
15
Optimizing Performance

In many examples throughout this book, you have seen SQL statements executed against small
tables that contain relatively few rows. As a result, the performance of these statements has not been
an issue because it takes relatively little time for MySQL to return information or modify data. This
is often not the case, however, in the real world. If you’re accessing tables that contain thousands of
rows of data (or more), you might find that certain SQL statements are slow and take a relatively
long time to be processed, despite how efficiently you think that statement should run. As a result,
whenever you’re setting up a database or creating SQL statements to execute against the database,
you should take into consideration how well those statements perform when they are executed.

When you begin working with tables that contain large quantities of data, there are several steps
that you can take to optimize the performance of your SQL statements. By optimizing performance,
you’re maximizing the speed and efficiency at which those statements are executed. For example, in
order to ensure that your SELECT statements retrieve data as quickly as possible, you can ensure
that your tables have been properly indexed. In this chapter, you learn about various steps that you
can take to optimize your system’s performance. Specifically, the chapter covers the following topics:

❑ Advantages and disadvantages of indexing and when you should use indexing

❑ Determining how effectively your queries are being executed and steps you can take to
improve your data-related operations

❑ Modifying table definitions to improve query performance

❑ Enabling your system’s query cache

Optimizing MySQL Indexing
In MySQL, the most useful step that you can take to maximize performance is to ensure that your
tables are properly indexed. Indexes provide an effective way to access data in your tables and
speed up searches. An index provides an organized list of pointers to the actual data. As a result,
when MySQL executes a query, it can scan the index to locate the correct data, rather than having
to scan the entire table.

18_579509 ch15.qxd 3/1/05 10:03 AM Page 561

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 15-1 helps to illustrate how this works. The figure shows a table named Parts, which includes the
PartID column, the PartName column, and the ManfID column. The Parts table, as with any table, is
basically a collection of rows. Although in this case the rows are ordered by the PartID values, they can
be in any order.

Figure 15-1

Assume for now that no indexes have been defined on the Parts table. Now imagine that you want to
run the following SELECT statement:

SELECT PartName FROM Parts
WHERE ManfID=’jkl123’;

When you execute the statement, MySQL must search through each row in the Parts table to find those
rows that have a ManfID value of jkl123. If the table includes a large number of rows, this process can be
slow and very inefficient. Now take a look at Figure 15-2, which shows that same table, only this time an
index is defined on the ManfID column. The index contains exactly the same values as the ManfID col-
umn; however, the values are sorted in ascending order. In addition, each value in the index contains a
pointer to the applicable row in the Parts column.

Now when you execute the SELECT statement, MySQL searches the index, rather than searching the
entire table row by row and, as a result, can find the ManfID value of jkl123 much faster. Searches are
faster in indexes because indexes are sorted. Identical values are grouped together and organized in an
easy-to-locate order. In addition, because of this sorting, MySQL knows when to stop searching. As soon
as it reaches the end of the matching rows, it discontinues the search. For example, if you refer to the
index in Figure 15-2, you can see that all the jkl123 values are grouped together. This means that they can
all be located with one search and that the last one is easy to identify. The process is made even more
efficient because MySQL uses a special positioning algorithm that locates the first matching entry, with-
out having to start the scan at the beginning of the index.

PartID PartName ManfID
101 DVD burner abc123
102 CD drive jkl123
103 80-GB hard disk mno456
104 Mini-tower ghi789
105 Power supply def456
106 LCD monitor mno456
107 Zip drive ghi789
109 Floppy drive jkl123
109 Network adapter def456
110 Network hub jkl123
111 Router mno456
112 Sound card ghi789
113 Standard keyboard mno456
114 PS/2 mouse jkl123
115 56-K modem ghi789
116 Display adapter mno456
117 IDE controller def456

Parts

562

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 562

TEAM LinG - Live, Informative, Non-cost and Genuine !

Figure 15-2

The benefit of indexes becomes even more apparent for queries that join multiple tables. As you recall
from Chapter 10, when you join two or more tables, rows in each table are matched together based on
the specified join condition. If the tables are not indexed, MySQL must compare each row in each table
with each row in each other table to determine which rows contain the values that meet the join criteria.
This means that MySQL must try every possible combination in the joined tables to determine which
rows meet the join criteria.

For example, suppose you execute a SELECT statement that joins tables A, B, and C, none of which are
configured with indexes. Each row in table A is combined with each row in tables B and C to determine
whether each combination matches the join condition. In other words, the first row in table A is com-
bined with the first row in table B and the first row in table C. The first row in table A is then combined
with the first row in table B and the second row in table C. The first row in table A is then combined with
the first row in table B and the third row in table C. The process is repeated until each row in table C is
covered. The process begins again as the first row in table A is combined with the second row in table B
and the first row in table C. The first row in table A is then combined with the second row in table B and
the second row in table C. This continues until all possible combinations are compared, which can result
in excessively large searches. For example, if each table contains 100 rows, MySQL must compare one
million rows (100 x 100 x 100) to determine which rows match the join condition.

Indexes, though, eliminate the need to compare all the rows in all the tables. Returning to tables A, B,
and C, assume that the columns specified in the join condition are now indexed. When you execute your
SELECT statement, MySQL uses an index to locate the first applicable row in table A. MySQL then uses
an index on table B to match the row in table A to the appropriate row in table B. From there, MySQL
uses a table C index to match the row in table B to the appropriate row in table C. Each step of the way,
MySQL uses indexes to locate values in order to match rows according to how the join condition has
been defined. As a result, the number of rows that must be searched is significantly reduced, which
results in a dramatic improvement in performance.

PartID PartName ManfID
101 DVD burner abc123
102 CD drive jkl123
103 80-GB hard disk mno456
104 Mini-tower ghi789
105 Power supply def456
106 LCD monitor mno456
107 Zip drive ghi789
109 Floppy drive jkl123
109 Network adapter def456
110 Network hub jkl123
111 Router mno456
112 Sound card ghi789
113 Standard keyboard mno456
114 PS/2 mouse jkl123
115 56-K modem ghi789
116 Display adapter mno456
117 IDE controller def456

Index
abc123
def456
def456
def456
ghi789
ghi789
ghi789
ghi789
jkl123
jkl123
jkl123
jkl123
mno456
mno456
mno456
mno456
mno456

Parts

563

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 563

TEAM LinG - Live, Informative, Non-cost and Genuine !

Despite the clear advantages of using indexes, there are some drawbacks. For example, indexes can
require a great deal of storage. The larger the tables and greater the number of indexes, the more storage
you need to hold those indexes. You must allow for file size and potential growth whenever you imple-
ment an index. Another disadvantage to indexes is that, while they speed up data retrieval, they can
slow down data inserts and deletes, as well as updates to columns that are indexed. Any change made to
rows in an indexed table must also be made to the index (unless the change is an update that doesn’t
affect the value in the index).

Despite these drawbacks, indexing provides the most beneficial tool for improving the performance of
your SELECT statements. You should not, however, index every column in a table. The following list pro-
vides several guidelines that you can use in determining when to implement indexing:

❑ Index columns that appear in search conditions. As a general rule, you should consider defin-
ing an index on any column that you commonly use in WHERE, GROUP BY, or HAVING clauses.
Because these columns define the limitations of a query, they are good candidates for improving
performance because they allow MySQL to identify quickly which rows should be included in a
search and which should not.

