ADDRESSING MODES

The 8051 Microcontroller and Embedded
Systems. Using Assembly and C
Mazidi, Mazidi and McKinlay

Chung-Ping Young
Bl

o The CPU can access data in various
ways, which are called addressing
modades

> Immediate

» Register

» Direct)
» Register indirect >F S
> Indexed

ADDRESSING
MODES

J

o The source operand Is a constant
IMMEDIATE

ADDRESSING » The immediate data must be preceded by
MODE the pound sign, “#”

» Can load information into any registers,
Including 16-bit DPTR register

= DPTR can also be accessed as two 8-bit
registers, the high byte DPH and low byte DPL

MOV A,#25H :load 25H Into A

MOV R4 ,#62 ;load 62 Into R4

MOV B,#40H :load 40H into B

MOV DPTR,#4521H ;DPTR=4512H

MOV DPL,#21H :This 1Is the same

MOV DPH,#45H -as above

;illegal!! Value > 65535 (FFFFH)
MOV DPTR,#68975

2 We can use EQU directive to access

IMMEDIATE Immediate data
ADDRESSING
MODE Count EQU 30
(cont’) MOV R4.#COUNT -RA=1EH
MOV DPTR.#MYDATA :DPTR=200H
ORG 200H
MYDATA: DB “America”

o We can also use immediate addressing
mode to send data to 8051 ports

MOV P1,#55H

REGISTER
ADDRESSING
MODE

o Use registers to hold the data to be
manipulated

MOV A,RO ;copy contents of RO into A
MOV R2,A ;copy contents of A Into R2
ADD A,R5 ;add contents of R5 to A
ADD A,R7 ;add contents of R7 to A
MOV R6,A ;save accumulator 1n R6

o The source and destination registers
must match in size
> MOV DPTR,A will give an error

MOV DPTR,#25F5H
MOV R7,DPL
MOV R6,DPH

o The movement of data between Rn
registers is not allowed
> MOV R4,R7 IS invalid

o It 1s most often used the direct
addressing mode to access RAM
locations 30 — 7FH

Direct » The entire 128 bytes of RAM can be

Addressing accessed Direct addressing mode

Mode > The register bank locations are accessed
by the register names

ACCESSING
MEMORY

MOV A,4/’ ;IS same as
MOV A,R4\\ ;which means copy R4 i1nto A

o Contrast this wath immediate

addressing mode

» There is no “#” sign Iin the operand

MOV RO,40H :;save content of 40H 1n RO
MOV 56H,A -save content of A 1n 56H

2 The SFR (Special Function Register)
can be accessed by their names or by
their addresses

ACCESSING
MEMORY

SFR Registers MOV OEOH,#55H ;is the same as
and Their MOV A,#55h ;load 55H into A

Addresses MOV OFOH,RO -is the same as
MOV B,RO ;copy RO 1nto B

2 The SFR registers have addresses
between 80H and FFH

» Not all the address space of 80 to FF Is
used by SFR

» The unused locations 80H to FFH are
reserved and must not be used by the
8051 programmer

Special Function Register (SFR) Addresses

Symbol Name Address
ACCESS | NG ACC* Accumulator OEOH
M EMORY B* B register OFOH
PSW* Program status word ODOH
SFR Reg Isters BE: Stack pointer 81H
and Their DPTR Data pointer 2 bytes
Addresses DPL Low byte 82H
(cont) DPH High byte 83H
PO* Port O 80H
P1* Port 1 90H
p2* Port 2 OAOH
P3* Port 3 0BOH
IP* Interrupt priority control OB8H

IE* Interrupt enable control OA8H

ACCESSING
MEMORY

SFR Registers
and Their

Addresses
(cont’)

Special Function Register (SFR) Addresses

Symbol Name Address
TMOD Timer/counter mode control 89H
TCON* Timer/counter control 88H
T2CON* Timer/counter 2 control 0C8H
T2MOD Timer/counter mode control OC9H
THO Timer/counter O high byte 8CH
TLO Timer/counter 0 low byte 8AH
TH1 Timer/counter 1 high byte 8DH
TL1 Timer/counter 1 low byte 8BH
TH2 Timer/counter 2 high byte OCDH
TL2 Timer/counter 2 low byte OCCH
RCAP2H T/C 2 capture register high byte OCBH
RCAP2L T/C 2 capture register low byte OCAH
SCON* Serial control 98H
SBUF Serial data buffer 99H
PCON Power ontrol 87H

* Bit addressable

ACCESSING
MEMORY

SFR Registers
and Their

Addresses
(cont’)

