BASIS DATA

STRUCTURE QUERY LANGUAGE (SQL)

Schema Used in Examples

branch aecount depositor custamer
Branch—ame] account-number -—I_<'u.~'th|'r—wrm- = E_F-I'-Efl."!i'i!l‘-'lr—?flﬂmi-'
[Dranch—ity CRraic =il e accauni—numher - I.l'!-'-.fl'l'J.'u't'i"—bl:H‘t'I'
| assets | balance crestomer—cthy
loan barraiver
doctrr—rraemiber -|—|— Cliskommer—Rame

pranch—rame lodsi=sumber

SRR TR

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Basic Structure

e SQL is based on set and relational operations with
certain modifications and enhancements
e A typical SQL query has the form:
select A, A, ..., A
fromr, r, ..., 1,
where P

— As represent attributes
— rs represent relations
— Pis a predicate.

This query is equivalent to the relational algebra
expression.

[Ta1, a2, ., an(Op(rp X1 X .o X 1))

7

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

The SELECT Clause

The select clause list the attributes desired in the result

— corresponds to the projection operation of the relational algebra
E.g. find the names of all branches in the /oan relation

select branch-name
from loan

In the “pure” relational algebra syntax:
nbranch-name(loan)

SQL allows duplicates in both relations and query results.

— To force the elimination of duplicates, use the keyword distinct
after select.

select distinct branch-name
from loan

— The keyword all specifies that duplicates not be removed (default).

select all branch-name
from loan

NOTE: SQL does not permit the ‘-’ character in names, Use, e.g., branch_name
instead of branch-name in a real implementation. We use ‘-’ since it looks nicer!

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

The SELECT Clause (Cont.)

e An asterisk in the select clause denotes "all
attributes”
select *
from J/oan
e The select clause can contain arithmetic expressions
involving the operation, +, —, =, and /, and operating
on constants or attributes of tuples.
e The query:
select loan-number, branch-name, amount = 100
from /loan
would return a relation which is the same as the loan
relations, except that the attribute amount is
multiplied by 100.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

The WHERE Clause

The where clause specifies conditions that must be satisfied
— corresponds to the selection predicate of the relational algebra.

To find all loan number for loans made at the Perryridge

branch with loan amounts greater than $1200.
select loan-number
from loan

where branch-name = Perryridge”and amount > 1200
Comparison results can be combined using the logical
connectives and, or, and not.

Comparisons can be applied to results of arithmetic
expressions.

SQL includes a between comparison operator

— E.g. Find the loan number of those loans with loan amounts
between $90,000 and $100,000 (that is, 2$90,000 and =$100,000)

selectloan-number
from /oan
where amount between 90000 and 700000

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

The FROM Clause

 The from clause lists the relations involved in the
query
— corresponds to the Cartesian product operation of the
relational algebra.
e Find the Cartesian product borrower x loan
select «
from borrower, loan

e Find the name, loan number and loan amount of all
customers having a loan at the Perryridge branch.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

The Rename Operation and Tuple Variables

 SQL allows renaming relations and attributes using as clause
old-name as new-name

— Find the name, loan number and loan amount of all customers:
rename the column name loan-number as loan-id.

select customer-name, borrower.loan-number as loan-id, amount

from borrower, loan
where borrower.loan-number = loan.loan-number

e Tuple variables are defined in from clause via as clause.

— Find the customer names and their loan numbers for all customers
having a loan at some branch.
select customer-name, T.loan-number, S amount
from borroweras T, loanas S
where T./locan-number = S.foan-number
— Find the names of all branches that have greater assets than some
branch located in Brooklyn.
select distinct 7. branch-name
from branch as T, branch as &
where T assets » S assets and 5. branch-city = ‘Brooklyn’

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

String Operations

¢ SQL includes a string-matching operator for
comparisons on character strings. Patterns are
described using two special characters:

— percent (%). The % character matches any substring.
— underscore (_). The _ character matches any character.

¢ Find the names of all customers whose street includes
the substring “Main”.

select customer-name
from customer
where customer-street like ‘“%Main%'

e Match the name "Main%"
like ‘Main\%" escape *\'
SQL supports a variety of string operations such as concatenation (using “| |),

converting from upper to lower case (and vice versa), finding string length,
extracting substrings, etc.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Ordering the Display of Tuples

e List in alphabetic order the names of all
customers having a loan in Perryridge branch

select distinct customer-name
from borrower, loan
where borrower loan-number - loan.loan-number

and branch-name = ‘Perryridge’
order by customer-name

 We may specify desc for descending order or
asc for ascending order, for each attribute;

ascending order is the default.
— E.g. order by customer-namedesc

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Duplicates
e In relations with duplicates, SQL can define how many

copies of tuples appear in the result.

e Multiset versions of some of the relational algebra
operators — given multiset relations r; and r;:

1. @g(ry): If there are ¢ copies of tuple ¢, in r;, and t, satisfies

selections G g, then there are ¢, copies of t, in Gg (1,).

