Problems

- 2.1 The e.m.f. at a thermocouple junction is 645 μ V at the steam point, 3375 μ V at the zinc point and 9149 μ V at the silver point. Given that the e.m.f.–temperature relationship is of the form $E(T) = a_1T + a_2T^2 + a_3T^3$ (*T* in °C), find a_1 , a_2 and a_3 .
- 2.2 The resistance $R(\theta)$ of a thermistor at temperature θ K is given by $R(\theta) = \alpha \exp(\beta/\theta)$. Given that the resistance at the ice point ($\theta = 273.15$ K) is 9.00 k Ω and the resistance at the steam point is 0.50 k Ω , find the resistance at 25 °C.
- 2.3 A displacement sensor has an input range of 0.0 to 3.0 cm and a standard supply voltage $V_s = 0.5$ volts. Using the calibration results given in the table, estimate:
 - (a) The maximum non-linearity as a percentage of f.s.d.
 - (b) The constants K_{I} , K_{M} associated with supply voltage variations.
 - (c) The slope *K* of the ideal straight line.

Displacement x cm	0.0	0.5	1.0	1.5	2.0	2.5	3.0
Output voltage millivolts ($V_s = 0.5$)	0.0	16.5	32.0	44.0	51.5	55.5	58.0
Output voltage millivolts ($V_S = 0.6$)	0.0	21.0	41.5	56.0	65.0	70.5	74.0

2.4 A liquid level sensor has an input range of 0 to 15 cm. Use the calibration results given in the table to estimate the maximum hysteresis as a percentage of f.s.d.

Level <i>h</i> cm	0.0	1.5	3.0	4.5	6.0	7.5	9.0	10.5	12.0	13.5	15.0
Output volts h increasing	0.00	0.35	1.42	2.40	3.43	4.35	5.61	6.50	7.77	8.85	10.2
Output volts h decreasing	0.14	1.25	2.32	3.55	4.43	5.70	6.78	7.80	8.87	9.65	10.2

- 2.5 A repeatability test on a vortex flowmeter yielded the following 35 values of frequency corresponding to a constant flow rate of 1.4×10^{-2} m³ s⁻¹: 208.6; 208.3; 208.7; 208.5; 208.8; 207.6; 208.9; 209.1; 208.2; 208.4; 208.1; 209.2; 209.6; 208.6; 208.5; 207.4; 210.2; 209.2; 208.7; 208.4; 207.7; 208.9; 208.7; 208.0; 209.0; 208.1; 209.3; 208.2; 208.6; 209.4; 207.6; 208.1; 208.8; 209.2; 209.7 Hz.
 - (a) Using equal intervals of width 0.5 Hz, plot a histogram of probability density values.
 - (b) Calculate the mean and standard deviation of the data.
 - (c) Sketch a normal probability density function with the mean and standard deviation calculated in (b) on the histogram drawn in (a).
- 2.6 A platinum resistance sensor is used to interpolate between the triple point of water (0 °C), the boiling point of water (100 °C) and the freezing point of zinc (419.6 °C). The corresponding resistance values are 100.0 Ω , 138.5 Ω and 253.7 Ω . The algebraic form of the interpolation equation is:

 $R_T = R_0(1 + \alpha T + \beta T^2)$

where $R_T \Omega$ = resistance at $T \circ C$ $R_0 \Omega$ = resistance at 0 °C α, β = constants.

Find the numerical form of the interpolation equation.

- 2.7 The following results were obtained when a pressure transducer was tested in a laboratory under the following conditions:
 - I Ambient temperature 20 °C, supply voltage 10 V (standard)
 - II Ambient temperature 20 °C, supply voltage 12 V
 - III Ambient temperature 25 °C, supply voltage 10 V

Input (barg)	0	2	4	6	8	10
Output (mA)						
Ι	4	7.2	10.4	13.6	16.8	20
II	4	8.4	12.8	17.2	21.6	28
III	6	9.2	12.4	15.6	18.8	22

(a) Determine the values of K_M , K_I , a and K associated with the generalised model equation $O = (K + K_M I_M)I + a + K_I I_I$.

(b) Predict an output value when the input is 5 barg, $V_s = 12$ V and ambient temperature is 25 °C.

Basic problems

- 2.8 A force sensor has an output range of 1 to 5 V corresponding to an input range of 0 to 2×10^5 N. Find the equation of the ideal straight line.
- 2.9 A differential pressure transmitter has an input range of 0 to 2×10^4 Pa and an output range of 4 to 20 mA. Find the equation to the ideal straight line.
- 2.10 A non-linear pressure sensor has an input range of 0 to 10 bar and an output range of 0 to 5 V. The output voltage at 4 bar is 2.20 V. Calculate the non-linearity in volts and as a percentage of span.
- 2.11 A non-linear temperature sensor has an input range of 0 to 400 °C and an output range of 0 to 20 mV. The output signal at 100 °C is 4.5 mV. Find the non-linearity at 100 °C in millivolts and as a percentage of span.
- 2.12 A thermocouple used between 0 and 500 °C has the following input–output characteristics:

Input T°C	0	100	200	300	500
Output $E \mu V$	0	5268	10 777	16 325	27 388

- (a) Find the equation of the ideal straight line.
- (b) Find the non-linearity at 100 °C and 300 °C in μ V and as a percentage of f.s.d.
- 2.13 A force sensor has an input range of 0 to 10 kN and an output range of 0 to 5 V at a standard temperature of 20 °C. At 30 °C the output range is 0 to 5.5 V. Quantify this environmental effect.
- 2.14 A pressure transducer has an output range of 1.0 to 5.0 V at a standard temperature of 20 °C, and an output range of 1.2 to 5.2 V at 30 °C. Quantify this environmental effect.
- 2.15 A pressure transducer has an input range of 0 to 10^4 Pa and an output range of 4 to 20 mA at a standard ambient temperature of 20 °C. If the ambient temperature is increased to 30 °C, the range changes to 4.2 to 20.8 mA. Find the values of the environmental sensitivities K_I and K_M .

- **2.16** An analogue-to-digital converter has an input range of 0 to 5 V. Calculate the resolution error both as a voltage and as a percentage of f.s.d. if the output digital signal is:
 - (a) 8-bit binary
 - (b) 16-bit binary.
- 2.17 A level transducer has an output range of 0 to 10 V. For a 3 metre level, the output voltage for a falling level is 3.05 V and for a rising level 2.95 V. Find the hysteresis as a percentage of span.