copyright<1980
ORDER BY BookTitle;

As you can see, the USING clause is a little simpler to create and read because you have to specify the
linking columns only once. The USING clause is also handy because it often eliminates the need to use
aliases.

Creating Straight Joins
Another type of join that you can create is the straight join, which is similar to a basic join in most
respects. The primary difference is that a straight join allows you to specify that the join optimizer read
the table on the left before the table on the right. (The join optimizer is a component of the MySQL server
that tries to determine the best way to process a join.) You would use a straight join in those cases in
which you believe that the join optimizer is not processing your SELECT statement as efficiently as it
could. In most cases, though, you should rely on the optimizer.

To create a straight join, you can use the following syntax in your FROM clause:

<table reference> STRAIGHT_JOIN <table reference>

As you can see, you must specify a table reference, followed by the STRAIGHT_JOIN keyword, which is
then followed by another table reference. For example, the following SELECT statement produces the
same results that you saw in the previous two examples:

SELECT BookTitle, Copyright, CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Books AS b STRAIGHT_JOIN AuthorBook AS ab STRAIGHT_JOIN Authors AS a
WHERE b.BookID=ab.BookID AND ab.AuthID=a.AuthID AND Copyright<1980
ORDER BY BookTitle;

One thing to notice about the straight join is that, like the basic join, the join is qualified in the WHERE
clause, not in an ON or USING clause. In fact, the only difference between a straight join and a basic join,
in terms of syntax, is that in a straight join you use the STRAIGHT_JOIN keyword to separate the table
references, rather than a comma.

380

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 380

TEAM LinG - Live, Informative, Non-cost and Genuine !

MySQL provides another method that you can use to create a straight join. Instead of using the straight
join syntax in the FROM clause, you use the basic join syntax and you specify the STRAIGHT_JOIN table
option in the SELECT clause, as shown in the following example:

SELECT STRAIGHT_JOIN BookTitle, Copyright,
CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author

FROM Books AS b, AuthorBook AS ab, Authors AS a
WHERE b.BookID=ab.BookID AND ab.AuthID=a.AuthID AND Copyright<1980
ORDER BY BookTitle;

As you can see, the table references in the FROM clause are separated by commas, which is typical of a
basic join. In addition, the SELECT clause includes the STRAIGHT_JOIN select option. This statement
returns the same results that you saw in the preceding three examples.

So far in this chapter, you have learned how to create SELECT statements that use full joins to retrieve
data from two or more tables. In this Try It Out section you create your own SELECT statements that
retrieve data from multiple tables in the DVDRentals database.

Try It Out Using Full Joins to Retrieve Data
Follow these steps to create statements that use full joins:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELECT statement that you create uses a basic join to retrieve DVDName values from
the DVDs table and MTypeDescrip values from the MovieTypes table. Execute the following
SQL statement at the mysql command prompt:

SELECT DVDName, MTypeDescrip As MovieType
FROM DVDs AS d, MovieTypes AS mt
WHERE d.MTypeID=mt.MTypeID AND StatID=’s2’
ORDER BY DVDName;

You should receive results similar to the following:

+-------------------------------+-----------+
| DVDName | MovieType |
+-------------------------------+-----------+
Amadeus	Drama
Mash	Comedy
The Maltese Falcon	Drama
The Rocky Horror Picture Show	Comedy
What’s Up, Doc?	Comedy
+-------------------------------+-----------+
5 rows in set (0.00 sec)

381

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 381

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. The next SELECT statement that you create is similar to the preceding one except that you
also retrieve data from the Ratings table. Execute the following SQL statement at the mysql
command prompt:

SELECT DVDName, MTypeDescrip As MovieType,
CONCAT(d.RatingID, ‘: ‘, r.RatingDescrip) AS Rating

FROM DVDs AS d, MovieTypes AS mt, Ratings AS r
WHERE d.MTypeID=mt.MTypeID AND d.RatingID=r.RatingID

AND StatID=’s2’
ORDER BY DVDName;

You should receive results similar to the following:

+-------------------------------+-----------+---------------------------------+
| DVDName | MovieType | Rating |
+-------------------------------+-----------+---------------------------------+
Amadeus	Drama	PG: Parental guidance suggested
Mash	Comedy	R: Under 17 requires adult
The Maltese Falcon	Drama	NR: Not rated
The Rocky Horror Picture Show	Comedy	NR: Not rated
What’s Up, Doc?	Comedy	G: General audiences
+-------------------------------+-----------+---------------------------------+
5 rows in set (0.00 sec)

4. Now retrieve the same data that your retrieved in the preceding SELECT statement, only this
time, use a cross join. Execute the following SQL statement at the mysql command prompt:

SELECT DVDName, MTypeDescrip AS MovieType,
CONCAT(d.RatingID, ‘: ‘, r.RatingDescrip) AS Rating

FROM MovieTypes AS mt CROSS JOIN DVDs AS d USING (MTypeID)
CROSS JOIN Ratings AS r USING (RatingID)

WHERE StatID=’s2’
ORDER BY DVDName;

You should receive results similar to those you received in the preceding statement.

5. In the next SELECT statement that you create, you use an inner join to retrieve customer names
and the transactions IDs for those transactions that involve the DVD with a DVDID value of 4.
Execute the following SQL statement at the mysql command prompt:

SELECT CONCAT_WS(‘ ‘, CustFN, CustMN, CustLN) AS Customer, TransID
FROM Customers INNER JOIN Orders USING (CustID)

INNER JOIN Transactions USING (OrderID)
WHERE DVDID=4
ORDER BY CustLN;

You should receive results similar to the following:

+-------------------------+---------+
| Customer | TransID |
+-------------------------+---------+
Ralph Frederick Johnson	2
Peter Taylor	12
Anne Thomas	8
Hubert T. Weatherby	5
+-------------------------+---------+
4 rows in set (0.01 sec)

382

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 382

TEAM LinG - Live, Informative, Non-cost and Genuine !

6. Next, use a basic join in a SELECT statement to join together four tables in order to display the
names of movie participants, the movies that they participated in, and the roles they played in
those movies. Execute the following SQL statement at the mysql command prompt:

SELECT CONCAT_WS(‘ ‘, PartFN, PartMN, PartLN) AS Participant, DVDName,
RoleDescrip AS Role

FROM DVDs AS d, DVDParticipant AS dp, Participants AS p, Roles AS r
WHERE d.DVDID=dp.DVDID AND p.PartID=dp.PartID AND r.RoleID=dp.RoleID
ORDER BY PartLN;

You should receive results similar to the following:

+------------------+--------------------+--------------+
| Participant | DVDName | Role |
+------------------+--------------------+--------------+
John Barry	Out of Africa	Composer
Irving Berlin	White Christmas	Composer
Humphrey Bogart	The Maltese Falcon	Actor
Henry Buck	What’s Up, Doc?	Screenwriter
Rosemary Clooney	White Christmas	Actor
Bing Crosby	White Christmas	Actor
Michael Curtiz	White Christmas	Director
Danny Kaye	White Christmas	Actor
Sydney Pollack	Out of Africa	Producer
Sydney Pollack	Out of Africa	Director
Robert Redford	Out of Africa	Actor
Meryl Streep	Out of Africa	Actor
+------------------+--------------------+--------------+
12 rows in set (0.02 sec)

How It Works
In this exercise, you created five SELECT statements that each use a different type of join to integrate data
from more than one table in a single result set. In this first statement, you defined a basic join that inte-
grated data from the DVDs table and the MovieTypes table:

SELECT DVDName, MTypeDescrip As MovieType
FROM DVDs AS d, MovieTypes AS mt
WHERE d.MTypeID=mt.MTypeID AND StatID=’s2’
ORDER BY DVDName;

The join is defined in the FROM clause. By including more than one table in the clause, you’re specifying
that a join be created. Because this is a basic join, the join is qualified by adding a condition to the WHERE
clause that specifies that the MTypeID values in both tables be equal. The WHERE clause also contains a
second condition that specifies that the StatID value must be s2. As a result, any row returned by this
statement must have equal values in the MTypeID columns of both tables and the StatID value in the
DVDs table must equal s2.

The next SELECT statement is similar to the preceding one except that you added a third table to the
statement:

SELECT DVDName, MTypeDescrip As MovieType,
CONCAT(d.RatingID, ‘: ‘, r.RatingDescrip) AS Rating

FROM DVDs AS d, MovieTypes AS mt, Ratings AS r

383

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 383

TEAM LinG - Live, Informative, Non-cost and Genuine !

WHERE d.MTypeID=mt.MTypeID AND d.RatingID=r.RatingID
AND StatID=’s2’

ORDER BY DVDName;

The FROM clause now includes the Ratings table in addition to the DVDs and MovieTypes tables. In addi-
tion, you added a third condition to the WHERE clause that specifies that the RatingID values in the DVDs
table and the Ratings table must be equal. As a result, any row returned by this statement must have
equal values in the MTypeID columns of the DVDs and MovieTypes tables and values in the RatingID
columns of the DVDs and Ratings tables and the StatID value in the DVDs table must equal s2. In addi-
tion, the updated SELECT statement also includes a third column in the result set that concatenates the
RatingID value and the RatingDescrip value for each returned row.

You then created a SELECT statement that retrieved the same results as the preceding statement. The next
statement, however, uses a cross join rather than a basic join:

SELECT DVDName, MTypeDescrip AS MovieType,
CONCAT(d.RatingID, ‘: ‘, r.RatingDescrip) AS Rating

FROM MovieTypes AS mt CROSS JOIN DVDs AS d USING (MTypeID)
CROSS JOIN Ratings AS r USING (RatingID)

WHERE StatID=’s2’
ORDER BY DVDName;

As the statement shows, the FROM clause now includes the join definitions and the USING clauses. The
MovieTypes table is joined to the DVDs table, and that join is qualified through the USING clause, which
specifies the MTypeID column. The Orders DVDs table is then joined to the Ratings table, and that join is
qualified through the USING clause, which specifies the RatingID column.