❑ Index columns that appear in join conditions. Index any columns that appear in a join condi-
tion. Because join conditions are often based on foreign key columns that reference primary key
columns, MySQL creates the indexes automatically when you define the primary keys and for-
eign keys.

❑ Do not index columns that appear only in the SELECT clause. If a column appears in the
SELECT clause of a SELECT statement, but does not appear in WHERE, GROUP BY, or HAVING
clauses, you usually shouldn’t index these columns because indexing them provides no perfor-
mance benefit but does require additional storage. Indexing columns in the SELECT clause pro-
vides no benefit because the SELECT clause is one of the last parts of a SELECT statement to be
processed. MySQL conducts searches based on the other clauses. After MySQL identifies which
rows to return, it then consults the SELECT clause to determine which columns from the identi-
fied rows to return.

❑ Do not index columns that contain only a few different values. If a column contains many
duplicated values, indexing that column provides little benefit. For example, suppose that your
column is configured to accept only Y and N values. Because of the way in which MySQL
accesses an index and uses that index to locate the rows in the tables, many duplicated values
can actually cause the process to take longer than if no index is used. In fact, when MySQL finds
that a value occurs in more than 30 percent of a table’s rows, it usually doesn’t use the index
at all.

❑ Specify prefixes for indexes on columns that contain large string values. If you’re adding an
index to a string column, consider defining a prefix on that index so that your index includes
only part of the entire values, as they’re stored in the table. For example, if your table includes a
CHAR(150) column, you might consider indexing only the first 10 or 15 bytes, or whatever
number provides enough unique values without having to store the entire values in the index.

❑ Create only the indexes that you need. Never create more indexes than you need. If a column is
rarely used in a search or join condition, don’t index that column. You want to index only those
columns that are frequently used to identify the rows being searched.

564

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 564

TEAM LinG - Live, Informative, Non-cost and Genuine !

Once you determine whether to index a column you must decide which type of index to use. In Chapter 5,
you learned how to use the CREATE TABLE statement to add tables to your MySQL database. As you
recall from that chapter, you can define one or more indexes as part of that statement. MySQL supports
five types of indexes:

❑ Primary key: Requires that each value or set of values be unique in the columns on which
the primary key is defined. In addition, NULL values are not allowed. A table can include only
one primary key.

❑ Foreign key: Enforces the relationship between the referencing columns in the child table where
the foreign key is defined and the referenced columns in the parent table.

❑ Regular: Provides a basic index that permits duplicate values and NULL values in the columns
on which the index is defined.

❑ Unique: Requires that each value or set of values be unique in the columns on which the index
is defined. Unlike primary key indexes, NULL values are allowed.

❑ Full-text: Supports full-text searches of the values in the columns on which the index is defined.
A full-text index permits duplicate values and NULL values in those columns. A full-text index
can be defined only on MyISAM tables and only on CHAR, VARCHAR, and TEXT columns.

Refer to Chapter 5 for more details about each type of index and how they’re defined on a table in a
MySQL database.

The type of index you should use depends on your particular requirements. Because primary key and
foreign key indexes provide such specific purposes, their use is fairly evident. You should configure
every table with one primary key, and you should use foreign keys whenever columns in one table refer-
ence columns in another table. In many cases, the use of these keys alone is enough to meet your index-
ing needs. Should you require additional indexes, you should try to use a unique index over regular and
full-text indexes because indexes that contain unique values provide the best performance. MySQL must
locate only one value and that value is matched to exactly one row. As soon as MySQL finds that value,
the search is complete.

Once you have defined the necessary indexes on your table, you may have addressed many of the per-
formance issues that you experience when running queries against a MySQL database. Even a well-
indexed table can experience performance problems. As a result, you should also consider other
methods that you can use to optimize your queries.

Optimizing SQL Queries
When you’re setting up your database or configuring system settings, you’re likely to perform a number
of operations such as creating tables, granting privileges to users, or setting the values of system vari-
ables. Once your MySQL server and databases have been set up the way you want them, most of the
access to the server and database is through applications that retrieve and modify data, which means
that statements such as SELECT, INSERT, UPDATE, and DELETE represent the most common operations
performed. As a result, you should ensure that your system is fully optimized to support these opera-
tions. To do so, you must take into account not only methods that you can use to improve data retrieval,
but also methods that improve inserting data, updating data, and deleting data.

565

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 565

TEAM LinG - Live, Informative, Non-cost and Genuine !

Optimizing Data Retrieval
Of all the operations performed against a MySQL database, data retrieval operations, through the use of dif-
ferent types of SELECT statements, are the most common. When you execute a SELECT statement, MySQL
uses the query optimizer to analyze the statement and perform the query as effectively as possible. The opti-
mizer is a MySQL component whose sole purpose is to ensure the best performance possible for each query
by planning out the execution of that query.

The optimizer’s primary goal is to try to use indexes whenever possible to process the statement. As
you saw earlier in the chapter, an index can provide the most efficient method for locating rows that
are accessed by the statement. The optimizer tries to determine which indexes benefit the execution of
the statement and which ones don’t. In some cases, the optimizer determines that it is better to bypass the
index, rather than use it, such as when there are too many duplicate values.

The optimizer also tries to determine the greatest number of rows that can be eliminated from the
search. To better understand how this works, take a look at the following SELECT statement:

SELECT BookTitle FROM Books
WHERE InStock>20 AND OnOrder>10;

Assume that the statement returns 20 rows, with each row meeting the conditions specified by the
two expressions in the WHERE clause. When the optimizer first looks at the statement, it tests each of
these expressions in order to estimate the number of rows that must be examined to meet the conditions
specified by the expressions. You can also assume that, in this case, the optimizer estimates that 600 rows
need to be examined for the first expression. If only 20 of the 600 rows meet both search conditions,
MySQL has to search through 570 rows that don’t meet both search conditions. The optimizer, however,
also estimates that only 100 rows have to be examined for the second expression, which means that only
80 rows fail to meet both search conditions.

Based on the results of its initial tests of the two conditions, the query optimizer decides that it is best to
process the second expression first and then, from those results, process the first expression. This way,
fewer rows have to be processed, which means that the SELECT statement requires less processing time
and fewer disk I/O operations than if the first expression is processed first.

The optimizer includes other capabilities that lend to the optimization of a statement; however, despite
how efficient the optimizer can be, you might try to execute statements that you believe are not perform-
ing as well as they could. As a result, you must sometimes analyze your SELECT statements to determine
what steps you can take to improve performance. The most effective method that you can use to analyze
your SELECT statement is to use the EXPLAIN statement.

Using the EXPLAIN Statement
The EXPLAIN statement provides an analysis of a specified SELECT statement. To use the EXPLAIN state-
ment, simply include the EXPLAIN keyword, followed by the SELECT statement, as shown in the follow-
ing syntax:

EXPLAIN <select statement>

566

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 566

TEAM LinG - Live, Informative, Non-cost and Genuine !

You should include your SELECT statement after the EXPLAIN keyword exactly as you would use the
SELECT statement in a query. The EXPLAIN statement then returns results that provide details about how
the SELECT statement will be executed. From these details, you can determine whether indexes are being
used effectively, whether you should add new indexes, or whether you should specify the order of how
tables are joined together.

