Basic SQL

Galih Hermawan
Basis Data
IF UNIKOM

Overview

® Background

® Basic Structure

® Set Operations

® Aggregate Functions
e Null Values

® Nested Subqueries

® Views

Background

* IBM developed the original version of SQL at its San Jose

Research Laboratory

* Evolved asThe Sequel language, its name has changed to SQL
(Structured Query Language)

® SQL has clearly established itself as the standard relational-
database language

Different parts of SQL

® Data Definition Language (DDL)
® Create/alter/delete tables and their attributes

° Following lectures. ..

® Data Manipulation Language (DML)
® Query one or more tables — discussed next |

® Insert/delete/ modify tuples in tables
® Transact-SQL

® [dea: package a sequence of SQL statements - server

® Won’t discuss in class

Basic Structure of SQL

o Consists of three clauses:
@) Select
- Used to list the attributes desired in the result of a query.
(ii) From
- Lists the relations to be scanned in the evaluation of the expression.
(iii) Where
- Consists of a predicate involving attributes of the relations that appear in the
from clause.

Data in SQL

. Atomic types, a.k.a. data types
2. Tables built from atomic types

Unlike XML, no nested tables, only flat tables are allowed!

Data Types in SQL

® Characters:
e CHAR(20) -- tixed length
e VARCHAR(40) -- variable length

¢ Numbers:
e BIGINT, INT, SMALLINT, TINYINT

e REAL, FLOAT -- difter in precision
e MONEY
® Times and dates:
e DATE
e DATETIME -- SQL Server

® Others... All are simple

Schema Used in Examples

branch

account

branch-name

account—number

depositor

customer

branch—city
assets

branch-name

balance

customer—name
account—number

customer—namnie

customer—street

customer—city

loan

borrower

loan—number

branch—-name
amount

customer—name
loan—number

Tables

["customer-id | loan-number | [account-number | branch-name | balance | | customer-name | account-number |
019-28-3746 L-11 A-T01 Downtown K00 Hayes A-102
(019-28-3746 L-23 A-102 Perryridge 400 Johnson A-101
244-66-8800 L-93 A-201 Brighton 900 Johnson A-201
321-12-3123 L-17 A-215 Mianus 700 Jones A-217
335-57-7991 L-15 A-217 Brighton 750 Lindsay A-222
555-55-5555 L-14 A-222 Redwood 700 Smith A-215
677-89-9011 L-15 A-305 Round Hill 350 Turner A-305
963-96-3963 L-17

Figure 3.1 The account relation. Figure 3.5 The depositor relation.
Figure 2.26 The borrower table.

| branch-name | branch-city | assets | | loan-number | amount |
Brighton Brooklyn 7100000 L-11 Q00
Downtown | Brooklyn 000000 L-14 1500
Mianus Horseneck | 400000 L-15 1500
North Town | Rye 3700000 L-16 1300
Perryridge | Horseneck | 1700000 L-17 1000
Pownal Bennington | 300000 L-23 2000
Redwood Palo Alte | 2100000 L-93 500
Round Hill | Horseneck | 8000000

Figure 2.23 The loan table.
Figure 3.3 The branch relation.

"

Tables

| customer-id

| customer-name

| customer-street |

customer-city

019-28-3746
182-73-6091
192-83-7465
244-66-8800
321-12-3123
335-57-7991
336-66-9999
677-89-9011
963-96-39%3

Smith
Turner
Johnson
Curry
Jones
Adams
Lindsay
Hayes
Williams

Figure 2.24

MNorth
Putnam
Alma
Morth
Main
Spring
Park
Main

MNassau

The customer table.

Rye

Stamford
FPalo Alto
Rye

Harrison
Pittsfield
Pittsfield
Harrison
Princeton

loan-number

| payment-number |

pﬂyﬂ!fﬂi—dﬂf{? | payment—ﬂmﬂunﬁ

L-11 53 7 June 2001 125
L-14 (Y 28 May 2001 500
L-15 22 23 May 2001 300
L-16 58 18 June 2001 135
L-17 5 10 May 2001 50
L-17 6 7 June 2001 50
L-17 7 17 June 2001 100
L-23 11 17 May 2001 75
L-93 103 3 June 2001 900
L-93 104 3 June 2001 200
Figure 2.25 The palinent table.

