
16
Managing Backup, Recovery,

and Replication

Despite the steps you take to secure your databases or optimize the performance of SQL statements
issued against those databases, disasters can occur that cause the loss or corruption of data. As a
result, one of the most important steps that you can take to protect your data is to make certain that
you maintain copies of your databases. One method that you can use to copy your databases is to
create backup files that contain the database and table definitions necessary to re-create your database
structure as well as the statements and data necessary to repopulate your tables after they’ve been
created. Once you create backup files, you can immediately re-create your database environment if the
need arises, returning your database to the state it was in at the time you performed the last backup.
You can then use the binary log files to update your database to a current state.

In addition to performing regular backups of your databases, you can also replicate your databases
so that you always have at least one up-to-date copy of each one. Replicating a database means that
you maintain a copy of the database that is kept synchronized with the original database. If disaster
should occur on the original database, you can then use the replicated database to provide services
to applications and users. In addition, replication is also useful in facilitating the backup process
and in load balancing queries. This chapter describes how to back up your databases, restore the
databases from the backup, and replicate your databases to another server. Specifically, the chapter
covers the following topics:

❑ Using the mysqldump client utility to back up tables in a single database and back up
multiple databases

❑ Using the mysql client utility in batch mode and interactive mode to reload databases
from backup files and then using binary log files to update the databases after they’ve
been reloaded

❑ Setting up replication on master and slave servers and then managing the replication process

19_579509 ch16.qxd 3/1/05 10:04 AM Page 587

TEAM LinG - Live, Informative, Non-cost and Genuine !

Backing Up Your Database
Ensuring that your MySQL databases are backed up regularly should be part of any maintenance routine.
Despite your best efforts to protect your databases, events such as power failures, natural disasters, and
equipment failure can lead to the corruption and loss of data. Consequently, you should ensure that
your databases have been safely copied to safe and reliable systems.

The primary method that MySQL provides for backing up all types of tables in your database is the mysql-
dump client utility. The utility allows you to back up individual databases, tables in those databases, or
multiple databases. When you run mysqldump, the utility creates a text file that contains the SQL state-
ments necessary to create your database and tables safely and add data to those tables. This file is referred
to as a backup file or dump file.

The way in which you use the utility and the type of information contained in the file depends on the
type of backup you’re performing (whether you’re backing up individual databases, individual tables,
or multiple databases). This section describes how you use the mysqldump client utility to perform the
various types of backups.

You can also back up your databases simply by copying the data directory to a backup location. This
method has several limitations, though. For example, if data is being updated when you copy the tables,
you might be copying tables that are in an inconsistent state. In addition, copying InnoDB tables can be
more complicated than simply using the mysqldump utility. The utility also saves data to text files,
which makes your backups more portable than copying the data directory.

Backing Up a Single Database
MySQL allows you to back up all tables in a database or only specific tables in that database. In both
cases, you use the mysqldump client utility and you specify the name of the database. When backing up
only specific tables, you must specify those table names as well. In this section, you learn how to perform
both types of backups.

Backing Up the Entire Database
The first form of the mysqldump command that you examine backs up all the tables in a database. The
database is backed up to a backup file that includes the table definitions and the INSERT statements
necessary to repopulate the tables. To use this form of the command, you must specify the name of the
database and the path and filename of the backup file, as shown in the following syntax:

mysqldump <database> > <path and filename>

As you can see, your command includes the mysqldump utility name, followed by the database name.
The path and filename are then introduced by a right arrow (>) that tells the mysqldump utility to send
the backed-up definitions and data to the specified file. If you do not include the right arrow and path
and filename, the backup output would merely be displayed in your command line.

As you have seen with other utilities in MySQL, you can specify additional options in your command
line. For example, you can specify the -h, -u, and -p options to include a host, username, and password
along with your command. In addition, mysqldump supports numerous options specific to the utility. As
you work your way through this chapter, you are introduced to some of these options. For information
about all the options available to the mysqldump client utility, see the MySQL product documentation.

588

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 588

TEAM LinG - Live, Informative, Non-cost and Genuine !

So that you better understand how the mysqldump utility works, this chapter includes a number of
examples. The examples are based on the following database and table definitions as well as the INSERT
statements used to populate the tables in the database:

CREATE DATABASE BooksDB;
use BooksDB;

CREATE TABLE Books
(

BookID SMALLINT NOT NULL PRIMARY KEY,
BookTitle VARCHAR(60) NOT NULL,
Copyright YEAR NOT NULL

)
ENGINE=INNODB;

INSERT INTO Books
VALUES (12786, ‘Letters to a Young Poet’, 1934),
(13331, ‘Winesburg, Ohio’, 1919),
(14356, ‘Hell\’s Angels’, 1966),
(15729, ‘Black Elk Speaks’, 1932),
(16284, ‘Noncomformity’, 1996),
(17695, ‘A Confederacy of Dunces’, 1980),
(19264, ‘Postcards’, 1992),
(19354, ‘The Shipping News’, 1993);

CREATE TABLE Authors
(

AuthID SMALLINT NOT NULL PRIMARY KEY,
AuthFN VARCHAR(20),
AuthMN VARCHAR(20),
AuthLN VARCHAR(20)

)
ENGINE=INNODB;

INSERT INTO Authors
VALUES (1006, ‘Hunter’, ‘S.’, ‘Thompson’),
(1007, ‘Joyce’, ‘Carol’, ‘Oates’),
(1008, ‘Black’, NULL, ‘Elk’),
(1009, ‘Rainer’, ‘Maria’, ‘Rilke’),
(1010, ‘John’, ‘Kennedy’, ‘Toole’),
(1011, ‘John’, ‘G.’, ‘Neihardt’),
(1012, ‘Annie’, NULL, ‘Proulx’),
(1013, ‘Alan’, NULL, ‘Watts’),
(1014, ‘Nelson’, NULL, ‘Algren’);

CREATE TABLE AuthorBook
(

AuthID SMALLINT NOT NULL,
BookID SMALLINT NOT NULL,
PRIMARY KEY (AuthID, BookID),
FOREIGN KEY (AuthID) REFERENCES Authors (AuthID),
FOREIGN KEY (BookID) REFERENCES Books (BookID)

)

589

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 589

TEAM LinG - Live, Informative, Non-cost and Genuine !

ENGINE=INNODB;

INSERT INTO AuthorBook
VALUES (1006, 14356), (1008, 15729), (1009, 12786), (1010, 17695),
(1011, 15729), (1012, 19264), (1012, 19354), (1014, 16284);

As you can see, the statements shown here create the BooksDB database and three tables: Books, Authors,
and AuthorBook. The code also includes the INSERT statements necessary to add data to each table. Now
suppose that, once the database has been set up, you want to back up the data to a file. To do so, you can
issue a mysqldump command from your operating system’s command prompt, as shown in the following
example:

mysqldump BooksDB > c:\backup\booksdb_041031.sql

In this command, you specify the BooksDB database, which means that all tables in the database will be
backed up. This includes both the CREATE TABLE and INSERT statements. The mysqldump command
also includes the path and filename (c:\backup\booksdb_041031.sql) of the backup file. Notice that
the filename includes 040131, which is the date that the file is created. It’s a good idea to use some sort of
consistent naming convention for your backup files so that you can easily distinguish one from another
and find the most recent one when you need it.

Once the file has been created, you can view its contents by using a text editor such as Notepad or Vim.
The contents of the booksdb_041031.sql file should be similar to the following:

-- MySQL dump 10.8
--
-- Host: localhost Database: BooksDB
-- --
-- Server version 4.1.6-gamma-nt-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE= L_MODE, SQL_MODE=”NO_AUTO_VALUE_ON_ZERO” */;

--
-- Table structure for table ’authorbook’
--

DROP TABLE IF EXISTS ’authorbook’;
CREATE TABLE ’authorbook’ (

’AuthID’ smallint(6) NOT NULL default ‘0’,
’BookID’ smallint(6) NOT NULL default ‘0’,
PRIMARY KEY (’AuthID’,’BookID’),
KEY ’BookID’ (’BookID’),
CONSTRAINT ’authorbook_ibfk_1’ FOREIGN KEY (’AuthID’) REFERENCES ’authors’

(’AuthID’),

590

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 590

TEAM LinG - Live, Informative, Non-cost and Genuine !

