
14
Managing MySQL Security

An important component of administering any database is ensuring that only those users that you
want to be able to access the database can do so, while preventing access by all other users. Not
only should you be able to control who can log on to the MySQL server, but you should be able to
determine what actions authenticated users can take once they connect to the server. All RDBMS
products support some level of security in order to protect the data stored in their systems’
databases — and MySQL is no exception.

When a user logs on to a MySQL server, MySQL permits the user to perform only approved opera-
tions. MySQL security is managed through a set of tables and privileges that determine who can
establish a connection to the MySQL server, from what host that connection can be established, and
what actions the user (from the specified host) can take. In this chapter, you learn how this system is
set up and how you can add user accounts or remove them from the tables. You also learn how to
permit users to perform certain actions, while preventing them from taking other actions. To facilitate
your ability to configure MySQL security, this chapter provides information about the following
topics:

❑ The MySQL grant tables, including the user, db, host, tables_priv, and columns_priv tables

❑ The process used to authenticate connections to the MySQL server and to verify the privi-
leges necessary to perform various operations

❑ The statements necessary to manage MySQL user accounts, including the GRANT, SHOW
GRANTS, SET PASSWORD, FLUSH PRIVILEGES, REVOKE, and DROP USER statements

The Access Privilege System
In Chapter 3, you were introduced to the mysql database created by default when you install MySQL.
As you learned in that chapter, the mysql database is an administrative database that contains tables
related to securing the MySQL installation, storing user-defined functions, and providing data related
to the MySQL help system and to time-zone functionality. Of particular concern to preventing unau-
thorized access to the MySQL server are the security-related tables, which are referred to as the grant
tables. The grant tables are a set of five tables in the mysql database used to control access to the
MySQL server and to the databases managed by that server. The grant tables define which users can

17_579509 ch14.qxd 3/1/05 10:02 AM Page 517

TEAM LinG - Live, Informative, Non-cost and Genuine !

access MySQL, from which computers that access is supported, what actions those users can perform, and
on which database components those actions can be performed. For example, the grant tables allow you to
specify which users can view data in a particular table and which users can actually update that data. In this
section, you learn about each of the five grant tables and how those tables are used to authenticate users and
determine what operations they can perform.

Working with the grant tables and MySQL security is only one aspect of securing a MySQL installation.
You should also ensure the security of the MySQL-related files and the network used to access data in
the MySQL databases. A discussion about security specific to your operating system or your network is
beyond the scope of this book. For information about system and network security, consult the appropriate
product and system documentation.

MySQL Grant Tables
When you install MySQL, five grant tables are added to the mysql database. These tables — user, db,
host, tables_priv, and columns_priv — each perform a specific role in either authenticating users or
determining whether a particular action can be carried out. Each table contains two types of columns:

❑ Scope columns: Columns in a grant table that determine who has access to the MySQL server
and the extent, or scope, of that access. Depending on the grant table, the scope columns can
include the user account name, the host from which that user connects, the user account’s pass-
word, or, when appropriate, the name of a specific database, table, or column.

❑ Privilege columns: Columns in a grant table that determine what operations can be performed
by the user identified in the scope columns. For most grant tables, the privilege columns define
the level of access a user account has to the data and the extent to which the user can manipu-
late that data or allow others to access and manipulate that data. The user table also includes
privilege columns that permit administrative operations, require encrypted connections, and
specify limits on connections. The default value for most privilege columns is N (for no, or false).
When a privilege is assigned to a user, the value in the related privilege column is set to Y (for
yes, or true).

Through the use of privileges, all five tables participate in the process of determining whether a user can
perform a particular operation. (An operation refers to an event such as issuing a SELECT statement to
view data in a table or a CREATE TABLE statement to create a table.) Later in the chapter, in the section
MySQL Privileges, you learn about the different types of privileges and how they’re supported by the
grant tables. After that (in the section MySQL Access Control), you learn how the grant tables and privileges
are used to authenticate connections to the MySQL server and to permit various types of operations.
First, though, you take a closer look at each grant table.

The user Table
The user table is the primary grant table in the mysql database. The table controls who can connect to
MySQL, from which hosts they can connect, and what global privileges they have. A global privilege is
one that applies to the MySQL server or to any database in the system. For example, a global privilege
might be used to allow a user to view data in every table in every database or to allow the user to dis-
play a list of the current processes running.

518

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 518

TEAM LinG - Live, Informative, Non-cost and Genuine !

In MySQL, a user is identified not only by the user account name, but also by the host from which the user
connects. For example, user1@domain1.com is considered a different user from user1@domain2.com.
MySQL uses this method so that users with the same name but from different domains are not treated as the
same user. When you come across a reference to a user in MySQL, that reference is usually referring to that
user in association with a particular host (or with any host, if that is how the user account is set up). As you
progress through this chapter, you learn how this user/host association is used in authenticating a user and
in authorizing certain operations.

As with the other grant tables, the user table contains scope columns and privilege columns. Unlike the
other grant tables, though, the user table is the only table that contains different types of privilege
columns. The following list describes the different types of columns in the user table:

❑ Scope columns: Includes the Host, User, and Password columns. When a connection is initiated,
the connection must be made from the host specified in the Host column. In addition, the user
account name used for the connection must match the value in the User column, and the pass-
word provided when the connection is initiated must match the value in the Password column.
A connection is permitted only if all three values match.

❑ Data-related privilege columns: Includes those privilege columns that permit data-related
operations that are global in scope. There are 11 data-related privilege columns. A privilege
granted at this level applies to all tables in all databases. There are also two additional data-
related privilege columns that are not currently supported, but they should be supported in
later releases of MySQL.

❑ Administrative privilege columns: Includes those privilege columns that permit administrative
operations to the MySQL server. There are eight administrative privilege columns.

❑ Encryption-related privilege columns: Includes the ssl_type, ssl_cipher, x509_issuer, and
x509_subject columns, which define whether a user account requires a secure connection
and define the nature of that connection.

❑ Connection-related privilege columns: Includes the max_questions, max_updates, and
max_connections columns, which define whether a limit should be placed on the number of
queries, the number of data updates, and the number of connections that can be made in an
hour.

To give you an idea of how the user table is configured, assume that you have a user account named
user1 that can connect from the domain1.com domain. You can execute a SELECT statement similar to
the following to view how that user is listed in the user table:

SELECT Host, User, Select_priv, Process_priv, ssl_type, max_updates
FROM user
WHERE User=’user1’;

The SELECT statement retrieves values from two of the scope columns (Host and User) and several of
the privilege columns. The Select_priv column assigns a data-related privilege, the Process_priv column
assigns an administrative privilege, the ssl_type assigns an encryption privilege, and the max_updates
column assigns a connection-related privilege. (You learn more about these privileges later in the chap-
ter.) When you execute this statement, you receive results similar to the following:

519

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 519

TEAM LinG - Live, Informative, Non-cost and Genuine !

+-------------+-------+-------------+--------------+----------+-------------+
| Host | User | Select_priv | Process_priv | ssl_type | max_updates |
+-------------+-------+-------------+--------------+----------+-------------+
| domain1.com | user1 | N | N | ANY | 0 |
+-------------+-------+-------------+--------------+----------+-------------+
1 row in set (0.01 sec)

There are, of course, many more privileges than are shown here, but this should give you an idea of how
MySQL stores user account information in the user table. As you can see, the host from which the user
should connect, the name of the user account, and the columns for each privilege that can be applied
globally are listed.

Every MySQL user is listed in the user table, whether or not he or she is assigned privileges in that table
or any other grant table. The user table provides the widest scope in a MySQL implementation, followed
by the db and host tables. If a user is not listed in the user table, that user cannot connect to MySQL.

The db Table
The purpose of the db table is to assign database-specific privileges to users. Any privileges applied in
the db table are specific to the specified database. If privileges are assigned to a user for multiple
databases, a row is added to the db table for each database, and privileges are then assigned for that row.
(If the privileges should apply to all databases, the privileges are assigned in the user table.)

As with the other grant tables, the db table includes scope columns and privilege columns. The following
list provides an overview of these columns:

❑ Scope columns: Includes the Host, Db, and User columns. For the privileges in this table to apply,
the connection must be made from the host specified in the Host column, and the user account
name used for the connection must match the value in the User column. If the host column is
blank, then the privileges also defined in the host table are applied. Any privileges assigned in the
db table apply only to the database specified in the Db column.

❑ Privilege columns: Includes those privileges that can be applied at the database level. These are
the 11 data-related privileges (the same as those you see in the user table) used to permit data-
related operations. There is an additional data-related privilege column that is not currently
supported, but it should be supported in later releases of MySQL.

To get a better sense of the db table, assume that the user1 account has been assigned privileges specifi-
cally on the test database. You can then use a SELECT statement to view information about that user
account:

SELECT Host, Db, User, Select_priv, Update_priv
FROM db
WHERE User=’user1’;

The statement retrieves information from the three scope columns (Host, Db, and User) and from two of
the privilege columns (Select_priv and Update_priv), as shown in the following results:

+-------------+------+-------+-------------+-------------+
| Host | Db | User | Select_priv | Update_priv |
+-------------+------+-------+-------------+-------------+
| domain1.com | test | user1 | Y | N |
+-------------+------+-------+-------------+-------------+
1 row in set (0.00 sec)

520

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 520

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, the Host value is domain1.com, the Db value is test, and the User value is User1. As a
result, the privileges assigned in this row are applied to the user1 account when that account connects
from domain1.com. In addition, the privileges apply only to the test database. You can, of course,
retrieve more privilege columns than those shown here. If a privilege is assigned to the account, a value
of Y is displayed in the columns; otherwise, a value of N is displayed.

The db table works in conjunction with the host table. If the Host column in the db table is blank, MySQL
checks the host table to determine whether any privileges apply to a specific database from a specific
host.

The host Table
The host table is associated with the db table and is checked only when a user is listed in the db table but
the Host column is blank. The combination of these two tables allows you to apply privileges to a user
who connects from multiple hosts. For example, if a user named SarahW connects to MySQL from
big.domain1.com and little.domain1.com, you can add the user to the db table, with a blank host
value, and then add the two hosts to the host table, specifying the same database name in the SarahW
row of the db table and in the big.domain1.com and little.domain1.com rows of the host table.
When MySQL sees the blank host value in the db table, it looks in the host table for a Host value that
matches the hostname of the connection. If there’s a match, the privileges from the db table and the host
table are compared to determine whether an operation is permitted. The matching privileges in both
tables must be set to Y for the operation to be permitted. (You learn more about this process in the section
“MySQL Access Control” later in the chapter.)

The host table, as with other grant tables, includes scope columns and privilege columns. Because the
host table works in conjunction with the db table, it is the only grant table that does not include a User
column. The following list describes the columns in the db table:

❑ Scope columns: Includes the Host and Db columns. For the privileges in this table to apply, the
Host column in the db table must be blank, and the connection must be made from the host
specified in the Host column of the host table. Any privileges assigned in the host table apply
only to the database specified in the Db column of the host table.

❑ Privilege columns: Includes those privileges that can be applied at the database level for user
accounts accessing the databases from specific hosts. These are the same 11 data-related privilege
columns that you find in the user and db tables. The privileges are combined with the applicable
privileges in the db table to permit authorized operations. There is an additional data-related
privilege column that is not currently supported, but it should be supported in later releases of
MySQL.