In the next SELECT statement that you created, you defined an inner join on the Customers, Orders, and
Transactions table:

SELECT CONCAT_WS(‘ ‘, CustFN, CustMN, CustLN) AS Customer, TransID
FROM Customers INNER JOIN Orders USING (CustID)

INNER JOIN Transactions USING (OrderID)
WHERE DVDID=4
ORDER BY TransID;

The Customers table is joined to the Orders table, and that join is qualified through the USING clause,
which specifies the CustID column. The Orders table is then joined to the Transactions table, and that join
is qualified through the USING clause, which specifies the Order ID column. The statement returns the
customer name (concatenated) from the Customers table and the TransID value from the Transactions
table. Only rows that have a DVDID value of 4 are returned, as specified by the WHERE clause.

The final SELECT statement that you created joined the DVDs, DVDParticipant, Participants, and Roles
table:

SELECT CONCAT_WS(‘ ‘, PartFN, PartMN, PartLN) AS Participant, DVDName,
RoleDescrip AS Role

FROM DVDs AS d, DVDParticipant AS dp, Participants AS p, Roles AS r
WHERE d.DVDID=dp.DVDID AND p.PartID=dp.PartID AND r.RoleID=dp.RoleID
ORDER BY PartLN;

384

Chapter 10

13_579509 ch10.qxd 3/1/05 9:59 AM Page 384

TEAM LinG - Live, Informative, Non-cost and Genuine !

The statement creates a basic join and defines the join conditions in the WHERE clause, which states that the
DVDID values in the DVDs and DVDParticipant tables must be equal, the PartID values in the Participants
and DVDParticipant tables must be equal, and the RoleID values in the Roles and DVDParticipant tables
must be equal. The result set includes a list of the participants (from the Participants table), the names of
the movies in which they participated (from the DVDs table), and the roles they played (from the Roles
table). The link among these three tables is defined through the DVDParticipant table, which is why all
tables must join to that table.

As you have seen, MySQL supports a number of full joins. There might be times when you want to dis-
play results that include rows in addition to those that match the join condition. To include additional
rows in your result sets, you can use the outer join.

Creating Outer Joins
Except for the joins that returned Cartesian products, the joins that you have seen so far have been those
that returned only rows that contained matching values in the specified columns. Suppose that you want
to include details that do not fit these conditions, yet at the same time, you don’t want to return large
result sets of unnecessary information. For example, in the statements that you looked at when learning
about full joins, you saw joins that were based on the Books, AuthorBook, and Authors tables (shown in
Figure 10-1). Some of the joins that were created allowed you to match authors to books so that you were
able to view books and their authors together. What if the Books table contains books for which no
authors are listed in the Authors table? Or authors are listed in the Authors table that do not have books
listed in the Books table?

MySQL allows you to view these authors or books by using outer joins. You can create one of two types
of outer joins: a left join or a right join. A left join pulls all values from the table on the left, and a right
join pulls all values from the table listed on the right. To help illustrate this point, Figure 10-2 shows a
Venn diagram that represents the left outer join. The circle on the left represents the Books table, and the
circle on the right represents the Authors table. The Venn diagram illustrates what will happen when
these tables are joined together. The values on the left side of the join are taken from the Books table, and
the values on the right side of the join are taken from the Authors table. In a full join, only the values that
are matched by the join are returned. These are the values that appear in the section where the two cir-
cles intersect. As you can see, each title is matched with one or more authors.

Figure 10-2 shows something else. The book Winesburg, Ohio cannot be matched with an author because
no author exists in the Authors table for that book. In a full join, this book is not included in the results
set. Because this is a left outer join, the book is still returned, but it is matched with a value of NULL.

If this were a right outer join, any authors that do not match a book in the Books table are paired with
NULL values, as is the case of the books for which no authors are listed. The following sections examine
each type of outer join to better illustrate how they work.

385

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 9:59 AM Page 385

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 10-2

Creating Left Joins
The syntax for a left outer join is similar to an inner or cross join, except that you must include the LEFT
keyword, as shown in the following syntax:

<table reference> LEFT [OUTER] JOIN <table reference> [<join condition>]

<join condition>::=
ON <expression> [{<operator> <expression>}...]
| USING (<column> [{, <column>}...])

As you can see, you first specify a table reference, followed by the LEFT keyword, the optional OUTER
keyword, and then the JOIN keyword. This is all followed by another table reference and an optional
join condition, which can be an ON clause or a USING clause. For example, the following SELECT state-
ment defines a left outer join on the Books and AuthorBook tables:

Books

A Confederacy of Dunces
John Kennedy Toole

Black Elk Speaks
Black Elk

John G. Neihardt

Hell's Angels
Hunter S. Thompson

Letters to a Young Poet
Rainer Maria Rilke

Nonconformity
Nelson Algren

Postcards
Annie Proulx

The Shipping New
Annie Proulx

Winesburg, Ohio NULL

Authors

386

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 386

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT BookTitle, Copyright, AuthID
FROM Books AS b LEFT JOIN AuthorBook AS ab

ON b.BookID=ab.BookID
ORDER BY BookTitle;

As you can see, the FROM clause first references the Books table and then references the AuthorBook
table. As a result, all results are returned from the Books table (the left table), and only the results that
meet the condition specified in the ON clause are returned from the AuthorBook table (the right table),
as shown in the following result set:

+-------------------------+-----------+--------+
| BookTitle | Copyright | AuthID |
+-------------------------+-----------+--------+
A Confederacy of Dunces	1980	1010
Black Elk Speaks	1932	1008
Black Elk Speaks	1932	1011
Hell’s Angels	1966	1006
Letters to a Young Poet	1934	1009
Noncomformity	1996	1014
Postcards	1992	1012
The Shipping News	1993	1012
Winesburg, Ohio	1919	NULL
+-------------------------+-----------+--------+
9 rows in set (0.00 sec)

If you refer to the last row, you can see that a NULL value has been returned for the AuthID column. A
NULL is returned because the book Winesburg, Ohio is listed in the Books table, but no author is listed in
the Authors table. Whenever a value in the left table doesn’t have an associated value in the right table,
NULL is returned for the left table.

You can receive the same results as the preceding statement by replacing the ON clause with the USING
clause, as shown in the following statement:

SELECT BookTitle, Copyright, AuthID
FROM Books LEFT JOIN AuthorBook

USING (BookID)
ORDER BY BookTitle;

You can also use a left join to link more than two tables. For example, the following SELECT statement
defines a left join on the Books, AuthorBook, and Authors tables:

SELECT BookTitle, Copyright, CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Books AS b LEFT JOIN AuthorBook AS ab ON b.BookID=ab.BookID

LEFT JOIN Authors AS a ON ab.AuthID=a.AuthID
ORDER BY BookTitle;

As you can see, the FROM clause includes an additional left join definition. Because of this, the result set
can now include the actual author’s name, rather than an ID, while preserving the left join, as shown in
the following results:

387

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 387

TEAM LinG - Live, Informative, Non-cost and Genuine !

+-------------------------+-----------+--------------------+
| BookTitle | Copyright | Author |
+-------------------------+-----------+--------------------+
A Confederacy of Dunces	1980	John Kennedy Toole
Black Elk Speaks	1932	Black Elk
Black Elk Speaks	1932	John G. Neihardt
Hell’s Angels	1966	Hunter S. Thompson
Letters to a Young Poet	1934	Rainer Maria Rilke
Noncomformity	1996	Nelson Algren
Postcards	1992	Annie Proulx
The Shipping News	1993	Annie Proulx
Winesburg, Ohio	1919	
+-------------------------+-----------+--------------------+
9 rows in set (0.00 sec)

As you probably noticed, the Author column for the last row is now blank because you used the CON-
CAT_WS() function to concatenate the author names. Because the function cannot concatenate a value
that doesn’t exist, MySQL does not know to return NULL, so no value is inserted in the Author column.
The results still tell you that Winesburg, Ohio is listed in the Books table, but no matching author is listed
in the Authors table.

If you were to modify the preceding SELECT statement to remove the CONCAT_WS() function, your state-
ment would now look similar to the following:

SELECT BookTitle, Copyright, AuthFN, AuthMN, AuthLN
FROM Books AS b LEFT JOIN AuthorBook AS ab ON b.BookID=ab.BookID

LEFT JOIN Authors AS a ON ab.AuthID=a.AuthID
ORDER BY BookTitle;

Now MySQL interprets the columns as it would any column in the right table of a left join, as shown in
the following result set:

+-------------------------+-----------+--------+---------+----------+
| BookTitle | Copyright | AuthFN | AuthMN | AuthLN |
+-------------------------+-----------+--------+---------+----------+
A Confederacy of Dunces	1980	John	Kennedy	Toole
Black Elk Speaks	1932	Black	NULL	Elk
Black Elk Speaks	1932	John	G.	Neihardt
Hell’s Angels	1966	Hunter	S.	Thompson
Letters to a Young Poet	1934	Rainer	Maria	Rilke
Noncomformity	1996	Nelson	NULL	Algren
Postcards	1992	Annie	NULL	Proulx
The Shipping News	1993	Annie	NULL	Proulx
Winesburg, Ohio	1919	NULL	NULL	NULL
+-------------------------+-----------+--------+---------+----------+
9 rows in set (0.00 sec)

As you can see, NULL is inserted in the AuthFN, AuthMN, and AuthLN columns of the last row of the
result set.

388

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 388

TEAM LinG - Live, Informative, Non-cost and Genuine !

Creating Right Joins
A right join is simply the counterpart to the left join and works the same as a left join, except that all val-
ues are retrieved from the table on the right. The following syntax shows how to define a right join in
your FROM clause:

<table reference> RIGHT [OUTER] JOIN <table reference> [<join condition>]

<join condition>::=
ON <expression> [{<operator> <expression>}...]
| USING (<column> [{, <column>}...])