CONSTRAINT ’authorbook_ibfk_2’ FOREIGN KEY (’BookID’) REFERENCES ’books’
(’BookID’)
)ENGINE=InnoDB DEFAULT CHARSET=latin1;

--
-- Dumping data for table ’authorbook’
--

/*!40000 ALTER TABLE ’authorbook’ DISABLE KEYS */;
LOCK TABLES ’authorbook’ WRITE;
INSERT INTO ’authorbook’ VALUES
(1009,12786),(1006,14356),(1008,15729),(1011,15729),(1014,16284),(1010,17695),(1012,
19264),(1012,19354);
UNLOCK TABLES;
/*!40000 ALTER TABLE ’authorbook’ ENABLE KEYS */;

<Authors table and Books table>

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

As you can see, the file includes a number of elements. It first begins with information that identifies the
version of the mysqldump utility that you’re using, the name of the host where the server resides, the name
of the database, and the version of the MySQL server that is running. If the version is followed by -log,
that indicates that logging was enabled at the time the backup file was created. Notice that each line of
information is preceded by double dashes (--), which indicates that these are comments and that MySQL
should ignore this information when executing the statements in the file.

The next part of the backup file is a series of SET statements that assign values to a number of user-defined vari-
ables. For example, the first of these statements defines a variable named @old_character_set_client:

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;

As discussed in Chapter 7, MySQL allows you to define a variable (either by using a SELECT statement
or a SET statement) that stores a value in memory for the duration of a session. In this case, the SET
statement assigns the current value associated with the character_set_client system variable to the
@old_character_set_client user-defined variable. The following table describes the system vari-
ables that are used to assign values to user-defined variables in the backup file.

System variable Description

character_set_client The character set that MySQL uses to process SQL statements sent
by a client application. By default, MySQL uses the latin1 charac-
ter set.

character_set_results The character set that MySQL uses to return query results to a client
application. By default, MySQL uses the latin1 character set.

Table continued on following page

591

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 591

TEAM LinG - Live, Informative, Non-cost and Genuine !

System variable Description

collation_connection The collation associated with the character set used for the connection.
By default, MySQL uses the latin1_swedish_ci collation.

unique_checks Specifies whether MySQL checks for uniqueness in a column
configured with a unique index. By default, MySQL checks for
uniqueness.

foreign_key_checks Specifies whether MySQL checks foreign key constraints in a
column configured as a foreign key. By default, MySQL checks
foreign key constraints.

sql_mode Specifies the SQL mode in which MySQL should operate. The mode
determines what SQL syntax is supported and how data should be
validated. By default, no mode is set.

MySQL assigns these values to the user-defined variables to ensure that the original system variable
values can be reinstated should they be changed by any of the statements in the backup file. This guarantees
that your environment is left in the same state after the execution of the statements as it was before the
execution of the statements. At the end of the backup file, MySQL adds the necessary SET statements to
set the system variables back to their original value. For example, the following SET statement uses the
@old_character_set_client user-defined variable to assign the value to the actual
character_set_client system variable, which is where that value originated:

/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;

One thing to notice about the SET statements is that they begin with the /*! symbols and end with the
*/ symbols. The statements are enclosed in these symbols so that they are executed by MySQL but
ignored if they are executed in another database management system. This allows your basic SQL state-
ments in the backup file to be used by other systems, while ensuring that the statements unique to
MySQL can be executed.

Also notice that the symbols at the beginning of the statements are followed by a number. This number
represents a version of the MySQL server, and it tells MySQL to execute the statement only if that version
or a later version is being used. For example, the 40101 in the preceding statement indicates that the
statement should be executed only on MySQL version 4.01.01 or above.

Now take a look at one other SET statement that is included at the beginning of a backup file:

/*!40101 SET NAMES utf8 */;

The SET NAMES statement specifies the name of the character set that should be used during the execution
of the statements in the backup file. The statement is specific to the connection, so once the connection is
ended, the setting no longer applies. In this case, the SET NAMES statement specifies that the utf8 character
set should be used, which is the character set used when the backup file was created.

The information in the backup file that you have looked at so far is typical of any backup file that you
create when using the mysqldump client utility. The other information in the file is specific to the tables

592

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 592

TEAM LinG - Live, Informative, Non-cost and Genuine !

that you have backed up. For each table that is backed up, the file includes a table definition and an
INSERT statement. The table definition is introduced by comments similar to the following:

--
-- Table structure for table ’authorbook’
--

In this case, the comments tell you that the information that follows applies to the AuthorBook table. The
comments are then followed by a DROP TABLE statement to ensure that MySQL does not try to create a
table that already exists, which would result in an error. The DROP TABLE statement ensures that the
CREATE TABLE statement that follows can be successfully executed. The CREATE TABLE statement then
defines the table as it existed when the file was created.

After the CREATE TABLE statement, the backup file then includes comments similar to the following:

--
-- Dumping data for table ’authorbook’
--

The comment indicates that the section that follows inserts data in the AuthorBook table. After the
comment, you see the following set of statements:

/*!40000 ALTER TABLE ’authorbook’ DISABLE KEYS */;
LOCK TABLES ’authorbook’ WRITE;
INSERT INTO ’authorbook’ VALUES
(1009,12786),(1006,14356),(1008,15729),(1011,15729),(1014,16284),(1010,17695),(1012,
19264),(1012,19354);
UNLOCK TABLES;
/*!40000 ALTER TABLE ’authorbook’ ENABLE KEYS */;

An ALTER TABLE statement that tells MySQL to disable the indexes precedes each INSERT statement. The
ALTER TABLE statement at the end of this group of statements then enables the indexes. MySQL does this
to improve the performance of the insert operations so that the indexes are not created until the operation
is complete. This process, however, works only for MyISAM table types and is ignored by other table types.

A LOCK TABLES statement also precedes the INSERT statement, placing a WRITE lock on the table so that
no other values can be inserted in the table until after this INSERT statement has been executed. After
the INSERT statement runs, the table is then unlocked. The INSERT statement itself is a straightforward
statement that provides values for all columns in the table. One thing you might have noticed about both
the INSERT statement and the CREATE TABLE statement that precedes it is that they create a table and
insert data in a table that includes foreign key constraints. If you were to try to create the table manually,
before creating the referenced tables, you would receive an error. MySQL, however, allows all tables to
be created and values to be inserted when done through a backup file, regardless of the foreign key con-
straints. MySQL is indifferent to the order in which tables appear in the backup file.

One other aspect of the backup file to look at is the following component:

<Authors table and Books table>

593

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 593

TEAM LinG - Live, Informative, Non-cost and Genuine !

This is actually only a placeholder for the Authors and Books tables. The statements that are used to create
and populate the AuthorBook table are the same statements you would see for any table. As a result, a
placeholder is used here merely to show that the other two tables would also appear in this file.

Now that you’ve seen the type of information that is included in a backup file, there’s one other aspect
of creating a dump file that you should consider using when running a mysqldump command. The
option is the --flush-logs option, which flushes your log files. If you have binary logging enabled
(which you should), a new binary log file is created. This is important when creating a backup because,
as you see later in this section, binary log files allow you to restore your database fully. By flushing the
logs, you’re providing yourself with an exact starting point for using the binary logs when restoring
your database. As a result, it is recommended that you use the --flush-logs option whenever you
back up your data.

To flush the logs when creating a backup file, simply add the --flush-logs option to your mysqldump
command, as shown in the following example:

mysqldump --flush-logs BooksDB > c:\backup\booksdb_041031.sql

Now when you go to restore the database, you will have a much easier time locating the proper log
information.

As you have seen, the mysqldump utility allows you to back up all the tables in your database easily.
There might be times when you want to back up only individual tables; in that case, you must include
those table names in your mysqldump command.