You can also use the EXPLAIN statement to return details about a table. To view table details, use
the following syntax: EXPLAIN <table name>. As you can see, the name of the table follows the
EXPLAIN keyword. Using the EXPLAIN statement in this way produces the same results as using
the DESCRIBE <table name> statement.

The best way to understand the EXPLAIN statement is to look at an example. The example is based on a
SELECT statement that joins two tables: Manufacturers and Parts. The following table definition describes
how the Manufacturers table is created:

CREATE TABLE Manufacturers
(

ManfID CHAR(8)NOT NULL PRIMARY KEY,
ManfName VARCHAR(30) NOT NULL

)
ENGINE=INNODB;

For the purpose of the example, you can assume that the following INSERT statement has populated the
Manufacturers table:

INSERT INTO Manufacturers
VALUES (‘abc123’, ‘ABC Manufacturing’),
(‘def456’, ‘DEF Inc.’),
(‘ghi789’, ‘GHI Corporation’),
(‘jkl123’, ‘JKL Limited’),
(‘mno456’, ‘MNO Company’);

The following table definition describes how the Parts table is created:

CREATE TABLE Parts
(

PartID SMALLINT NOT NULL PRIMARY KEY,
PartName VARCHAR(30) NOT NULL,
ManfID CHAR(8) NOT NULL

)
ENGINE=INNODB;

The Parts table shown in this definition is the same Parts table shown in Figure 15-1. As you can see, no
foreign key is defined on this table. In reality, you would probably define a foreign key on the ManfID
column of the Parts table that references the ManfID column of the Manufacturers table, but it is not
done here in order to demonstrate how to analyze a SELECT statement.

567

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 567

TEAM LinG - Live, Informative, Non-cost and Genuine !

Now assume that the following INSERT statement has been used to populate the Parts table:

INSERT INTO Parts
VALUES (101, ‘DVD burner’, ‘abc123’),
(102, ‘CD drive’, ‘jkl123’),
(103, ‘80-GB hard disk’, ‘mno456’),
(104, ‘Mini-tower’, ‘ghi789’),
(105, ‘Power supply’, ‘def456’),
(106, ‘LCD monitor’, ‘mno456’),
(107, ‘Zip drive’, ‘ghi789’),
(108, ‘Floppy drive’, ‘jkl123’),
(109, ‘Network adapter’, ‘def456’),
(110, ‘Network hub’, ‘jkl123’),
(111, ‘Router’, ‘mno456’),
(112, ‘Sound card’, ‘ghi789’),
(113, ‘Standard keyboard’, ‘mno456’),
(114, ‘PS/2 mouse’, ‘jkl123’),
(115, ‘56-K modem’, ‘ghi789’),
(116, ‘Display adapter’, ‘mno456’),
(117, ‘IDE controller’, ‘def456’);

Once the tables are created and populated, you can execute SELECT statements against the tables in
order to retrieve data in those tables. For example, you might execute the following SELECT statement:

SELECT PartName, ManfName
FROM Parts AS p, Manufacturers as m
WHERE p.ManfID = m.ManfID
ORDER BY PartName;

The SELECT statement returns results similar to the following:

+-------------------+-------------------+
| PartName | ManfName |
+-------------------+-------------------+
56-K modem	GHI Corporation
80-GB hard disk	MNO Company
CD drive	JKL Limited
Display adapter	MNO Company
DVD burner	ABC Manufacturing
Floppy drive	JKL Limited
IDE controller	DEF Inc.
LCD monitor	MNO Company
Mini-tower	GHI Corporation
Network adapter	DEF Inc.
Network hub	JKL Limited
Power supply	DEF Inc.
PS/2 mouse	JKL Limited
Router	MNO Company
Sound card	GHI Corporation
Standard keyboard	MNO Company
Zip drive	GHI Corporation
+-------------------+-------------------+
17 rows in set (0.12 sec)

568

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 568

TEAM LinG - Live, Informative, Non-cost and Genuine !

After executing the statement, you might decide that the statement’s performance could be better.
Although this might not be apparent when each table contains so few rows, it would become so if the
tables contained thousands of rows. As a result, you decide to analyze this statement to see whether any
bottlenecks exist and, if so, where they might be. To analyze the SELECT statement, you simply precede
it with the EXPLAIN keyword, as shown in the following statement:

EXPLAIN SELECT PartName, ManfName
FROM Parts AS p, Manufacturers as m
WHERE p.ManfID = m.ManfID
ORDER BY PartName;

When you execute this statement, you should receive results similar to the following:

+----+-------------+-------+------+---------------+------+---------+------+------+-
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
+----+-------------+-------+------+---------------+------+---------+------+------+-
| 1 | SIMPLE | p | ALL | NULL | NULL | NULL | NULL | 17 |
| 1 | SIMPLE | m | ALL | PRIMARY | NULL | NULL | NULL | 4 |
+----+-------------+-------+------+---------------+------+---------+------+------+-
2 rows in set (0.00 sec)

The results returned by the EXPLAIN statement include a row for each table that participates in the
query. The results shown here represent only a part of the entire results. The results that you can expect also
include a column named Extra. In the preceding statement, the Extra column displays the value Using
temporary; Using filesort for the first row and displays the value Using where in the second row.

Each column returned by the EXPLAIN statement provides specific information about how the optimizer
plans to execute the SELECT statement. The following table describes each column returned by the
EXPLAIN statement and provides information about the values displayed in the previous results set.

Column Description

id An identifier for the SELECT statement that is being analyzed. If the statement
doesn’t include subqueries or unions, the id value is 1 for each row, as is the
case in the preceding example results set.

select_type The type of SELECT statement. The SIMPLE value indicates that the statement
doesn’t include subqueries or unions. Other values indicate how the statement
participates in a subquery or union.

table The table being analyzed by the row. If an alias is used for the table name, the
column displays the alias, rather than the actual table name.

type The method used to match rows in different tables when the SELECT statement
joins two or more tables. If ALL is specified, MySQL conducts a full table scan
for each combination of rows from the current table and the joined table. Gen-
erally, you should avoid ALL in all but the first row.

possible_keys The indexes that MySQL can use to find rows. If NULL, no indexes can be used.
In the previous example, the primary key in the Manufacturers table can poten-
tially be used to process the SELECT statement. This index would be considered
because it is one of the columns specified in the join condition.

Table continued on following page

569

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 569

TEAM LinG - Live, Informative, Non-cost and Genuine !

Column Description

key The indexes that MySQL actually uses to return rows. If NULL, no indexes are
used.

key_len The length of the index used to retrieve rows. This is most useful in determining
how many parts of a multicolumn index are used. For example, if an index is
made up of two columns that are each configured as CHAR(4) columns and
the key_len column value is 4, you know that only the first column in the
index is used. The key_len value is NULL if the key value is NULL.

ref The column used in conjunction with the index specified in the key column.
This usually refers to the column referenced in a foreign key. If NULL, no
columns are used.

rows The number of rows that MySQL plans to examine in order to execute the
query. This column is normally your best indicator of the efficiency of the
column. The more rows that must be examined, the less efficient the query.

Extra Additional information about the query. For example, if a query can be exe-
cuted by referring only to the index, the value Using index is displayed. The
Using filesort value is displayed if MySQL must make an additional pass
to retrieve rows in a sorted order. The Using temporary value is displayed if
MySQL will create a temporary table to execute the query. The Using where
value indicates that the WHERE clause will be used to restrict which rows to
retrieve.