To better understand how user accounts are added to the host table, suppose that you want to allow
user1 to connect from the host host1.domain1.com or from host2.domain1.com domains. You add
a row for each host in the host table. To then view the rows added to the table, you can use a SELECT
statement similar to the following:

SELECT Host, Db, Select_priv, Update_priv
FROM host
WHERE Host=’host1.domain1.com’ OR Host=’host2.domain1.com’;

521

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 521

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, the SELECT statement retrieves values from the two scope columns (Host and Db) and
two of the privilege columns, as shown in the following results:

+-------------------+------+-------------+-------------+
| Host | Db | Select_priv | Update_priv |
+-------------------+------+-------------+-------------+
| host1.domain1.com | test | Y | N |
| host2.domain1.com | test | Y | N |
+-------------------+------+-------------+-------------+
2 rows in set (0.01 sec)

The results include only the Host and Db scope columns, but not a User scope column because one isn’t
included in the host table. The host table contains the same 11 data-related privilege columns that are in
the db and user tables (12 data-related columns if you include the unsupported column).

The host table is different from other grant tables in that user account information and privilege settings
are not configured in the same way as the other tables. Later in the chapter you learn that the GRANT state-
ment is the primary method that you should use to add users to your system and to assign privileges. At
the same time, the REVOKE statement is the primary method that you should use to revoke privileges. The
host table, however, is not affected by the GRANT statement or the REVOKE statement, which means that, if
you plan to use the host table, you must set up the privileges manually, which is a less efficient method to
use than the GRANT and REVOKE statements and which is more prone to errors.

This problem can be exacerbated if multiple users connect from the same hosts. You must ensure that the
entries in the host table can be applied to all users in such a way that, when those privileges are com-
pared with the privileges in the db table, each user can perform the necessary operations, without being
able to perform unauthorized operations. As a result of these issues, few MySQL implementations use
the host table.

The tables_priv Table
The tables_priv table is specific to table-level privileges. Any privileges assigned in this table apply only
to the table specified in the tables_priv table. The following list describes the columns in the tables_priv
table:

❑ Scope columns: Includes the Host, Db, User, and Table_name columns. For the privileges in this
table to apply, the connection must be made from the host specified in the Host column, and the
user account name used for the connection must match the value in the User column. Any privi-
leges assigned in the tables_priv table apply only to the table specified in the Table_name column,
as it exists in the database specified in the Db column.

❑ Privilege columns: Includes the Table_priv column and the Column_priv column. The
Table_priv column defines the privileges applied at the table level. The Column_priv column
defines the privileges applied at the column level.

Note that the tables_priv table also includes the Grantor and Timestamp columns, but they are currently
unused. It is assumed that future releases of MySQL will make use of these columns.

To better understand how the tables_priv table stores user account data, assume that user1 has been
assigned table- and column-level privileges. You can use a SELECT statement similar to the following to
retrieve data from the tables_priv table about that user:

522

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 522

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT Host, Db, User, Table_name, Table_priv, Column_priv
FROM tables_priv
WHERE User=’user1’;

The statement includes the four scope columns (Host, Db, User, and Table_name) and the two privilege
columns (Table_priv and Column_priv). As you learn in the next section, the privilege columns in the
tables_priv and columns_priv tables work differently from the privilege columns in the other grant tables.
When you execute the SELECT statement, your results should be similar to the following:

+-------------+------+-------+------------+------------+-------------+
| Host | Db | User | Table_name | Table_priv | Column_priv |
+-------------+------+-------+------------+------------+-------------+
| domain1.com | test | user1 | Books | Select | Update |
+-------------+------+-------+------------+------------+-------------+
1 row in set (0.00 sec)

As you can see, the scope columns include not only the host, user, and database (as you saw in the db
table) but also the name of the table. As a result, any privileges assigned to this user account in this table
are specifically for the Books table.

The tables_priv table works in conjunction with the columns_priv table. If the Column_priv column in the
tables_priv table contains a value, MySQL checks the columns_priv table for specifics about the privileges
that apply to the individual columns.

The columns_priv Table
The columns_priv table shows the privileges associated with individual columns. When a user is listed
in the tables_priv table and the columns_priv table, the privileges specified in the Column_priv column
of the columns_priv table are applied to the columns, and the privileges specified in the Table_priv col-
umn of the tables_priv table are applied to the table as a whole. The following list describes the columns
in the columns_priv table:

❑ Scope columns: Includes the Host, Db, User, Table_name, and Column_name columns. For the
privileges in this table to apply, the connection must be made from the host specified in the Host
column, and the user account name used for the connection must match the value in the User
column. Any privileges assigned in the columns_priv table apply only to the column specified
in the Column_name column, as it exists in the table specified in the Table_name column, which
exists in the database specified in the Db column.

❑ Privilege columns: Includes the Column_priv column, which defines the privileges applied at
the column level.

Note that the columns_priv table also includes the Timestamp column, but is currently unused. It is
assumed that future releases of MySQL will make use of this column.

In the previous example, you saw how the user1 account appears in the tables_priv table. Now you can
use a SELECT statement to retrieve information about that account in the columns_priv table:

SELECT Host, Db, User, Table_name, Column_name, Column_priv
FROM columns_priv
WHERE User=’user1’;

523

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 523

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, the statement retrieves data from the scope columns (Host, Db, User, Table_name, and
Column_name) and the privilege column (Column_priv), as shown in the following results:

+-------------+------+-------+------------+-------------+-------------+
| Host | Db | User | Table_name | Column_name | Column_priv |
+-------------+------+-------+------------+-------------+-------------+
| domain1.com | test | user1 | books | BookTitle | Update |
| domain1.com | test | user1 | books | Copyright | Update |
+-------------+------+-------+------------+-------------+-------------+
2 rows in set (0.00 sec)

Each row in the columns_priv table assigns privileges to a specific column. The columns_priv table is
the most granular of all the tables, in terms of assigning privileges to users. When MySQL authorizes a
user to perform an operation, however, all applicable grant tables are examined, starting with the user
table and working down to the columns_priv table. For example, if a user is granted select privileges on
a table, but update privileges on only one column in the table, the user can still retrieve data from the
entire table, but update data only in that one column. The following section takes a closer look at the
different privileges supported by MySQL.

MySQL Privileges
The user, db, and host tables contain columns that each represent individual privileges. All three tables
include the data-related privileges, which deal specifically with managing data. As you saw previously,
only the user table contains privileges that are specific to administration and connectivity. The following
table describes the privileges that can be assigned in the user, db, and host tables, and it shows which
tables contain which privileges.

Column Type Allows user to user table db table host table

Select_priv Data-related Query data in a X X X
database.

Insert_priv Data-related Insert data in a X X X
database.

Update_priv Data-related Update data in a X X X
database.

Delete_priv Data-related Delete data from a X X X
database.

Create_priv Data-related Create a table in a X X X
database.

Drop_priv Data-related Remove a table X X X
from a database.

Reload_priv Administrative Reload the data in X
the grant tables
in MySQL.

524

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 524

TEAM LinG - Live, Informative, Non-cost and Genuine !

Column Type Allows user to user table db table host table

Shutdown_priv Administrative Shut down the X
MySQL server.

Process_priv Administrative View a list of X
MySQL processes.

File_priv Administrative Export data from X
a database into a file.

Grant_priv Data-related Grant privileges X X X
on database objects.

Index_priv Data-related Create and delete X X X
indexes in a database.

Alter_priv Data-related Alter database objects. X X X

Show_db_priv Administrative View all databases. X

Super_priv Administrative Perform advanced X
administrative tasks.

Create_tmp_table_priv Data-related Create temporary X X X
tables.

Lock_tables_priv Data-related Place locks on tables. X X X

Repl_slave_priv Administrative Read binary logs for X
a replication master.

Repl_client_priv Administrative Request information X
about slave and
master servers used
for replication.

ssl_type Encryption-related Specifies whether X
a secure connection
is required. If required,
the column specifies
the type of secure
connection.

ssl_cipher Encryption-related Specifies the cipher X
method that should
be used for a
connection. If the
column is blank,
no special cipher
method is required.

Table continued on following page

525

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 525

TEAM LinG - Live, Informative, Non-cost and Genuine !

Column Type Allows user to user table db table host table

x509_issuer Encryption-related Specifies the name of X
the certificate authority
that issues the x509
certificate. The name
should be used for an
x509 connection. If the
column is blank, the
issuer name is not
required.

x509_subject Encryption-related Specifies the subject X
that should be
included on the x509
certificate when
establishing a secure
connection. If the column
is blank, the subject is
not required.

max_questions Connection-related Specifies the number X
of queries that an account
can issue in an hour. If
set to 0, the user account
can issue an unlimited
number of queries.

max_updates Connection-related Specifies the number X
of data updates that an
account can perform in
an hour. If set to 0, the
user account can perform
an unlimited number of
updates.

max_connections Connection-related Specifies the number of X
connections that an
account can establish in
an hour. If set to 0, the
user account can connect
an unlimited number of
times.

The privileges are listed in this table in the order they appear in the user table. Because permissions in
the user table are applied globally, it is the only table that contains all privileges. The more granular the
privileges, the fewer privileges there are, which is reflected in the grant tables. For example, the user
table has more privilege columns than the db table, which is more granular than the user table.

Some of the grant tables also include the Execute_priv and the References_priv, neither of which are
currently supported. It appears that the Execute_priv will be related to stored procedures when they’re
implemented in MySQL, and the References_priv will be related to foreign keys.

526

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 526

TEAM LinG - Live, Informative, Non-cost and Genuine !

All the data-related and administrative privilege columns in the user, db, and host tables are configured
with the ENUM data type and assigned the values N or Y, with N being the default. When a permission is
granted to an account, the value is changed to Y. For the encryption-related and connection-related
columns, the data types vary, depending on the type of data that can be inserted in those columns. In the
“Managing MySQL User Accounts” section later in the chapter, you learn how to use the GRANT state-
ment to insert values in these columns.

Privileges are assigned differently in the tables_priv and columns_priv tables than they’re assigned in
the user, db, and host tables. The tables_priv table includes the Table_priv and Column_priv columns,
and the columns_priv table includes only the Column_priv column. Each of these columns is configured
with the SET data type, which means that a set of values is defined for each column. One or more of
those values can be inserted in the columns. The following table lists the values included with each column.

Column Privilege values

Table_priv Select, Insert, Update, Delete, Create, Drop, Grant, Index, Alter

Column_priv Select, Insert, Update

Both columns also include a References privilege, but that privilege currently is not used by MySQL.

The values in the Table_priv and Column_priv columns have their counterparts with some of the data-
related privilege columns you find in the user, db, and host tables. The names of the values clearly indicate
to which privileges they are related. For example, the Select value has its counterpart with the Select_priv
column in the user, db, and host tables. In both cases, the privilege allows the specified user to retrieve data
from a database.

MySQL Access Control
When MySQL permits a user to conduct various operations in the MySQL environment, it first authenti-
cates those connections to allow access to the MySQL server, and then it verifies the privileges assigned
to that user account to determine whether the requested operations are permitted.

Authenticating Connections
The first step in allowing a user to access the MySQL server is to ensure that the user has that access. If
access is permitted, MySQL authenticates the connection. The connection is authenticated only if the
Host value in the user table matches the name of the host from which the connection is being estab-
lished. In addition, the username used for the connection must match the value in the User column, and
if a password is required, the password supplied for the connection must match the value in the
Password column. If the parameters supplied by the connection match all the applicable values in the
user table, the connection is permitted.

If a Host value in the user table contains the percentage (%) wildcard, the user can connect from any host.
If the User column is blank, any user can connect to the server from the specified host. (These types of
users are referred to as anonymous users.) If the Host value is the percentage wildcard and the User col-
umn is blank, any user from any host can connect to the server. The Password column can also be blank.

527

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 527

TEAM LinG - Live, Informative, Non-cost and Genuine !

This does not mean, though, that any password is acceptable. It means that the user must supply a blank
password. For example, if the user specifies the -p option when launching MySQL and then is prompted
for a password, the user should simply press Enter and not enter any password.