As you can see, the language is the same as with a left join, except for the keyword RIGHT. Now take a
look at an example of a right join to demonstrate how to retrieve data from the joined tables. The follow-
ing SELECT statement joins the Books table to the AuthorBook table, and the AuthorBook table to the
Authors table:

SELECT BookTitle, Copyright, CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Books AS b RIGHT JOIN AuthorBook AS ab ON b.BookID=ab.BookID

RIGHT JOIN Authors AS a ON ab.AuthID=a.AuthID
ORDER BY BookTitle;

As the statement shows, the first join condition is specified on the BookID column, and the second join
condition is specified on the AuthID column. Although three tables are joined, the statement takes data
only from the Books table and the Authors table, and the AuthorBook table is what links the other two
tables together, with the Books table on the left side of the join condition and the Authors table on the
right side. As a result, all authors are retrieved from the Authors table, but only books with matching
BookID values (in Books and AuthorBook) are retrieved, as shown in the following result set:

+-------------------------+-----------+--------------------+
| BookTitle | Copyright | Author |
+-------------------------+-----------+--------------------+
NULL	NULL	Joyce Carol Oates
NULL	NULL	Alan Watts
A Confederacy of Dunces	1980	John Kennedy Toole
Black Elk Speaks	1932	John G. Neihardt
Black Elk Speaks	1932	Black Elk
Hell’s Angels	1966	Hunter S. Thompson
Letters to a Young Poet	1934	Rainer Maria Rilke
Noncomformity	1996	Nelson Algren
Postcards	1992	Annie Proulx
The Shipping News	1993	Annie Proulx
+-------------------------+-----------+--------------------+
10 rows in set (0.00 sec)

As you can see, the BookTitle and Copyright values in the first two rows are set to NULL. Because both
columns are part of the Books table, the left table, only matched rows are retrieved. The Author column,
which comes from the right table, includes all authors, even the two with no matching books in the
Books table. If you had wanted, you could have reversed the order in which the tables are joined in the
FROM clause and then changed the join definition to a left join, and you would have received the same
results.

389

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 389

TEAM LinG - Live, Informative, Non-cost and Genuine !

Now that you know how to create outer joins, in the following Try It Out you create a SELECT statement
that uses a left join to retrieve data from the Employees table and the Orders table in the DVDRentals
database.

Try It Out Using Outer Joins to Retrieve Data
Follow these steps to test out a left outer join:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. In order to fully test a left join, you must first add data to the Employees table that provides you
with results that demonstrate how a left join operates. Execute the following SQL statement at
the mysql command prompt:

INSERT INTO Employees
VALUES (NULL, ‘Rebecca’, ‘T.’, ‘Reynolds’),
(NULL, ‘Charlie’, ‘Patrick’, ‘Waverly’);

You should receive a message indicating that the statement executed successfully, affecting two
rows.

3. Now create a left outer join on the Employees and Order tables. Because the Employees table is
named first in the join condition, all rows are retrieved from that table, whether or not any asso-
ciated records exist in the Orders table. Execute the following SQL statement at the mysql com-
mand prompt:

SELECT CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN) AS Employee, OrderID
FROM Employees LEFT JOIN Orders USING (EmpID)
ORDER BY EmpLN;

You should receive results similar to the following:

+-------------------------+---------+
| Employee | OrderID |
+-------------------------+---------+
George Brooks	4
George Brooks	12
Rita C. Carter	3
Rita C. Carter	9
John Laguci	8
John Laguci	13
Mary Marie Michaels	1
Mary Marie Michaels	6
Rebecca T. Reynolds	NULL
Robert Schroader	2
Robert Schroader	7
Robert Schroader	10
John P. Smith	5
John P. Smith	11
Charlie Patrick Waverly	NULL
+-------------------------+---------+
15 rows in set (0.00 sec)

390

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 390

TEAM LinG - Live, Informative, Non-cost and Genuine !

4. Now you should delete the rows that you added to the Employees table. Execute the following
SQL statement at the mysql command prompt:

DELETE FROM Employees
WHERE EmpLN=’Reynolds’ OR EmpLN=’Waverly’;

You should receive a message indicating that the statement executed successfully, affecting
two rows.

How It Works
In this exercise, you created a SELECT statement that defined a left join on the Employees and Orders
tables, as shown in the following statement:

SELECT CONCAT_WS(‘ ‘, EmpFN, EmpMN, EmpLN) AS Employee, OrderID
FROM Employees LEFT JOIN Orders USING (EmpID)
ORDER BY EmpLN;

The join is defined in the FROM clause, which first lists the Employees table, the LEFT JOIN keywords, the
Orders table, and the USING clause, which specifies that the join be defined on the EmpID column in both
tables. Because the Employees table is listed first — on the left side of the join — all rows are retrieved
from the Employees table, whether or not a matching order exists in the Orders table. On the other hand,
the Orders table is on the right side of the join, so only rows with an EmpID value that equals the EmpID
value in the Employees table are returned. As the result set shows, only two employees — Charlie Patrick
Waverly and Rebecca T. Reynolds — are not linked with any orders in the Orders table.

Creating Natural Joins
Another type of join that you can specify in a SELECT statement is the natural join. This type of join can
be specified as a full join, left join, or right join. The following syntax shows how to define a natural join
in your FROM clause:

<table reference> NATURAL [{LEFT | RIGHT} [OUTER]] JOIN <table reference>

As you can see in the syntax, you do not define a join condition. A natural join automatically joins the
columns in both tables that are common to each other. For example, if you were joining the Books table
to the AuthorBook table, the natural join would automatically define that join on the BookID column,
which is common to both tables.

To create a natural join, your FROM clause must include a table reference, the NATURAL JOIN keywords,
and then a second table reference. If you include only these elements, you’re creating a natural full join.
If you also specify the LEFT or LEFT OUTER keywords, you’re creating a natural left join. If you specify
the RIGHT or RIGHT OUTER keywords, you’re creating a natural right join.

First take a look at a natural full join to demonstrate how this works. In the following SELECT statement,
the FROM clause defines a natural full join on the Books, AuthorBook, and Authors tables:

SELECT BookTitle, Copyright,
CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author

FROM Books AS b NATURAL JOIN AuthorBook AS ab
NATURAL JOIN Authors AS a

WHERE Copyright<1980
ORDER BY BookTitle;

391

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 391

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, this statement defines no join condition. There are no ON clauses or USING clauses, and
the WHERE clause contains only an expression that limits rows to those whose Copyright value is less
than 1980. There are no join conditions specified in the WHERE clause. When you execute this statement,
you receive results similar to the following:

+-------------------------+-----------+--------------------+
| BookTitle | Copyright | Author |
+-------------------------+-----------+--------------------+
Black Elk Speaks	1932	Black Elk
Black Elk Speaks	1932	John G. Neihardt
Hell’s Angels	1966	Hunter S. Thompson
Letters to a Young Poet	1934	Rainer Maria Rilke
+-------------------------+-----------+--------------------+
4 rows in set (0.00 sec)

As you can see, the natural join automatically matches the BookID values in the Books and AuthorBook
tables and matches the AuthID values in the Authors and AuthorBook tables. The natural join is similar
to full joins in that it returns only matched rows, unlike outer joins that return unmatched values from
either the left or right table.

If you want to create an outer join, rather than a full join, you simply add the LEFT or RIGHT keyword,
as appropriate. For example, the following SELECT statement is similar to the preceding one, except for
the addition of the LEFT keyword to each join definition:

SELECT BookTitle, Copyright,
CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author

FROM Books AS b NATURAL LEFT JOIN AuthorBook AS ab
NATURAL LEFT JOIN Authors AS a

WHERE Copyright<1980
ORDER BY BookTitle;

As with the preceding statement, the BookID values and AuthID values are automatically matched. In
addition, unmatched rows in the left table (the Books table) are also returned, as shown in the following
result set:

+-------------------------+-----------+--------------------+
| BookTitle | Copyright | Author |
+-------------------------+-----------+--------------------+
Black Elk Speaks	1932	Black Elk
Black Elk Speaks	1932	John G. Neihardt
Hell’s Angels	1966	Hunter S. Thompson
Letters to a Young Poet	1934	Rainer Maria Rilke
Winesburg, Ohio	1919	
+-------------------------+-----------+--------------------+
5 rows in set (0.00 sec)

As you can see, the book Winesburg, Ohio has no matching author in the Authors table, so a blank is
displayed. As you recall, a blank is displayed, rather than NULL, because the CONTACT_WS() function
concatenates the values in that column.

392

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 392

TEAM LinG - Live, Informative, Non-cost and Genuine !

Joining Tables in an UPDATE Statement
In Chapter 6, you learned how to create an UPDATE statement that joins multiple tables in that statement.
Basic joins were demonstrated in that chapter. MySQL allows you to use any join definition in your
UPDATE statement. To reflect the ability to use different types of join definitions, the syntax for the
UPDATE statement must be modified a bit from what you saw in Chapter 6. The updated syntax now
shows how you can use different join definitions:

<update statement>::=
UPDATE [LOW_PRIORITY] [IGNORE]
<single table update> | <joined table update>

<joined table update>::=
<join definition>
SET <column name>=<expression> [{, <column name>=<expression>}...]
[WHERE <where definition>]

The syntax here shows only those components relevant to a multiple-table update. (For more information
about the UPDATE statement, see Chapter 6.) The original syntax didn’t use the <join definition>
placeholder. Instead, you saw only the syntax for a basic join:

<table name> [{, <table name>}...]

By replacing this with <join definition>, you can see how to insert other types of joins in this part of
the syntax. To demonstrate how this works, take a look at a couple of examples. First, assume that the
following INSERT statements have been used to insert data in the Books table and the AuthorBook table:

INSERT INTO Books VALUES (21356, ‘Tao: The Watercourse Way’, 1975);
INSERT INTO AuthorBook VALUES (1013, 21356);

The author for this book (Alan Watts) is already listed in the Authors table, so that author is now linked to
a book in the Books table. You can now perform an update based on that link. For example, the following
UPDATE statement updates the last name of the author, based on the name of the book:

UPDATE Authors AS a, AuthorBook AS ab, Books AS b
SET AuthLN=’Wats’
WHERE a.AuthID=ab.AuthID AND ab.BookID=b.BookID

AND BookTitle=’Tao: The Watercourse Way’;

In this statement, the join is defined in the UPDATE clause. The statement uses a basic join, similar to the
type of join used in the examples in Chapter 6. Notice that the join condition is specified in the WHERE
clause. The AuthID values are linked, and the BookID values are linked. In addition, the WHERE clause
includes an expression that specifies that the BookTitle value must be Tao: The Watercourse Way. As a
result, all three conditions in the WHERE clause must be met in order for a row to be updated. In other
words, for any updated row, the AuthID value in the Authors and AuthorBook tables must be equal, the
BookID value in the Books and BookTitle table must be equal, and the BookTitle value must equal Tao:
The Watercourse Way. When all three conditions are met, the AuthLN value is changed to Wats.

The author’s name is being intentionally misspelled here, but it is corrected in the next example
UPDATE statement.

393

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 393

TEAM LinG - Live, Informative, Non-cost and Genuine !