A typical SQL query form

® Select: A, A,,....A_
® A, represents an attribute.
® From:r,r,,....r_

® r.is a relation
® Where: P

e P represents a predicate.

The Select Clause
® Example of a Simple Query:

® “Find the names of all branches in the loan relation”
select branch-name

from Joan

More examples continued

® Inserting keyword distinct after select we can eliminate
duplication
® For instance:
select distinct branch-name

from loan

* Inserting keyword all after select helps restoring duplication.

The where clause

* Example:

“Find all loan numbers for loans made at the Perryridge branch with loan

amounts greater than $ 1200.”

select loan-number
from Joan

where branch-name = ‘Perryridge’ and amount > 1200

More examples of Where clause

® Logical connectives like and, or, and not are used in the where
clause

° Example:

® Loan number of those loans with loan amounts between $90,000

& $ 100,000
select loan number

from /loan
where amount between 90000 and 100000

The from Clause

® Defines a Cartesian product of the relations in the clause.

* Example:

® “For all customers who have a loan from the bank, find their

names, loan numbers and loan amount”

The from Clause (Con’d)

select customer-name, borrower.loan-number, amount
from borrower, loan

where borrower.loan-number = loan.loan-number

The Rename Operation

® Uses as clause to rename both, relations and attributes

® The as clause takes the form in SQL:

old-name as new-name

The Rename Operation (Con’d)

* Example:

e To Change attribute name loan-number to be replaced with name loan-id :

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number

String Operations

® SQL specifies by enclosing in single quotes, for example,
‘Perryridge’
® “0%” character is use to match any substring,

« »
]

_” character is use to match any character

® It expresses patterns by using the like comparison operator

String Operations (Con’d)

® Example:

¢ Find the names of all customers whose street address
includes the substring ‘Main’

select customer-name
from customer

where customer-street like ‘“©oMain%o’

Set Operations

® Operations such as union, intersect, ad except operate on

relations.

* Corresponds to relational-algebra operations \U, M and —.

® Relations participating in the operations must be compatible;

i.e. must have same set of attributes.

Union Operation

* Example:
* To find all customers having a loan, an account, or both at bank:
(Select customer-name
from depositor)
union
(Select customer-name

from borrower)

Intersect Operation

° Example:

e To find all customers who have both a loan and an account at the

bank:

(Select distinct customer-name
from depositor)

intersect

(Select distinct customer-name

from borrower)

Except Operation

* Example:
® To find all customers who have an account but no loan at the bank:
(Select distinct customer-name)
from depositor)
except
(Select customer-name

from borrower)

Aggregate Functions

® These functions take a collection of values as input and

return a single value.

* SQL offers five built-in aggregate functions:
® Average: avg
® Minimum: min
® Maximum: max
® Total: sum

® Count: count

Aggregate Functions (Con’d)

* Example:

* Find the average account balance at the Perryridge branch.”
select avg (balance)
from account

where branch-name = ‘Perr)/rid(qe’

Null Values

® Used to indicate absence of information about the value of an

attribute.

* Can use special keyword null in a predicate to test for a null

value.

Null Values (Con’d)

* Example:

select loan-number
from Joan

where amount 1s null

Nested Subqueries

o A subquery is a select-from-where expression that is nested

within another query.

e Common use includes:
® Perform tests for set membership
® Make set comparisons

® Determine set cardinality

Nested Subqgueries (Con’d)

° Example:

® Find those customers who are borrowers from the bank and who

appear in the list of account holders obtained in the subquery
select distinct customer-name
from borrower

Where customer-name in (SG]CCt customer- name from

depositor)

Views

® We define a view in SQL by using the create view

command.

® 'To define a view, we must give the view a name and must

state the query that computes the view.

Views (Con’d)

* Example:

* Using view all-customer, we can find all customers of the

Perryridge branch:
select customer-name
from all-customer

where branch-name = ‘Perr)/ridge’

Bibliography

e Silbershcatz, A., Korth, H. and Sudarshan, S. (2002).
Database System Concepts, 4t Edition