If you expect to allow anonymous users or plan to allow users to connect from any host, you must plan
your user table carefully to ensure that the right user is associated with the correct privileges. To plan
your user accounts, you should keep in mind how MySQL accesses the user table:

1. When the MySQL server starts, data from the user table is copied to memory in sorted order.

2. When a client attempts to log on to the server, the user account is checked against the sorted
user data in memory.

3. The server uses the first applicable entry to authenticate a user, based first on the Host value
and then on the User value.

MySQL first sorts the user table according to the Host column and then according to the User column.
For the Host column, specific values are listed first, followed by less specific values, such as those that
use the percentage wildcard. Rows that have the same value in the Host column are then sorted according
to the value in the User column, again, with the specific values listed first and the least specific (a blank) last.

This sorting is important because MySQL, when authenticating a user, first checks the Host column for a
match and then checks the User column. Whichever row in the user table provides the first match, that is
the user account used to authenticate the user and subsequently assign privileges to that user. If there
are no wildcards in the host column and no blanks in the User column, MySQL simply matches the host-
name and username to the Host and User values and authenticates the user. The use of wildcards and
blanks in the Host and User column, however, can result in a user being incorrectly authenticated.

To help illustrate the implications of the user table sorting, take a look at the following result set, which
shows the Host and User values from the user table in a MySQL installation:

+-------------+-------+
| Host | User |
+-------------+-------+
%	root
domain1.com	user1
localhost	
%	
+-------------+-------+
4 row in set (0.01 sec)

As you saw earlier, when the user table is copied to memory, the data is sorted according to the Host and
User columns, as shown in the following result set:

+-------------+-------+
| Host | User |
+-------------+-------+
domain1.com	user1
localhost	
%	root
%	
+-------------+-------+
4 row in set (0.01 sec)

528

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 528

TEAM LinG - Live, Informative, Non-cost and Genuine !

Notice that the rows that contain the percentage wildcard in the Host column are the last rows. The per-
centage represents the least specific type of host, so it appears last. Now suppose that the root user
attempts to log in from the local computer. According to the user table, there is only one entry for the
root account: root@%. In theory, this would mean that the root account can log in from any host, including
the local computer. When the user logs on, MySQL first checks the Host column and finds the first
match, which is the localhost value. MySQL then checks the User column and finds only a blank value,
indicating that anonymous users are permitted, which is also a match. As a result, the root account is
logged on as an anonymous user, rather than the primary administrator. This means that the root user is
now operating under the privileges granted to the anonymous user rather than to the root user.

One way to get around this situation is to create two entries in the user table for a specified user, as is done
for the root user when you install MySQL. In Windows, the root user can log on as root@localhost or as
root@%, and in Linux, the root user can log on as root@localhost or as root@<host>, where <host> is
the name of the local computer. This way, even if the percentage wildcard is used for the Host value or a
blank is used for the User value, MySQL can still identify the root account. By including an entry specifi-
cally for localhost, anonymous users can be permitted, but the specified accounts are still protected. As a
result, when the root user logs on, there are now two rows for localhost. These two rows are then sorted
first by the root user and then by the anonymous users. A blank value is always at the end of the list. The
root user is then logged on with the correct privileges.

If anonymous accounts are allowed to access the MySQL server, normally passwords would not be
permitted. This can even further complicate the user who is inadvertently treated as an anonymous
user. For example, if a user tries to log on as root and supplies a password, but MySQL treats that user
as anonymous, the password is interpreted as an incorrect value because MySQL is expecting a blank
password. As a result, the connection is denied.

By ensuring that the user table has the necessary entries for each user, users can be correctly logged on to
the MySQL server. The operations that the user can perform are still limited to those permitted by the
privileges associated with that user account.

Verifying Privileges
After MySQL authenticates a user, it checks the privileges associated with that user account to determine
what operations the user can perform. When verifying privileges, MySQL first checks the user table. If
privileges have not been granted to the account in the user table, MySQL checks the db table and, if
appropriate, the host table. If privileges have not been granted at the database level, MySQL checks the
tables_priv table, and, if appropriate, the columns_priv table. If, after checking all applicable tables,
the operation is not permitted, the operation fails.

MySQL drills down through the grant tables (from the user table down to the columns_priv table) only as
far as necessary. For example, if a user logs on to the MySQL server and tries to perform an administrative
action, MySQL checks only the user table because only that table contains administrative privileges.

Figure 14-1 illustrates the process that MySQL uses to authorize users to perform the requested operation.
The figures show the process only as far as it goes to checking the tables_priv and columns_priv tables.
(Figure 14-2 covers those two tables.) Figure 14-1 assumes that the requested operation is one that
could potentially require permissions as far down as those that can be assigned in the tables_priv and
columns_priv tables. Of course, if any operation does not require that MySQL drill down through the
grant tables that far, the operation either is permitted or fails at whatever point MySQL no longer needs to
continue checking tables.

529

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 529

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 14-1

User attempts to log on

CheckHost, User, and
Password columns
of the user table

No matchMatch

Connection
not permitted

Access permitted

Access denied

Operation not
permitted

Operation
permitted

Check privileges
in user table

Match
(host not blank)

Operation not
permitted

Operation
permitted

Check privileges
in db table

Match
(host blank)

No matchMatch

No match

Check Host column
of the host table

Operation not
permitted

Operation
permitted

Check privileges in host
table, compare with
privileges in db table

Check tables_priv and columns_priv tables (see Figure 14-2)

Check Host and User
columns of the db table

530

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 530

TEAM LinG - Live, Informative, Non-cost and Genuine !

The following steps describe the process that MySQL follows when verifying privileges:

1. The user or the application initiates a connection, supplying a hostname, username, and pass-
word, if a password has been assigned to the user account. For users or applications attempting
to log on anonymously, only the hostname is provided.

2. If no match is found in the Host, User, and Password columns of the user table, access is denied.
If a match is found, access to the MySQL server is permitted.

3. MySQL then checks the privileges in the user table. If the connection exceeds the connections-
per-hour limit, access is denied. If the connection does not meet any encryption-related privi-
leges assigned to the connection, access is denied. Otherwise, the operation being requested by
the connection is compared to the data-related and administrative privileges defined in the user
table. For example, if the connection attempts to execute a SELECT statement, the SELECT privi-
lege is checked to see whether a SELECT statement operation is permitted.

4. If the privileges permit the operation, MySQL carries out that operation. If the privileges do not
permit the operation, MySQL checks the db table:

❑ If the connection hostname and username match the values in the Host and User
columns of the db table, MySQL checks the privileges in that table. If the privileges per-
mit the operation for the specified database, MySQL carries out that operation. If the
privileges do not permit the operation, MySQL checks the tables_priv and
columns_priv tables. (See Figure 14-2.)

❑ If the username matches the value in the User column of the db table and the Host col-
umn for that table is blank, MySQL checks the Host column of the host table. If the con-
nection hostname matches the value in the Host column, MySQL checks the privileges
in the host table and compares them to the privileges in the db table. If the privileges
permit the operation for the specified database, MySQL carries out that operation. If the
privileges do not permit the operation, MySQL checks the tables_priv and
columns_priv tables. If the connection hostname does not match the value in the Host
column of the host table, MySQL checks the tables_priv and columns_priv tables.

❑ If the connection hostname and username do not match the values in the Host and User
columns of the db table, MySQL checks the tables_priv and columns_priv tables.

If, after checking the db and host tables, MySQL reaches a point when it still cannot determine whether
to permit the operation, it checks the tables_priv table and, if necessary, the columns_priv table. Figure 14-2
illustrates the process that MySQL uses to check these two tables. This process is a continuation of the
privilege checking shown in Figure 14-1.

MySQL first checks to see whether the connection hostname and username are listed in the Host and
User columns of the tables_priv table. If there is a match, MySQL checks the privileges in that table. If
there is no match, the operation fails.

If MySQL does match the hostname and username to the values in the tables_priv table, MySQL takes
one of the following steps:

❑ If the privileges in the Table_priv column of the tables_priv table permit the operation, MySQL
carries out the operation.

531

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 531

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 14-2

❑ If the privileges in the Column_priv column of the tables_priv table permit the operation,
MySQL checks the columns_priv table:

❑ If the hostname and username match the values in the Host and User columns of
the columns_priv table, MySQL checks the privileges in the Column_priv column
of the columns_priv table. If the privileges permit the operation, MySQL carries out
the operation. If the privileges do not permit the operation, the operation fails.

❑ If the hostname and username do not match the values in the Host and User columns of
the columns_priv table, the operation fails.

❑ If the privileges in the tables_priv table don’t permit the operation, the operation fails.

Check user, db, and host tables (see Figure 14-1)

No matchMatch

Check Host and User columns
of the tables_priv table

Operation permitted
(Table_priv column)

Operation tentatively permitted
(Column-priv column)

No matchMatch

Operation not
permitted

Check Host and User columns
of the columns_privtable

Operation not
permitted

Operation
permitted

Check privileges in
columns_priv table

Operation fails

Check privileges in
tables_priv table

532

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 532

TEAM LinG - Live, Informative, Non-cost and Genuine !

As you can see, there are many places in the authorization process at which an operation can succeed or
fail. As a result, it’s important that you set up your user accounts with great care to ensure that those
users who should have access can log on to the server and perform the necessary operations and that
those users who should not have access are prevented from logging on to the MySQL server or viewing
or modifying data in the MySQL databases.

Managing MySQL User Accounts
MySQL provides a number of SQL statements that allow you to manage your user accounts. By using
these statements, you can add user accounts to your system and grant privileges to those accounts. You
can also view the privileges that have been assigned to a user account, or you can change the password
for that account. In addition, the statements allow you to revoke privileges and drop users from your
system. In this section, you learn about these SQL statements and how they can be used to secure your
MySQL installation effectively.

Adding Users and Granting Privileges
You can add a user account to your system and assign privileges to that account by using the GRANT
statement, which allows you to perform both operations in a single statement. Although you can insert
account information directly in the grant tables, the GRANT statement is easier and is less likely to result
in errors that can occur if information is added in different grant tables that conflict with each other.
Once you have added a user account and assigned privileges to that account, you can use the SHOW
GRANTS statement to view details about that account.

Using the GRANT Statement
Now that you have an overview of how the grant tables are used to authenticate users and associate
privileges with those users, you’re ready to look at how you actually create a user account and assign
privileges to the account. To perform both operations, you should use the GRANT statement, which is
shown in the following syntax:

GRANT <privilege> [(<column> [{, <column>}...])]
[{, <privilege> [(<column> [{, <column>}...])]}...]

ON {<table> | * | *.* | <database>.*}
TO ‘<user>’@’<host>’ [IDENTIFIED BY [PASSWORD] ‘<new password>’]

[{, ‘<user>’@’<host>’ [IDENTIFIED BY [PASSWORD] ‘<new password>’]}...]
[REQUIRE {NONE | SSL | X509 | {<require definition>}]
[WITH <with option> [<with option>...]]

<require definition>::=
<require option> [[AND] <require option>] [[AND] <require option>]

<require option>::=
{CIPHER ‘<string>’}
| {ISSUER ‘<string>’}
| {SUBJECT ‘<string>’}

<with option>::=
{GRANT OPTION}
| {MAX_QUERIES_PER_HOUR <count>}
| {MAX_UPDATES_PER_HOUR <count>}
| {MAX_CONNECTIONS_PER_HOUR <count>}

533

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 533

TEAM LinG - Live, Informative, Non-cost and Genuine !

As with other SQL statements, the GRANT statement is made up of multiple clauses and options, some of
which are optional and some of which are required. As you’re learning about each of these clauses and
you start creating your own GRANT statements, you should keep in mind that the MySQL server treats
some scope column values as case sensitive (whether or not they’re treated this way by your operating
system). The following table shows the case sensitivity of each scope column.

Column Case sensitive?