You can modify the UPDATE statement so that a different join is defined in the UPDATE clause. For exam-
ple, the following statement defines a CROSS join rather than a basic join:

UPDATE Authors CROSS JOIN AuthorBook USING (AuthID)
CROSS JOIN Books USING (BookID)

SET AuthLN=’Watts’
WHERE BookTitle=’Tao: The Watercourse Way’;

As you can see, two cross joins are now defined in the UPDATE clause. In addition, the USING clause
specifies that the first join should be created on the AuthID column, and the second USING clause speci-
fies that the second join should be created on the BookID column. This statement produces the same
results as the previous UPDATE statement, except that the author’s name is now correctly spelled.

MySQL product documentation recommends against performing multiple-table updates against
InnoDB tables joined through foreign key constraints because you cannot always predict how the join
optimizer might process tables. If an update is not performed in the correct order, the statement could
fail. For InnoDB tables, it is generally recommended that you rely on the ON UPDATE options provided
by InnoDB tables to modify the data.

Joining Tables in a DELETE Statement
As you also saw in Chapter 6, you can define a join condition in a DELETE statement, and you can use
any of the join definitions you saw for the SELECT statement. As a result, the syntax for the DELETE
statement must be slightly modified to reflect its support for any join definition, as shown in the follow-
ing syntax:

<delete statement>::=
DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
{<single table delete> | <from join delete> | <using join delete>

<from join delete>::=
<table name>[.*] [{, <table name>[.*]}...]
FROM <join definition>
[WHERE <where definition>]

<using join delete>::=
FROM <table name>[.*] [{, <table name>[.*]}...]
USING <join definition>
[WHERE <where definition>]

Only the elements specific to joining tables in a DELETE statement are shown here. (For more informa-
tion about the DELETE statement, see Chapter 6.) Also, in the original syntax, the <join definition>
placeholder wasn’t used. Instead, you saw the following syntax for the <from join delete> option:

FROM <table name> [{, <table name>}...]

For the <using join delete> option, the following syntax was used:

USING <table name> [{, <table name>}...]

394

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 394

TEAM LinG - Live, Informative, Non-cost and Genuine !

In both cases, a basic join is reflected by the syntax. As the <join definition> placeholder demonstrates,
you can use any join definition in these clauses. The following couple of examples help explain how the
join definitions work. The first example uses a basic join to delete data from the AuthorBook and Authors
tables:

DELETE ab
FROM AuthorBook AS ab, Authors AS a
WHERE ab.AuthID=a.AuthID AND AuthLN=’Watts’;

As you can see, the AuthorBook table is joined to the Authors table (in the FROM clause), and the join
condition is defined in the WHERE clause (ab.AuthID=a.AuthID). The WHERE clause also identifies the
name of the author, which is used to find the AuthID value for that author. As a result, the only rows
deleted from the AuthorBook table are those whose AuthID values are the same in the AuthorBook and
Authors tables whose AuthLN value is Watt.

You can also delete rows from multiple tables, as shown in the following example:

DELETE ab, b
FROM Authors AS a, AuthorBook AS ab, Books AS b
WHERE a.AuthID=ab.AuthID AND ab.BookID=b.BookID

AND AuthLN=’Watts’;

In this case, a basic join is created on the Authors, AuthorBook, and Books table, and rows are deleted
from the AuthorBook and Books tables. The join conditions are specified in the WHERE clause, along with
a third condition that limits the rows deleted to those associated with the author whose last name is
Watts. As a result, any rows that reference books written by Alan Watts are deleted from the AuthorBook
and Books tables; the author is not deleted from the Authors table.

You can rewrite this statement to use an inner join, rather than a basic join, as shown in the following
statement:

DELETE ab, b
FROM Authors AS a INNER JOIN AuthorBook AS ab ON a.AuthID=ab.AuthID

INNER JOIN Books AS b ON ab.BookID=b.BookID
WHERE AuthLN=’Watts’;

Now the join conditions are specified in the ON clause of each inner join definition, but the WHERE clause
still includes the expression that specifies that the AuthLN value must be Watts.

MySQL product documentation recommends against performing multiple-table deletions against InnoDB
tables that are joined through foreign key constraints because you cannot always predict how the join opti-
mizer might process tables. If an update is not performed in the correct order, the statement could fail. For
InnoDB tables, it is generally recommended that you rely on the ON UPDATE options provided by
InnoDB tables to modify the data.

As you have seen, MySQL provides a number of different ways to join tables. Joins, however, are not the
only method you can use to access multiple tables in a single statement. MySQL also supports the use of
subqueries in your statements.

395

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 395

TEAM LinG - Live, Informative, Non-cost and Genuine !

Creating Subqueries in Your SQL Statements
Another useful method that you can use to access multiple tables from within your SQL statement is to
include a subquery in that statement. A subquery, also referred to as a subselect, is a SELECT statement that
is embedded in another SQL statement. The results returned by the subquery — the inner statement — are
then used by the outer statement in the same way a literal value would be used.

You can add subqueries to SELECT, UPDATE, and DELETE statements. In addition, you can embed sub-
queries in your statement to multiple levels. For example, one subquery can be embedded in another
subquery, which is then embedded in still another subquery. In this section, you learn how you can
add subqueries to your SELECT, UPDATE and DELETE statements.

Note that you can include SELECT statements in your INSERT and CREATE TABLE statements, but
these SELECT statements are not considered subqueries. For a discussion of how to add SELECT state-
ments to your INSERT and CREATE TABLE statements, see Chapter 11.

Adding Subqueries to Your SELECT Statements
The most common way to include a subquery in a SELECT statement is to add it as an element of the
WHERE clause to help restrict which rows the outer SELECT statement returns. When adding a subquery
to a WHERE clause, you can use a comparison operator to introduce the subquery or you can use a sub-
query operator. In addition, you can use subqueries when using a GROUP BY clause in your SELECT
statement. In this case, you can add the subquery to the HAVING clause of the statement. The following
sections examine the different ways that you can use subqueries.

Working with Comparison Operators
One of the easiest ways to use a subquery in your SELECT statement is to include it as part of an expression
in the WHERE clause of your statement. The subquery is included as one of the elements of expression and is
introduced by a comparison operator. For example, the following SELECT statement uses a subquery to
return an AuthID value:

SELECT CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Authors
WHERE AuthID=

(
SELECT ab.AuthID
FROM AuthorBook AS ab, Books AS b
WHERE ab.BookID=b.BookID AND BookTitle=’Noncomformity’

);

As you can see, the WHERE clause of the outer statement includes an expression that specifies that the
AuthID value should equal the subquery. The subquery is the portion of the expression enclosed in
parentheses. Subqueries must always be enclosed in parentheses. The subquery itself is a typical SELECT
statement. Whenever a comparison operator precedes a subquery, the subquery must return a single
value. That value is then compared to the first part of the expression.

Note that the example is based on the same three tables that you saw earlier in the chapter, as they were
originally populated. The three tables — Books, AuthorBook, and Authors — are shown in Figure 10-1.
You can also refer to the table definitions and INSERT statements that precede the figure to see how
these tables are set up.

396

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 396

TEAM LinG - Live, Informative, Non-cost and Genuine !

Now take a look at the subquery itself to better understand how this works. Suppose you were to execute
the subquery as an independent SELECT statement, as shown in the following statement:

SELECT ab.AuthID
FROM AuthorBook AS ab, Books AS b
WHERE ab.BookID=b.BookID AND BookTitle=’Noncomformity’;

The statement uses a join to retrieve the AuthID value from the AuthorBook table. If you were to execute
this statement, you would receive the following results:

+--------+
| AuthID |
+--------+
| 1014 |
+--------+
1 row in set (0.00 sec)

Notice that the result set includes only one column and one value for that column. If your query were
to return more that one value, you would receive an error when you tried to execute the outer SELECT
statement. Because only one value is returned, the outer statement can now use that value. As a result,
the WHERE clause in the outer statement now has a value to work with. The expression can now be inter-
preted as AuthID=1014. Once the subquery returns the value, the outer statement can be processed and
can return the name of the author with an AuthID value of 1014, as shown in the following results.

+---------------+
| Author |
+---------------+
| Nelson Algren |
+---------------+
1 row in set (0.01 sec)

An important point to make about subqueries is that they can often be rewritten as joins. For example,
you can retrieve the same results as the preceding statement by using the following SELECT statement:

SELECT DISTINCT CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Authors AS a JOIN AuthorBook AS ab ON a.AuthID=ab.AuthID

JOIN Books AS b ON ab.BookID=b.BookID
WHERE BookTitle=’Noncomformity’;

In this case, rather than using a subquery to retrieve the data, you use a join. In some cases, joins per-
form better than subqueries, so it’s often more efficient to rewrite a subquery as a join when possible. If
you’re joining numerous tables and a subquery can bypass many of those joins, performance might be
better with a subquery. When creating complex statements that retrieve large numbers of rows, it is
sometimes best to create both types of statements, then compare the performance of each.