Backing Up Individual Tables
To use the mysqldump client utility to back up individual tables in a database, your mysqldump com-
mand should be set up based on the following syntax:

mysqldump <database> [<table> [<table>...]] > <path and filename>

As you can see, the only difference between this command and the command that you use to back up all
tables in a database is that now you must add the applicable table names after the database name. For
example, the following mysqldump command backs up the Authors and Books table in the BooksDB
database:

mysqldump --flush-logs BooksDB Authors Books > c:\backup\authbooks_041031.sql

The command creates a backup file named authbooks_041031.sql. The file contains the same SET com-
mands that you find when you back up an entire database. The file now contains table definitions and
INSERT statements only for those tables identified in the command.

Backing Up Multiple Databases
In addition to backing up the tables in a single database, you can also back up multiple databases. As
with backing up a single database, you can use the mysqldump client utility; however, the command
format is slightly different. In addition, the backup file includes not only table definitions and INSERT
statements, but also the statements necessary to create the databases that are being backed up.

594

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 594

TEAM LinG - Live, Informative, Non-cost and Genuine !

You can use two formats of the mysqldump utility to back up multiple databases. The first of these
allows you to specify the databases that you want to back up, and the second format allows you to back
up all databases that are currently stored on your MySQL server.

Backing Up Specific Databases
If you use the mysqldump utility to back up multiple databases, you must add the --databases option
to your command, as shown in the following syntax:

mysqldump --databases <database> [<database>...] > <path and filename>

After you specify the --databases option, you must specify the name of at least one database. You can
specify as many names as necessary, separating each name with a space. For example, the following
mysqldump command backs up the BooksDB and BooksDB2 databases:

mysqldump --flush-logs --databases BooksDB BooksDB2 >
c:\backup\bookstore_041031.sql

Notice that the command includes the --databases option, followed by the name of the two
databases. When you execute this command, the backed-up databases will be stored in a file named
bookstore_041031.sql. The file will contain the same information that you’ve seen in previous backup
files, with the addition of one element — the statements necessary to create the database. For example,
the following data is added to the bookstore_041031.sql file:

--
-- Current Database: ’BooksDB’
--

CREATE DATABASE /*!32312 IF NOT EXISTS*/ ’BooksDB’;

USE ’BooksDB’;

The file first includes comments indicating that the statements that follow apply to the BooksDB database.
After the comments, the file contains a CREATE DATABASE statement, which will add the BooksDB database
to your system. Notice that the statement includes the clause /*!32312 IF NOT EXISTS*/. As you learned
earlier, because the clause is enclosed in the /*! symbols and */ symbols, it is not executed unless the state-
ment runs against a MySQL server, version 3.23.12 or later. The file then contains a use command, which
instructs MySQL to make the BooksDB database the active database. This is done to ensure that the CREATE
TABLE and INSERT statements that follow are correctly applied to the BooksDB database.

Using this form of the mysqldump command is also useful if you want to back up only one database
but want to ensure that the backup file includes the necessary database definition. As you learn later in
the chapter, if the backup file doesn’t include the database definition, you must first manually create the
database before you can restore the contents of that database. By including the database definition,
restoring the database is an easier process.

Backing Up All Databases
If you plan to back up all the databases on your system, you can use the following form of the mysql-
dump client utility:

mysqldump --all-databases > <path and filename>

595

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 595

TEAM LinG - Live, Informative, Non-cost and Genuine !

As the syntax shows, you need to specify the --all-databases option but not any database names. For
example, the following statement backs up all your databases to a file named databackup_041031.sql:

mysqldump --flush-logs --all-databases > c:\backup\databackup_041031.sql

The backup file will contain all the necessary database and table definitions and INSERT statements for
all the tables in all the databases. The file will also contain the necessary SET statements. As you can see,
this form of the mysqldump utility is simpler than specifying the --databases option along with the
name of every database that you want to back up. If you use this option, keep in mind that it will also
back up the mysql administrative database, which could be a security risk if the backup file is not properly
secured.

Now that you have an understanding of how to use the mysqldump client utility to back up your
databases, you can try to back up a database for yourself. In the following exercise, you create a database
named VideoRentals. The database includes a table named Videos, which is populated with information
about several movies. After you create the database, you back up it up to your hard disk, where you can
then view the contents of the file.

Try It Out Backing Up a Database to a Backup File
The following steps describe how to create and then back up the VideoRentals database:

1. Open the mysql client utility.

2. First, create the VideoRentals database and the Videos table by executing the following SQL
statements at the mysql command prompt:

CREATE DATABASE VideoRentals;
use VideoRentals;
CREATE TABLE Videos
(

VideoID SMALLINT NOT NULL AUTO_INCREMENT PRIMARY KEY,
VideoName VARCHAR(60) NOT NULL,
Status ENUM(‘In’, ‘Out’) NOT NULL

)
ENGINE=INNODB;

You should receive a message indicating that the statement executed successfully, affecting
no rows.

3. Now insert data in the Videos table by executing the following SQL statement at the mysql com-
mand prompt:

INSERT INTO Videos (VideoName, Status)
VALUES (‘Out of Africa’, ‘In’),
(‘The Maltese Falcon’, ‘In’),
(‘The Rocky Horror Picture Show’, ‘Out’),
(‘A Room with a View’, ‘In’),
(‘Mash’, ‘Out’);

You should receive a message indicating that the statement executed successfully, affecting
five rows.

596

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 596

TEAM LinG - Live, Informative, Non-cost and Genuine !

4. Exit the mysql client utility. You should be returned to your operating system’s command
prompt.

5. Create a directory in which to store the backup file. For the purposes of this exercise, it is assumed
that on Windows you will be using the C:\backup directory, and on Linux you will be using the
/backup directory. If you use a directory other than these, replace them with your own directory
name in any steps that require that you specify a directory.

6. If you’re running MySQL on Windows, execute the following command at the Windows command
prompt:

mysqldump --flush-logs --databases VideoRentals > c:\backup\videorentals001.sql

If you’re running MySQL on Linux, execute the following command at the Linux command
prompt:

mysqldump --flush-logs --databases VideoRentals > /backup/videorentals001.sql

After you execute the command, you’re returned to your operating system’s command prompt.

7. Use a text editor (such as Notepad or Vim) to open the videorentals001.sql file that you created
in Step 6. The contents of the file should be similar to the following:

-- MySQL dump 10.8
--
-- Host: localhost Database: VideoRentals
-- --
-- Server version 4.1.6-gamma-nt-log

/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
/*!40101 SET NAMES utf8 */;
/*!40014 SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0 */;
/*!40014 SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0 */;
/*!40101 SET @OLD_SQL_MODE= L_MODE, SQL_MODE=”NO_AUTO_VALUE_ON_ZERO” */;

--
-- Current Database: ’VideoRentals’
--

CREATE DATABASE /*!32312 IF NOT EXISTS*/ ’VideoRentals’;

USE ’VideoRentals’;

--
-- Table structure for table ’videos’
--

DROP TABLE IF EXISTS ’videos’;
CREATE TABLE ’videos’ (

’VideoID’ smallint(6) NOT NULL auto_increment,
’VideoName’ varchar(60) NOT NULL default ‘’,
’Status’ enum(‘In’,’Out’) NOT NULL default ‘In’,
PRIMARY KEY (’VideoID’)

597

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 597

TEAM LinG - Live, Informative, Non-cost and Genuine !

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

--
-- Dumping data for table ’videos’
--

/*!40000 ALTER TABLE ’videos’ DISABLE KEYS */;
LOCK TABLES ’videos’ WRITE;
INSERT INTO ’videos’ VALUES (1,’Out of Africa’,’In’),(2,’The Maltese
Falcon’,’In’),(3,’The Rocky Horror Picture Show’,’Out’),(4,’A Room with a
View’,’In’),(5,’Mash’,’Out’);
UNLOCK TABLES;
/*!40000 ALTER TABLE ’videos’ ENABLE KEYS */;

/*!40101 SET SQL_MODE=@OLD_SQL_MODE */;
/*!40014 SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS */;
/*!40014 SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS */;
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

8. Close the videorentals001.sql file.

How It Works
In this exercise, you used the mysql client utility to create a database named VideoRentals, add a table
named Videos to the database, and then insert data in the table. You then exited the mysql client utility
and created a directory to store the backup file. From there, you executed a mysqldump command similar
to the following:

mysqldump --flush-logs --databases VideoRentals > c:\backup\videorentals001.sql

The mysqldump command creates a backup file named videorentals001.sql in your backup directory.
The --flush-logs command indicates that the logs should be flushed before creating the backup
file. This ensures that any changes made to a table after the backup can be easily tracked in the binary
log files. The --databases option indicates that you plan to back up one or more entire databases. In
this case, you backed up only one database. As a result, you did not have to use the --databases
option. By including the option, you’re ensuring that the backup file contains the necessary CREATE
DATABASE statement so that a database does not have to exist prior to restoring the database. If you had
not included the --databases option, you would first have to create the database before you could
restore the tables from the backup file. (You learn more about restoring a database later in the chapter.)

