
1

RISC vs. CISC

Different Kinds of ISAs

We have looked at LC3 ISA, which is a classic
example of RISC type ISA

Reduced Instruction Set Architecture (RISC)
emerged around early 80s

• Designers re-evaluating the current ISAs of the era
• Found that ISAs had extensive instructions that

were complex
Complex Instruction Set Architecture (CISC)

• Need only 20% of the instructions that were used
most of the time

Complex Instruction Set Computer (CISC)

Memory in those days was expensive
bigger program->more storage->more money

Hence needed to reduce the number of instructions per program

Number of instructions are reduced by having multiple operations
within a single instruction

Multiple operations lead to many different kinds of instructions that
access memory

In turn making instruction length variable and fetch-decode-
execute time unpredictable – making it more complex
Thus hardware handles the complexity

Example: x86 ISA

Original idea to reduce the ISA
Provide minimal set of instructions that could carry out all essential
operations

Instruction complexity is reduced by
1. Having few simple instructions that are the same length

2. Allowed memory access only with explicit load and store instructions

Hence each instruction performs less work but instruction execution
time among different instructions is consistent

The complexity that is removed from ISA is moved into the domain of
the assembly programmer/compiler

Examples: LC3, MIPS, PowerPC (IBM), SPARC (Sun)

Reduced Instruction Set Computer (RISC)

2

The difference between CISC and RISC becomes evident
through the basic computer performance equation:

RISC systems shorten execution time by reducing the clock
cycles per instruction (i.e. simple instructions take less time
to interpret)

CISC systems shorten execution time by reducing the
number of instructions per program

RISC vs. CISC

mov ax, 0
mov bx, 10
mov cx, 5

Begin add ax, bx
loop Begin

Consider the the program fragments:

The total clock cycles for the CISC version might be:
(2 movs × 1 cycle) + (1 mul × 30 cycles) = 32 cycles

While the clock cycles for the RISC version is:
(3 movs × 1 cycle) + (5 adds × 1 cycle) + (5 loops × 1 cycle) = 13

cycles

mov ax, 10
mov bx, 5
mul bx, ax

CISC RISC

Example for RISC vs. CISC

The simple instruction set of RISC machines takes less
time to interpret plus less hardware

Enables control unit to be hardwired for maximum speed
Also allows room for performance enhancement such as
pipelining
Fewer instructions would mean fewer transistors, in turn less
manufacturing cost

The more complex and variable instruction set of CISC
machines require more translation takes time as well more
hardware

Usually implemented as microprogrammed control to tackle the
variable length instructions

Micro-architecture Implementations

Because of their load-store ISAs, RISC architectures
require a large number of CPU registers

These register provide fast access to data during
sequential program execution

They can also be employed to reduce the overhead
typically caused by passing parameters on the stack

Instead of pulling parameters off of a stack, the subroutine
is directed to use a subset of registers

Other RISC features

3

RISC
• Simple instructions, few in

number

• Fixed length instructions

• Complexity in compiler

• Only LOAD/STORE
instructions access
memory

• Few addressing modes

CISC
• Many complex instructions

• Variable length instructions

• Complexity in microcode

• Many instructions can
access memory

• Many addressing modes

RISC vs. CISC Summary RISC Roadblocks in the 80s

RISC chips took over a decade to gain a foothold in the
commercial world

This was largely due to a lack of software support
Many companies were unwilling to take a chance with the
emerging RISC technology
Without commercial interest, processor developers were
unable to manufacture RISC chips in large enough volumes to
make their price competitive

Another major setback was the presence of Intel
• Had the resources to plow through development and produce

powerful processors