Another advantage of using a join in this case, rather than a subquery, is that the subquery fails if more
than one author has written the specified book. For example, suppose you modify your subquery to
specify a different book:

SELECT CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Authors
WHERE AuthID=

(

397

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 397

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT ab.AuthID
FROM AuthorBook AS ab, Books AS b
WHERE ab.BookID=b.BookID AND BookTitle=’Black Elk Speaks’

);

As it turns out, two authors wrote Black Elk Speaks, so the statement would return an error similar to the
following:

ERROR 1242 (21000): Subquery returns more than 1 row

Despite some of the limitations of using subqueries, they can often provide an efficient method for
retrieving data, so take a look at some more examples of how they’re used. In the last example, the
equals (=) comparison operator is used in the WHERE clause expression of the outer statement to compare
the results of the subquery. You can use other types of comparison operators. For example, the following
statement uses a not equal (<>) comparison operator in the WHERE clause to introduce the subquery:

SELECT DISTINCT CONCAT_WS(‘ ‘, AuthFN, AuthMN, AuthLN) AS Author
FROM Authors
WHERE AuthID<>

(
SELECT ab.AuthID
FROM AuthorBook AS ab, Books AS b
WHERE ab.BookID=b.BookID AND BookTitle=’Noncomformity’

)
ORDER BY AuthLN;

Now rows returned by the outer SELECT statement cannot contain an AuthID value that is the same as
the AuthID value assigned to author of Noncomformity. In other words, AuthID cannot equal 1014. As a
result, the outer SELECT statement returns the following result set:

+--------------------+
| Author |
+--------------------+
| Black Elk |
| John G. Neihardt |
| Joyce Carol Oates |
| Annie Proulx |
| Rainer Maria Rilke |
| Hunter S. Thompson |
| John Kennedy Toole |
| Alan Watts |
+--------------------+
8 rows in set (0.00 sec)

Now look at another way that you can use a subquery. In the following example, the subquery uses an
aggregate function to arrive at a value that the outer statement can use:

SELECT BookTitle, Copyright
FROM Books
WHERE Copyright<(SELECT MAX(Copyright)-50 FROM Books)
ORDER BY BookTitle;

398

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 398

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this statement, the subquery uses the MAX() aggregate function to determine the most recent year in
the Copyright column and then subtracts 50 from that year. You can see what this value would be by
executing the following subquery SELECT statement separately from the outer statement:

SELECT MAX(Copyright)-50 FROM Books;

The subquery returns the following result set:

+-------------------+
| MAX(Copyright)-50 |
+-------------------+
| 1946 |
+-------------------+
1 row in set (0.03 sec)

The subquery takes the highest value in the Copyright column (1996), subtracts 50, and returns a value
of 1946. That value is then used in the WHERE clause expression of the outer statement. The expression
can be interpreted as Copyright<1946. As a result, only rows with a copyright value that is less than 1946
are included in the result set, as shown in the following results:

+-------------------------+-----------+
| BookTitle | Copyright |
+-------------------------+-----------+
Black Elk Speaks	1932
Letters to a Young Poet	1934
Winesburg, Ohio	1919
+-------------------------+-----------+
3 rows in set (0.00 sec)

An interesting aspect of the subquery used in the previous statement is that it retrieves a value from the
same table as the outer statement. A subquery can provide a handy way to calculate a value that the
outer statement can then use to specify which rows are returned.

Working with Subquery Operators
In the examples that you have looked at so far, each subquery had to return a single value in order to be
used by the outer statement. MySQL provides a set of operators that allows you to work with subqueries
that return multiple values. When using these operators, the subquery must still return a single column
of values, but that column can contain more than one value.

The ANY and SOME Operators
The ANY and SOME operators, which are synonymous, allow you to create an expression that compares a
column to any of the values returned by a subquery. For the expression to evaluate to true, any value
returned by the subquery can be used. For example, the following statement returns book information
about any books that have a copyright date greater than any books written by Proulx:

SELECT BookTitle, Copyright
FROM Books
WHERE Copyright > ANY

(
SELECT b.copyright

399

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 399

TEAM LinG - Live, Informative, Non-cost and Genuine !

FROM Books AS b JOIN AuthorBook AS ab USING (BookID)
JOIN Authors AS a USING (AuthID)

WHERE AuthLN=’Proulx’
)

ORDER BY BookTitle;

In this case, the subquery returns a list of Copyright values (1992 and 1993) for the books written by
the author Proulx. Those values are used in the WHERE clause expression, which can be interpreted as
Copyright > ANY (1992, 1993). Because the statement uses the ANY operator, a value in the
Copyright column must be greater than either 1992 or 1993, so the expression can now be interpreted
as Copyright>1992 OR Copyright>1993. As a result, the outer query returns two rows, as shown in
the following result set:

+-------------------+-----------+
| BookTitle | Copyright |
+-------------------+-----------+
| Noncomformity | 1996 |
| The Shipping News | 1993 |
+-------------------+-----------+
2 rows in set (0.00 sec)

As you might have realized, the second row returned, The Shipping News, is written by Annie Proulx.
Because the book has a copyright value of 1993, which is greater than 1992, it is included in the result set,
even though it is one of the values returned by the subquery.

The ALL Operator
The ALL operator is different from the ANY and SOME operators because it requires that all values returned
by the subquery must cause the expression to evaluate to true before the outer statement can return a row.
For example, modify the previous example to use the ALL operator rather than the ANY operator:

SELECT BookTitle, Copyright
FROM Books
WHERE Copyright > ALL

(
SELECT b.copyright
FROM Books AS b JOIN AuthorBook AS ab USING (BookID)

JOIN Authors AS a USING (AuthID)
WHERE AuthLN=’Proulx’

)
ORDER BY BookTitle;

The subquery still returns the same values (1992 and 1993); however, the values in the Copyright column
must now be greater than all the values returned by the subquery. In other words, the Copyright value
must be greater than 1992 and greater than 1993. As a result, you can interpret the WHERE clause expres-
sion as Copyright> 1992 AND Copyright>1993. Now the result set includes only one row, as shown
in the following:

+---------------+-----------+
| BookTitle | Copyright |
+---------------+-----------+
| Noncomformity | 1996 |
+---------------+-----------+
1 row in set (0.00 sec)

400

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 400

TEAM LinG - Live, Informative, Non-cost and Genuine !

The IN and NOT IN Operators
The IN and NOT IN operators provide the most flexibility when comparing values to the results returned
by a subquery. To demonstrate how this works, replace the ALL operator and the comparison operator
with the IN operator, as shown in the following statement:

SELECT BookTitle, Copyright
FROM Books
WHERE Copyright IN

(
SELECT b.copyright
FROM Books AS b JOIN AuthorBook AS ab USING (BookID)

JOIN Authors AS a USING (AuthID)
WHERE AuthLN=’Proulx’

)
ORDER BY BookTitle;

Now the copyright value must equal either 1992 or 1993 because these are the two values returned by
the subquery. As a result, the outer statement returns the following rows:

+-------------------+-----------+
| BookTitle | Copyright |
+-------------------+-----------+
| Postcards | 1992 |
| The Shipping News | 1993 |
+-------------------+-----------+
2 rows in set (0.00 sec)

You would return the same results if you were to use the equals comparison operator along with the ANY
operator, as in Copyright = ANY, but the IN operator provides a simpler construction.

Now revise the SELECT statement to use the NOT IN operator:

SELECT BookTitle, Copyright
FROM Books
WHERE Copyright NOT IN

(
SELECT b.copyright
FROM Books AS b JOIN AuthorBook AS ab USING (BookID)

JOIN Authors AS a USING (AuthID)
WHERE AuthLN=’Proulx’

)
ORDER BY BookTitle;

The results are now the opposite of those generated by the previous statement. The outer statement
returns only those rows whose Copyright value is not equal to 1992 or 1993, as shown in the following
result set:

+-------------------------+-----------+
| BookTitle | Copyright |
+-------------------------+-----------+
A Confederacy of Dunces	1980
Black Elk Speaks	1932
Hell’s Angels	1966

401

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 401

TEAM LinG - Live, Informative, Non-cost and Genuine !

Letters to a Young Poet	1934
Noncomformity	1996
Winesburg, Ohio	1919
+-------------------------+-----------+
6 rows in set (0.00 sec)

Although the IN and NOT IN operators are very useful for comparing values returned by a subquery,
you might find that you simply need to determine whether a subquery returns a value. The actual value
is not important. To allow you to test for the existence of a value, MySQL provides the EXISTS and NOT
EXISTS operators.

The EXISTS and NOT EXISTS Operators
The EXISTS and NOT EXISTS operators are very different from the previous subquery operators that
you have seen. The EXISTS and NOT EXISTS operators are used only to test whether a subquery does or
does not produce any results. If you use the EXISTS operator, and the subquery returns results, then the
condition evaluates to true; otherwise, it is evaluates to false. If you use the NOT EXISTS operator, and
the subquery returns results, the condition evaluates to false; otherwise, it evaluates to true.

The EXISTS and NOT EXISTS operators are useful primarily when trying to correlate conditions in the
subquery with the outer statement. This is best explained through an example. Suppose that you want to
retrieve information from the Books table about only those books associated with authors listed in the
Authors table. Because the AuthorBook table already tells you whether a book is associated with an
author, you can use that table to help you determine which book titles to return, as shown in the follow-
ing SELECT statement:

SELECT BookID, BookTitle
FROM Books AS b
WHERE EXISTS

(
SELECT BookID
FROM AuthorBook AS ab
WHERE b.BookID=ab.BookID

)
ORDER BY BookTitle;

The first thing to look at is the WHERE clause of the subquery. This is an unusual construction because it
shows a join condition even though the subquery doesn’t define a join. This is how the subquery is corre-
lated with the outer table. The BookID value of the AuthorBook table, which is specified in the subquery,
must equal the BookID value in the Books table, which is specified in the outer statement. As a result, the
subquery returns a row only if that row contains a BookID value that correlates to a BookID value of the
outer table. If a row is returned, the condition specified in the WHERE clause evaluates to true. If a row is not
returned, the condition evaluates to false. As a result, the outer statement returns only those rows whose
BookID values exist in the AuthorBook table, as shown in the following result set:

+--------+-------------------------+
| BookID | BookTitle |
+--------+-------------------------+
17695	A Confederacy of Dunces
15729	Black Elk Speaks
14356	Hell’s Angels
12786	Letters to a Young Poet

402

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 402

TEAM LinG - Live, Informative, Non-cost and Genuine !

16284	Noncomformity
19264	Postcards
19354	The Shipping News
+--------+-------------------------+
7 rows in set (0.00 sec)

For each book returned, a BookID exists in the AuthorBook table. If a book is listed in the Books table
and the BookID value for that book is not included in the AuthorBook table, the book is not displayed.

You can use the NOT EXISTS operator in the same way as the EXISTS operator, only the opposite results
are returned. The following SELECT statement is identical to the preceding one except that the WHERE
clause of the outer statement now includes the NOT keyword:

SELECT BookID, BookTitle
FROM Books AS b
WHERE NOT EXISTS

(
SELECT BookID
FROM AuthorBook AS ab
WHERE b.BookID=ab.BookID

)
ORDER BY BookTitle;

As you would expect, the results returned by this statement include any books whose BookID value is
not listed in the AuthorBook table. In other words, any book not associated with an author is returned,
as shown in the following result set:

+--------+-----------------+
| BookID | BookTitle |
+--------+-----------------+
| 13331 | Winesburg, Ohio |
+--------+-----------------+
1 row in set (0.00 sec)

Working with Grouped Data
The subqueries that you have seen so far have been used in the WHERE clauses of various SELECT state-
ments. You can also use subqueries in a HAVING clause when you group data together. For the most part,
adding subqueries to your HAVING clause is similar to using them in the WHERE clause, except that you’re
working with grouped data. To demonstrate how this works, take a look at a couple of examples. The
examples use the same three tables (Books, AuthorBook, and Authors) that have been used in the previ-
ous examples. Yu also need an additional table, which is shown in the following table definition:

CREATE TABLE BookOrders
(

OrderID SMALLINT NOT NULL,
BookID SMALLINT NOT NULL,
Quantity SMALLINT NOT NULL,
PRIMARY KEY (OrderID, BookID),
FOREIGN KEY (BookID) REFERENCES Books (BookID)

)
ENGINE=INNODB;

403

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 403

TEAM LinG - Live, Informative, Non-cost and Genuine !

