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Overview

® Background

® Basic Structure

® Set Operations

® Aggregate Functions
e Null Values

® Nested Subqueries

® Views




Background

* IBM developed the original version of SQL at its San Jose

Research Laboratory

* Evolved asThe Sequel language, its name has changed to SQL
(Structured Query Language)

® SQL has clearly established itself as the standard relational-
database language




Different parts of SQL

® Data Definition Language (DDL)
® Create/alter/delete tables and their attributes

° Following lectures. ..

® Data Manipulation Language (DML)
® Query one or more tables — discussed next |

® Insert/delete/ modify tuples in tables
® Transact-SQL

® [dea: package a sequence of SQL statements - server

® Won’t discuss in class




Basic Structure of SQL

o Consists of three clauses:
@) Select
- Used to list the attributes desired in the result of a query.
(ii) From
- Lists the relations to be scanned in the evaluation of the expression.
(iii) Where
- Consists of a predicate involving attributes of the relations that appear in the
from clause.




Data in SQL

. Atomic types, a.k.a. data types
2. Tables built from atomic types

Unlike XML, no nested tables, only flat tables are allowed!




Data Types in SQL

®  Characters:
e CHAR(20) -- tixed length
e VARCHAR(40) -- variable length

¢ Numbers:
e BIGINT, INT, SMALLINT, TINYINT

e REAL, FLOAT -- difter in precision
e MONEY
® Times and dates:
e DATE
e DATETIME -- SQL Server

®  Others... All are simple
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Tables

["customer-id | loan-number | [ account-number | branch-name | balance | | customer-name | account-number |
019-28-3746 L-11 A-T01 Downtown K00 Hayes A-102
(019-28-3746 L-23 A-102 Perryridge 400 Johnson A-101
244-66-8800 L-93 A-201 Brighton 900 Johnson A-201
321-12-3123 L-17 A-215 Mianus 700 Jones A-217
335-57-7991 L-15 A-217 Brighton 750 Lindsay A-222
555-55-5555 L-14 A-222 Redwood 700 Smith A-215
677-89-9011 L-15 A-305 Round Hill 350 Turner A-305
963-96-3963 L-17

Figure 3.1 The account relation. Figure 3.5 The depositor relation.
Figure 2.26 The borrower table.

| branch-name | branch-city | assets | | loan-number | amount |
Brighton Brooklyn 7100000 L-11 Q00
Downtown | Brooklyn 000000 L-14 1500
Mianus Horseneck | 400000 L-15 1500
North Town | Rye 3700000 L-16 1300
Perryridge | Horseneck | 1700000 L-17 1000
Pownal Bennington | 300000 L-23 2000
Redwood Palo Alte | 2100000 L-93 500
Round Hill | Horseneck | 8000000

Figure 2.23  The loan table.
Figure 3.3 The branch relation.

"




Tables

| customer-id

| customer-name

| customer-street |

customer-city

019-28-3746
182-73-6091
192-83-7465
244-66-8800
321-12-3123
335-57-7991
336-66-9999
677-89-9011
963-96-39%3

Smith
Turner
Johnson
Curry
Jones
Adams
Lindsay
Hayes
Williams

Figure 2.24
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The customer table.

Rye

Stamford
FPalo Alto
Rye

Harrison
Pittsfield
Pittsfield
Harrison
Princeton

loan-number

| payment-number |

pﬂyﬂ!fﬂi—dﬂf{? | payment—ﬂmﬂunﬁ

L-11 53 7 June 2001 125
L-14 (Y 28 May 2001 500
L-15 22 23 May 2001 300
L-16 58 18 June 2001 135
L-17 5 10 May 2001 50
L-17 6 7 June 2001 50
L-17 7 17 June 2001 100
L-23 11 17 May 2001 75
L-93 103 3 June 2001 900
L-93 104 3 June 2001 200
Figure 2.25 The palinent table.