This table includes only the basic information that you need to understand the results returned by an
EXPLAIN statement. For more information about the results returned by the statement, see the MySQL
product documentation.

As the EXPLAIN statement results in the preceding example indicate, the SELECT statement will be pro-
cessed by examining 17 rows in the Parts table and 4 rows in the Manufacturers table. In addition, because
ALL is specified as the scan type, you know that a full-table scan will be conducted on both tables. To arrive
at how many rows will actually be examined, you should multiply the values in the rows column. In this
case, 68 rows will be examined. As you’ll recall from the query results for this statement, only 17 rows are
actually returned. As the EXPLAIN statement results also show, no indexes are being used to process the
SELECT statement.

The first step that you should take is to try to determine whether you should add any more indexes to
the table. As you would expect, the place to start is to add a foreign key to the Parts table. The foreign
key not only provides referential integrity but creates an index on that column, which is important
because that column is specified in the join condition. You can add the foreign key by using the follow-
ing ALTER TABLE statement:

ALTER TABLE Parts
ADD FOREIGN KEY (ManfID) REFERENCES Manufacturers (ManfID);

570

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 570

TEAM LinG - Live, Informative, Non-cost and Genuine !

After you modify the Parts table, you can use the same EXPLAIN statement that you saw in the preced-
ing example. You should now receive results similar to the following:

+----+-------------+-------+------+---------------+------+---------+------+------+-
| id | select_type | table | type | possible_keys | key | key_len | ref | rows |
+----+-------------+-------+------+---------------+------+---------+------+------+-
| 1 | SIMPLE | m | ALL | PRIMARY | NULL | NULL | NULL | 5 |
| 1 | SIMPLE | p | ALL | ManfID | NULL | NULL | NULL | 13 |
+----+-------------+-------+------+---------------+------+---------+------+------+-
2 rows in set (0.00 sec)

The results shown here are similar to the results displayed the first time you executed the EXPLAIN state-
ment. However, the new results show that 5 rows in the Manufacturers table and 13 in the Parts table
will be scanned. When you multiply these values, you find that 65 rows will be examined to execute this
query, not a very big improvement over the last time. One reason for this is that, although the ManfID
index is listed in the possible_keys column, it is not being used. As a result, MySQL will still do a full-
table scan on both tables.

The SELECT statement has not seen a great improvement in performance because the cardinality of the
index is improperly set when you use the ALTER TABLE statement to create that index. Index cardinality
refers to the number of unique values in an index. For example, suppose that you have a column that
permits only three values. If you create an index on the column, the cardinality for that index is 3, no
matter how many rows are in that table. In general, MySQL does not use an index with a low cardinality
because this is not an efficient use of indexes. As a result, when you add an index to a table or modify it
significantly in any other way, you should ensure that the cardinality is correctly represented to the
query optimizer. The easiest way to do this is to execute an OPTIMIZE TABLE statement.

You can view a table’s cardinality by using the SHOW INDEX statement on that table. Viewing the car-
dinality does not necessarily tell you whether that setting is improperly set, so you still might want to
run the OPTIMIZE TABLE statement.

Using the OPTIMIZE TABLE Statement
The OPTIMIZE TABLE statement performs a number of functions. For example, it defragments the table
and sorts the table’s indexes. It also updates the internal table statistics. One of these statistics is the car-
dinality of its indexes. If you add an index to an existing table, you might have to use the OPTIMIZE
TABLE statement to ensure that the table statistics are accurate when read by the query optimizer. The
following syntax shows how to create an OPTIMIZE TABLE statement:

OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE <table name> [{, <table name>}...]

As the syntax shows, you must, at a minimum, specify the OPTIMIZE TABLE keywords and the name of
the table. In addition, you can specify the LOCAL option or the NO_WRITE_TO_BIN_LOG option (which
are synonymous) to prevent the optimization process from being written to the binary log. In addition,
you can specify more than one table.

Now return to the examples from the previous section. Because you added an index to the Parts table,
you should run the OPTIMIZE TABLE statement on that table, as shown in the following example:

OPTIMIZE TABLE Parts;

571

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 571

TEAM LinG - Live, Informative, Non-cost and Genuine !

When you execute this statement, you should receive results similar to the following:

+------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+------------+----------+----------+----------+
| test.parts | optimize | status | OK |
+------------+----------+----------+----------+
1 row in set (0.35 sec)

Basically, these results are telling you that the parts table has been optimized. Now when you run an
EXPLAIN statement (against the same example SELECT statement used previously), your results should
be similar to the following:

------+------+---------------+--------+---------+---------------+------+-----------
table | type | possible_keys | key | key_len | ref | rows | Extra
------+------+---------------+--------+---------+---------------+------+-----------
m | ALL | PRIMARY | NULL | NULL | NULL | 5 | Using temp
p | ref | ManfID | ManfID | 8 | test.m.ManfID | 1 |
------+------+---------------+--------+---------+---------------+------+-----------
2 rows in set (0.00 sec)

Again, these results show only a part of the entire results. The id and select_type columns are not
included, but they show the same results as in the earlier examples. The id value for both rows is 1, and
the select_type value for both rows is SIMPLE. In addition, only part of the Extra column is shown in
these results. The entire Extra value for the row about the Manufacturers table is Using temporary;
Using filesort, indicating that a temporary table is used in processing the SELECT statement and an
additional pass is made to retrieve the rows in a sorted order.

Although the id and select_type values are the same as in the previous example, there are a number of
differences. First, the type column for the Parts table shows a value of ref, rather than ALL, indicating
that the rows from this table are read based on index values that are matched according to the join con-
dition, rather than performing a full-table scan. In addition, the optimizer now uses the index defined on
the ManfID column of the Parts table, in conjunction with the ManfID column of the Manufacturers
table, as shown in the ref column. The most important statistics in these results are in the rows column,
which shows that 5 rows will be searched in the Manufacturers table and 1 row searched in the Parts
table, indicating that only 5 rows will be examined to process this query, rather than 65.

At this point, you may wonder how it’s possible that so few rows can be examined when you know that
17 rows are returned by the SELECT statement. The problem is that the values that are shown in the rows
column are only estimates of the number of rows that the optimizer believes must be processed in order
to execute the query. Because of the method the optimizer uses to arrive at these estimates, the smaller
the table, the more inaccurate the estimates can be. And in reality, if you are working with tables as small
as the ones shown in these examples, you do not need to be too concerned about optimizing your
queries. As your tables grow and they contain thousands of rows, or even millions, optimization
becomes critical. Regardless of the exact amount shown in the rows column, your goal should still be to
get that total row count down as low as possible, and the steps shown here are a good way to start.

Adding indexes and executing OPTIMIZE TABLE statements are not the only methods that you can use
to optimize query performance. MySQL also recommends other steps that you can take to maximize
performance.

572

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 572

TEAM LinG - Live, Informative, Non-cost and Genuine !

Understanding the SELECT Statement Guidelines
As stated earlier, proper indexing should still be your first strategy in optimizing your system so that
you can retrieve data as efficiently as possible. There are several other steps that you can take to improve
performance, as described in the following guidelines:

❑ Do not use unnecessary wildcards in LIKE clauses. Use wildcards only when you need them.
For example, if you are looking for values that begin with “Cha,” don’t specify a wildcard at the
beginning of your value, as in LIKE ‘%cha%’. Instead, omit the first wildcard. (For more infor-
mation about using the LIKE clause, see Chapter 8.)