Example 5-1

Write code to send 55H to ports P1 and P2, using
(a) their names (b) their addresses

Solution :
(a) MOV A,#55H ;A=55H
MOV P1,A ;P1=55H
MOV P2,A ; P2=55H
(b) From Table 5-1, P1 address=80H; P2 address=A0H
MOV A,#55H ;A=55H
MOV 80H,A ;P1=55H

MOV OAOH, A ;P2=55H

ACCESSING
MEMORY

Stack and
Direct
Addressing
Mode

o Only direct addressing mode is allowed
for pushing or popping the stack
» PUSH A is invalid

» Pushing the accumulator onto the stack
must be coded as PUSH OEOH

Example 5-2

Show the code to push R5 and A onto the stack and then pop them
back them into R2 and B, where B = A and R2 = R5

Solution:

PUSH 05
PUSH OEOH
POP OFOH

POP 02

;push R5 onto stack

;push register A onto stack
;pop top of stack Into B
;how register B = register A
;pop top of stack Into R2
-now R2=R6

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

o A register iIs used as a pointer to the
data

» Only register RO and R1 are used for this
purpose

» R2 — R7 cannot be used to hold the
address of an operand located in RAM
o When RO and R1 hold the addresses of
RAM locations, they must be preceded
by the “@” sign

MOV A,@RO ;move contents of RAM whose
;address 1s held by RO 1nto A

MOV @R1,B ;move contents of B into RAM
;whose address i1s held by R1

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

(cont’)

Example 5-3

Write a program to copy the value 55H into RAM memory locations
40H to 41H using

(a) direct addressing mode, (b) register indirect addressing mode
without a loop, and (c) with a loop

Solution:

(@)
MOV A,#55H ;load A with value 55H
MOV 40H,A ;copy A to RAM location 40H
MOV 41H_A ;copy A to RAM location 41H

(b)
MOV A,#55H ;load A with value 55H
MOV RO,#40H ;load the pointer. R0=40H
MOV @RO,A ;copy A to RAM RO points to
INC RO ;increment pointer. Now RO=41h
MOV @RO,A ;copy A to RAM RO points to

()
MOV A,#55H ;A=55H
MOV RO, #40H ;load pointer.R0=40H,
MOV R2,#02 ;load counter, R2=3
AGAIN: MOV @RO,A ;copy 55 to RAM RO points to
INC RO ;increment RO pointer
DINZ R2,AGAIN ;loop until counter = zero

o The advantage Is that it makes

AEACEES&T(G accessing data dynamic rather than
static as In direct addressing mode
Register » Looping is not possible in direct
Indirect addressing mode
Addressing Example 5-4
Mode Write a program to clear 16 RAM locations starting at RAM address
(cont’) 60H
Solution:
CLR A :A=0

MOV R1,#60H ;load pointer. R1=60H
MOV R7,#16 ;load counter, R7=16
AGAIN: MOV @R1,A ;clear RAM R1 points to
INC R1 ;increment R1 pointer
DINZ R7,AGAIN ;loop until counter=zero

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

(cont’)

Example 5-5

Write a program to copy a block of 10 bytes of data from 35H to 60H

Solution:

MOV RO,#35H ;source pointer
MOV R1,#60H ;destination pointer
MOV R3,#10 ;counter
BACK: MOV A,@RO ;get a byte from source
MOV @R1,A ;Ccopy 1t to destination
INC RO ; Increment source pointer
INC R1 ;Increment destination pointer
DINZ R3,BACK ;keep doing for ten bytes

ACCESSING
MEMORY

Register
Indirect
Addressing
Mode

(cont’)

o RO and R1 are the only registers that
can be used for pointers in register
Indirect addressing mode

a Since RO and R1 are 8 bits wide, their
use Is limited to access any
Information in the internal RAM

o Whether accessing externally
connected RAM or on-chip ROM, we
need 16-bit pointer
» In such case, the DPTR reqgister is used

o Indexed addressing mode Is widely
used In accessing data elements of
look-up table entries located In the

Indexed program ROM

QECIEESIUCEN | The instruction used for this purpose Is

Mode and MOVC A,@A+DPTR
On-chip ROM

ACCESSING
MEMORY

> Use Instruction MOVC, “C” means code

> The contents of A are added to the 16-bit
register DPTR to form the 16-bit address
of the needed data

Access

Example 5-6

ACCESSING In this program, assume that the word “USA” is burned into ROM

locations starting at 200H. And that the program is burned into ROM

MEMORY locations starting at 0. Analyze how the program works and state

Indexed Solution:

~rhim LJIr Y\nin

ALLED>SS | /

DPTR=201H, A=0 /
= - |
DPTR=201H, A=53H

HERE ;,stay here
;Data 1s burned Into C space starting at 200H

Here:

ORG

DPTR=200H, A=0 MOV
I;AAAIA o~ KCLR

DIR[0 VISl — —MOVC A,@A+DPTR ;get the char from code space

MOV
SJIMP

ORG
END

where “USA” is stored after this program is run.