Host No

User Yes

Password Yes

Db Yes

Table_name Yes

Column_name No

When working with the GRANT statement, you want to ensure that you enter User, Password, Db, and
Table_name values exactly as you intend for them to be treated once the account is created.

When you use the GRANT statement to set up a user account, the statement adds the necessary data to the
grant tables. Whenever you create an account, a row is added to the user table. Whether rows are added
to other grant tables depends on the level at which the privileges are being granted (for example, a
global level versus a database level). In addition to using the GRANT statement to add the necessary rows
to the grant tables, you can also use INSERT statements to add the necessary data. Using INSERT state-
ments can be far more cumbersome and prone to error. For that reason, using a GRANT statement is the
recommended method for adding user accounts to your system. Now take a look at how to create the
required clauses in your GRANT statement.

Defining the Mandatory Clauses of the GRANT Statement
If you refer back to the GRANT statement syntax, notice that there are three required clauses: the GRANT
clause, the ON clause, and the TO clause. In this section, you learn how to define each of these clauses.

Defining the GRANT Clause

The GRANT clause determines the type of privileges that should be assigned to the user account. As the
following syntax shows, you can specify one or more privileges, and you can specify one or more col-
umn names with each privilege:

GRANT <privilege> [(<column> [{, <column>}...])]
[{, <privilege> [(<column> [{, <column>}...])]}...]

Each privilege is associated with a privilege column in the user, db, or host table or with one of the privi-
leges listed in the Table_priv or Column_priv columns of the tables_priv and columns_priv tables. The
following table describes all the privileges that you can use (in place of the <privilege> placeholder)
available to the GRANT statement. The table also shows the privilege column that is associated with that

534

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 534

TEAM LinG - Live, Informative, Non-cost and Genuine !

privilege. For the tables_priv and columns_priv table, the privilege name is associated with the appro-
priate option in the Table_priv and Column_priv columns. For example, the INSERT privilege is associ-
ated with the Insert column option.

Privilege syntax Columns set to Y Actions permitted

ALL [PRIVILEGES] All columns (at the level Execute all statements except
that the GRANT statement GRANT, REVOKE, and DROP USER
applies to), except the statements.
Grant_priv column

ALTER Alter_priv Execute ALTER TABLE statements.

CREATE Create_priv Execute CREATE TABLE statements.

CREATE TEMPORARY TABLES Create_tmp_table_priv Execute CREATE TEMPORARY TABLE
statements.

DELETE Delete_priv Execute DELETE statements.

DROP Drop_priv Execute DROP TABLE statements.

FILE File_priv Execute SELECT...INTO OUTFILE
and LOAD DATA INFILE statements.

INDEX Index_priv Execute CREATE INDEX and DROP
INDEX statements.

INSERT Insert_priv Execute INSERT statements.

GRANT OPTION Grant_priv Execute GRANT, REVOKE, and DROP
USER statements.

LOCK TABLES Lock_tables_priv Execute LOCK TABLES statements.
(User must also have SELECT privilege.)

PROCESS Process_priv Execute SHOW FULL PROCESSLIST
statements.

RELOAD Reload_priv Execute FLUSH statements.

REPLICATION CLIENT Repl_client_priv Locate slave and master replication
servers.

REPLICATION SLAVE Repl_slave_priv Read binary log events from master
replication servers.

SELECT Select_priv Execute SELECT statements.

SHOW DATABASES Show_db_priv Execute SHOW DATABASES statements.

SHUTDOWN Shutdown_priv Use shutdown option of the mysqlad-
min client utility

Table continued on following page

535

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 535

TEAM LinG - Live, Informative, Non-cost and Genuine !

Privilege syntax Columns set to Y Actions permitted

SUPER Super_priv Execute CHANGE MASTER, KILL, PURGE
MASTER LOGS, and SET GLOBAL state-
ments; use the debug command of the
mysqladmin client utility; and connect
to MySQL server even if max_connec-
tions system variable limit has been
reached.

UPDATE Update_priv Execute UPDATE statements.

USAGE No columns affected No actions permitted. Option used to
add user with no privileges or to update
user options not related to privileges.

You might have noticed that not all privileges are represented here. The encryption-related and connection-
related privileges are assigned in different clauses, which are described later in the chapter.

When you specify privileges in the GRANT clause, you simply include the privilege name and, if applica-
ble, the column names, enclosed in the parentheses. If you include more than one privilege, they must be
separated with commas. If you include more than one column for a privilege, the column names must
be separated by commas.

Defining the ON Clause

After you define the GRANT clause, you can define the ON clause, shown in the following syntax:

ON {<table> | * | *.* | <database>.*}

The ON clause specifies to which tables or database the GRANT statement applies. As you can see, the
clause includes four options. The option you choose determines the level at which the privileges are
applied. The following list describes how the options can be used for each level:

❑ Global: Use the double wildcard (*.*) option to specify that the privileges should apply to the
MySQL server and to all databases and their tables. You can also use the single wildcard (*)
option if no database is active when executing the GRANT statement; otherwise, the single wild-
card option applies only to the active database.

❑ Database: Use the <database>.* option to specify that the privileges should apply to the spec-
ified database as a whole and to all tables in that database. You can also use the single wildcard
(*) option if a database is active; otherwise, the single wildcard option applies globally.

❑ Table: Use the <table> option to specify that the privileges should apply only to that table. The
option is usually preceded by the database name and a period. For example, the books table in
the test database is referred to as test.books.

❑ Column: Use the <table> option to specify that the privileges should apply only to that table,
as is the case when assigning table-level privileges. To make the GRANT table column-specific,
the <table> option should be used in conjunction with the columns specified in the GRANT
clause.

536

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 536

TEAM LinG - Live, Informative, Non-cost and Genuine !

You can use a single GRANT statement if you want to grant privileges at both the table level and at the
column level. To do so, specify column names in the GRANT clause only for those columns that should be
associated with privileges at the column level. Do not specify column names for the other privileges so
that those privileges are applied to the table as a whole. If you want to grant privileges that combine
other levels (for example, a SELECT privilege at a global level and a DELETE privilege at a table level),
you should use separate GRANT statements.

Defining the TO Clause

The final required clause that you must include in your GRANT statement is the TO clause, which is
shown in the following syntax:

TO ‘<user>’@’<host>’ [IDENTIFIED BY [PASSWORD] ‘<new password>’]
[{, ‘<user>’@’<host>’ [IDENTIFIED BY [PASSWORD] ‘<new password>’]}...]

As the syntax illustrates, you can assign privileges to one or more users, as long as you separate each
pair of user definitions with a comma. For each user account, you must specify a username, hostname,
and optionally a password. When assigning values in the TO clause, keep the following guidelines in
mind:

❑ Host: The host from which the user will be connecting. You can specify a hostname, an IP
address, or localhost. You can use the percentage (%) and underscore (_) wildcards in your host-
name. The percentage wildcard indicates that any number of any character can be used. The
underscore wildcard indicates that any single character can be used. You can use the percentage
wildcard with no other values to indicate that any host is acceptable.

❑ User: The username associated with the user account that is being created. You cannot use wild-
cards, but you can use a blank, which indicates that anonymous users are permitted access.

❑ Password: The password associated with the user account that is being created. You cannot use
wildcards, but you can use a blank. If a blank is used, users must supply a blank password
when logging on to the server. When you use a GRANT statement to create a password, the pass-
word is automatically encrypted when it is saved to the user table.

When you assign a password to a user, you must precede the password with the IDENTIFIED BY sub-
clause. In addition, the password, just like the user and host values, should be enclosed in single quotes.

Now that you have seen how the syntax is defined for the GRANT, ON, and TO clauses, you’re ready to
take a look at some examples that put all these clauses together.

Creating a Basic GRANT Statement

The first example GRANT statement creates a user account and grants global-level privileges to that
account:

GRANT ALL
ON *.*
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’;

537

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 537

TEAM LinG - Live, Informative, Non-cost and Genuine !

In this statement, the GRANT clause includes one privilege (ALL). The ALL privileges grants all privileges
to the user except those that allow the user to grant and revoke privileges. The ON clause includes the
double wildcard (*.*) option, which indicates that the privileges being assigned to this user are at the
global level. The TO clause specifies the username (user1) and the hostname (domain1.com). The clause
also includes the IDENTIFIED BY subclause, which defines the password pw1 on the user account.

In order to grant privileges to another user, you must have the necessary privileges. This means that,
when you’re user account was created, it must have been created with the GRANT OPTION. This option
is discussed later in the chapter.

To sum up the GRANT statement, you can say that user1, connecting from domain1.com, can perform all
tasks on all tables and databases except for granting and revoking privileges. In addition, user1 must
supply the pw1 password when logging on to the MySQL server. If you want to view how this account
would be added to the user table (the table associated with global privileges), you can use a SELECT
statement similar to the following:

SELECT host, user, select_priv, update_priv FROM user WHERE user=’user1’;

The statement retrieves only two of the privilege columns, both of which are data-related privileges, as
shown in the following results:

+-------------+-------+-------------+-------------+
| host | user | select_priv | update_priv |
+-------------+-------+-------------+-------------+
| domain1.com | user1 | Y | Y |
+-------------+-------+-------------+-------------+
1 row in set (0.00 sec)

The next example is far more limited in scope than the previous example. The GRANT statement grants
SELECT and UPDATE privileges on all tables in the test database, as shown in the following statement:

GRANT SELECT, UPDATE
ON test.*
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’;

Note that user1 is used as the name in all the example GRANT statements in this chapter, but you can
assume that, for the purpose of these examples, that a new account is being created when each GRANT
statement is issued.

As you can see, the GRANT clause includes the SELECT and UPDATE privileges, the ON clause specifies that
the entire test database is affected, and the TO clause identifies user1@domain1.com. A password has
also been assigned to this account. The statement, then, allows user1 to connect to the MySQL server
from the domain1.com host. The user must supply the pw1 password and can issue only SELECT and
UPDATE statements against the tables in the test database.

Because the GRANT statement is specific to a database, you can use the following SELECT statements to
see how the user account would be added to the user and db tables:

538

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 538

TEAM LinG - Live, Informative, Non-cost and Genuine !

SELECT host, user, select_priv, update_priv FROM user WHERE user=’user1’;
SELECT host, db, user, select_priv, update_priv FROM db WHERE user=’user1’;

The SELECT statements return results similar to the following:

+-------------+-------+-------------+-------------+
| host | user | select_priv | update_priv |
+-------------+-------+-------------+-------------+
| domain1.com | user1 | N | N |
+-------------+-------+-------------+-------------+
1 row in set (0.00 sec)

+-------------+------+-------+-------------+-------------+
| host | db | user | select_priv | update_priv |
+-------------+------+-------+-------------+-------------+
| domain1.com | test | user1 | Y | Y |
+-------------+------+-------+-------------+-------------+
1 row in set (0.00 sec)

As you can see, user1 is listed in the user table but is assigned no privileges. (Each privilege column
has an N as a value.) The user, however, is also listed in the db table, which shows that the user has
been assigned privileges on the test table. (Each privilege column has Y as a value.) Next you look at
an example that creates table-level privileges. The table used in the example is shown in the following
table definition:

CREATE TABLE Books
(

BookID SMALLINT NOT NULL PRIMARY KEY,
BookTitle VARCHAR(60) NOT NULL,
Copyright YEAR NOT NULL

)
ENGINE=INNODB;

You can assume that the Books table has been added to the test database. Now take a look at a GRANT
statement that assigns table-level privileges on the Books table:

GRANT SELECT, UPDATE
ON test.Books
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’;

As you can see, the example is nearly identical to the previous example GRANT statement; however, the
ON clause now specifies a table as well as a database, so the statement is now applied at the table level,
rather than the database level. As a result, the user account is added to the tables_priv table rather than
the db table. To view how the user account is added to the grant tables, you can use a SELECT statement
similar to the following:

SELECT host, user, select_priv, update_priv FROM user WHERE user=’user1’;
SELECT host, db, user, table_name, table_priv, column_priv

FROM tables_priv WHERE user=’user1’;

539

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 539

TEAM LinG - Live, Informative, Non-cost and Genuine !