❑ Isolate indexed columns in comparison expressions. MySQL cannot use an index on a column if
that column appears as an argument in a function or an arithmetic expression. For example, sup-
pose your WHERE clause includes the expression YEAR(DateJoined)>1999, where DateJoined is a
column that contains date values. If DateJoined is an indexed column, you might want to rewrite
the WHERE clause to something similar to the following: DateJoined>’1999-12-31’. (For infor-
mation about using functions, see Chapter 9. For information about expressions, see Chapter 8.)

❑ Turn subqueries into joins. In some cases, you can rewrite a subquery into a join. MySQL pro-
cesses joins more efficiently than subqueries, so if using a join is an alternative, you should try
that. (For more information about joins and subqueries, see Chapter 10.)

❑ Try using the FORCE INDEX clause. At times the query optimizer chooses to process a SELECT
statement without using a particular index. You can try adding the FORCE INDEX clause to your
SELECT statement to force the statement to use the specified index. (You add the FORCE INDEX
clause to the table reference in your SELECT statement. For more information about how to
include this option in your SELECT statement, see Chapter 7.)

❑ Try using the STRAIGHT_JOIN option. When the query optimizer analyzes a SELECT statement, it
determines the order in which tables will be joined. In some cases, you might find that forcing the
optimizer to join tables in the order specified in the SELECT statement improves the statement’s
performance. This occurs because there are times when the query optimizer does not join tables in
the most optimal order. As a result, more rows are examined than need to be examined in order to
perform an effective join operation. By forcing the join order, you can sometimes see an improve-
ment in performance because fewer rows are being searched. To force the order, you can add the
STRAIGHT_JOIN option to your SELECT statement. (For more information about using the
STRAIGHT_JOIN option, see Chapter 10.)

❑ Try alternative forms of the query. Sometimes you can improve performance simply by changing
how you structure a SELECT statement. One example is turning subqueries into joins. Another
example is changing the order of tables specified in a join condition. The more you use SQL, the
more alternative methods that you’ll find to perform the same operations. As a result, it is some-
times worth the effort to try different forms of a SELECT statement to produce the same results.
You can then analyze each form to determine which version of the statement performs the best. If
you decide to try out different versions of a SELECT statement, be certain to execute each one sev-
eral times to ensure that one statement isn’t simply reading from the disk cache for the previous
statement.

Now that you have a good overview of how to optimize the performance of your SELECT statements,
you can try out some of what you have learned. In the following exercise, you add two tables to the
DVDRentals database. The tables match customers to the cities in which they live. After you create the
tables, you execute a SELECT statement that retrieves data from the new tables as well as the Customers
table. You then use EXPLAIN statements to determine what steps you can take to improve the perfor-
mance of that SELECT statement.

573

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 573

TEAM LinG - Live, Informative, Non-cost and Genuine !

Try It Out Optimizing Performance of a SELECT Statement
The following steps describe how to optimize the performance of a SELECT statement:

1. Open the mysql client utility, type the following command, and press Enter:

use DVDRentals

You should receive a message indicating that you have been switched to the DVDRentals
database.

2. First, create a table for the name of the cities. Execute the following SQL statement at the mysql
command prompt:

CREATE TABLE Cities
(

CityID SMALLINT NOT NULL PRIMARY KEY,
CityName VARCHAR(20) NOT NULL

)
ENGINE=INNODB;

You should receive a message indicating that the table has been successfully created.

3. Now insert data in the table that you created in the previous step. Execute the following SQL
statement at the mysql command prompt:

INSERT INTO Cities
VALUES (101, ‘Seattle’), (102, ‘Redmond’), (103, ‘Bellevue’),
(104, ‘Kent’), (105, ‘Kirkland’);

You should receive a messaging indicating that the statement successfully executed and that
five rows were affected.

4. Next, create the second table. Execute the following SQL statement at the mysql command
prompt:

CREATE TABLE CustCity
(

CustID SMALLINT NOT NULL,
CityID SMALLINT NOT NULL

)
ENGINE=INNODB;

You should receive a message indicating that the table has been successfully created.

5. Insert data in the table that you created in Step 4. Execute the following SQL statement at the
mysql command prompt:

INSERT INTO CustCity
VALUES (1, 104), (2, 101), (3, 104),
(4, 103), (5, 102), (6, 105);

You should receive a messaging indicating that the statement successfully executed and that six
rows were affected.

574

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 574

TEAM LinG - Live, Informative, Non-cost and Genuine !

6. Before you perform any sort of analysis, you should create a SELECT statement that retrieves
information from the Customers, CustCity, and Cities tables. Execute the following SQL state-
ment at the mysql command prompt:

SELECT CustLN, CityName
FROM Customers AS cu, CustCity AS cc, Cities AS ci
WHERE cu.CustID=cc.CustID AND ci.CityID=cc.CityID;

You should receive results similar to the following:

+-----------+----------+
| CustLN | CityName |
+-----------+----------+
Weatherby	Seattle
Taylor	Redmond
Cavenaugh	Bellevue
Johnson	Kent
Thomas	Kent
Delaney	Kirkland
+-----------+----------+
6 rows in set (0.00 sec)

7. Next, use an EXPLAIN statement to analyze the SELECT statement that you created in Step 6.
Execute the following SQL statement at the mysql command prompt:

EXPLAIN SELECT CustLN, CityName
FROM Customers AS cu, CustCity AS cc, Cities AS ci
WHERE cu.CustID=cc.CustID AND ci.CityID=cc.CityID;

You should receive results similar to the following:

------+--------+---------------+---------+---------+----------------------+------+-
table | type | possible_keys | key | key_len | ref | rows |
------+--------+---------------+---------+---------+----------------------+------+-
cc | ALL | NULL | NULL | NULL | NULL | 6 |
cu | eq_ref | PRIMARY | PRIMARY | 2 | dvdrentals.cc.CustID | 1 |
ci | ALL | PRIMARY | NULL | NULL | NULL | 4 |
------+--------+---------------+---------+---------+----------------------+------+-
3 rows in set (0.00 sec)

The results shown here represent only a part of the results you will see. Your results should also
include the id, select_type, and Extra columns. The id value for each row is 1, the select_type
value for each row is SIMPLE, and the row for the ci (Cities) table should show an Extra value of
Using where.

8. Use an ALTER TABLE statement to add the necessary indexes to the CustCity table. Execute the
following SQL statement at the mysql command prompt:

ALTER TABLE CustCity ADD PRIMARY KEY (CustID, CityID),
ADD FOREIGN KEY (CustID) REFERENCES Customers (CustID),
ADD FOREIGN KEY (CityID) REFERENCES Cities (CityID);

You should receive a messaging indicating that the statement successfully executed and that six
rows were affected.

575

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 575

TEAM LinG - Live, Informative, Non-cost and Genuine !

9. Rerun the EXPLAIN statement that you executed in Step 6. You should receive results similar to
the following:

------+--------+----------------+---------+---------+----------------------+------+
table | type | possible_keys | key | key_len | ref | rows |
------+--------+----------------+---------+---------+----------------------+------+
ci | ALL | PRIMARY | NULL | NULL | NULL | 5 |
cc | ref | PRIMARY,CityID | CityID | 2 | dvdrentals.ci.CityID | 3 |
cu | eq_ref | PRIMARY | PRIMARY | 2 | dvdrentals.cc.CustID | 1 |
------+--------+----------------+---------+---------+----------------------+------+
3 rows in set (0.01 sec)

Your results should also include the id, select_type, and Extra columns. The id value for each
row is 1, the select_type value for each row is SIMPLE, and the row for the cc (CustCity) table
should show an Extra value of Using index.