OOO0OOH ;burn 1nto ROM starting at O
DPTR,#200H ;DPTR=200H look-up table addr
A ;clear A(A=0)

RO,A ;save 1t iIn RO

DPTR .DPTR=201 point to next char
A ;C ACA=0) -
A,@A+DPTR ;get the next char RO=55H
R1,A ;save 1t 1n R1

DPTR :DPTR:202 point to next char
A ;C A(A=0) -
A,@A+DPTR -get the next char Al
R2,A ;save it in R2

00H R2=41H

MYDATA:DB “USA”

;end of program

ACCESSING
MEMORY

Look-up Table
(cont’)

o The look-up table allows access to
elements of a frequently used table
with minimum operations

Example 5-8
Write a program to get the x value from P1 and send x? to P2,
continuously

Solution:
ORG O
MOV DPTR,#300H -LOAD TABLE ADDRESS
MOV A,#OFFH - A=FF
MOV P1,A :CONFIGURE P1 INPUT PORT
BACK:MOV A,P1 :GET X
MOV A,@A+DPTR ;GET X SQAURE FROM TABLE
MOV P2,A -ISSUE IT TO P2
SIMP BACK :KEEP DOING IT
ORG 300H
XSQR_TABLE:

"DB 0,1,4,9,16,25,36,49,64,81
END

ACCESSING
MEMORY

Indexed
Addressing
Mode and

MOVX

o In many applications, the size of
program code does not leave any
room to share the 64K-byte code

space with data

» The 8051 has another 64K bytes of
memory space set aside exclusively for

data storage

* This data memory space is referred to as
external memory and it is accessed only by the

MOVX instruction

o The 8051 has a total of 128K bytes of

memory space
» 64K bytes of code and 64K bytes of data
» The data space cannot be shared between
code and data

o In many applications we use RAM
locations 30 — 7FH as scratch pad
» We use RO - R7 of bank O

RAM Locations » Leave addresses 8 — 1FH for stack usage

30 - 7FH as > If we need more registers, we simply use
Scratch Pad RAM locations 30 — 7FH

ACCESSING
MEMORY

Example 5-10

Write a program to toggle P1 a total of 200 times. Use RAM
location 32H to hold your counter value instead of registers RO —
R7

Solution:
MOV P1,#55H :P1=55H

MOV 32H,#200 ;load counter value

-into RAM loc 32H

LOP1: CPL P1 ;toggle P1
ACALL DELAY
DINZ 32H,LOP1 ;repeat 200 times

2 Many microprocessors allow program
to access registers and 1/0 ports in
byte size only

» However, in many applications we need to
check a single bit

a2 One unique and powerful feature of
the 8051 is single-bit operation

» Single-bit instructions allow the
programmer to set, clear, move, and
complement individual bits of a port,
memory, or register

» It Is registers, RAM, and 1/0 ports that
need to be bit-addressable

= ROM, holding program code for execution, is
not bit-addressable

BIT
ADDRESSES

BIT
ADDRESSES

Bit-
Addressable
RAM

o The bit-addressable RAM location are
20H to 2FH

» These 16 bytes provide 128 bits of RAM
bit-addressabillity, since 16 x 8 = 128

= 0to 127 (in decimal) or 00 to 7FH

» The first byte of internal RAM location 20H
has bit address O to 7H

» The last byte of 2FH has bit address 78H
to 7FH

o Internal RAM locations 20-2FH are
both byte-addressable and bit-
addressable

» Bit address 00-7FH belong to RAM byte
addresses 20-2FH

» Bit address 80-F7H belong to SFR PO,
P1, ...

