Klasifikasi arsitektur komputer (bagian 1)

Sri Supatmi, S. Kom

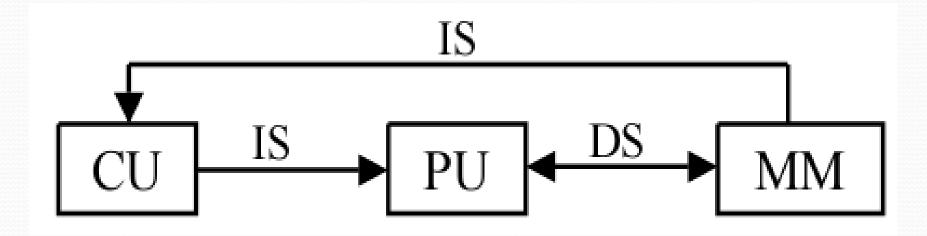
>> KLASIFIKASI ARSITEKTURAL

- Ada 3 skema klasifikasi arsitektural sistem komputer, yaitu:
- 1. Klasifikasi Flynn
- Didasarkan pada penggandaan alur instruksi dan alur data dalam sistem komputer.
- 2. Klasifikasi Feng
- Didasarkan pada pemrosesan paralel dan serial
- 3. Klasifikasi H ndler
- Didasarkan pada derajat keparalelan dan pipelining dalam berbagai tingkat subsistem.

>> KLASIFIKASI FLYNN

- ✓ Klasifikasi sistem komputer yang didasarkan pada penggandaan alur instruksi dan alur data diperkenalkan oleh Michael J. Flynn
- ✓ Alur instruksi (instruction stream) adalah urutan instruksi yang dilaksanakan oleh mesin
- ✓ Alur data adalah urutan data yang dipanggil oleh alur instruksi
- ✓ Baik instruksi maupun data diambil dari modul memori
- ✓ Instruksi didecode (diartikan) oleh Control Unit.
- ✓ Alur data mengalir dua arah antara prosesor dan memori.

- Ada 4 kategori sistem komputer dalam klasifikasi Flynn:
 - 1. Single Instruction stream Single Data stream (SISD)
 - Single Instruction stream Multiple Data stream (SIMD)
 - 3. Multiple Instruction stream Single Data stream (MISD)
 - 4. Multiple Instruction stream Multiple Data stream (MIMD)


>> Tabel klasifikasi Flynn

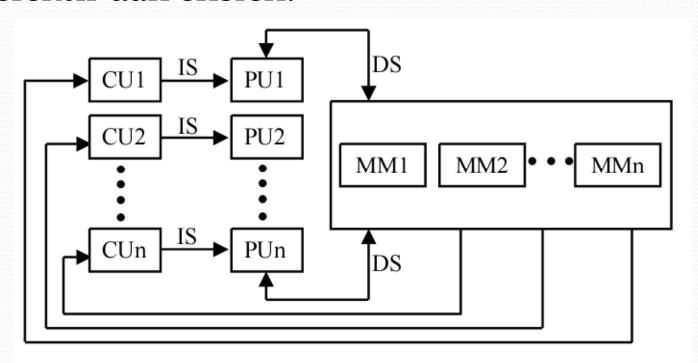
	Instruksi Tunggal (Single instruction)	Instruksi Majemuk (multiple instruction)
Data Tunggal (single data)	SISD (Single instructin single data)	MISD (multiple instruction single data)
Data majemuk (multiple data)	SIMD (Single instruction multiple data)	MIMD (multiple instruction multiple data)

1. Single Instruction Single Data Stream

- Sebuah komputer yang instruksi-instruksinya dijalankan satu per satu dan sebuah instruksi tunggal berhubungan dengan paling banyak satu operasi data.
- Dapat juga menggunakan pipelining untuk mempercepat pemrosesan dan kebanyakan komputer SISD di-pipelin-kan ke beberapa saluran tambahan.
- Karakteristik SISD yang penting adalah pelaksanaan instruksi secara sekuensial (secara berurut) dalam arti instruksi dan data diproses secara serial.
- Satu alur instruksi di decodekan untuk alur data tunggal.

>> ilustrasi Single Instruction Single Data Stream

• Keterangan:


CU: Control Unit

PU: Processor Unit

MM: Memory Module

2. Multiple Instruction stream – Single Data stream (MISD)

- Sebuah komputer yang dapat melakukan banyak instruksi terhdap satu aliran data.
- Komputer jenis ini tidak pernah diaplikasikan karena ridak efektif dan efisien.

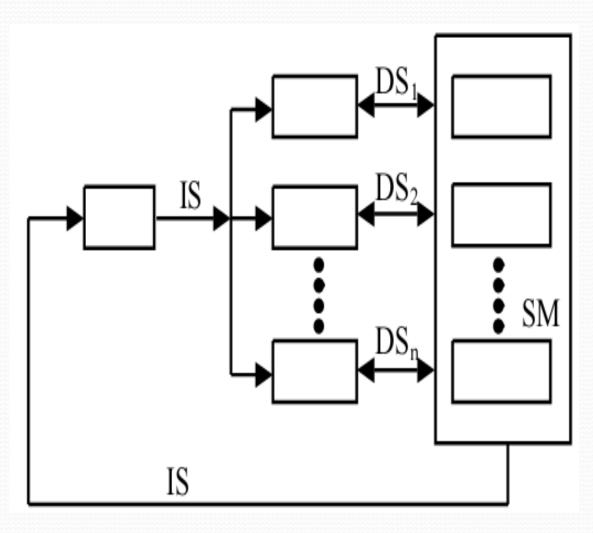
- Ada dua kategori:
 - 1.Mesin dengan Unit pemroses berbeda dengan instruksi yang berbeda dengan data yang sama (sampai sekarang tidak ada mesin yang seperti ini)
 - 2.Mesin, dimana data akan mengalir ke elemen pemroses serial

>> lanjutan

Keterangan gambar:

CU1,CU2,...Cu-n: Control Unit

PU1,PU2,PU-n: Processor Unit


MM: Memory Module

- Sejumlah PU, masing-masing menerima instruksi yang berbeda dan mengoperasikan data yang sama.
- Output salah satu prosesor menjadi input bagi prosesor berikutnya.
- Struktur komputer ini tidak praktis, sehingga tidak ada komputer yang menggunakannya.

3. Single Instruction stream – Multiple Data stream (SIMD)

- Sebuah komputer yang mampu memproses banyak aliran data dengan hanya satu instruksi.
- Operasi yang dilakukan adalah paralel.
- Contoh dari SIMD adalah prosesor larik (array processor) atau GPU.

>> Ilustrasi Single Instruction stream - Multiple Data stream (SIMD)

• PE : Processing Element

CU : Control Unit

• PU: Processor Unit

MM : Memory Modul

• SM: Shared Memory

• IS: Instruction Stream

DS : Data Stream

- Beberapa Processor Unit (Processing Element) disupervisi oleh Control Unit yang sama.
- Semua Processing Element menerima instruksi yang sama dari control
- unit tetapi mengeksekusi data yang berbeda dari alur data yang berbeda pula.
- Subsistem memori berisi modul-modul memori.
- Processor vektor dan processor array termasuk dalam kategori ini.

Selesai