Once you created the backup file, you viewed the contents of the file. As you would expect, the file first
lists general information about the backup and defines the necessary variables to hold values based on
current system variables. For example, the following SET statement assigns a value to a user-defined
variable named @old_character_set_results:

/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;

The value assigned to the variable is based on the character_set_results system variable. You
can retrieve that value currently assigned to the character_set_results system variable by using
@@CHARACTER_SET_RESULTS. The @old_character_set_results variable holds the value until all

598

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 598

TEAM LinG - Live, Informative, Non-cost and Genuine !

statements in the backup file have been executed. The backup file then uses the variable to assign the
stored value to the related system variable, as shown in the following statement:

/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;

The backup file uses a SET statement to set the character_set_results system variable to the value
that is stored in the @old_character_set_results user-defined variable. Because this value is the
same value that was assigned to the character_set_results system variable before the backup file
statements were executed, the character_set_results system variable is assigned its original value.
This process ensures that the system variables are returned to the original state that they were in before
the statements in the backup file were executed.

Each SET statement begins with /*! and ends with */, which means that the statement will be ignored
by any database servers other than MySQL. Also, the opening symbols (/*!) are followed by version
numbers, which means that MySQL will execute the statement only for that version of MySQL or later.
For example, the number 40101 indicates that MySQL will execute the statement only if the server is
version 4.1.1 or later.

In addition to the standard SET statements, the backup file also includes the SQL statements necessary to
create the VideoRentals database and the Videos table. A DROP TABLE statement precedes the CREATE
TABLE statement to ensure that the table doesn’t exist before you try to create it. The CREATE TABLE
statement is followed by the INSERT statement necessary to add the data to the Videos table. The
INSERT statement is surrounded by two ALTER TABLE statements that specify that the indexes should
be created after the data is inserted in the table. Because the table type is InnoDB, the ALTER TABLE
statements do not apply and have no impact on your statements. The INSERT statement is also preceded
by a LOCK TABLES statement that sets a WRITE lock on the table as data is being inserted, and then an
UNLOCK TABLES statement that unlocks the table after the insertion has been completed.

The backup file that you created in this exercise contains only one database and one table. As a result,
the file includes only one CREATE DATABASE statement, one CREATE TABLE statement, and one INSERT
statement. You can, however, back up multiple databases that each contain multiple tables; in that case,
the backup file will contain the SQL statements necessary for each database and table. Regardless of how
many databases and tables are included in the file, once that file has been created, you can use it to
restore your databases and tables in the event that your databases become corrupted or deleted.

Restoring Your Database
Despite your best efforts to protect your databases, disasters can occur, and you might find it necessary
to restore one or more of your databases. If you have backed up your files regularly and enabled binary
logging, restoring your database consists of only two steps:

1. Using the mysql client utility to reload your database into the MySQL server

2. Using the applicable binary logs to update the database

Together these two steps allow you to restore your database to the point where failure occurred, thus
ensuring that no data is lost should you experience a disaster.

599

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 599

TEAM LinG - Live, Informative, Non-cost and Genuine !

Reloading Your Database
In Chapter 3, you learned how to use the mysql client utility in batch mode and interactive mode to exe-
cute SQL statements and MySQL commands saved to a text file. You can also use the utility to execute the
statements in the backup files that you created with the mysqldump utility. When using the mysql client
utility in batch mode, you run the program from your operating system’s command prompt. When using
the mysql utility in interactive mode, you must first launch the utility and then execute the necessary
commands at the mysql command prompt.

Using the mysql Client Utility in Batch Mode to Reload Your Database
To use the mysql client utility in batch mode to restore a database, you have to specify the mysql command
(at your operating system’s command prompt) along with the left arrow (<), path, and filename, as
shown in the following syntax:

mysql [<database>] < <path and filename>

As you can see, you also have the option of specifying a database name. If you do specify a database
name, the database must exist in the database, which means that you must create the database if it doesn’t
already exist. You would generally use this option if you are restoring data from a backup file that does
not include a database definition. For example, suppose that you want to restore a database from the
booksdb_041031.sql file, which does not include a database definition. You would use a statement similar
to the following to restore the tables in the database:

mysql BooksDB < c:\backup\booksdb_041031.sql

As the command shows, you include BooksDB, which means that the database must already exist. If you
are restoring a database from a backup file that includes the necessary database definition, you can use
the following statement:

mysql < c:\backup\bookstore_041031.sql

In this case, the bookstore_041031.sql file includes the database definition, so the database does not have
to exist and you do not have to specify it. You simply execute the statement as it is shown here, and the
statements related to creating the database, creating the table, and inserting data are automatically executed.

Using the mysql Client Utility in Interactive Mode to Reload Your
Database

You can also use the mysql client utility in interactive mode to restore a database. To do so, you merely
specify the source command, along with a path and filename of the backup file, as shown in the following
syntax:

source <path and filename>

Notice that specifying a database is not an option in this command. When you work with the mysql
utility interactively, you must work in the context of a database to execute statements that create tables
and insert data. As a result, if you are working with a backup file that does not include the necessary
database definition, you must first create the database, switch to the new database, and then download

600

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 600

TEAM LinG - Live, Informative, Non-cost and Genuine !

the backup file. For example, suppose that you’re restoring a database from the booksdb_041031.sql file,
which doesn’t include a table definition. Because of this, you would have to execute a series of statements:

CREATE DATABASE BooksDB;
use BooksDB;
source c:\backup\booksdb_041031.sql

The CREATE DATABASE statement creates the BooksDB database, the use command switches to the new
database, and the source command retrieves the backup file. If your backup file includes the database
definition, all you need to specify is the source command, the path, and the filename, as shown in the
following example:

source c:\backup\bookstore_041031.sql

As you can see, creating a backup file that includes the necessary database definitions makes restoring
your databases a simpler process. In addition, if you’re restoring multiple databases from a single file,
the file must contain the necessary database definitions. Regardless of which method you use to reload
your database into your system, the database is only as current as your last backup, which is where
binary logging comes in.

Updating the Restored Database from Binary Log Files
After you reload your database into your system, you will most likely want to apply any changes made
to the database since it was backed up. Fortunately, binary logs track all data modifications that occur in
your databases, so you can use binary logs to update your database to its more current state. MySQL
provides two methods for applying updates from a binary log — restoring data directly from the binary
log file or exporting binary log data to a text file and then restoring it from that file.

You must have binary logging enabled on your system to be able to use it to update a restored database.
For more information about implementing binary logging, see Chapter 13.

Restoring Data Directly from a Binary Log
To apply updated data to the database that you’ve reloaded, you must know which log files apply. By
comparing the log file timestamps to the backup file timestamp, you should be able to figure out easily
which logs apply. In addition, if you used the --flush-logs option when you backed up the database,
you know that you do not have to look for data starting in the middle of a log file. You can start right at
the beginning of the file.

After you identify the log files that you should apply, you can use the mysqlbinlog client utility to exe-
cute the statements in the log file. For example, the following mysqlbinlog command executes the SQL
statements in the server1-bin.000127 log file:

mysqlbinlog “c:\program files\mysql\mysql server 4.1\data\server1-bin.000127” |
mysql

As you can see, you must specify the mysqlbinlog command followed by the path of your data direc-
tory and the name of the file. In addition, you should specify that the command send the SQL statements
to the mysql client utility to be executed as necessary. You do this by adding a vertical pipe (|) and the

601

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 601

TEAM LinG - Live, Informative, Non-cost and Genuine !

command mysql. If you plan to execute multiple log files, you should start with the oldest one first and
work your way through to the most current file.