A typical SQL query form

® Select: A, A,,....A_
® A, represents an attribute.
® From:r,r,,....r_

® r.is a relation
® Where: P

e P represents a predicate.




The Select Clause
® Example of a Simple Query:

® “Find the names of all branches in the loan relation”
select branch-name

from Joan




More examples continued

® Inserting keyword distinct after select we can eliminate
duplication
® For instance:
select distinct branch-name

from loan

* Inserting keyword all after select helps restoring duplication.




The where clause

* Example:

“Find all loan numbers for loans made at the Perryridge branch with loan

amounts greater than $ 1200.”

select loan-number
from Joan

where branch-name = ‘Perryridge’ and amount > 1200




More examples of Where clause

® Logical connectives like and, or, and not are used in the where
clause

° Example:

® Loan number of those loans with loan amounts between $90,000

& $ 100,000
select loan number

from /loan
where amount between 90000 and 100000




The from Clause

® Defines a Cartesian product of the relations in the clause.

* Example:

® “For all customers who have a loan from the bank, find their

names, loan numbers and loan amount”




The from Clause (Con’d)

select customer-name, borrower.loan-number, amount
from borrower, loan

where borrower.loan-number = loan.loan-number




The Rename Operation

® Uses as clause to rename both, relations and attributes

® The as clause takes the form in SQL:

old-name as new-name




The Rename Operation (Con’d)

* Example:

e To Change attribute name loan-number to be replaced with name loan-id :

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan

where borrower.loan-number = loan.loan-number




String Operations

® SQL specifies by enclosing in single quotes, for example,
‘Perryridge’
® “0%” character is use to match any substring,

« »
]

_” character is use to match any character

® It expresses patterns by using the like comparison operator




String Operations (Con’d)

® Example:

¢ Find the names of all customers whose street address
includes the substring ‘Main’

select customer-name
from customer

where customer-street like ‘“©oMain%o’




Set Operations

® Operations such as union, intersect, ad except operate on

relations.

* Corresponds to relational-algebra operations \U, M and —.

® Relations participating in the operations must be compatible;

i.e. must have same set of attributes.




Union Operation

* Example:
* To find all customers having a loan, an account, or both at bank:
(Select customer-name
from depositor)
union
(Select customer-name

from borrower)




Intersect Operation

° Example:

e To find all customers who have both a loan and an account at the

bank:

(Select distinct customer-name
from depositor)

intersect

(Select distinct customer-name

from borrower)




Except Operation

* Example:
® To find all customers who have an account but no loan at the bank:
(Select distinct customer-name)
from depositor)
except
(Select customer-name

from borrower)




Aggregate Functions

® These functions take a collection of values as input and

return a single value.

* SQL offers five built-in aggregate functions:
® Average: avg
® Minimum: min
® Maximum: max
® Total: sum

® Count: count




Aggregate Functions (Con’d)

* Example:

* Find the average account balance at the Perryridge branch.”
select avg (balance)
from account

where branch-name = ‘Perr)/rid(qe’




Null Values

® Used to indicate absence of information about the value of an

attribute.

* Can use special keyword null in a predicate to test for a null

value.




Null Values (Con’d)

* Example:

select loan-number
from Joan

where amount 1s null




Nested Subqueries

o A subquery is a select-from-where expression that is nested

within another query.

e Common use includes:
® Perform tests for set membership
® Make set comparisons

® Determine set cardinality




Nested Subqgueries (Con’d)

° Example:

® Find those customers who are borrowers from the bank and who

appear in the list of account holders obtained in the subquery
select distinct customer-name
from borrower

Where customer-name in (SG]CCt customer- name from

depositor)




Views

® We define a view in SQL by using the create view

command.

® 'To define a view, we must give the view a name and must

state the query that computes the view.




Views (Con’d)

* Example:

* Using view all-customer, we can find all customers of the

Perryridge branch:
select customer-name
from all-customer

where branch-name = ‘Perr)/ridge’
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