The statements return results similar to the following:

+-------------+-------+-------------+-------------+
| host | user | select_priv | update_priv |
+-------------+-------+-------------+-------------+
| domain1.com | user1 | N | N |
+-------------+-------+-------------+-------------+
1 row in set (0.00 sec)

+-------------+------+-------+------------+---------------+-------------+
| host | db | user | table_name | table_priv | column_priv |
+-------------+------+-------+------------+---------------+-------------+
| domain1.com | test | user1 | books | Select,Update | |
+-------------+------+-------+------------+---------------+-------------+
1 row in set (0.00 sec)

As you can see, the user table is unchanged from the results returned by the previous example, but
notice the results returned from the tables_priv table. The table includes the hostname, database name,
username, and table name. In addition, the Table_priv column includes the two privilege values (Select
and Update) as they were assigned in the GRANT statement. As the results indicate, the user can execute
SELECT and UPDATE statements against the Books table in the test database.

Now take a look at an example GRANT statement that assigns column-level privileges:

GRANT SELECT, UPDATE (BookTitle, Copyright)
ON test.Books
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’;

The only difference between this statement and the previous example is that the UPDATE privilege includes
columns names (BookTitle and Copyright). This means that the user can update only those columns and
no other columns in the table. As a result, the user has now been added to the columns_priv table. To
demonstrate this, you can use the following SELECT statements to retrieve data from the user, tables_priv,
and columns_priv tables:

SELECT host, user, select_priv, update_priv FROM user WHERE user=’user1’;
SELECT host, db, user, table_name, table_priv, column_priv

FROM tables_priv WHERE user=’user1’;
SELECT host, db, user, table_name, column_name, column_priv

FROM columns_priv WHERE user=’user1’;

The statements should return results similar to the following:

+-------------+-------+-------------+-------------+
| host | user | select_priv | update_priv |
+-------------+-------+-------------+-------------+
| domain1.com | user1 | N | N |
+-------------+-------+-------------+-------------+
1 row in set (0.00 sec)
+-------------+------+-------+------------+------------+-------------+
| host | db | user | table_name | table_priv | column_priv |
+-------------+------+-------+------------+------------+-------------+
| domain1.com | test | user1 | books | Select | Update |

540

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 540

TEAM LinG - Live, Informative, Non-cost and Genuine !

+-------------+------+-------+------------+------------+-------------+
1 row in set (0.00 sec)

+-------------+------+-------+------------+-------------+-------------+
| host | db | user | table_name | column_name | column_priv |
+-------------+------+-------+------------+-------------+-------------+
| domain1.com | test | user1 | books | BookTitle | Update |
| domain1.com | test | user1 | books | Copyright | Update |
+-------------+------+-------+------------+-------------+-------------+
2 rows in set (0.00 sec)

Once again, the results returned from the user table remain unchanged from the previous two examples.
Notice that the Column_priv column of the tables_priv table now includes the Update value. (The value
has been removed from the Table_priv column.) In addition, two rows have been added to the columns_priv
table, one for each column. As you can see, the Update privilege has been assigned to each column, but
the user still retains the Select privilege at the table level.

Defining the REQUIRE Clause
The REQUIRE clause determines whether a secure connection is required when connecting to the MySQL
server and, if so, the degree to which that connection should be secured. Secure connections are imple-
mented in MySQL through the use of the Secure Sockets Layer (SSL) protocol, which is a protocol that
uses encryption algorithms to protect data that is sent over unsecured connections, such as the Internet.
To make connections even more secure, MySQL supports the use of the x509 standard, an industry stan-
dard that relies on the use of certificates to help authenticate the identity of a user trying to connect to a
MySQL server. Companies referred to as certificate authorities issue the certificates that verify the authen-
ticity of the user trying to establish a connection.

To support secure connections between clients and the MySQL server, your system must be configured
to support the SSL protocol and the x509 standard, as necessary. A discussion of these topics is beyond
the scope of this book. The purpose of this section is merely to demonstrate how to create user accounts
that require secure connections. For specific system configuration information, refer to the appropriate
product documentation as well as the MySQL Web site (www.mysql.com).

To use the REQUIRE clause in your GRANT statement, you must specify one or more options, as shown in
the following syntax:

[REQUIRE {NONE | SSL | X509 | {<require definition>}]

<require definition>::=
<require option> [[AND] <require option>] [[AND] <require option>]

<require option>::=
{CIPHER ‘<string>’}
| {ISSUER ‘<string>’}
| {SUBJECT ‘<string>’}

As you can see, you can specify NONE, SSL, X509, or one or more of the options available to the
<require definition> placeholder. The following list describes each of these options:

❑ NONE: Indicates that a secure connection is not required. This option is associated with the
ssl_type column in the user table. If the NONE option is used in the REQUIRE clause, a blank
value is added to the column, which is the default value. Specifying this option is the equivalent
of not specifying a REQUIRE clause in your GRANT statement.

541

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 541

TEAM LinG - Live, Informative, Non-cost and Genuine !

❑ SSL: Specifies that a secure connection is required, but that it can be any type of SSL connection.
This option is associated with the ssl_type column in the user table. If the SSL option is used in
the REQUIRE clause, the ANY value is added to the column.

❑ X509: Specifies that a secure connection is required and that the connection requires a valid x509
certificate. This option is associated with the ssl_type column in the user table. If the X509
option is used in the REQUIRE clause, the x509 value is added to the column.

❑ CIPHER ‘<string>’: Specifies the cipher method that should be used for the SSL connection.
Cipher methods are based on standards that specify how data is to be encrypted. This option is
associated with the ssl_type and ssl_cipher columns in the user table. If the CIPHER ‘<string>’
option is used in the REQUIRE clause, the SPECIFIED value is added to the ssl_type column, and
the <string> value is added to the ssl_cipher column.

❑ ISSUER ‘<string>’: Specifies the name of the certificate authority that issues the x509 certifi-
cate. The name should be used for an x509 connection. This option is associated with the
ssl_type and x509_issuer columns in the user table. If the ISSUER ‘<string>’ option is used in
the REQUIRE clause, the SPECIFIED value is added to the ssl_type column, and the <string>
value is added to the x509_issuer column.

❑ SUBJECT ‘<string>’: Specifies the subject that should be included on the x509 certificate when
establishing a secure connection. This option is associated with the ssl_type and x509_subject
columns in the user table. If the SUBJECT ‘<string>’ option is used in the REQUIRE clause, the
SPECIFIED value is added to the ssl_type column, and the <string> value is added to the
x509_subject column.

If you specify the NONE, SSL, or X509 option, you can specify only one of these options. For the last three
options (CIPHER, ISSUER, and STRING), you can specify one or more, in any order. Optionally, if you
specify more than one of these three options, you can separate them with the AND keyword. If you don’t
separate them with the AND keyword, then you simply separate them with a space or line break (no
comma). Now take a look at an example of a GRANT statement that uses a REQUIRE clause:

GRANT SELECT, UPDATE (BookTitle, Copyright)
ON test.Books
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’
REQUIRE SSL;

As you can see, the REQUIRE clause includes the SSL option, which indicates that an SSL connection is
required, but there are no restrictions placed on the nature of the SSL connection. Once you execute the
GRANT statement, you can use the following SELECT statement to view the user account information that
is added to the user table:

SELECT user, ssl_type, ssl_cipher, x509_issuer, x509_subject
FROM user WHERE user=’user1’;

The statement returns results similar to the following:

+-------+----------+------------+-------------+--------------+
| user | ssl_type | ssl_cipher | x509_issuer | x509_subject |
+-------+----------+------------+-------------+--------------+
| user1 | ANY | | | |
+-------+----------+------------+-------------+--------------+
1 row in set (0.00 sec)

542

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 542

TEAM LinG - Live, Informative, Non-cost and Genuine !

As the results show, the encryption-related permission columns are empty except for the ssl_type
column, which contains a value of ANY. Now take a look at what happens if you modify the GRANT
statement:

GRANT SELECT, UPDATE (BookTitle, Copyright)
ON test.Books
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’
REQUIRE SUBJECT ‘test client cert.’

AND ISSUER ‘Test C.A.’;

Now the REQUIRE clause includes the SUBJECT and ISSUER items. If you run the SELECT statement
again, you should see results similar to the following:

+-------+-----------+------------+-------------+-------------------+
| user | ssl_type | ssl_cipher | x509_issuer | x509_subject |
+-------+-----------+------------+-------------+-------------------+
| user1 | SPECIFIED | | Test C.A. | test client cert. |
+-------+-----------+------------+-------------+-------------------+
1 row in set (0.00 sec)

As you can see, the ssl_type column contains the SPECIFIED value, and the x509_issuer and the
x509_subject columns include the string values that you specified in the GRANT statement.

Defining the WITH Clause
The last clause in the GRANT statement is the WITH clause, which allows you to specify whether a user
can grant and revoke privileges as well as allowing you to specify connection-related privileges, as
shown in the following syntax:

[WITH <with option> [<with option>...]]

<with option>::=
{GRANT OPTION}
| {MAX_QUERIES_PER_HOUR <count>}
| {MAX_UPDATES_PER_HOUR <count>}
| {MAX_CONNECTIONS_PER_HOUR <count>}

As the syntax shows, the WITH clause can include from one to four options. The following list describes
each of these options:

❑ GRANT OPTION: Specifies that users can execute GRANT, REVOKE, and DROP USER statements.
Using this option in this clause has the same effect as using the option in the GRANT clause.
Grant privileges are applied to the user at the level that the GRANT statement is applied (as
defined in the ON clause) and to the limit that the grantor is permitted access to the system. This
option sets the Grant_priv column in the user, db, or host table or adds the Grant value to the
Table_priv column of the tables_priv table. (Using the GRANT OPTION in the WITH clause
achieves the same results as using the GRANT OPTION as a privilege in the GRANT clause.)

❑ MAX_QUERIES_PER_HOUR <count>: The number of queries permitted in an hour. The number
is added to the max_questions column of the user table. If the option is not specified, the default
value is 0, which indicates that an unlimited number of queries are permitted.

543

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 543

TEAM LinG - Live, Informative, Non-cost and Genuine !

❑ MAX_UPDATES_PER_HOUR <count>: The number of data modifications permitted in an hour.
The number is added to the max_updates column of the user table. If the option is not specified,
the default value is 0, which indicates that an unlimited number of updates are permitted.

❑ MAX_CONNECTIONS_PER_HOUR <count>: The number of connections permitted in an hour. The
number is added to the max_connections column of the user table. If the option is not specified,
the default value is 0, which indicates that an unlimited number of connections are permitted.

When you create a GRANT statement that includes the WITH clause, you simply specify the options and, if
appropriate, specify a value. You do not need to separate the options with a comma. For example, the
following GRANT statement specifies the MAX_QUERIES_PER_HOUR and MAX_UPDATES_PER_HOUR
options, setting the value of each to 50:

GRANT SELECT, UPDATE
ON test.*
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’
WITH GRANT OPTION MAX_QUERIES_PER_HOUR 50 MAX_UPDATES_PER_HOUR 50;

As the statement shows, the connection-related values are added to the applicable columns in the user
table. The other privileges are assigned at the database level. To verify this, you can run the following
SELECT statements:

SELECT user, grant_priv, max_questions, max_updates, max_connections
FROM user WHERE user=’user1’;

SELECT user, grant_priv FROM db WHERE user=’user1’;

The statements return results similar to the following:

+-------+------------+---------------+-------------+-----------------+
| user | grant_priv | max_questions | max_updates | max_connections |
+-------+------------+---------------+-------------+-----------------+
| user1 | N | 50 | 50 | 0 |
+-------+------------+---------------+-------------+-----------------+
1 row in set (0.00 sec)

+-------+------------+
| user | grant_priv |
+-------+------------+
| user1 | Y |
+-------+------------+
1 row in set (0.00 sec)

As you can see, the account as it appears in the user table has not been granted the GRANT OPTION privi-
lege, but the max_questions and max_updates columns each contain 50. If the user tries to exceed this
number of queries or updates, the operations are not allowed. The results returned by the SELECT state-
ment also show that the user has been added to the db table, where the GRANT OPTION privilege has
been assigned.