For these exercises, you can assume that the following INSERT statement populated the table:

INSERT INTO BookOrders
VALUES (101, 13331, 1), (101, 12786, 1), (101, 16284, 2), (102, 19354, 1),
(102, 15729, 3), (103, 12786, 2), (103, 19264, 1), (103, 13331, 1),
(103, 14356, 2), (104, 19354, 1), (105, 15729, 1), (105, 14356, 2),
(106, 16284, 2), (106, 13331, 1), (107, 12786, 3), (108, 19354, 1),
(108, 16284, 4), (109, 15729, 1), (110, 13331, 2), (110, 12786, 2),
(110, 14356, 2), (111, 14356, 2);

Figure 10-3 shows you how the four tables are related.

Figure 10-3

Now take a look at an example. Suppose that you want to retrieve the total number of books sold for
each order listed in the BookOrders table. To do so, you would group together the data based on the
OrderID column and then use the SUM() function to retrieve the number of books for each group. Now
suppose that you want the result set to include only those groups whose total number of books sold is
greater than the average number of books sold for each title in each order. You can use a subquery to
find that average, then use the average in the HAVING clause of the outer statement, as shown in the fol-
lowing statement:

SELECT OrderID, SUM(Quantity) AS Total
FROM BookOrders
GROUP BY OrderID
HAVING Total>(SELECT AVG(Quantity) FROM BookOrders);

As you can see, the statement includes a GROUP BY clause that specifies which column should be
grouped together and a HAVING clause that specifies which rows of grouped data to return. Notice that

Books

BookID:SMALLINT

BookTitle:VARCHAR(60)
Copyright:YEAR

AuthorBook

AuthID:SMALLINT-FK1
BookID:SMALLINT-FK2

Authors

AuthID:SMALLINT

AuthFN:VARCHAR(20)
AuthMN:VARCHAR(20)
AuthLN:VARCHAR(20)

BookOrders

OrderID:SMALLINT-FK1
BookID:SMALLINT-FK2

Quantity:SMALLINT

404

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 404

TEAM LinG - Live, Informative, Non-cost and Genuine !

the expression in the having clause is made up of the Total column (defined in the SELECT clause), the
greater than (>) comparison operator, and a subquery. The subquery returns that average value of the
Quantity column of the BookOrders table, which is a value of 1.7273. In other words, the average num-
ber of books sold for each title in an order is 1.7273.

The outer statement then uses this value in the HAVING clause. As a result, the HAVING expression can
be interpreted as Total>1.7273. This means that every order that has sold more that 1.7273 books is
included in the result set, as shown in the following:

+---------+-------+
| OrderID | Total |
+---------+-------+
101	4
102	4
103	6
105	3
106	3
107	3
108	5
110	6
111	2
+---------+-------+
9 rows in set (0.00 sec)

As you can see, no orders are listed that contain fewer than two books. Now suppose that you want to
determine how many books have been ordered for authors who have more than one book listed in the
Books table. Because you don’t need to know the name of the author, you can go directly to the
AuthorBook table to determine which authors are associated with more than one book. From there, you
can determine the BookID value for those books, then use that value to determine which books in the
BookOrders table to include in the result set. The following SELECT statement shows you how this can
be accomplished:

SELECT BookID, SUM(Quantity) AS Total
FROM BookOrders
GROUP BY BookID
HAVING BookID IN

(SELECT BookID FROM AuthorBook WHERE AuthID IN
(

SELECT AuthID FROM AuthorBook
GROUP BY AuthID
HAVING COUNT(*)>1

)
);

The first thing that you might notice is that a subquery is embedded in another subquery. So take a look
at the most deeply embedded subquery first:

SELECT AuthID FROM AuthorBook
GROUP BY AuthID
HAVING COUNT(*)>1;

405

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 405

TEAM LinG - Live, Informative, Non-cost and Genuine !

If you were to execute this statement separately from the other parts of the statement, you would receive
the following results:

+--------+
| AuthID |
+--------+
| 1012 |
+--------+
1 row in set (0.00 sec)

The subquery is requesting the AuthID value for any group of AuthID values that have a value greater
than 1. In this case, only author 1012 is associated with more than one BookID value in the AuthorBook
table. Now that you have retrieved the AuthID value that you need, you can use it in the second sub-
query, as shown in the following:

SELECT BookID FROM AuthorBook WHERE AuthID IN
(

SELECT AuthID FROM AuthorBook
GROUP BY AuthID
HAVING COUNT(*)>1

);

Notice that the WHERE clause in the outer subquery includes an expression specifying that the AuthID
value must be one of the values returned by the inner subquery. In this case, only one value (1012) is
returned, so any rows returned by the outer subquery must have an AuthID value of 1012. If you were
to execute the outer and inner subqueries together, you would receive the following results:

+--------+
| BookID |
+--------+
| 19264 |
| 19354 |
+--------+
2 rows in set (0.00 sec)

Notice that two BookID values are returned. The values represent the two books that were written by the
author with the AuthID value of 1012. The outer SELECT statement can then use these values in the HAV-
ING clause expression to determine which rows are returned. Because of the HAVING clause, only groups
that have a BookID value of 19264 or 19354 are returned, along with the total number of books sold, as
shown in the following result set:

+--------+-------+
| BookID | Total |
+--------+-------+
| 19264 | 1 |
| 19354 | 3 |
+--------+-------+
2 rows in set (0.01 sec)

Had more than one author written more than one book, those rows would appear here as well. By using
subqueries in the HAVING clause, you can be very specific about exactly which groups to include in the
result set.

406

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 406

TEAM LinG - Live, Informative, Non-cost and Genuine !

In the following Try It Out exercise, you create several SELECT statements that include subqueries that
retrieve data that the outer SELECT statements can then use.

Try It Out Including Subqueries in Your SELECT Statements
The following steps explain how to include subqueries in SELECT statements:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. The first SELCT statement that you create retrieves data from the DVDs table. The SELECT state-
ment uses a subquery to return a value from the Status value, which the outer statement then
uses. Execute the following SQL statement at the mysql command prompt:

SELECT DVDName
FROM DVDs
WHERE StatID<>

(SELECT StatID FROM Status WHERE StatDescrip=’Available’)
ORDER BY DVDName;

You should receive results similar to the following:

+--------------------+
| DVDName |
+--------------------+
| A Room with a View |
| Out of Africa |
| White Christmas |
+--------------------+
3 rows in set (0.00 sec)

3. The next SELECT statement that you create retrieves data from the DVDs and MovieTypes
tables. The statement also contains a subquery in the WHERE clause of the outer statement that
retrieves a value from the Status table, which the outer statement then uses. Execute the follow-
ing SQL statement at the mysql command prompt:

SELECT DVDName, MTypeDescrip As MovieType
FROM DVDs AS d, MovieTypes AS mt
WHERE d.MTypeID=mt.MTypeID AND StatID=

(SELECT StatID FROM Status WHERE StatDescrip=’Available’)
ORDER BY DVDName;

You should receive results similar to the following:

+-------------------------------+-----------+
| DVDName | MovieType |
+-------------------------------+-----------+
Amadeus	Drama
Mash	Comedy
The Maltese Falcon	Drama
The Rocky Horror Picture Show	Comedy
What’s Up, Doc?	Comedy
+-------------------------------+-----------+
5 rows in set (0.00 sec)

407

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 407

TEAM LinG - Live, Informative, Non-cost and Genuine !

4. The next SELECT statement that you create is similar to the last, except that the WHERE clause of
the outer statement uses the IN operator to compare values to those returned by the subquery.
Execute the following SQL statement at the mysql command prompt:

SELECT DVDName, MTypeDescrip As MovieType
FROM DVDs AS d, MovieTypes AS mt
WHERE d.MTypeID=mt.MTypeID AND StatID IN

(SELECT StatID FROM Status WHERE StatDescrip<>’Available’)
ORDER BY DVDName;

You should receive results similar to the following:

+--------------------+-----------+
| DVDName | MovieType |
+--------------------+-----------+
A Room with a View	Drama
Out of Africa	Drama
White Christmas	Musical
+--------------------+-----------+
3 rows in set (0.01 sec)

5. The last SELECT statement that you create uses a GROUP BY clause to group data together. In
addition, the statement includes a HAVING clause that contains a subquery that returns data from
the MovieTypes table. Execute the following SQL statement at the mysql command prompt:

SELECT MTypeID, RatingID, COUNT(*) AS TotalDVDs
FROM DVDs
GROUP BY MTypeID, RatingID
HAVING MTypeID IN

(SELECT MTypeID FROM MovieTypes WHERE MTypeDescrip<>’Documentary’);

You should receive results similar to the following:

+---------+----------+-----------+
| MTypeID | RatingID | TotalDVDs |
+---------+----------+-----------+
mt11	NR	2
mt11	PG	2
mt12	G	1
mt12	NR	1
mt12	R	1
mt16	NR	1
+---------+----------+-----------+
6 rows in set (0.00 sec)

How It Works
The first SELECT statement that you created in this exercise includes a subquery in the WHERE clause:

SELECT DVDName
FROM DVDs
WHERE StatID<>

(SELECT StatID FROM Status WHERE StatDescrip=’Available’)
ORDER BY DVDName;

408

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 408

TEAM LinG - Live, Informative, Non-cost and Genuine !

The WHERE clause in the outer SELECT statement includes an expression that is made up of the StatID
column, the not equal (<>) comparison operator, and the following subquery:

SELECT StatID FROM Status WHERE StatDescrip=’Available’;

If you were to execute the subquery independently of the rest of the statement, you would receive the
following results:

+--------+
| StatID |
+--------+
| s2 |
+--------+
1 row in set (0.00 sec)

The outer SELECT statement uses those results to complete the expression in the WHERE clause. As a result,
only rows that have a StatID value of s2 are included in the result set.