10. Use the OPTIMIZE TABLE statement to optimize the CustCity table. Execute the following SQL
statement at the mysql command prompt:

OPTIMIZE TABLE CustCity;

You should receive results similar to the following:

+---------------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------------+----------+----------+----------+
| dvdrentals.custcity | optimize | status | OK |
+---------------------+----------+----------+----------+
1 row in set (0.41 sec)

11. Rerun the EXPLAIN statement that you executed in Step 6. You should receive results similar to
the following:

------+--------+----------------+---------+---------+----------------------+------+
table | type | possible_keys | key | key_len | ref | rows |
------+--------+----------------+---------+---------+----------------------+------+
ci | ALL | PRIMARY | NULL | NULL | NULL | 5 |
cc | ref | PRIARY,CityID | CityID | 2 | dvdrentals.ci.CityID | 1 |
cu | eq_ref | PRIMARY | PRIMARY | 2 | dvdrentals.cc.CustID | 1 |
------+--------+----------------+---------+---------+----------------------+------+
3 rows in set (0.00 sec)

Your results should also include the id, select_type, and Extra columns. The id value for each
row is 1, the select_type value for each row is SIMPLE, and the row for the cc (CustCity) table
should show an Extra value of Using index.

12. Drop the CustCity and Cities tables from the DVDRentals database. Execute the following SQL
statements at the mysql command prompt:

DROP TABLE CustCity;
DROP TABLE Cities;

You should receive messages indicating that the statements were executed successfully.

576

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 576

TEAM LinG - Live, Informative, Non-cost and Genuine !

How It Works
In this exercise, you added the Cities table and the CustCity tables to the DVDRentals database, and then
you populated the tables. You then created a SELECT statement that retrieved data from the two new
tables as well as the Customers table. After you ran the SELECT statement, you created the following
EXPLAIN statement to analyze the SELECT statement:

EXPLAIN SELECT CustLN, CityName
FROM Customers AS cu, CustCity AS cc, Cities AS ci
WHERE cu.CustID=cc.CustID AND ci.CityID=cc.CityID;

The EXPLAIN statement is made up of the EXPLAIN keyword followed by the SELECT statement that you
want to analyze. In this case, the EXPLAIN statement indicates that 24 rows (6 x 1 x 4) will be examined
to process the query. For the CustCity and Cities tables, MySQL will examine all rows in both tables to
process the query. For the Customers table, the type is eq_ref, which indicates that MySQL will examine
only one row in the Customers table for each combination of rows processed in the other tables. In gen-
eral, this in itself is an efficient approach, as opposed to examining every row. The fact that every row
must be examined in the other two tables is still a problem.

The EXPLAIN statement also shows that MySQL will use only the primary key index on the Customers
table to process that query, and no indexes from any other table. In an effort to try to improve perfor-
mance, you used the following ALTER TABLE statement to add foreign keys to the CustCity table to ref-
erence the Customers and Cities table:

ALTER TABLE CustCity ADD PRIMARY KEY (CustID, CityID),
ADD FOREIGN KEY (CustID) REFERENCES Customers (CustID),
ADD FOREIGN KEY (CityID) REFERENCES Cities (CityID);

After you modified the tables, you ran the EXPLAIN statement once again. This time your results showed
that 15 rows would be examined to process the SELECT statement, which is an improvement over the 24
rows. In addition, MySQL will use the foreign key index on the CityID column of the CustCity table
when processing the query, as well as the primary key index for the Customers table.

Because you altered the CustCity table, you used the following OPTIMIZE TABLE statement to ensure
that the query optimizer uses the correct cardinality values:

OPTIMIZE TABLE CustCity;

After you ran this statement, you executed the EXPLAIN statement a third time. The results are the same
as they were when you executed the statement previously, only this time the results showed that only five
rows will be examined (5 x 1 x 1) when processing the query. In reality, at least six rows will be examined.
(The SELECT statement returns six rows.) As stated earlier, the row values are only estimates of how many
rows the optimizer believes will need to be examined. Regardless of the values, the goal is to reduce that
number by as many rows as possible.

Optimizing Data Insertion
Because SELECT statements are the most common types of SQL statements executed against a MySQL
database, optimization efforts tend to focus on improving performance when retrieving data. There
might be times, though, when you want to improve the performance of your insert operations, especially

577

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 577

TEAM LinG - Live, Informative, Non-cost and Genuine !

when you want to add many rows of data to your database or must add data often. The following
guidelines provide information about several steps that you can take to improve the performance of
your insert operations:

❑ Use a LOAD DATA statement rather than an INSERT statement. Whenever possible, use a LOAD
DATA statement to insert data from a text file, rather than use an INSERT statement. MySQL can
add data in a database up to 20 times faster when using a LOAD DATA statement, as compared to
using an INSERT statement. (For information about the LOAD DATA statement, see Chapter 11.)

❑ Use INSERT statements with multiple VALUES clauses. When using INSERT statements to add
multiple rows in a table, you can use one of two methods to insert that data. The first is to create
an INSERT statement for each row of data, and the second is to create one INSERT statement
that contains multiple VALUES clauses. Using the second option is much faster because MySQL
must process only one SQL statement rather than many statements, and any related indexes must
be flushed only once, rather then one time for each INSERT statement. (Whenever you execute
an INSERT statement that affects an indexed column, the related index must be updated and
flushed. For information about the INSERT statement, see Chapter 6.)

❑ When using multiple INSERT statements, group them together in a transaction. There will be
times when you must use multiple INSERT statements, such as when you’re inserting data in
multiple tables. In that case, you should isolate your INSERT statement in a transaction. This
process reduces the number of times that the index must be flushed. (For information about the
transactions, see Chapter 12.)

❑ Let MySQL insert default values. When using INSERT statements to add data to a table, you
can often insert the data without having to specify default values. If this is an option, do not
specify those values and instead allow MySQL to insert them. This method results in shorter
SQL statements, which means that the server must do less processing on each statement.

❑ When possible, use the DELAYED option in your INSERT statements. When you specify the
DELAYED option in an INSERT statement, the execution of that statement is delayed until no
other client connections are accessing the same table that the INSERT statement is accessing.
You can continue to take other actions while the INSERT statement is in queue. (For informa-
tion about using the DELAYED option in an INSERT statement, see Chapter 6.)

When you’re dealing with only small amounts of data, most of these steps are inconsequential. However,
if you are inserting thousands of rows at a time, performance becomes an important issue. Of all these
guidelines, the most important to remember is that bulk loading (by using a LOAD DATA statement) is
almost always preferable to using INSERT statements to add large quantities of data. In addition to
improving the performance of your insert operations, you might also find that you need to improve the
performance of your data modification operations.

Optimizing Data Modification and Deletion
When considering the steps that you should take to optimize your data modification and deletion opera-
tions, take into account the WHERE clause in your UPDATE and DELETE statements. The WHERE clause is
similar to the WHERE clause in the SELECT statement in the way in which it determines which rows are
examined in each table. As a result, some of the methods that you would use to improve performance of
a SELECT statement also apply to an UPDATE or DELETE statement. For example, do not use unnecessary
wildcards in your LIKE clause, and try to isolate indexed columns used in a comparison expression.