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Bit-addressable
locations

Byte address

7F

30

2F
2E
2D
2C
2B
2A
29
28
27
26
25
24
23
22
21
20

1F
18

17
10

OF
08

07
00

General purpose RAM

Bank 3

Bank 2

Bank 1

Default register bank for RO-R7

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

Example 5-11

Find out to which by each of the following bits belongs. Give the

address of the RAM byte in hex
(a) SETB 42H, (b) CLR 67H, (c) CLR OFH

(d) SETB 28H, (e) CLR 12, (f) SETB 05

bDr D6 D5 D4 D3 D2 D1

Solution:

(a) D2 of RAM location 28H
(b) D7 of RAM location 2CH
(c) D7 of RAM location 21H
(d) DO of RAM location 25H
(e) D4 of RAM location 21H

(f) D5 of RAM location 20H

DO

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

o To avoid confusion regarding the
addresses 00 — 7FH

» The 128 bytes of RAM have the byte
addresses of 00 — 7FH can be accessed In
byte size using various addressing modes

= Direct and register-indirect

» The 16 bytes of RAM locations 20 — 2FH
have bit address of 00 — 7FH

= We can use only the single-bit instructions and
these instructions use only direct addressing
mode

BIT
ADDRESSES

Bit-
Addressable

RAM
(cont’)

o Instructions that are used for signal-bit
operations are as following

Single-Bit Instructions

Instruction Function

SETB bit Set the bit (bit = 1)

CLR bit Clear the bit (bit = 0)

CPL bit Complement the bit (bit = NOT bit)

JB bit, target Jump to target if bit = 1 (jump if bit)
JNB bit, target Jump to target if bit = 0 (jump if no bit)
JBC bit, target Jump to target if bit = 1, clear bit

(Jump if bit, then clear)

BIT
ADDRESSES

/0 Port
Bit Addresses

o While all of the SFR registers are byte-
addressable, some of them are also bit-
addressable

> The PO — P3 are bit addressable

o We can access either the entire 8 bits
or any single bit of 1/0 ports PO, P1, P2,
and P3 without altering the rest

o When accessing a port in a single-bit
manner, we use the syntax SETB X.Y
» X IS the port number PO, P1, P2, or P3

> Y IS the desired bit number from 0 to 7 for
data bits DO to D7

» ex. SETB P1.5 sets bit 5 of port 1 high

o Notice that when code such as

BIT SETB P1.0 is assembled, it becomes
ADDRESSES SETB 90H

» The bit address for 1/0 ports
1/0 Port = PO are 80H to 87H
Bit Addresses = P1 are 90H to 97H
(cont’) = P2 are AOH to A7H
= P3 are BOH to B7H

Single-Bit Addressability of Ports

PO P1 P2 P3 Port Bit
P0.0 (80) P1.0(90) P2.0 (A0) P3.0 (BO) DO
PO.1 P1.1 P2.1 P3.1 D1
PO.2 P1.2 P2.2 P3.2 D2
PO.3 P1.3 P2.3 P3.3 D3
P0.4 P1.4 P2.4 P3.4 D4
PO.5 P1.5 P2.5 P3.5 D5
P0.6 P1.6 P2.6 P3.6 D6

PO.7 (87) P1.7(97) P2.7 (A7) P3.7 (B7) D7

BIT
ADDRESSES

/0 Port
Bit Addresses
(cont’)

SFR RAM Address (Byte and Bit)

Byte
address

FF
FO

EO

DO

B8

BO

A8

A0

99

Bit address

F4 F3 F2

BC BB BA B9 B8

B4 B3 B2 B1 BO

AE AD AC AB AA A9 A8

A6 A5 A4 A3 A2 Al AO

not bit addressable

ACC

PSW

IP

P3

IE

P2

SBUF

8D
8C
8B
8A
89
88
87

not
not
not
not

not

Bit address

bit
bit
bit
bit
bit

9F 9E 9D 9C 9B 9A 99 98

97 96 95 94 93 92 91 90

addressable
addressable
addressable
addressable

addressable

8F 8E 8D 8C 8B 8A 89 88

not bit addressable

not bit addressable

not bit addressable

not bit addressable

Special Function Register

87 86 85 84 83 82 81 80

Bit addresses 80 — F7H
belong to SFR of PO,

TCON, P1, SCON, P2, etc

SCON

P1

TH1
THO
TL1
TLO
TMOD
TCON
PCON

DPH
DPL
SP
PO

o Only registers A, B, PSW, IP, IE, ACC,
BIT SCON, and TCON are bit-addressable
ADDRESSES > While all 1/0 ports are bit-addressable

neqi o In PSW register, two bits are set aside
egisters . :

Bit- for the selection of the register banks
Addressability » Upon RESET, bank O is selected

» We can select any other banks using the
bit-addressabllity of the PSW

CY AC —- RS1 RSO oV

RS1 RSO Register Bank Address

0 0 0 OOH - O7H
0 1 1 08H - OFH
1 0 2 10H - 17H
1 1 3 18H - 1FH

BIT
ADDRESSES

Registers
Bit-
Addressabllity
(cont’)

Example 5-13
Write a program to save the accumulator in R7 of bank 2.