The next SELECT statement that you created is similar to the last one except that it now includes a join
definition in the outer statement:

SELECT DVDName, MTypeDescrip As MovieType
FROM DVDs AS d, MovieTypes AS mt
WHERE d.MTypeID=mt.MTypeID AND StatID=

(SELECT StatID FROM Status WHERE StatDescrip=’Available’)
ORDER BY DVDName;

The FROM clause in the outer statement joins together the DVDs table and the MovieTypes table. In addi-
tion, MTypeDescrip values are now included in the result set. Like the previous SELECT statement,
only rows with a StatID value of s2 are included in the result set because that is the value returned by
the subquery.

The next SELECT statement that you created is a little different from the last one in that it uses an IN
operator in the outer WHERE clause to introduce the subquery:

SELECT DVDName, MTypeDescrip As MovieType
FROM DVDs AS d, MovieTypes AS mt
WHERE d.MTypeID=mt.MTypeID AND StatID IN

(SELECT StatID FROM Status WHERE StatDescrip<>’Available’)
ORDER BY DVDName;

The IN operator is used because the subquery has been modified and now returns multiple values. The
subquery returns the StatID value of all rows in the Status table whose StatDescrip value does not equal
Available, as shown in the following result set:

+--------+
| StatID |
+--------+
| s1 |
| s3 |
| s4 |
+--------+
3 rows in set (0.00 sec)

409

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 409

TEAM LinG - Live, Informative, Non-cost and Genuine !

These values are then compared to the StatID value in the DVDs table. Any rows that have a StatID
value that matches the values returned by the subquery are included in the result set.

The next SELECT statement that you created groups together data in the DVDs table according to the
MTypeID and RatingID columns:

SELECT MTypeID, RatingID, COUNT(*) AS TotalDVDs
FROM DVDs
GROUP BY MTypeID, RatingID
HAVING MTypeID IN

(SELECT MTypeID FROM MovieTypes WHERE MTypeDescrip<>’Documentary’);

The statement includes a HAVING clause that contains a subquery. The subquery returns the MTypeID
value for all rows in the MovieTypes table that do not have a MTypeDescrip value of Documentary, as
shown in the following query results:

+---------+
| MTypeID |
+---------+
| mt10 |
| mt11 |
| mt12 |
| mt13 |
| mt14 |
| mt16 |
+---------+
6 rows in set (0.00 sec)

The HAVING clause then uses the subquery results to limit the groups returned in the result set to those
that have an MTypeID value for any movie type except Documentary. Because you used the IN operator
in the HAVING clause, the result set includes any MTypeID value that equals one of the values returned
by the subquery.

Adding Subqueries to Your UPDATE Statements
Up to this point, you have used subqueries in SELECT statements. You can also include subqueries in
your UPDATE statements. You can use subqueries in the SET clause to help define the new values to be
inserted in a table, or you can use them in the WHERE clause to help define which rows should be
updated. Take a look at an example to illustrate how to use a subquery in an UPDATE statement. For this
example, assume that the following INSERT statements have been used to add data to the Books and
AuthorBook table:

INSERT INTO Books VALUES (21356, ‘Tao: The Watercourse Way’, 1975);
INSERT INTO AuthorBook VALUES (1013, 21356);

Now take a look at an UPDATE statement that contains a subquery in its WHERE clause:

UPDATE Books
SET BookTitle=’The Way of Zen’, Copyright=1957
WHERE BookID=

(

410

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 410

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT ab.BookID
FROM Authors AS a, AuthorBook AS ab
WHERE a.AuthID=ab.AuthID AND a.AuthLN=’Watts’

);

The statement updates a row in the Books table. The subquery determines which row should be updated.
In this case, the subquery returns a BookID value based on an author with a last name of Watts. The sub-
query defines a join condition that joins the Authors and AuthorBook tables and then retrieves the BookID
value for the book written by Watts. The WHERE expression then uses that value in the outer statement to
limit the updated rows. Only the row that has a BookID value that matches the value returned by the sub-
query is updated. As a result, the row in the Books table with a BookID value of 21356 and a BookTitle
value of Tao: The Watercourse Way has been changed so that the BookTitle value is now The Way of Zen.

Also, you should keep in mind that the subquery must return only one value when it is used in a com-
parison as it is used here. If you had specified Proulx as the author (in the WHERE clause of the subquery),
two BookID values would have been returned, which would have made the outer UPDATE statement fail.

Adding Subqueries to Your DELETE Statements
You can also add subqueries to the WHERE clause of a DELETE statement, just as you can with UPDATE
and SELECT statements. The subquery helps to determine which rows should be deleted from a table.
For example, the subquery in the following DELETE statement returns the AuthID value for the author
with last name of Watts:

DELETE ab, b
FROM AuthorBook AS ab, Books AS b
WHERE ab.BookID=b.BookID

AND ab.AuthID=(SELECT AuthID FROM Authors WHERE AuthLN=’Watts’);

One of the expressions in the WHERE clause of the outer statement uses the value returned by the subquery
to specify which rows are deleted. Because the DELETE statement joins together the AuthorBook table and
the Books table, only those rows whose BookID values are equal and whose AuthID value equals the
value returned by the subquery are deleted from the tables. In other words, those rows in the AuthorBook
table and the Books table that contains a BookID value associated with Alan Watts are deleted.

As this section illustrates, you can use subqueries in UPDATE and DELETE statements to determine which
values should be modified in a table. In the next Try It Out exercise, you create both an UPDATE state-
ment and a DELETE statement that use subqueries.

Try It Out Including Subqueries in Your UPDATE and DELETE Statements
To complete this exercise, follow these steps:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

411

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 411

TEAM LinG - Live, Informative, Non-cost and Genuine !

2. In order to demonstrate how to use subqueries in your UPDATE and DELETE statements, you
should first add a row to the Employees table. Execute the following SQL statement at the
mysql command prompt:

INSERT INTO Employees
VALUES (NULL, ‘Rebecca’, ‘T.’, ‘Reynolds’);

You should receive a message indicating that the statement executed successfully, affecting
one row.

3. When you inserted the row in the Employees table, a value was automatically inserted in the
primary key column. Now use the LAST_INSERT_ID() function to retrieve the primary key
value. Execute the following SQL statement at the mysql command prompt:

SELECT LAST_INSERT_ID();

You should receive results similar to the following:

+------------------+
| last_insert_id() |
+------------------+
| 7 |
+------------------+
1 row in set (0.01 sec)

Note that you will not necessarily receive a value of 7. Depending on whether you inserted any
other rows in the table (whether or not they still exist) or whether you re-created the database or
the table, the value might be anywhere from 7 on up. Whatever the actual value is, you should
remember that value for use in later statements. For the purposes of this exercise, the value 7 is
assumed.

4. Now you need to insert a row in the Orders table. Execute the following SQL statement at the
mysql command prompt:

INSERT INTO Orders (CustID, EmpID) VALUES (6, 5);

You should receive a message indicating that the statement executed successfully, affecting
one row.

5. Again, you need to retrieve the last value inserted in the primary key column. Execute the fol-
lowing SQL statement at the mysql command prompt:

SELECT LAST_INSERT_ID();

You should receive results similar to the following:

+------------------+
| last_insert_id() |
+------------------+
| 14 |
+------------------+
1 row in set (0.01 sec)

Once again, the value returned might vary, depending on previous modifications to the table.
The value that you receive will be anything from 14 on up. For the purposes of this exercise,
the value 14 is assumed.

412

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 412

TEAM LinG - Live, Informative, Non-cost and Genuine !

6. Now you create an UPDATE statement that updates the Orders table. The statement uses a sub-
query in the SET clause to retrieve the EmpID value from the Employees table. Execute the fol-
lowing SQL statement at the mysql command prompt:

UPDATE Orders
SET EmpID=(SELECT EmpID FROM Employees WHERE EmpLN=’Reynolds’)
WHERE OrderID=14;

You should receive a message indicating that the statement executed successfully, affecting
one row.

7. Execute the following SQL statement at the mysql command prompt:

DELETE FROM Orders
WHERE EmpID=(SELECT EmpID FROM Employees WHERE EmpLN=’Reynolds’);

You should receive a message indicating that the statement executed successfully, affecting
one row.

8. Finally, delete the row that you added to the Employees table. Execute the following SQL state-
ment at the mysql command prompt:

DELETE FROM Employees
WHERE EmpLN=’Reynolds’;

You should receive a message indicating that the statement executed successfully, affecting
one row.

How It Works
In this exercise, you created an UPDATE statement that updated a row in the Orders table:

UPDATE Orders
SET EmpID=(SELECT EmpID FROM Employees WHERE EmpLN=’Reynolds’)
WHERE OrderID=14;

The row updated had an OrderID value of 14. For this row, the EmpID value was changed to the value
returned by the subquery. The subquery returns the EmpID value associated with the employee whose
last name is Reynolds. Because the value returned is 7, the EmpID value in the Orders table is set to 7.

Next, you created a DELETE statement that deleted the row that you just updated:

DELETE FROM Orders
WHERE EmpID=(SELECT EmpID FROM Employees WHERE EmpLN=’Reynolds’);

The DELETE statement includes a subquery in the WHERE clause that retrieves the employee ID for
Reynolds. Because the subquery returns a value of 7, any rows in the Orders table with an EmpID value
of 7 are deleted from the table.

413

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 413

TEAM LinG - Live, Informative, Non-cost and Genuine !

Creating Unions That Join
SELECT Statements

Times might arise when you want to combine the results of multiple SELECT statements in one result set.
An easy way to do this is to use the UNION operator to connect the statements, as shown in the following
syntax:

<select statement> UNION <select statement>

To join two statements in this way, the statements must return the same number of values, and the data
types for the returned values must correspond to each other. For example, suppose that you are joining
two SELECT statements. The first statement returns two columns: ColA and ColB. ColA is configured
with an INT data type, and ColB is configured with a CHAR data type. As a result, the second query must
also return two columns, and those columns must be configured with an INT data type and CHAR data
type, respectively.