Once you add a user to your system, it is often useful to view what privileges have been assigned to that
user. This is helpful in troubleshooting connections and in changing privileges — or revoking them. To
view the privileges that have been assigned to a user, you can use SELECT statements to retrieve all
columns for all grant tables, which is a very cumbersome process. However, you can also use the SHOW
GRANTS statement, which is a far more efficient method to use to display a user’s privileges.

544

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 544

TEAM LinG - Live, Informative, Non-cost and Genuine !

Using the SHOW GRANTS Statement
The SHOW GRANTS statement displays information about a specific user account. To use the statement,
you must include the SHOW GRANTS FOR keywords, followed by the username and hostname, as shown
in the following syntax:

SHOW GRANTS FOR ‘<user>’@’<host>’

As you can see, the syntax for a SHOW GRANTS statement is very basic. You want to be sure that, when
specifying the username and hostname, you enclose each name in single quotes and you separate the
names with the at symbol (@). For example, the following SHOW GRANTS statement displays the user
account information for user1@domain1.com:

SHOW GRANTS FOR ‘user1’@’domain1.com’;

When you execute this statement, you should receive results similar to the following:

+---+
| Grants for user1@domain1.com |
+---+
| GRANT USAGE ON *.* TO ‘user1’@’domain1.com’ IDENTIFIED BY PASSWORD
‘*2B602296A79E0A8784ACC5C88D92E46588CCA3C3’ WITH MAX_QUERIES_PER_HOUR 50
MAX_UPDATES_PER_HOUR 50 |
| GRANT SELECT, UPDATE ON ’test’.* TO ‘user1’@’domain1.com’ WITH GRANT OPTION |
+---+
2 rows in set (0.00 sec)

The first row returned by the SHOW GRANTS statements displays information from the user table. In the
previous results, this row is broken over three lines, but what you actually see depends on your system. In
this case, the row begins with the GRANT USAGE ON keywords. Usage is a privilege option that indicates
that no privileges have been set for that account. Whenever a user account has not been assigned global
data-related or administrative privileges, the USAGE option is used. If global privileges have been granted,
those privilege options are displayed. The first row also displays the username, hostname, and encrypted
password. If encryption-related or connection-related privileges have been assigned to an account, they’re
displayed after the username, hostname, and password. For this user, the MAX_QUERIES_PER_HOUR and
MAX_UPDATES_PER_HOUR privileges are displayed, which are associated with the max_questions and
max_updates columns, respectively.

If the SHOW GRANTS statement returns more than one row, those additional rows display details about
nonglobal privileges. For example, the second row returned by the preceding SHOW GRANTS statement
indicates that the SELECT and UPDATE privileges have been granted on the test database (test.*) and
that the GRANT OPTION has been assigned at the database level. If table or column level privileges had
been assigned to this user, they would also be returned by the SHOW GRANTS statement.

Now that you have seen how to add users to your MySQL environment, configure privileges for those
users, and display user account information, you’re ready to try it out for yourself. In the following exer-
cise, you use the GRANT statement to add users to the DVDRentals database and assign privileges to
those users, and you use the SHOW GRANTS statement to verify that those privileges have been correctly
assigned.

545

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 545

TEAM LinG - Live, Informative, Non-cost and Genuine !

Try It Out Adding Users to the DVDRentals Database
The following steps describe how to add users to the DVDRentals database and assign privileges to
those users:

1. Open the mysql client utility. If the mysql database is not the active database, type the following
command, and press Enter:

use mysql

You should receive a message indicating that you switched to the mysql database.

2. The first user account that you create is named myuser1, which is allowed to connect only from
the local computer. Execute the following SQL statement at the mysql command prompt:

GRANT SELECT, UPDATE (EmpFN, EmpMN, EmpLN)
ON DVDRentals.Employees
TO ‘myuser1’@’localhost’ IDENTIFIED BY ‘mypw1’
WITH MAX_CONNECTIONS_PER_HOUR 25;

You should receive a message indicating that the statement successfully executed.

3. When you created the myuser1 user account, the user should have been added to the user,
tables_priv, and columns_priv tables. Retrieve data from those tables to verify that the user has
been added. Execute the following SQL statements at the mysql command prompt:

SELECT host, user, select_priv, update_priv FROM user WHERE user=’myuser1’;
SELECT host, db, user, table_name, table_priv, column_priv

FROM tables_priv WHERE user=’myuser1’;
SELECT host, db, user, table_name, column_name, column_priv

FROM columns_priv WHERE user=’myuser1’;

You should receive results similar to the following:

+-----------+---------+-------------+-------------+
| host | user | select_priv | update_priv |
+-----------+---------+-------------+-------------+
| localhost | myuser1 | N | N |
+-----------+---------+-------------+-------------+
1 row in set (0.00 sec)

+-----------+------------+---------+------------+------------+-------------+
| host | db | user | table_name | table_priv | column_priv |
+-----------+------------+---------+------------+------------+-------------+
| localhost | dvdrentals | myuser1 | employees | Select | Update |
+-----------+------------+---------+------------+------------+-------------+
1 row in set (0.00 sec)

+-----------+------------+---------+------------+-------------+-------------+
| host | db | user | table_name | column_name | column_priv |
+-----------+------------+---------+------------+-------------+-------------+
localhost	dvdrentals	myuser1	employees	EmpMN	Update
localhost	dvdrentals	myuser1	employees	EmpLN	Update
localhost	dvdrentals	myuser1	employees	EmpFN	Update
+-----------+------------+---------+------------+-------------+-------------+
3 rows in set (0.00 sec)

546

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 546

TEAM LinG - Live, Informative, Non-cost and Genuine !

4. Now use the SHOW GRANTS statement to display the privileges assigned to the myuser1 user
account. Execute the following SQL statement at the mysql command prompt:

SHOW GRANTS FOR ‘myuser1’@’localhost’;

You should receive results similar to the following:

+---+
| Grants for myuser1@localhost |
+---+
| GRANT USAGE ON *.* TO ‘myuser1’@’localhost’ IDENTIFIED BY PASSWORD
‘*129A95F81EAFD64723D26F1872A8F27B22A25B48’ WITH MAX_CONNECTIONS_PER_HOUR 25 |
| GRANT SELECT, UPDATE (EmpFN, EmpLN, EmpMN) ON `dvdrentals`.`employees` TO
‘myuser1’@’localhost’ |
+---+
2 rows in set (0.00 sec)

5. To verify that the myuser1 user account has been properly added to your system, exit the mysql
client utility and then relaunch the utility as the new user. Close the mysql client utility by exe-
cuting the following command:

exit

You should be returned to your operating system’s command prompt.

6. Now execute the following command at your operating system’s command prompt:

mysql -u myuser1 -p DVDRentals

When prompted, type the password mypw1, and then press Enter. You should now be at the
mysql command prompt.

7. Next, try to retrieve data from the Employees table. Execute the following SQL statements at the
mysql command prompt:

SELECT * FROM Employees;

You should receive results similar to the following:

+-------+--------+-------+-----------+
| EmpID | EmpFN | EmpMN | EmpLN |
+-------+--------+-------+-----------+
1	John	P.	Smith
2	Robert	NULL	Schroader
3	Mary	Marie	Michaels
4	John	NULL	Laguci
5	Rita	C.	Carter
6	George	NULL	Brooks
+-------+--------+-------+-----------+
6 rows in set (0.04 sec)

8. Now try to insert data in the Employees table. Execute the following SQL statements at the
mysql command prompt:

INSERT INTO Employees VALUES (‘Sarah’, ‘Louise’, ‘Peterson’);

You should receive an error message indicating that you cannot perform this operation.

547

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 547

TEAM LinG - Live, Informative, Non-cost and Genuine !

9. Close the mysql client utility by executing the following command:

exit

You should be returned to your operating system’s command prompt.

10. Log back in the mysql client utility as the root user, with the mysql database as the active
database.

11. Next, create the mysqlapp user account, which is permitted to access the MySQL server from
the local computer. Execute the following SQL statement at the mysql command prompt:

GRANT SELECT, INSERT, UPDATE, DELETE
ON DVDRentals.*
TO ‘mysqlapp’@’localhost’ IDENTIFIED BY ‘pw1’;

You should receive a message indicating that the statement successfully executed.

12. To verify that the mysqlapp user account has been added to the user and db tables, execute the
following SQL statement at the mysql command prompt:

SELECT host, user, select_priv, update_priv FROM user WHERE user=’mysqlapp’;
SELECT host, db, user, select_priv, update_priv FROM db WHERE user=’mysqlapp’;

You should receive results similar to the following:

+-----------+----------+-------------+-------------+
| host | user | select_priv | update_priv |
+-----------+----------+-------------+-------------+
| localhost | mysqlapp | N | N |
+-----------+----------+-------------+-------------+
1 row in set (0.00 sec)

+-----------+------------+----------+-------------+-------------+
| host | db | user | select_priv | update_priv |
+-----------+------------+----------+-------------+-------------+
| localhost | dvdrentals | mysqlapp | Y | Y |
+-----------+------------+----------+-------------+-------------+
1 row in set (0.03 sec)

13. Now display the privileges that are assigned to the mysqlapp user account. Execute the following
SQL statement at the mysql command prompt:

SHOW GRANTS FOR ‘mysqlapp’@’localhost’;

You should receive results similar to the following:

+---+
| Grants for mysqlapp@localhost |
+---+
| GRANT USAGE ON *.* TO ‘mysqlapp’@’localhost’ IDENTIFIED BY PASSWORD
‘*2B602296A79E0A8784ACC5C88D92E46588CCA3C3’ |
| GRANT SELECT, INSERT, UPDATE, DELETE ON ’dvdrentals’.* TO ‘mysqlapp’@’localhost’|
+---+
2 rows in set (0.00 sec)

548

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 548

TEAM LinG - Live, Informative, Non-cost and Genuine !

14. To verify that the user account can connect to the MySQL server, you must exit the mysql client
utility and then relaunch the utility as the new user. Close the mysql client utility by executing
the following command:

exit

You should be returned to your operating system’s command prompt.

15. Now execute the following command at your operating system’s command prompt:

mysql DVDRentals -u mysqlapp -p

When prompted, type the password pw1, and then press Enter. You should now be at the mysql
command prompt.

16. Close the mysql client utility by executing the following command:

exit

You should be returned to your operating system’s command prompt.

How It Works
To create the first user account in this exercise, you used the following GRANT statement:

GRANT SELECT, UPDATE (EmpFN, EmpMN, EmpLN)
ON DVDRentals.Employees
TO ‘myuser1’@’localhost’ IDENTIFIED BY ‘mypw1’
WITH MAX_CONNECTIONS_PER_HOUR 25;

The first clause in this statement is the GRANT clause, which grants the SELECT privilege and the UPDATE
privilege. The UPDATE privilege is specific to the EmpFN, EmpMN, and EmpLN columns of the Employees
table. The ON clause specifies the database name (DVDRentals) and the table (Employees). As a result, the
privileges apply only to the Employees table. The TO clause specifies the name of the user (myuser1) and
the host from which the user can connect to the MySQL server (localhost). The TO clause also includes an
IDENTIFIED BY clause, which specifies that the password mypw1 will be assigned to the account. The
GRANT statement also includes a WITH clause that contains the MAX_CONNECTIONS_PER_HOUR option.
The user account is permitted up to 25 connections per hour.