578

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 578

TEAM LinG - Live, Informative, Non-cost and Genuine !

Another consideration with your update and delete operations is how the table is indexed. When you
execute an UPDATE or DELETE statement, MySQL optimizes that statement in the same way that it opti-
mizes a SELECT statement, except that there is additional overhead from the actual data modification
operations. If columns in your WHERE clause are indexed, those indexes are used to locate the target
rows. Because indexes can affect the performance of an update or delete operation, the gains you make
by using the index might be lost when modifying the data. Keep in mind, however, that indexes are used
primarily to facilitate data retrieval, not data updates and deletions. You should not remove an index if it
improves the performance of a few UPDATE or DELETE statements but hurts many SELECT statements.
The best way to take indexes into account is to balance the needs of your data retrieval operations
against your update and delete operations. In most cases, you want to optimize your system based on
your data retrieval operations.

One way to get around this issue of improving data retrieval performance at the expense of data modifi-
cation operations is to continue to assign indexes based on the performance of your SELECT statement
operations, but try to delay updates or deletions until you can perform them at one time, preferably at
time when your system’s usage is usually low. In addition, enclose your UPDATE statements and DELETE
statements in a transaction so that all your data modifications are treated as a unit, which minimizes sys-
tem processing and index flushing.

One other strategy to consider when deleting data is to use a TRUNCATE statement rather than a DELETE
statement when deleting all data from a table. When MySQL processes a TRUNCATE statement, it drops
the table and then re-creates it. This process makes the operations extremely fast, much faster than sim-
ply trying to remove all the data with a DELETE statement.

For more information about UPDATE, DELETE, and TRUNCATE statements, see Chapter 6.

In addition to taking steps to improve the performance of your data retrieval and modification opera-
tions, you should also take performance into consideration when designing your tables. The choices you
make in your table definitions can also affect how well your SQL data modification statements perform.

Optimizing MySQL Tables
When you set up a database, you should take into account your table designs when trying to optimize
your system’s performance. Of particular importance is how you set up your columns in each table. The
following guidelines provide several suggestions for designing your columns:

❑ Use identical column types for compared columns. If you plan to compare columns in a query, as
is the case when defining a join condition, use identical data types if possible. For example, if you
are defining a foreign key on a table, the foreign key and the referenced column do not have to have
identical data types, only compatible data types. This means that a CHAR(6) column can reference a
CHAR(8) column. You can then use these two columns to join together the tables. MySQL, however,
does not process this join condition as fast as it would if both columns are configured exactly the
same, such as making them both CHAR(6). As a result, it is sometimes better to sacrifice a little stor-
age in the interest of improving performance.

❑ Specify data types that have the correct length. When specifying column types, do not specify
types with lengths greater than what you need. For example, if you are defining a numerical
column, don’t use an INT data type if a SMALLINT data type will do. The smaller the column,

579

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 579

TEAM LinG - Live, Informative, Non-cost and Genuine !

the quicker that MySQL can process values used in computations. In addition, the smaller the
columns, the smaller the indexes and the more data that can be held in memory.

❑ Define your columns as NOT NULL when appropriate. Whenever you can define a column as
NOT NULL, you should do so. Columns that permit NULL values take longer to process than
those that do not. If you have a column in which values are often not known, you can still
define the column as NOT NULL, but you can also define a default value for that column, such as
Unknown.

❑ Consider defining your columns with the ENUM data type. An ENUM data type allows you to
specify the values that are permitted in a string column. In some cases, you know exactly what
values can be inserted in a column, there are relatively few of those values, and the values will
seldom change, if ever. In cases such as this, you should use the ENUM data type. Because ENUM
values are represented internally as numerical values, MySQL can process them much more
quickly than a regular string value.

In addition to taking these steps to improve your table designs, you should also use the OPTIMIZE
TABLE statement to defragment some of your tables once they are created. Earlier in the chapter, you
were introduced to the OPTIMIZE TABLE statement. One of the functions that the statement performs is
to defragment a table. For tables that are modified often or that contain a lot of variable length data
(such as is found in VARCHAR columns), fragmentation of the table can affect performance. As a result,
you should consider running the OPTIMIZE TABLE statement against tables of this sort as needed.

As you can see, you can take several steps at the table level to improve the performance of your SQL
statements. You can also take steps at the server level to help improve performance, as the following sec-
tion explains.

Optimizing Your System’s Cache
As you learned in Chapter 13, MySQL includes a number of system variables that allow you to specify
system variable settings for the MySQL server. Some of the most important of these settings, in terms of
the performance of your SELECT statements, are those settings related to your query cache. A cache is a
place in your system’s memory that holds specific types of information. A query cache is a cache that is
used specifically to hold the result sets returned by SELECT statements.

An application can access information held in memory much faster than information that is stored on a
hard disk, particularly if you’re accessing large amounts of data stored in a database. As a result, when
optimizing performance in MySQL, you should give special consideration to your query cache and the
system variables that are used to control that cache.

The query cache speeds up the processing of your SELECT statements by caching the result sets retrieved
by different queries. When a SELECT statement is first executed, that result set is cached. Whenever the
same SELECT statement is executed, MySQL merely retrieves the data from the cache, without reprocessing
the query. If the underlying data is modified in any way, the query results are removed from the cache.

By default, the query cache is not enabled. You can set up query caching on your system by using the
following three system variables:

580

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 580

TEAM LinG - Live, Informative, Non-cost and Genuine !

❑ query_cache_type: Specifies the operating mode of the query cache. Three possible values can
be assigned to this variable: 0, 1, and 2. A value of 0 (displayed as OFF) means do not cache
queries. A value of 1 (displayed as ON) means cache queries unless the SQL_NO_CACHE option is
specified in a SELECT statement. A value of 2 (displayed as DEMAND) means cache queries only if
the SQL_CACHE option is specified in a SELECT statement. By default, this variable is set to 1 (ON).

❑ query_cache_limit: Specifies the maximum size that a result set can be in order to be cached.
For example, if the limit is set to 2M, no result set larger than 2M will be cached. The default
limit is 1M.

❑ query_cache_size: Specifies the amount of memory allocated for caching queries. By default,
this variable is set to 0, which means that query caching is turned off. To implement query
caching, you should specify a query_cache_size setting in the [mysqld] section of your option
file. For example, the setting query_cache_size=10M enables query caching and allocates 10M
of memory to the cache.

As you can see, the only action that you need to take to implement query caching is to set
the query_cache_size variable, which is set to 0 by default. Of course, you can also change the
query_cache_limit and query_cache_type system variables, but this is not necessary in order to
implement query caching. You can set the query_cache_size variable at the command line or in an
option file, but you cannot use a SET statement to specify the cache size. If you do specify a value for the
query_cache_size variable in an option file, you need to shut down your server and then restart it.

The system variables related to your query cache are not the only variables that can affect performance.
There are also system variables related to your table and index cache, as well as other components of
MySQL. Refer to Chapter 13 and the MySQL product documentation for information about each sys-
tem variable.

Now that you have an overview of the system variables related to the query cache, you can enable query
caching on your system. The following exercise walks you through the process of viewing the settings
for each of these variables and enabling the query cache.