Now take a look at an example to demonstrate how this works. Suppose that a second table is added to
the set of example tables that have been used in this chapter. The table is named Authors2 and is defined
by the following CREATE TABLE statement:

CREATE TABLE Authors2
(

AuthID SMALLINT NOT NULL PRIMARY KEY,
AuthFN VARCHAR(20),
AuthMN VARCHAR(20),
AuthLN VARCHAR(20)

);

Now assume that the following INSERT statement populated the Authors2 table:

INSERT INTO Authors2
VALUES (1006, ‘Mark’, NULL, ‘Twain’),
(2205, ‘E.’, ‘M.’, ‘Forster’),
(2206, ‘Gabriel’, ‘Garcia’, ‘Marquez’),
(2207, ‘Raymond’, NULL, ‘Carver’),
(2208, ‘Mary’, NULL, ‘Shelley’),
(2209, ‘Albert’, NULL, ‘Camus’);

Once you have similar tables from which to retrieve data, you can use the UNION operator to join SELECT
statements, as shown in the following statement:

SELECT AuthFN, AuthMN, AuthLN FROM Authors
UNION
SELECT AuthFN, AuthMN, AuthLN FROM Authors2;

As you can see, using a UNION operator is very simple, as long as the number of columns and their data
types match. When you execute the statement, the following results are returned:

414

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 414

TEAM LinG - Live, Informative, Non-cost and Genuine !

+---------+---------+----------+
| AuthFN | AuthMN | AuthLN |
+---------+---------+----------+
Hunter	S.	Thompson
Joyce	Carol	Oates
Black	NULL	Elk
Rainer	Maria	Rilke
John	Kennedy	Toole
John	G.	Neihardt
Annie	NULL	Proulx
Alan	NULL	Watts
Nelson	NULL	Algren
Mark	NULL	Twain
E.	M.	Forster
Gabriel	Garcia	Marquez
Raymond	NULL	Carver
Mary	NULL	Shelley
Albert	NULL	Camus
+---------+---------+----------+
15 rows in set (0.00 sec)

As you can see, the data from Authors and Authors 2 have been added together in one result set. You
might want to sort the result set in a specific order. To do this, you can use the ORDER BY clause, as
shown in the following example:

(SELECT AuthFN, AuthMN, AuthLN FROM Authors)
UNION
(SELECT AuthFN, AuthMN, AuthLN FROM Authors2)
ORDER BY AuthLN;

To use the ORDER BY clause, you must enclose each SELECT statement in a set of parentheses and then
add the ORDER BY clause at the end of the statement. Now when you execute the statement, you should
receive results similar to the following:

+---------+---------+----------+
| AuthFN | AuthMN | AuthLN |
+---------+---------+----------+
Nelson	NULL	Algren
Albert	NULL	Camus
Raymond	NULL	Carver
Black	NULL	Elk
E.	M.	Forster
Gabriel	Garcia	Marquez
John	G.	Neihardt
Joyce	Carol	Oates
Annie	NULL	Proulx
Rainer	Maria	Rilke
Mary	NULL	Shelley
Hunter	S.	Thompson
John	Kennedy	Toole
Mark	NULL	Twain
Alan	NULL	Watts
+---------+---------+----------+
15 rows in set (0.00 sec)

415

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 415

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this section, you learned how to create a union to join two SELECT statements together to produce one
set of query results. In the Try It Out exercise that follows, you create your own union statement.

Try It Out Using Unions to Join SELECT Statements
The following steps explain how to use a union to join two SELECT statements:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you switched to the DVDRentals database.

2. Before you can create a union, you must add one more table to the DVDRentals database that
is similar to the original Employees table. Execute the following SQL statement at the mysql
command prompt:

CREATE TABLE Employees2
(
EmpID SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
EmpFN VARCHAR(20) NOT NULL,
EmpLN VARCHAR(20) NOT NULL
)

ENGINE=INNODB;

You should receive a message indicating that the statement executed successfully.

3. Now add two rows to the new table. Execute the following SQL statement at the mysql
command prompt:

INSERT INTO Employees2
VALUES (NULL, ‘Rebecca’, ‘Reynolds’),
(NULL, ‘Charlie’, ‘Waverly’);

You should receive a message indicating that the statement executed successfully, affecting two
rows.

4. You can now use a union to join the Employees and Employees2 tables. Execute the following
SQL statement at the mysql command prompt:

(SELECT EmpLN, EmpFN FROM Employees)
UNION
(SELECT EmpLN, EmpFN FROM Employees2)
ORDER BY EmpLN;

You should receive results similar to the following:

+-----------+---------+
| EmpLN | EmpFN |
+-----------+---------+
Brooks	George
Carter	Rita
Laguci	John
Michaels	Mary
Reynolds	Rebecca

416

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 416

TEAM LinG - Live, Informative, Non-cost and Genuine !

Schroader	Robert
Smith	John
Waverly	Charlie
+-----------+---------+
8 rows in set (0.00 sec)

5. Finally, remove the Employees2 table from the DVDRentals database. Execute the following
SQL statement at the mysql command prompt:

DROP TABLE Employees2;

You should receive a message indicating that the statement executed successfully.

How It Works
In this exercise, you used a UNION operator to join together two SELECT statements:

(SELECT EmpLN, EmpFN FROM Employees)
UNION
(SELECT EmpLN, EmpFN FROM Employees2)
ORDER BY EmpLN;

The first SELECT statement retrieves the EmpLN and EmpFN values from the Employees table. The sec-
ond SELECT statement retrieves the EmpLN and EmpFN values from the Employees2 table. You might
have noticed that the Employees2 table contains a different number of columns than the Employees
table. This does not affect the union query as long as each SELECT statement retrieves the same number
of columns and those columns are configured with the same data type.

The statement also uses an ORDER BY clause to sort the query results according to the EmpLN values.
As a result, each SELECT statement is enclosed in its own set of parentheses.

Summary
As you learned in this chapter, you can create SQL statements that allow you to access multiple tables in a
single statement. This is useful when you need to access related data stored in different tables. For exam-
ple, you can use a SELECT statement to join together multiple tables and then extract the data you need
from any of those tables. The data you retrieve depends on how that data is related and on how you
define the join in the SELECT statement. MySQL provides several methods for accessing multiple tables in
your SQL statements. These include joins, subqueries, and unions. In this chapter, you learned how to use
all three methods to access data in multiple tables. Specifically, you learned how to do the following:

❑ Create basic, inner, and straight joins that retrieve matched data from two or more tables

❑ Create left and right joins that retrieve matched data from two or more tables, plus additional
data from one of the joined tables

❑ Create natural, full, and outer joins that automatically match data from one or more tables with-
out having to specify a join condition

❑ Add subqueries to your SELECT, UPDATE, and DELETE statements

417

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 417

TEAM LinG - Live, Informative, Non-cost and Genuine !

❑ Use subqueries in SELECT statements that group and summarize data

❑ Use the UNION operator to join SELECT statements together in order to return one result set

As the chapter demonstrated, joins, subqueries, and unions provide powerful tools for accessing related
data in multiple tables. As you build applications that retrieve data from a MySQL database, you will
use these methods often to access data. This is especially true of SELECT statements that define joins in
those statements. In fact, for many applications, this is the most commonly used type of SQL statement.
As a result, it is well worth your time to experiment with the SELECT statements that include different
types of joins. The more you use these statements, the greater your understanding of their flexibility and
precision. Once you’re comfortable with joining tables, adding subqueries to your statements, and creat-
ing unions, you’re ready to move beyond accessing data in multiple tables and creating statements that
access multiple tables in managing data that extends beyond those tables. In Chapter 11, you learn how
to export, copy, and import data.

Exercises
For these exercises, you create several SELECT statements that use joins, subqueries, and unions. You use
the same tables that have been used for the examples throughout the chapter. These include the Books,
AuthorBook, Authors, BookOrders, and Authors2 tables (shown in Figure 10-4). Refer back to the table
definitions and their related INSERT statements as necessary if you have any questions about the tables.
You can find the answers to these exercises in Appendix A.

Figure 10-4

Books

BookID:SMALLINT

BookTitle:VARCHAR(60)
Copyright:YEAR

AuthorBook

AuthID:SMALLINT-FK1
BookID:SMALLINT-FK2

Authors

AuthID:SMALLINT

AuthFN:VARCHAR(20)
AuthMN:VARCHAR(20)
AuthLN:VARCHAR(20)

Authors2

AuthID:SMALLINT

AuthFN:VARCHAR(20)
AuthLN:VARCHAR(20)

BookOrders

OrderID:SMALLINT-FK1
BookID:SMALLINT-FK2

Quantity:SMALLINT

418

Chapter 10

13_579509 ch10.qxd 3/1/05 10:00 AM Page 418

TEAM LinG - Live, Informative, Non-cost and Genuine !

1. Create a SELECT statement that uses a basic join to retrieve the name of books in the Books table
and the name of the authors in the Authors table who wrote those books. The author names
should be concatenated with a space between names. In addition, the result set should be sorted
according to the book titles.

2. Create a SELECT statement that is similar to the statement that you created in Step 1. The new
statement should use a cross join to join the tables, and the rows returned should be limited to
those books that were written by authors whose last names begin with Toole or Thompson.

3. Create a SELECT statement that uses a right outer join to retrieve the name of books in the Books
table and the name of the authors in the Authors table who wrote those books. The Authors
table should be on the right side of the join. The author names should be concatenated with a
space between names. In addition, the result set should be sorted according to the book titles.

4. Create a SELECT statement similar to the one that you created in Step 3. The new statement
should use a natural right join to join the tables.

5. Create a SELECT statement that retrieves book titles from the Books table. The result set should
include only those books whose BookID value is equal to one of the values returned by a sub-
query. The subquery should return BookID values from the BookOrders table for those books that
sold more than two books in an order. The result set should be sorted according to the book titles.

6. Create a SELECT statement that retrieves OrderID, BookID, and Quantity values from the
BookOrders table for the book Letters to a Young Poet. The statement should use a subquery to
retrieve the BookID value associated with the book.

7. Use a UNION operator to join two SELECT statements. The first SELECT statement should retrieve
the AuthLN column from the Authors table. The second SELECT statement should retrieve the
AuthLN column from the Authors2 table. The names returned by the statement should be
sorted alphabetically, in ascending order.

419

Accessing Data in Multiple Tables

13_579509 ch10.qxd 3/1/05 10:00 AM Page 419

TEAM LinG - Live, Informative, Non-cost and Genuine !