If you want to apply the change in the log files to only one database, you can specify the --one-database
option after the mysql command, as shown in the following example:

mysqlbinlog “c:\program files\mysql\mysql server 4.1\data\server1-bin.000127” |
mysql --one-database BooksDB

Notice that you must include the name of the database after the --one-database option. When you do
this, MySQL processes only those logged statements that apply to the specified database.

Using the mysqlbinlog utility to apply updates directly from the log file to the database can be a quick
way to restore a database fully. But what if the log contains statements that you don’t want executed?
For example, the log file might contain DROP DATABASE statements or CREATE TABLE statements that
you don’t want executed. Unfortunately, you have little control of which statements are executed except
for being able to specify that only statements related to a specific database be executed. You can get
around this issue by exporting the contents of the binary log file to a text file.

Restoring Binary Log Data from a Text File
The mysqlbinlog client utility allows you to export data to a text file. From there, you can sort through the
text file to remove any statements that you don’t want to execute. Of course, the larger the log file, the more
difficult this process can be, but there might be times when this is the only way you can ensure that your
database is fully restored. After you’re satisfied that the text file contains only the correct statements,
you can use the mysql client utility to execute the statements.

The first step, then, is to export the data in the log file to the text file. For example, the following
mysqlbinlog command exports the server1-bin.000127 log file to the binlog000127.txt file:

mysqlbinlog “c:\program files\mysql\mysql server 4.1\data\server1-bin.000127” >
c:\backup\binlog000127.txt

As you can see, you specify the path and filename of the log file, add a right arrow, and then specify the
path and filename of the text file. You can then edit the text file as necessary. Once satisfied, you can exe-
cute the statements in the text file by using the following command:

mysql < c:\backup\binlog000127.txt

All SQL statements that are saved in the text file are executed. If you want to run only statements related
to a specific database, you can use the --one-database option in the same way you saw earlier, as
shown in the following example:

mysql --one-database BooksDB < c:\backup\binlog000127.txt

As the command shows, you specify the --one-database option and the name of the database, fol-
lowed by the left arrow and the path and filename of the text file. Any updates that were recorded in the
binary log file — and exported to the text file — are applied to the database.

602

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 602

TEAM LinG - Live, Informative, Non-cost and Genuine !

Enabling and Disabling Binary Logging
When restoring databases and applying log file statements, you might find that you want to execute a
statement that you don’t want logged. For example, suppose that you want to drop a database before you
restore it. If you run the DROP DATABASE statement, that statement is logged to the binary log file. You can
manually turn off logging in a session by using a SET statement to set the sql_log_bin system variable,
as shown in the following syntax:

SET SQL_LOG_BIN={0 | 1}

As you can see, the sql_log_bin system variable includes two options: 0 and 1. If set to 0, logging is
disabled. If set to 1, logging is enabled. For example, if you want to execute a statement that should not
be logged, you would first issue the following SET statement:

SET SQL_LOG_BIN=0;

The sql_log_bin variable will be turned off for the duration of the connection or until you explicitly
turn it back on (by setting the variable to 1). This allows you to control which statements are logged,
which can be critical to restoring your database effectively.

As this section demonstrates, restoring a database is as simple as retrieving a backup file from your hard disk
and then applying the statements in the applicable binary logs. In the following exercise, you restore the
database that was backed up in the previous Try It Out section. To restore the database, you first remove
the original database from your system and then use the source command in the mysql client utility to exe-
cute the SQL statement in the backup file.

Try It Out Restoring a Database from a Backup File
The following steps describe how to restore the VideoRentals databases from the videorentals001.sql
backup file:

1. Use the following command to open the mysql client utility and make the VideoRentals
database active:

mysql VideoRentals

The mysql client utility is launched, and the VideoRentals database is active. The VideoRentals
database is the one that you created in the previous Try It Out section.

2. Insert data in the Videos table in the VideoRentals database by executing the following SQL
statement at the mysql command prompt:

INSERT INTO Videos (VideoName, Status)
VALUES (‘Amadeus’, ‘Out’);

You should receive a message indicating that the statement executed successfully, affecting
one row.

3. Now turn off binary logging. Execute the following SQL statement at the mysql command
prompt:

SET SQL_LOG_BIN=0;

603

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 603

TEAM LinG - Live, Informative, Non-cost and Genuine !

You should receive a message indicating that the statement executed successfully.

4. Remove the original VideoRentals database so that you can test restoring the database. Execute
the following SQL statement at the mysql command prompt:

DROP DATABASE VideoRentals;

You should receive a message indicating that the statement executed successfully, affecting
one row.

5. Next, execute the contents of the videorentals001.sql backup file. If you’re running MySQL on
Windows, execute the following command at the mysql command prompt:

source c:\backup\videorentals001.sql

If you’re running MySQL on Linux, execute the following command at the mysql command
prompt:

source /backup/videorentals001.sql

You should receive the appropriate message for each SQL statement in the backup file that has
been executed, indicating the successful execution of the statement and the number of rows
affected. You should receive a warning that the DROP TABLE statement does not apply because
no table exists. You should also receive warnings indicating that the ALTER TABLE statements
do not apply because the ENABLE KEYS and DISABLE KEYS options apply only to MyISAM
tables. (You had backed up an InnoDB table.)

6. Now re-enable binary logging. Execute the following SQL statement at the mysql command
prompt:

SET SQL_LOG_BIN=1;

You should receive a message indicating that the statement executed successfully.

7. Next, view the contents of the Videos table. Execute the following SQL statement at the mysql
command prompt:

SELECT * FROM Videos;

You should receive results similar to the following:

+---------+-------------------------------+--------+
| VideoID | VideoName | Status |
+---------+-------------------------------+--------+
1	Out of Africa	In
2	The Maltese Falcon	In
3	The Rocky Horror Picture Show	Out
4	A Room with a View	In
5	Mash	Out
+---------+-------------------------------+--------+
5 rows in set (0.00 sec)

8. Exit the mysql client utility.

9. Now update the database with the statements in the last binary log file. Execute the following
command at the operating system’s command prompt:

604

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 604

TEAM LinG - Live, Informative, Non-cost and Genuine !

mysqlbinlog “<path and filename>” | mysql

You need to enclose the data directory and filename in quotes only if the directory path or file-
name contain a space. For the <path and filename> placeholder, insert the directory path for
your MySQL data directory and the name of the most recent binary file in the data directory.
Once you execute this command, you should be returned to your operating system’s command
prompt.

10. Use the following command to open the mysql client utility and make the VideoRentals
database active.

mysql VideoRentals

The mysql client utility is launched.

11. Again view the contents of the Videos table. Execute the following SQL statement at the mysql
command prompt:

SELECT * FROM Videos;

You should receive results similar to the following:

+---------+-------------------------------+--------+
| VideoID | VideoName | Status |
+---------+-------------------------------+--------+
1	Out of Africa	In
2	The Maltese Falcon	In
3	The Rocky Horror Picture Show	Out
4	A Room with a View	In
5	Mash	Out
6	Amadeus	Out
+---------+-------------------------------+--------+
6 rows in set (0.00 sec)

12. Because you do not need the VideoRentals database for additional exercises, you can remove it
from your system. Execute the following command at your operating system’s command prompt:

DROP DATABASE VideoRentals;

You should receive a message indicating that the statement executed successfully, affecting one row.

13. Exit the mysql client utility.

How It Works
In this exercise, you first inserted data in the Videos table. You did this in order to log an event to the
new binary log that was created after you backed up the database. Next, you used the SET statement to
turn off binary logging so that dropping and restoring the database were not logged. If they had been
logged, it would have confused the restoration process. Once you turned off logging, you dropped the
VideoRentals database so that you could test restoring the database. Next, you used a source command
similar to the following to access the backup file that you created in the previous Try It Out section:

source c:\backup\videorentals001.sql

605

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 605

TEAM LinG - Live, Informative, Non-cost and Genuine !

The source command includes only one argument: the path and filename of the backup file
(c:\backup\videorentals001.sql). Because you used the --database option in the mysqldump
command when you created the backup file, the file included the statement necessary to create the
VideoRentals database as well as the Videos table.