After you executed the GRANT statement, you executed three SELECT statements that retrieved data
from the user, tables_priv, and columns_priv tables. The first SELECT statement retrieved the values in
the Host, User, Select_priv, and Update_priv columns of the user table. The results showed that a user
named myuser1 had been created and that the account could log on to the MySQL server from the local
computer. The results also showed that the user did not have SELECT or UPDATE privileges at the global
level, which is to be expected because the privileges are assigned at a table and column level.

The second SELECT statement retrieved data from the Host, Db, User, Table_name, Table_priv, and
Column_priv columns of the tables_priv table. As you would expect, the user account and host are
listed. In addition, the account is assigned SELECT table privileges and UPDATE column privileges on
the Employees table of the DVDRentals database. Because the Column_priv column includes the
Update value, you would expect the columns_priv table to contain the applicable privilege for each
column specified in the GRANT clause of the GRANT statement.

549

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 549

TEAM LinG - Live, Informative, Non-cost and Genuine !

To verify this, the third SELECT statement retrieved the Host, Db, User, Table_name, Column_name, and
Column_priv columns from the columns_priv table. The results show that a row has been added to the
table for each column specified in the GRANT statement, indicating that the user can update the EmpFN,
EmpMN, and EmpLN columns of the Employees table.

You also used the SHOW GRANTS statement to confirm that the new user account was assigned the appro-
priate privileges:

SHOW GRANTS FOR ‘myuser1’@’localhost’;

The statement specifies the user account name and the host from which the user account can connect.
When you executed the statement, you received a result set that contained one column and two rows.
The first row shows the global settings and privileges that are assigned to the user account. In this case,
the user can log on to the MySQL server from the localhost. The user must supply a password and can-
not initiate more than 25 connections in an hour. The user, though, is not assigned any global privileges,
as indicated by the USAGE privilege.

The second row of the results returned by the SHOW GRANTS statement indicates that the SELECT privi-
lege and UPDATE privilege have been assigned to the user for the Employees table of the DVDRentals
database. The UPDATE privilege applies only to the specified columns in the Employees table.

After you viewed the privileges assigned to the myuser1 account, you exited the MySQL client utility
and then relaunched the utility as the new user. You then tried to execute a SELECT statement against
the Employees table and then an INSERT statement. As you would expect, you were able to retrieve
data from the table, but not add data to the table. However, if you had tried to update any part of an
employee’s name, you would have been permitted to do so because the UPDATE privilege was also
assigned to this user account.

After you tested the connection for the new user account, you exited mysql and then logged back in as
the root user. From there, you executed the following GRANT statement:

GRANT SELECT, INSERT, UPDATE, DELETE
ON DVDRentals.*
TO ‘mysqlapp’@’localhost’ IDENTIFIED BY ‘pw1’;

The GRANT statement assigns the SELECT, INSERT, UPDATE, and DELETE privileges for all tables in the
DVDRentals database. The statement also creates a user account named mysqlapp. The user can connect
only from the local computer. To connect to the MySQL server, the user must supply the pw1 password.

After you executed the GRANT statement, you used two SELECT statements to verify that the user and db
tables contained the correct data. As you would expect, the user table includes the account, but no privi-
leges have been assigned because the privileges are assigned at a database level, not a global level. The
second SELECT statement verifies this. The data returned by that statement shows that privileges have
been granted to that user on the DVDRentals database. Although only two of the four privileges were
returned by the SELECT statement, you were able to verify that all privileges had been granted to the
account by running the following SHOW GRANTS statement:

SHOW GRANTS FOR ‘mysqlapp’@’localhost’;

550

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 550

TEAM LinG - Live, Informative, Non-cost and Genuine !

The results returned by the statement indicate that the user can log on to the MySQL server, that no
global privileges have been granted, and that the SELECT, INSERT, UPDATE, and DELETE privileges have
been granted to this account.

Setting Passwords for MySQL User Accounts
There might be times when, after a user account has been created, you want to add a password to the
user account or change the existing password. MySQL provides the SET PASSWORD statement for setting
a user account password; however, setting the new password doesn’t mean that the password is imme-
diately implemented. After setting a new password, you should use the FLUSH PRIVILEGES statement
to reload the grant tables in your system’s memory to ensure that the most current user information
(including the new password) is being used.

Using the SET PASSWORD Statement
The SET PASSWORD statement can be used to set the password of another user account or of your own
user account. The syntax for the SET PASSWORD statement is as follows:

SET PASSWORD [FOR ‘<user>’@’<host>’] = PASSWORD(‘<new password>’)

As you can see, you must specify the SET PASSWORD keywords, the equal sign, and the PASSWORD()
function, using the new password as an argument in the function. You can also include the optional FOR
clause in your statement. If you’re setting the password for the user account under which you’re cur-
rently logged on to the system, you don’t need to use the FOR clause. For example, the following state-
ment allows you to change your password to pw2:

SET PASSWORD = PASSWORD(‘pw2’);

As you can see, you have to specify only the required statement elements to change your own password.
Notice that the new password is included as an argument in the PASSWORD() function and that the new
password is enclosed in single quotes. If you are setting a password for a user account other than the one
you used to log on to the system, you can use a statement similar to the following:

SET PASSWORD FOR ‘user1’@’domain1.com’ = PASSWORD(‘pw3’);

The statement includes a FOR clause, which identifies the user account as user1@domain1.com. All other
aspects of the statement are the same as the previous example (except that the new password is now
pw3). Once you set a password for an account, it takes effect when you restart the MySQL server or you
flush the privileges, which means that you reload the grant tables in your system’s memory. To flush the
privileges, you can use the FLUSH PRIVILEGES statement.

Using the FLUSH PRIVILEGES Statement
The FLUSH PRIVILEGES statement includes no options or clauses other than the FLUSH PRIVILEGES
keywords. As a result, to reload the grant tables into memory, all you need to do is execute the following
statement:

FLUSH PRIVILEGES;

As soon as you execute this statement, the grant tables are reloaded and any new user account informa-
tion is put into effect.

551

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 551

TEAM LinG - Live, Informative, Non-cost and Genuine !

Now that you know how to assign a password to a user account and reload the grant tables in your sys-
tem’s memory, you’re ready to try out the SET PASSWORD and FLUSH PRIVILEGES statements. In the
following exercise you change the password of the myuser1 account that you created in the last Try It
Out section.

Try It Out Changing a User Account Password
The following steps describe how to change the password for the myuser1 account:

1. Open the mysql client utility as the root user.

2. To change the password of the myuser1 account, execute the following SQL statement at the
mysql command prompt:

SET PASSWORD FOR ‘myuser1’@’localhost’ = PASSWORD(‘mypw2’);

You should receive a message indicating that the statement successfully executed.

3. Once you change the password, you should reload the grant tables in your system’s memory to
ensure that the new password takes effect. Execute the following SQL statement at the mysql
command prompt:

FLUSH PRIVILEGES;

You should receive a message indicating that the statement successfully executed.

4. Next, try out the new password by exiting the mysql client utility and then relaunching the utility
as the myuser1 account. Close the mysql client utility by executing the following command:

exit

You should be returned to your operating system’s command prompt.

5. Execute the following SQL statement at the mysql command prompt:

mysql DVDRentals -u myuser1 -p

When prompted, type the password mypw2, and then press Enter. You should now be at the
mysql command prompt.

6. Close the mysql client utility by executing the following command:

exit

You should be returned to your operating system’s command prompt.

How It Works
To set the password for the muuser1 account, you used the following SET PASSWORD statement:

SET PASSWORD FOR ‘myuser1’@’localhost’ = PASSWORD(‘mypw2’);

The statement specifies the SET PASSWORD FOR keywords, followed by the name of the user account
(myuser1) and the host (localhost) from which the user is permitted to connect to the MySQL server.
The statement then uses the PASSWORD() function to encrypt and set the new password (mypw2).

552

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 552

TEAM LinG - Live, Informative, Non-cost and Genuine !

Because a password already existed for the user account, the new password simply replaced the old
password in the user table. If a password had not existed for that account, the new password would
have been added to the user table.

Once you assigned the new password to the myuser1 account, you used the following statement to
reload the grant tables in your system’s memory:

FLUSH PRIVILEGES;

The FLUSH PRIVILEGES statement ensures that the most current user account information is applied
when a user logs into the MySQL server.

Dropping Users and Revoking Privileges
Quite often you will find that, once you’ve created a user account, you want to remove that account
from your system or modify the account’s privileges. Removing an account often includes three steps:

1. Using the SHOW GRANTS statement to view the user account’s current privileges.

2. Using the REVOKE statement to revoke the privileges from the user account.

3. Using the DROP USER statement to remove the user from the system.

All privileges must have been revoked from a user account before you can use the DROP USER statement
to remove the user; however, you do not always need to take each step described here. For example, if
you know what privileges have been granted to the user, you don’t have to use the SHOW GRANTS state-
ment to view those privileges. In addition, if you know that no privileges have been granted to the user,
you do not have to use the REVOKE statement before using the DROP USER statement. You might also
find that you want to revoke certain privileges but not remove the user from the system. In that case,
you need to use only the SHOW GRANTS statement and the REVOKE statement.

Now that you have an overview of how the user account modification and removal process works, you
can take a close look at the statement used to modify the accounts. You’ve already seen how you can use
the SHOW GRANTS statement to display privilege information. Now take a look at the REVOKE and DROP
USER statements.

Using the REVOKE Statement
The REVOKE statement allows you to remove privileges for a user account. When you revoke privileges,
the user account record is removed from db, host, tables_priv, and columns_priv tables, whichever are
applicable, and all privileges are revoked from the user table. But the user account is still listed in the
user table. (To remove the account from the user table, you must use the DROP USER statement, which is
described in the text that follows.)

Before you can actually drop the user account from the user table, you should use the REVOKE statement
to revoke all privileges. The REVOKE statement takes two forms. The first form removes all privileges
from the user account. This is the simplest method to use if you’re simply going to drop the user from
the system and are not going to revoke only specific privileges. The following syntax describes how the
first form of the REVOKE statement is defined:

553

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 553

TEAM LinG - Live, Informative, Non-cost and Genuine !

REVOKE ALL PRIVILEGES, GRANT OPTION
FROM ‘<user>’@’<host>’ [{, ‘<user>’@’<host>’}...]

As you can see, you must specify the REVOKE clause and the FROM clause. The FROM clause identifies one
or more user accounts. To illustrate how the REVOKE statement works, take a look at an example based
on a user account created with the following GRANT statement:

GRANT SELECT, UPDATE
ON test.*
TO ‘user1’@’domain1.com’ IDENTIFIED BY ‘pw1’
WITH GRANT OPTION MAX_QUERIES_PER_HOUR 50 MAX_UPDATES_PER_HOUR 50;

The user1 account has been granted SELECT and UPDATE privileges on the test database. The account has
also been assigned two connection-related privileges. To use the first form of the REVOKE statement to
remove this account, you can use the following statement:

REVOKE ALL PRIVILEGES, GRANT OPTION
FROM ‘user1’@’domain1.com’;

Notice that the statement includes only the REVOKE clause and the FROM clause, which identifies the
user1@domain1.com user account. You can also revoke the privileges from the user1 account by using a
long form of the REVOKE statement, which is shown in the following syntax:

REVOKE <privilege> [(<column> [{, <column>}...])]
[{, <privilege> [(<column> [{, <column>}...])]}...]