Solution:

CLR PSW.3
SETB PSW.4
MOV R7,A

Example 5-14

While there are instructions such as JNC and JC to check the carry flag
bit (CY), there are no such instructions for the overflow flag bit (OV).
How would you write code to check OV?

Solution:

JB PSW.2,TARGET :jump if OvV=1

Example 5-18
While a program to save the status of bit P1.7 on RAM address bit 05.
Solution:

MOV C,P1.7

MOV 05,C

Example 5-15

BIT Write a program to see if the RAM location 37H contains an even
ADDRESSES value. If so, send it to P2. If not, make it even and then send it to P2.
Solution:
: MOV A,37H ;load RAM 37H 1nto ACC
Registers INB ACC.0,YES :if DO of ACC 0? If so jump
Bit- INC A ;It’s odd, make 1t even
YES: MOV P2,A ;send 1t to P2

Addressabllity
(cont’) Example 5-17

The status of bits P1.2 and P1.3 of 1/O port P1 must be saved before
they are changed. Write a program to save the status of P1.2 in bit
location 06 and the status of P1.3 in bit location 07

Solution:
CLR 06 ;clear bit addr. 06
CLR 07 ;clear bit addr. 07
JNB P1.2,0VER ;check P1.2, if O then jump
SETB 06 1F P1.2=1,set bit 06 to 1
OVER: JNB P1.3,NEXT ;check P1.3, 1f O then jump
SETB 07 ;1T P1.3=1,set bit 07 to 1

NEXT:

BIT
ADDRESSES

Using BIT

o The BIT directive Is a widely used
directive to assign the bit-addressable
/0 and RAM locations

» Allow a program to assign the 1/0 or RAM
bit at the beginning of the program,
making it easier to modify them

Example 5-22

A switch is connected to pin P1.7 and an LED to pin P2.0. Write a
program to get the status of the switch and send it to the LED.

Solution:
LED BIT P1.7
SwW BIT P2.0

HERE: MOV C,SwW
MOV LED,C
SIMP HERE

;assign bit

;assign bit

;get the bit from the port
;send the bit to the port
;repeat forever

Example 5-20

Bl Assume that bit P2.3 is an input and represents the condition of an
ADDRESSES oven. If it goes high, it means that the oven is hot. Monitor the bit
continuously. Whenever it goes high, send a high-to-low pulse to port
P1.5to turn on a buzzer.

Using BIT
(cont’)

Solution:

OVEN_HOT BIT P2.3

BUZZER BIT P1.5

HERE: JNB OVEN_HOT,HERE ;keep monitoring
ACALL DELAY
CPL BUZZER ;sound the buzzer
ACALL DELAY
SIMP HERE

BIT
ADDRESSES

Using EQU

0 Use the EQU to assign addresses

» Defined by names, like P1.7 or P2
» Defined by addresses, like 97H or OAOH

Example 5-24

A switch is connected to pin P1.7. Write a program to check the status
of the switch and make the following decision.

(@) If SW =0, send “0” to P2

(b) If SW =1, send “1"“ to P2

Solution: SW EQU 97H

Sw EQU P1.7 MYDATA EQU OAOH
MYDATA EQU P2
HERE: MOV C,Sw

JC OVER
MOV MYDATA,#70”
SIMP HERE

OVER: MOV MYDATA,#71”
SIMP HERE

END

TrA 198 I The 8052 has another 128 bytes of on-
BYTE ON-CHIP chip RAM with addresses 80 — FFH

RAM IN 8052 > It is often called upper memory

= Use indirect addressing mode, which uses RO
and R1 registers as pointers with values of 80H
or higher

— MOV @RO, A and MOV @R1, A

» The same address space assigned to the
SFRs
» Use direct addressing mode
— MOV 90H, #55H is the same as
MOV P1, #55H

Example 5-27
EXTRA 128 P | |
Assume that the on-chip ROM has a message. Write a program to
BYTE ON-CHIP copy it from code space into the upper memory space starting at
RAM IN 8052 g%dress 80H. Also, as you place a byte in upper RAM, give a copy to
(cont’)
Solution:
ORG 0
MOV DPTR ,#MYDATA
MOV R1,#80H ;access the upper memory
Bl: CLR A
MOVC A,@A+DPTR ;copy from code ROM
MOV OR1,A ;store 1In upper memory
MOV PO,A ;give a copy to PO
JZ EXIT ;exit 1T last byte
INC DPTR ;increment DPTR
INC R1 ;increment R1
SIMP Bl ;repeat until last byte
EXIT: SJMP $;stay here when finished
ORG 300H
MYDATA: DB “The Promise of World Peace”,0
END