Once the database and table were restored, you used another SET statement to re-enable binary logging.
You then executed a SELECT statement that retrieved data from the Videos table, indicating that the table
and database had been properly restored. The results show that the table did not contain the row that
you inserted in Step 2. This occurs because you inserted the data after you created the backup file. The
backup is current only until the time the file was created.

After you verified that the database had been reloaded, you exited the mysql client utility and then ran
the following mysqlbinlog command:

mysqlbinlog “<path and filename>” | mysql

The mysqlbinlog utility allows you to read the contents of a binary log file. By adding the vertical pipe
(|) and mysql to the command, you’re telling the mysqlbinlog utility to use the mysql client utility to exe-
cute the SQL statements recorded in the binary log. Because this is the log that contains any statement
executed since you created the backup, this process restores the database to its most current state.

After you executed the SQL statements in the binary log, you launched the mysql client utility and again
viewed the contents of the Videos table, which showed that the insertion that had been logged now
appears in the table, indicating that your database is now current. Once you verified the insertion, you
dropped the VideoRentals database from your system and then exited the mysql client utility.

As this exercise demonstrates, the process of restoring a database is a straightforward one; however, it
can be a very time-consuming process, which can mean substantial downtime for your database. Another
alternative — in addition to performing regular backups — is to replicate your database to one or more
servers, thus ensuring that you always have at least one additional copy of your database that is up to date.

Replicating Your Database
Replication refers to the process of maintaining a current copy of your database on a server separate
from the server where the original database resides. Whenever the original database changes, those
changes are automatically applied to the copy. As a result, you always have one or more up-to-date
copies of your database that can be used in case of database or server failure. For example, if the original
database becomes suddenly unavailable, you can switch to the copied database so that users and
applications have immediate access to the same data, with a minimal amount of downtime.

Another advantage of replication is that it can be used to optimize performance. For example, you can
make backups from the copied database rather than the production database, allowing you to create
backup files without affecting the performance of the primary database. You can also use replication to
split query loads. Queries that merely retrieve information are directed to the server that contains the
replicated database, while queries that actually update data are sent to the original database. This way,
only one database is being updated, but the load is shared between two servers.

606

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 606

TEAM LinG - Live, Informative, Non-cost and Genuine !

In MySQL, replication is a one-way process. The primary MySQL server acts as the master server, and the
servers that contain the copied databases are considered the slave servers. Data always moves from
the master server to the slave server. As a result, only databases on the master server should be updated.
The updates are then propagated to the slave servers.

MySQL replication is based on a number of principles:

❑ The master server must be configured with a user account that grants replication privileges to
the slave server. The account allows the slave server to access the master server in order to
receive updates.

❑ Binary logging must be enabled on the master server. The binary logs track all updates to a
database, and the logged updates are then used to synchronize the database on the slave server.

❑ The slave server uses replication coordinates to track updates. The coordinates are based on the
name of a binary log file on the master server and the position in that file. The file and position
represent where MySQL left off when the last update was performed on the slave server. The
coordinates — along with other logon information — are stored in the master.info file on the
slave host.

❑ Each server that participates in the replication process must be assigned a unique numerical
server ID. You assign the ID by specifying the server-id option in the [mysqld] section of the
option file for each server.

❑ A master server can replicate data to one or more slave servers. A slave server can act as a mas-
ter server to another slave server in order to create a replication chain. For example, ServerA can
be configured as a master server that replicates data to ServerB, the slave server. ServerB can
also be configured as a master server that replicates data to ServerC. As a result, ServerA is
replicated to ServerB, and ServerB is replicated to ServerC. You can also replicate ServerA
directly to ServerC so that ServerB and ServerC are slave servers to ServerA. (Note that a slave
server can never have two master servers.)

❑ To set up replication, the master server and slave server must begin with databases in a synchro-
nized state. In other words, the databases to be replicated must be identical when replication is
initiated. Once initiated, updates on the master server are replicated to the slave server.

Although not always necessary, it is generally recommended that the master server and slave servers
run the same version of MySQL.

When replication is implemented, the slave server maintains a set of files to support the replication.
MySQL automatically creates the three types of files on the slave server:

❑ <host>-relay-bin.<extension>: Primary relay log files that contain the statements to be used to
synchronize the replicated database with the database on the master server. The relay log files
receive their data from the binary log files on the master server. The filename extension is a
number, starting with 000001, that is incremented whenever a relay log file is added.

❑ master.info: Maintains connection information such as the master server hostname, the MySQL
user account name, and the password for that account. Also maintains information about the
last binary log file (on the master server) to be accessed and the position in that file.

❑ relay-log.info: Maintains information about the relay log files and tracks the last position in
those files in which the replicated database was updated.

607

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 607

TEAM LinG - Live, Informative, Non-cost and Genuine !

The replication log files are created automatically when you implement replication. MySQL deletes the
relay log file (<host>-relay-bin.<prefix number>) after the statements in the file have been executed and
the replicated database has been updated. The master.info and relay-log.info files are updated as needed
to support the replication process and to keep the copied databases updated. If you back up a slave
server, you should also back up the relay log files, the master.info file, and the relay-log.info file so that
you can restore the slave server if necessary.

To give you a better overview of how replication is implemented in MySQL, take a look at Figure 16-1.
As the illustration shows, updates to the databases on the master server are logged to the binary log files
set up for that server. The applicable content in the binary log files is then copied to the relay log files,
which reside on the slave server. The content of the relay log files is then used to update the replicated
database on the slave server. This is a one-way process, which means that changes are always propa-
gated from the master server to the slave server, but never the other way around.

Figure 16-1

Support for replication is built into MySQL. There are no special add-ins or applications that you must
install. Tou do have to configure your system to support replication, so the next section shows you how
that is accomplished.

When working with replication, keep in mind that it’s a relatively new MySQL technology, so it is still
very much a work in progress and evolving continuously. For this reason, the way in which it is imple-
mented in the version of MySQL that you’re using might be a little different from the way it is described
here. In addition, because it’s still a relatively new technology, you might receive results different from
what you expect when you try to implement and administer replication. If you plan to implement repli-
cation, be sure to refer to the most current product documentation.

Implementing Replication
Before you setting up replication, binary logging should be enabled on the master server. From there,
you can use the following steps to implement replication:

1. To allow a master server to replicate data to a slave server, you must set up a user account on
the master server. The slave server then uses that account to establish a connection to the master
server. To set up the account, launch the mysql client utility on the master server; then execute
the following GRANT statement:

One-way
replication

Master server Slave server

Binary
log files

Relay
log files

Copy of
MySQL

databases

MySQL
databases

608

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 608

TEAM LinG - Live, Informative, Non-cost and Genuine !

GRANT REPLICATION SLAVE ON *.*
TO ‘<slave account>’@’<slave host>’
IDENTIFIED BY ‘<password>’;

The GRANT statement grants the REPLICATION SLAVE privilege at the global level, as specified
by the ON clause. The privilege is specific to the process of replication and allows all changes to a
database to be replicated to the copy of the database on the slave server. The TO clause defines
the username on the account and host from which that account can connect. This is the host
where the slave server resides. The IDENTIFIED BY clause then identifies the password that
should be used when the slave server logs on to the master server. (For more information about
the GRANT statement and setting up user accounts, see Chapter 14.)

2. Make a backup of the databases that you want to replicate. Use the --master-data option in
the mysqldump command. The --master-data option adds a CHANGE MASTER statement similar
to the following to your backup file:

CHANGE MASTER TO MASTER_LOG_FILE=’master1-bin.000128’, MASTER_LOG_POS=79 ;

The CHANGE MASTER statement identifies the binary log file and the position in that file at the
time that the backup file is created. You use this information later when you set up replication
on the slave server. This information allows you to synchronize the slave server with the master
server. (The CHANGE MASTER statement is discussed in more detail later in this section. For
information about backing up a database to a backup file, see the “Backing Up Your Database”
section earlier in the chapter.)