ON {<table> | * | *.* | <database>.*}
FROM ‘<user>’@’<host>’ [{, ‘<user>’@’<host>’}...]

As you can see, the REVOKE clause now includes <privilege> and <column> placeholders. The clause
is defined exactly as it is defined in the GRANT clause of the GRANT statement. You must specify each
privilege that you want to revoke. If privileges are assigned at the column level, then you must also
identify those columns. The ON clause of the long version of the REVOKE statement is also the same as the
ON clause of the GRANT statement. The same options are available, and the option you pick depends on
the scope of the privileges.

The long form of the REVOKE statement also includes a FROM clause, which works the same as the FROM
clause in the short form of the statement. For example, if you want to use the long form of the statement
to revoke the privileges of the user1 account, you would use the following REVOKE statement:

REVOKE SELECT, UPDATE, GRANT OPTION
ON test.*
FROM ‘user1’@’domain1.com’;

As you can see, the REVOKE clause includes all the privileges that have been granted to the user account
(including the GRANT OPTION privilege), the ON clause specifies the test database, and the FROM clause
identifies the user account.

The primary advantage of the long form of the REVOKE statement over the short form is that the long
form allows you to revoke all privileges or only certain privileges, whereas the short form allows you to
revoke all privileges only.

554

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 554

TEAM LinG - Live, Informative, Non-cost and Genuine !

When you revoke all the privileges from a user account, that account is removed from all grant tables
except the user table. In addition, any privileges that had been set in the user table are also revoked. To
remove the user account from the user table after all privileges have been revoked, you must use the
DROP USER statement.

The REVOKE statement does not remove a user account from grant tables other than the user table if
that user account is not listed in the user table. For example, if the db table includes a user account that
is not in the user table, the REVOKE statement does not remove the user from the db table. In a case like
this, you must use a DELETE statement to remove that row from the table.

Using the DROP USER Statement
The DROP USER statement requires only the DROP USER keywords and one or more user accounts, as
shown in the following syntax:

DROP USER ‘<user>’@’<host>’ [{, ‘<user>’@’<host>’}...]

If you specify multiple accounts, you must separate them by a comma. Remember, to drop the accounts,
there can be no privileges assigned to the account. If you try to execute a DROP USER statement and it
fails, use the SHOW GRANTS statement to determine whether any privileges still exist for that account.

Now take a look at an example of a DROP USER statement. The following statement shows how you
would drop the user1@domain1.com user account:

DROP USER ‘user1’@’domain1.com’;

As you can see, the statement includes only the DROP USER keywords, along with the username and
hostname, each enclosed in single quotes and separated by the at (@) symbol.

Now that you’ve learned how to revoke privileges and drop users from your system, you’re ready to try
it out for yourself. In the following exercise, you revoke the privileges of the myuser1 account that you
created in an earlier Try It Out section, and then you remove this account from your system.

Try It Out Removing Users from the DVDRentals Database
The following steps describe how to revoke the privileges of the myuser1 account and then drop that
user from your system:

1. Open the mysql client utility. If the mysql database is not the active database, execute the fol-
lowing command:

use mysql

You should receive a message indicating that you switched to the DVDRentals database.

2. Before revoking the privileges of the myuser1 account, you should view the current privileges.
Execute the following SQL statement at the mysql command prompt:

SHOW GRANTS FOR ‘myuser1’@’localhost’;

555

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 555

TEAM LinG - Live, Informative, Non-cost and Genuine !

You should receive results similar to the following:

+---+
| Grants for myuser1@localhost |
+---+
| GRANT USAGE ON *.* TO ‘myuser1’@’localhost’ IDENTIFIED BY PASSWORD
‘*B7F1931E8F564F69038DB9132AB2ED7F144D8414’ WITH MAX_CONNECTIONS_PER_HOUR 25 |
| GRANT SELECT, UPDATE (EmpFN, EmpMN, EmpLN) ON `dvdrentals`.`employees` TO
‘myuser1’@’localhost’ |
+---+
2 rows in set (0.00 sec)

3. You can use the information returned by the SHOW GRANTS statement to create a REVOKE state-
ment. Execute the following SQL statement at the mysql command prompt:

REVOKE SELECT, UPDATE (EmpFN, EmpMN, EmpLN)
ON DVDRentals.Employees
FROM ‘myuser1’@’localhost’;

You should receive a message indicating that the statement successfully executed.

4. Once you have revoked all the permissions from the myuser1 account, you should drop the user
from your system. Execute the following SQL statement at the mysql command prompt:

DROP USER ‘myuser1’@’localhost’;

You should receive a message indicating that the statement successfully executed.

5. Now that you have learned how to remove users from your system, you should remove any
anonymous users that are created when you installed MySQL. For Linux, you should remove
the anonymous users from the user table. For Windows and Linux, you should remove the
anonymous users in the db table. If you’re working in a Windows environment, skip ahead to
Step 7. If you’re working in a Linux environment, execute the following SQL statement at the
mysql command prompt:

DROP USER ‘’@’localhost’;

You should receive a message indicating that the statement successfully executed.

6. If you’re working in a Linux environment, execute the following SQL statement at the mysql
command prompt:

DROP USER ‘’@’<host>’;

The <host> placeholder refers to the name of the local computer. Once you execute the state-
ment, you should receive a message indicating that the statement successfully executed.

7. For both Windows and Linux environments, execute the following SQL statement at the mysql
command prompt:

DELETE FROM db WHERE user=’’;

You should receive a message indicating that the statement successfully executed and that two
rows were affected.

8. Exit the mysql client utility.

556

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 556

TEAM LinG - Live, Informative, Non-cost and Genuine !

How It Works
The first step that you took in deleting the myuser1 account from your system was to execute the following
SHOW GRANTS table:

SHOW GRANTS FOR ‘myuser1’@’localhost’;

The results returned by the statement indicated that the myuser1 account had been granted no global
data-related or administrative privileges but was configured with the MAX_CONNECTIONS_PER_HOUR
option set to 25. In addition, the user was granted SELECT and UPDATE privileges on the Employees
table of the DVDRentals database. The user, though, could update only the EmpFN, EmpMN, and
EmpLN columns of the Employees table.

From the information returned by the SHOW GRANTS statement, you were able to create a REVOKE state-
ment that revokes the applicable permissions:

REVOKE SELECT, UPDATE (EmpFN, EmpMN, EmpLN)
ON DVDRentals.Employees
FROM ‘myuser1’@’localhost’;

In this statement, the REVOKE clause specifies SELECT and UPDATE privileges. The statement specifies
the UPDATE privilege on the EmpFN, EmpMN, and EmpLN columns only. The ON clause specifies that the
privileges apply to the Employees table of the DVDRentals database, and the FROM clause specifies that
the privileges be revoked from the myuser1 account associated with the local host.

This exercise used the long form of the REVOKE statement to revoke the privileges in order to demon-
strate how the more complicated form of the statement works. You could have also used the short form,
in which case, you could have used the following statement:

REVOKE ALL PRIVILEGES, GRANT OPTION
FROM ‘myuser1’@’localhost’;

When you executed the REVOKE statement, rows related to the user were removed from the tables_priv
and columns_priv tables. In addition, any privileges granted in the user table were revoked. You then
used the following statement to remove the user from your system:

DROP USER ‘myuser1’@’localhost’;

The statement includes the DROP USER keywords, the name of the user (myuser1), and the name of the
host (localhost). When you executed this statement, the myuser1 account was removed from the user
table.

Once you dropped the myuser1 account from your system, you dropped anonymous user accounts from
your system. These are the user accounts that have a blank value in the User column. By dropping the
anonymous accounts, you are preventing anonymous users from being able to log on to the MySQL
server. Even if no privileges are assigned to an account, any account that is listed in the user table can
log on to the server. In addition, because anonymous user accounts were added to the user table only for
the Linux installation, you had to use the DROP USER statements only for the Linux environment. Note,
however, that you did not have to revoke permissions before deleting the accounts because no privileges
had been assigned to the anonymous accounts.

557

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 557

TEAM LinG - Live, Informative, Non-cost and Genuine !

In addition to anonymous accounts existing in the user table of a Linux installation, the db table for both
Linux and Windows installations contained anonymous accounts. Because these accounts have no accounts
associated with them in the user table, you cannot use the REVOKE statement or the DROP USER statement on
the account, but instead must use a DELETE statement to remove the users. To drop the anonymous users
from the db table in your installation, you created a DELETE statement whose WHERE clause specified a blank
user (WHERE user=’’). When you executed the statement, the user accounts were removed from the table.
The only user account that should now be listed in your db table is the mysqlapp account, which you cre-
ated in an earlier Try It Out section.

Summary
As the chapter has demonstrated, MySQL allows you to control who has access to the MySQL server and
allows you to assign privileges to individual user accounts. You can assign these privileges at a global
level, database level, table level, or column level, and you can mix the level for individual users. For
example, you can allow a user to view data from all tables in a database, permit the user to add data to
only one table in the database, and restrict the user to being able to update only one column in that table.
To support your ability to administer MySQL security, this chapter covered the following topics:

❑ Understanding how the user, db, host, tables_priv, and columns_priv tables provide security

❑ Learning how users are authenticated to access the MySQL server and authorized to perform
specific operations

❑ Using GRANT statements to create user accounts and assign privileges

❑ Using SHOW GRANTS statements to display user privileges

❑ Using SET PASSWORD statements to assign or change user account passwords

❑ Using FLUSH PRIVILEGES statements to reload the grant tables in your system’s memory

❑ Using REVOKE statements to revoke privileges assigned to user accounts

❑ Using DROP USER statements to remove a user account from MySQL

Although MySQL provides an effective infrastructure for protecting the data in the databases, your
security strategies should not be limited to the MySQL environment alone. Be sure to implement
the security necessary to protect the MySQL-related files stored in your directories so that no unau-
thorized users can access or copy those files. Also be sure that your network is protected from unautho-
rized access. To carry out these measures, you should work closely with your system and network
administrators and consult the applicable documentation. For current information on MySQL security,
be sure to consult the MySQL Web site (www.mysql.com). You should take every step necessary to
ensure the security of your MySQL installation before you implement MySQL in a production environ-
ment. Once you’re confident that your system is secure, you can start looking at ways to optimize your
system’s performance. In Chapter 15, you learn how you can improve the performance of your queries
so that you can retrieve and modify data as efficiently as possible.

558

Chapter 14

17_579509 ch14.qxd 3/1/05 10:02 AM Page 558

TEAM LinG - Live, Informative, Non-cost and Genuine !

Exercises
In this chapter, you learned how to create user accounts, assign privileges to those accounts, revoke
those privileges, and remove the user accounts from your system. The following exercises help you
build on your ability to perform these tasks. The exercises are based on the following database and table
definitions:

CREATE DATABASE Books;
use Books;
CREATE TABLE Publishers
(

PubID INT PRIMARY KEY,
PubName VARCHAR(40) NOT NULL,
City VARCHAR(20)

);

To view solutions to these exercises, see Appendix A.

1. Create a user account for a user named mgr1. The user account should be able to connect from
the local computer, using the password mgr1pw. Grant the user account SELECT and INSERT
privileges on the Publishers table. In addition, grant the user UPDATE privileges on the
PubName and City columns of the Publishers table.

2. Create an SQL statement that changes the mgr1 user account password to mgr2pw.

3. Create an SQL statement that flushes the grant tables and reloads them in your system’s
memory.

4. Create an SQL statement that displays the privileges assigned to the mgr1 user account.

5. Create an SQL statement that revokes the privileges assigned to the mgr1 user account.

6. Create an SQL statement that removes the mgr1 user account from your system.

559

Managing MySQL Security

17_579509 ch14.qxd 3/1/05 10:02 AM Page 559

TEAM LinG - Live, Informative, Non-cost and Genuine !