Try It Out Setting Your System’s Cache
The following steps describe how to view query cache variables and set the query_cache_size system
variable:

1. Open the mysql client utility.

2. View the current value set for the query_cache_type variable. Execute the following SQL
statement at the mysql command prompt:

SHOW VARIABLES LIKE ‘query_cache_type’;

You should receive results similar to the following:

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_type | ON |
+------------------+-------+
1 row in set (0.00 sec)

581

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 581

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. View the current value set for the query_cache_limit variable. Execute the following SQL
statement at the mysql command prompt:

SHOW VARIABLES LIKE ‘query_cache_limit’;

You should receive results similar to the following:

+-------------------+---------+
| Variable_name | Value |
+-------------------+---------+
| query_cache_limit | 1048576 |
+-------------------+---------+
1 row in set (0.00 sec)

4. View the current value set for the query_cache_size variable. Execute the following SQL
statement at the mysql command prompt:

SHOW VARIABLES LIKE ‘query_cache_size’;

You should receive results similar to the following:

+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 0 |
+------------------+-------+
1 row in set (0.00 sec)

5. Next, use a text editor such as Vim or Notepad to modify your option file to include a setting
for the query_cache_size system variable. For Linux users, add a query_cache_size entry
to the [mysqld] section of the .my.cnf file in the root directory. For Windows users, modify the
existing setting in the [mysqld] section of the my.ini file in the C:\WINDOWS directory. Your
option file should include the following command:

query_cache_size=10M

After you have modified or added the query_cache_size entry, save your option file.

6. Exit the mysql client utility.

7. For the changes in the option file to take effect, you must shut down the MySQL server. In
Linux, execute the following command at your operating system’s command prompt:

mysqladmin -u root -p shutdown

When prompted for a password, enter your password and press Enter. The service is stopped.

In Windows, execute the following command at your operating system’s command prompt:

net stop mysql

You should receive a message indicating that the service has been stopped.

8. Now you must restart the MySQL server. In Linux, execute the following command at your
operating system’s command prompt:

mysqld_safe --user=mysql &

582

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 582

TEAM LinG - Live, Informative, Non-cost and Genuine !

If, after you execute the mysql_safe command, you’re not returned to the command prompt
right away, you have to press Enter to display the prompt.

In Windows, execute the following command at your operating system’s command prompt:

net start mysql

You should receive a message indicating that the service has been started.

9. Relaunch the mysql client utility.

10. Now view the settings for the query_cache_size system variable again. Execute the following
SQL statement at the mysql command prompt:

SHOW VARIABLES LIKE ‘query_cache_size’;

You should receive results similar to the following:

+------------------+----------+
| Variable_name | Value |
+------------------+----------+
| query_cache_size | 10485760 |
+------------------+----------+
1 row in set (0.00 sec)

11. Close the mysql client utility.

How It Works
All the steps that you took in this exercise should be familiar to you from previous chapters. To begin,
you used the SHOW VARIABLES statement to view the default settings for each system variable related to
the query cache. For example, the following SHOW VARIABLES statement retrieved the current setting
for the query_cache_limit system variable:

SHOW VARIABLES LIKE ‘query_cache_type’;

The results indicated that the query cache is on. When you viewed the setting for the query_cache_limit
variable, you saw that each results set can be 1048576, or 1M. Next you viewed the query_cache_size vari-
able, which was set to 0. This meant that no SELECT statement result sets were being cached.

Once you verified the settings for all three system variables, you added or updated the following setting
in the [mysqld] section of your option file:

query_cache_size=10M

This entry sets the query cache size to 10M. You implemented the new setting by stopping the server
and then restarting it. From there, you opened the MySQL client utility and used the SHOW VARIABLES
statement once more to verify the query_cache_size system setting. The results indicated that the
new setting had been implemented. Now your SELECT statements will be cached, which should
improve the performance of your SELECT statements. You could have also specified different settings
for the query_cache_type and query_cache_limit system variables in your option file, but it wasn’t
necessary. Because you didn’t, the default values for both variables are used.

583

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 583

TEAM LinG - Live, Informative, Non-cost and Genuine !

Summary
As you have learned in this chapter, there are many steps that you can take to try to improve how well
your SQL statements perform. The most important step is to ensure that your tables have been properly
indexed. You want to be sure that each table contains the indexes that it needs, while at the same time
ensuring that the table is not over-indexed. When necessary, you should also analyze your SELECT state-
ments to ensure that they are being executed as optimally as possible. You should also take the steps
necessary to maximize the performance of your data modification statements. In addition, you should
look at how your tables have been created, and you should consider enabling query caching. To help
you optimize your system, this chapter covered the following topics:

❑ Setting up effective indexes

❑ Using the EXPLAIN statement to analyze SELECT statement performance

❑ Using the OPTIMIZE TABLE statement to optimize your table after changes have been made to
that table

❑ Improving the performance of data retrieval and modification

❑ Enabling your system’s query cache to improve query performance

The subject of optimization is a broad one that can cover many aspects of running MySQL. Although
this chapter attempted to touch on many of the important issues concerning optimizing your system, it
could not cover each subject as extensively as possible. In fact, the subject of optimization is a book in
itself. In addition, this chapter does not cover hardware considerations in system optimization.
Consequently, you’re encouraged to refer to other resources for information about optimizing your sys-
tem, particularly the MySQL product documentation and Web site (www.mysql.com). From this chapter,
you should have been able to gain a solid foundation in understanding many of the steps that you can
take to optimize your SQL statements. From here, you’re ready to move on to the topics of replicating,
backing up, and restoring your MySQL database, which are covered in Chapter 16.

Exercises
This chapter explains several of the steps that you can take to optimize your SQL statements. The follow-
ing exercises help you build on your knowledge of optimization. To view the solutions to these exercises,
see Appendix A.

1. You plan to execute the following SELECT statement for an application that you’re developing:

SELECT PartID, PartName, ManfName
FROM Parts AS p, Manufacturers as m
WHERE p.ManfID = m.ManfID
ORDER BY PartName;

The PartID column of the Parts table is configured as the primary key, and the ManfID column
of the Manufacturers table is configured as the primary key. You anticipate that the SELECT
statement will be executed frequently. On which columns should you consider creating indexes?

2. You want to analyze the SELECT statement shown in Exercise 1 to determine how MySQL will
process the statement. What statement should you use to analyze the SELECT statement?

584

Chapter 15

18_579509 ch15.qxd 3/1/05 10:03 AM Page 584

TEAM LinG - Live, Informative, Non-cost and Genuine !

3. You use an EXPLAIN statement to analyze a SELECT statement. The analysis shows that the state-
ment is not using one of the indexes defined on the table. What can you do to force the SELECT
statement to use that index?

4. You must insert a large amount of data in one of the tables in your database. What is the fastest
way to insert that data?

5. You plan to delete all the data from the Parts table. You want the deletion to be executed as
quickly as possible, and you don’t need to know how many rows have been deleted. What SQL
statement should you use to delete the data?

6. You are planning the table structure for a MySQL database. You want to ensure that your
columns are defined to ensure the maximum performance. What guidelines should you follow
when setting up your columns?

7. You want to implement query caching, and you want to ensure that the cache grows no larger
than 10M. What should you do to implement query caching?

585

Optimizing Performance

18_579509 ch15.qxd 3/1/05 10:03 AM Page 585

TEAM LinG - Live, Informative, Non-cost and Genuine !