3. Shut down the master server.

4. Next, you must modify the [mysqld] section of the option file on the master server. You must
specify a server ID for the master server. The master server and any slave servers must each be
assigned a unique numerical ID. In addition, if you don’t want to replicate a specific database,
such as the mysql or test databases, you can add a binlog-ignore-db option for each database
to prevent changes to that database from being logged to the binary file. As a result, changes to
those tables aren’t replicated. When you’re finished editing the option file, the [mysqld] section
should include options similar to the following:

[mysqld]
log-bin
binlog-ignore-db=mysql
binlog-ignore-db=test
server-id=<master server id>

The log-bin option specifies that binary logging should be enabled. The two binlog-ignore-db
options specify that changes to the mysql and test databases should not be logged to the binary
files. The server-id option specifies the numbered ID for the master server.

If you use a predefined option file, a server-id option might already exist. Be sure to check for other
instances of server-id. If multiple options are specified and the numerical IDs are different, replication
might not work.

5. Restart the master server.

6. Shut down the slave server.

609

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 609

TEAM LinG - Live, Informative, Non-cost and Genuine !

7. Modify the option file on the slave server so that the [mysqld] section includes the following
settings:

server-id=<slave server id>

Make certain that this server ID is different from the master server ID and different from any
other slave server IDs. Also be sure that this is the only server-id option defined on the slave
server.

8. Restart the slave server.

9. Use the backup file that you created in Step 2 to load the databases into the slave server. (For
information about loading a database from a backup file, see the “Reloading Your Database”
section earlier in the chapter.)

10. Next, you must specify the settings that will be used for the slave server to connect to the
master server and determine which binary log file to access. Launch the mysql client utility
on the slave server, and then execute the following CHANGE MASTER statement:

CHANGE MASTER TO
MASTER_HOST=’<master host>’,
MASTER_USER=’<user account>’,
MASTER_PASSWORD=’<password>’,
MASTER_LOG_FILE=’<log file>’,
MASTER_LOG_POS=<position>;

The CHANGE MASTER statement identifies the hostname of the master server, the username for
the account that you created in Step 1, the password for that account, the binary log file on the
master server, and the position in that file. The slave server adds this information to the master.info
file, which is used when connecting to the master server. (The CHANGE MASTER statement is dis-
cussed in more detail later in this section.)

11. The final step that you must take is to start the replication process on the slave server. To do so,
execute the following SQL statement on the slave server:

START SLAVE;

The statement initiates the threads that connect from the slave server to the master server. (The
START SLAVE statement is discussed in more detail later in this section.)

Once you’ve set up replication, you should try it out. The easiest way to do this is to make a change to a
table on the master server and then determine whether that change has been replicated to the slave server.
If the change is reflected on the slave server, replication has been properly set up. Once replication is
implemented, you might find that you need to view replication settings or make a change. Fortunately,
MySQL allows you to administer the replication environment.

Managing Replication
To support administering replication, MySQL provides a number of SQL statements that allow you to
view information about the replication environment or take a specific action. MySQL supports statements
for both the master server and the slave server.

610

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 610

TEAM LinG - Live, Informative, Non-cost and Genuine !

Managing the Master Server
As you have learned, the master server contains the original database. Changes made to databases on
the master server are replicated to the slave servers. To allow you to manage replication on the master
server, MySQL provides several statements.

Using the RESET MASTER Statement
When you’re setting up replication, you might find that you first want to clean up the binary logs on
your master server. Once you have backed up the log files and the index file, you can delete these files
and start from scratch. The easiest way to do this is to issue the following statement:

RESET MASTER;

The RESET MASTER statement deletes all your binary log files, removes them from your binary index
file, and starts logging with a new log file.

Using the SHOW MASTER STATUS Statement
Earlier in the chapter, you learned about the steps necessary to set up replication. One of the steps is to
create a backup file of the databases that you want to replicate. Indeed, the step instructs you to use the
--master-data option in your mysqldump command. The command adds a CHANGE MASTER statement
to your backup file that contains the binary log filename and the position in the file that you should use
as a starting point when implementing replication on a slave server.

Using the --master-data option in the mysqldump command is a handy way of preserving the
filename and position when you go to implement replication on the server. You merely reference the
backup file and retrieve that information from there. An alternative that you can use to determine
the binary log filename and position is the following statement:

SHOW MASTER STATUS;

When you execute the statement, you should receive results similar to the following:

+--------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+--------------------+----------+--------------+------------------+
| master1-bin.000030 | 340 | | mysql,test |
+--------------------+----------+--------------+------------------+
1 row in set (0.00 sec)

As you can see, the results include a binary log filename (master1-bin.000030) and a position in the binary
log (340). The Binlog_Do_DB column lists any databases that are specifically logged to the binary files.
Currently, no databases are being explicitly logged. As a result, changes to all databases on the server are
logged to the binary log file unless explicitly shown in the Binlog_Ignore_DB column. In this case, the
mysql and test databases are shown, so changes to those two databases are not logged.

You can log changes to a specific database by adding the binlog-do-db option to the [mysqld] sec-
tion of your option file. You can prevent changes to a specific database from being logged by adding the
binlog-ignore-db option to the [mysqld] section of your option file. If changes to a database are
not logged to the binary log files, that database cannot be replicated.

611

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 611

TEAM LinG - Live, Informative, Non-cost and Genuine !

The SHOW MASTER STATUS statement provides a quick method for discovering the current position
in a log file. If you are using this information as part of setting up replication, you must be sure that it
is applied exactly to when you backed up the databases. For example, suppose you create a backup
file and then issue a SHOW MASTER STATUS statement. Now suppose that an update had been issued
against the database in between when you created the backup file and when you checked the master
status. The result would be that the master status information would no longer be accurate. As a
result, if you cannot guarantee the accuracy of the master status information, you should simply add
the --master-data option to your mysqldump command.

Using the SHOW SLAVE HOSTS Statement
You might find it useful at times to know exactly what slave servers are connected to your master server.
This can be useful if you’re troubleshooting your replication and you want to determine whether the
slave server is connected to the master server. To verify the slave connections to your master that currently
exist, execute the following statement:

SHOW SLAVE HOSTS;

The SHOW SLAVE HOSTS statement should return results similar to the following:

+-----------+----------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+----------+------+-------------------+-----------+
| 2 | server20 | 3306 | 0 | 1 |
+-----------+----------+------+-------------------+-----------+
1 row in set (0.00 sec)

The results should include a row for each slave that is connected to the master. In these results, only one
slave is connected. As you can see, the row provides the server ID of the slave (2), the name of the slave
host (server20), the port being used to connect to the master (3306), the replication recovery rank (0), and
the server ID of the master server (1).

The replication recovery rank (the Rpl_recovery_rank column) refers to the rpl_recover_rank system
variable, which has a default value of 0. Currently the system variable is not used by MySQL, so it has
no meaning in this context. It appears that eventually it will be used to rank master servers so that, if a
slave server has lost its master, it can select a new master based on the master ranks.

By default, a slave server is not listed in the results returned by the SHOW SLAVE HOSTS statement. To
include a slave server in these results, you must add the --report-host=<host> option to the [mysqld]
section of the option file on the slave server. When specifying this option, you should provide the name of
the slave host, not the master host.

You can also use the SHOW PROCESSLIST statement to view a list of the threads that are currently
running. This is useful if you want to see all your current connections, including the slave connections.

Managing the Slave Server
In addition to providing statements that allow you to manage replication on the master server, MySQL
supports a number of statements that you can use to manage the replication environment on a slave
server.

612

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 612

TEAM LinG - Live, Informative, Non-cost and Genuine !

Using the CHANGE MASTER Statement
The CHANGE MASTER statement is probably the most important statement that you work with when
managing replication. The statement provides the parameters that are used by the master.info file on the
slave server. The following syntax shows how to define a CHANGE MASTER statement:

CHANGE MASTER TO <master option> [<master option>...]

As you can see, you must specify the CHANGE MASTER TO keywords along with one or more master
options. The primary options that you’ll be using are described in the following table.

Option syntax Description

MASTER_HOST=’<master host>’ The name of the master server

MASTER_USER=’<user account>’ The name of the user account set up for the slave server

MASTER_PASSWORD=’<password>’ The password for the user account set up for the slave server

MASTER_PORT=<port number> The port number used to connect to the MySQL server on
the master server

MASTER_CONNECT_RETRY=<count> The number of times to try to reconnect to the master
server if a connection cannot be established initially

MASTER_LOG_FILE=’<log file>’ The name of the binary log file on the master server that the
slave server should begin reading from when implementing
replication on the slave server

MASTER_LOG_POS=<position> The position in the binary log file that determines where to
start searching the log files in order to synchronize the slave
server with the master server

RELAY_LOG_FILE=<log file> The name of the relay log file on the slave server that the
slave server should begin reading from when implementing
replication

RELAY_LOG_POS=<position> The position in the relay log file that determines where to
start searching the log files in order to implement replication

The CHANGE MASTER statement is most commonly used when first initiating replication on a slave
server. The statement might also come in handy if connection information changes after replication has
started. For example, you might have to change the password for the user account that connects to the
master server. In that case, you simply specify the MASTER_PASSWORD=’<password>’ option as the
statement’s only option.

The MASTER_HOST=’<master host>’ option and the MASTER_PORT=<port number> option
are a little different from the other options. If you specify either one, you must also specify the
MASTER_LOG_FILE=’<log file>’ option and the MASTER_LOG_POS=<position> option. In addition,
if you specify the MASTER_LOG_FILE=’<log file>’ or the MASTER_LOG_POS=<position> option,
you cannot specify the RELAY_LOG_FILE=<log file> or RELAY_LOG_POS=<position> option. For
example, the following CHANGE MASTER statement adheres to the statement rules:

613

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 613

TEAM LinG - Live, Informative, Non-cost and Genuine !

CHANGE MASTER TO
MASTER_HOST=’server1’,
MASTER_USER=’slave_acct’,
MASTER_PASSWORD=’slave_pw’,
MASTER_LOG_FILE=’server1-bin.001234’,
MASTER_LOG_POS=79;

In this statement, the master host is server1, the account used to log on to the host is slave_acct, and the
password for that account is slave_pw. In addition, the master log binary file is server1-bin.001234, and
the position in that log is 79. As you can see, a master host is specified, so a master log file and log position
are included. In addition, the relay log file and relay position are not specified. When you execute this
statement, the information is added to the master.info file.

Using the RESET SLAVE Statement
If you want to start over with setting up replication on the slave server, you can reset the slave by using
the following statement:

RESET SLAVE;

The statement deletes all the relay log files as well as the master.info and relay-log.info files. The state-
ment then re-creates all the necessary replication files, providing you with a clean start. As a result, the
master.info file does not contain the values necessary to connect to the master server; in that case, you
need to issue a CHANGE MASTER statement.

Using the SHOW SLAVE STATUS Statement
If you want to view information about a slave server, you receive the most complete information by
using the following statement:

SHOW SLAVE STATUS;

The SHOW SLAVE STATUS statement provides status information about the connection to the master
server, the binary log file and relay log file, and the positions in the log files. The following results show
a part of what you receive when you execute this statement on a slave server:

+----------------------------------+-------------+-------------+-------------+-----
| Slave_IO_State | Master_Host | Master_User | Master_Port | Conn
+----------------------------------+-------------+-------------+-------------+-----
| Waiting for master to send event | server1 | slave1 | 3306 |
+----------------------------------+-------------+-------------+-------------+-----
1 row in set (0.00 sec)

The results shown here represent only a small part of the information you should receive when you run
the SHOW SLAVE STATUS statement. The statement returns nearly any information you need about the
slave server. For a complete list of the information returned by the statement, see the MySQL product
documentation.

Using the START SLAVE Statement
If you have stopped the slave server for any reason or are implementing replication on a slave server for
the first time, you can start the replication process on the slave server by using the following statement:

614

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 614

TEAM LinG - Live, Informative, Non-cost and Genuine !

START SLAVE;

The statement starts the connections to the master server that are necessary for replication to work. Two
connections are used by a slave server. The I/O connection accesses data in the binary log files on the
master server and copies that data to the relay logs. The SQL connection reads the relay logs and executes
the statements against the databases on the slave server.

Using the STOP SLAVE Statement
To stop replication on the slave server, you can issue the following statement on the slave server:

STOP SLAVE;

The statement stops both the I/O connection and the SQL connection, and changes to the databases are
no longer replicated. The replication files, though, are preserved, so you can restart the replication process
by issuing a START SLAVE statement.

Summary
As this chapter has demonstrated, MySQL supports several methods that you can use to protect your
system from the loss of data. By backing up your system regularly, you’re ensuring that you maintain an
ongoing history of the changes made to your database. And should you need to restore your database,
you can use the most recent backup file, along with the applicable binary log files, to restore your system
to its original state. In addition to creating backup files, you can set up replication in order to maintain at
least one synchronized copy of your database. Although replication doesn’t provide the history that
backup files provide, it does provide you with an up-to-date copy of your database. To provide you with
the information necessary to back up and restore your databases, as well as set up replication, this chap-
ter covered the following topics:

❑ Using the mysqldump client utility to back up tables in a single database

❑ Using the mysqldump client utility to back up multiple databases

❑ Using the mysql client utility in batch mode to restore databases

❑ Using the mysql client utility in interactive mode to restore databases

❑ Restoring data from your binary log files

❑ Replicating databases on a MySQL server

❑ Managing the master and slave servers used in replication

Although backing up your data and setting up replication are both effective methods that you can use to
copy your data, these two methods are even more effective when used in conjunction with each other. In
this case, you would set up a slave server that can be used to create backup files. This way, applications
and users accessing the master server are not competing for resources also being used to back up the
data. This approach can be particularly useful when developing Web-based applications that must be
available around the clock and that can experience large numbers of concurrent users. As a result, an
essential component of any administrative planning must include a strategy for ensuring that the data is
properly backed up and replicated as is appropriate for your applications and users. Once you have that
strategy in place, you’re ready to begin developing applications that put to use the various components
of MySQL that you’ve learned about in this book.

615

Managing Backup, Recovery, and Replication

19_579509 ch16.qxd 3/1/05 10:04 AM Page 615

TEAM LinG - Live, Informative, Non-cost and Genuine !

Exercises
The chapter explained how to back up your databases, restore databases from backup files, and imple-
ment replication. To help you build on your ability to carry out these tasks, the following exercises are
provided. The exercises assume that you will create and access backup files in the mysqlbackup direc-
tory (C:\mysqlback on Windows and /mysqlbackup on Linux). To view solutions to these exercises,
see Appendix A.

1. You are backing up all the tables in the ProduceDB database. The backup file should not include
any database definition language. You plan to create a backup file named producedb001.sql.
What command should you use to create the backup file?

2. You are backing up only the Produce table in the ProduceDB database. You plan to create a backup
file named produce.sql. What command should you use to create the backup file?

3. You are backing up all the tables in the ProduceDB database. The backup file should include the
necessary database definition language. You plan to create a backup file named producedb.sql.
What command should you use to create the backup file?

4. You are restoring the ProduceDB database from the database file that you created in Exercise 3.
You want to restore the database by using the mysql client utility in batch mode. What com-
mand should you use to restore the database?

5. You are preparing to replicate the databases on your MySQL server. To support that replication,
you must set up a user account for the slave server. The username for the account is rep_user,
and the name of the slave host is slave1. For the slave host to support replication, it must connect
to the MySQL server on the master host by using the password rep_pw. What SQL statement
should you use to grant replication privileges to the slave host?

6. You are setting up replication on a slave server named slave1. The name of the master host is
master1, and replication has already been set up on that host. You plan to use the user account
created in Exercise 5 to allow the slave host to connect to the master host. You shut down the
MySQL server on slave host, add the server-id option to the option file, restart the server,
and load the database from a backup file. The backup file indicates that the master log file is
master1-bin.000127 and that the master log position is 79. You must now execute a CHANGE
MASTER statement before starting the server as a slave. What CHANGE MASTER statement should
you execute on slave1?

616

Chapter 16

19_579509 ch16.qxd 3/1/05 10:04 AM Page 616

TEAM LinG - Live, Informative, Non-cost and Genuine !