2. IM,(r): For each copy of tuple t,in r,, there is a copy of tuple
[1,(t,)in T14(r,) where I1,(t,) denotes the projection of the single
tuple t,.

3. r; xr,: Ifthere are ¢, copies of tuple t, in r, and ¢, copies of
tuple t, in r,, there are ¢, x ¢, copies of the tuple t,. &, inry, x

e SQL duplicate semantics:
select A, A,, ..., A,
from ry, 15, .oy 1y
where P

Is equivalent to the multiset version of the expression:
My o a(Cp (X rx..xr,))

Example:
Suppose multiset relations r1 (A, B) and r2 (C) are as follows:

r1 ={(1, a) (2,a)} r2 ={(2), (3), (3)}

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Set Operations

* The set operations union, intersect, and except operate on relations
and correspond to the relational algebra operations . . —.

« [Each of the above operations automatically eliminates duplicates; to

retain all duplicates use the corresponding multiset versions union all,
intersect all and except all.

Suppose a tuple occurs mtimes in rand n times in s, then, it occurs:

— m + ntimesin runionall s
— min{m,n) times in rintersect all s
— max(0, m —n) times in r except all 5

« Find all customers who have a loan, an account, or both.

(select customername from depositar)
union (select customername from borrower)

+« Find all customers who have both a loan and an account.

+ Find all customers who have an account but no loan.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Aggregate Functions

¢ These functions operate on the multiset of values of a column
of a relation, and return a value

avg: average value
min: minimum value
max: maximum value

sum: sum of values
count: number of values
* Find the average account balance at the Perryridge branch.

select avg (balance)
from account

where branch-name = "Perryridge’

¢ Find the number of tuples in the customer relation.

select count (%)
from customer

¢ Find the number of depositors in the bank.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Aggregate Functions — Group By & Having

e Find the number of depositors for each branch.

select branch-name, count (distinct customer-name)

from depositor, account

where depositor account-number = account. account-number
group by branch-name

e Find the names of all branches where the
average account balance is more than $1,200.

select branch-name, avg (balance)
from account

group by branch-name
having avg (balance) = 1200

Attributes in select clause outside of aggregate functions must appear in group by list

Predicates in the having clause are applied after the formation of groups whereas predicates
in the where clause are applied before forming groups

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Null Values

It is possible for tuples to have a null value, denoted by null, for some of
their attributes

null signifies an unknown value or that a value does not exist.
The predicate is null can be used to check for null values.
— E.qg. Find all loan number with null values for amount.

select loan-number
from Joan
where amount is null

The result of any arithmetic expression involving null is null
— E.g. 5+ null returns null

Aggregate functions simply ignore nulls
— Total all loan amounts

select sum (amount)
from Joan

* Above statement ignores null amounts
« result is null if there is no non-null amount, that is the

— All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Null Values and Three Valued Logic

e Any comparison with null returns unknown
- Eg. 5<null or null <=null or null =null

 Three-valued logic using the truth value unknown:

— OR: (unknown or true) = , (unknown or false) =
(unknown or unknown) =
— AND: (trueand unknown) = , (false and unknown) =)

(unknown and unknown) =
— NOT: (not unknown) =

— "Pis unknown” evaluates to true if predicate P evaluates to
unknown

e Result of where clause predicate is treated as false if it
evaluates to unknown

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Nested Subqueries

e SQL provides a mechanism for the nesting of subqueries.

e A subquery is a select-from-where expression that is
nested within another query.

« A common use of subqueries is to perform tests for set
membership, set comparisons, and set cardinality.

¢ Find all customers who have both an account and a loan at
the bank.

select distinct customer-name

from borrower

where customername in (select customer-name
from depositor)

¢ Find all customers who have a loan at the bank but do not
have an account at the bank

select distinct customer-name

from borrower

where customername notin (select customername
from depositor)

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Nested Subqueries - Set Comparison

e F <comp>some r=
dte r st (F <comp> t)
Where <comp> can be:

<, 5, >, = F

()

(5 = s50me £ I = true
- (read: 5 = some
(& tuple in the

relation’

) 0

(5 = s50me -~ |i = false
D
()

5 =s0me — i = true
D
()

(57 some 5 |) = true (since 0 F 58

(= some) =in
However, (# some) # not in

» F<comp>allre
v te r (F<comp>t)

(5 =< all
(5 = all
(5 =all
(s # all

{)

:T. i = falsa
H

O,

I = true

11}

i].

—} = false
2

4

p) = true (since 57 4 and 5 F B)
3

(= all) = not in
However, (= all} £ in

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Example Query

* Find all branches that have greater assets than some branch
located in Brooklyn.
select distinct T branch-name
from branchas T, branchas 5

where T.assefs » 5 assefs and
S.branch-city = 'Brooklyn’

OR

selectbranch-name

from branch

where assels > some (select assels
from branch

where branch-city = 'Brooklyn')

* Find the names of all branches that have greater assets than all
branches located in Brooklyn.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Nested Subqueries - Test for Empty Relations

e The exists construct returns the value true if the
argument subquery is nonempty.

—exists re rz @
—notexistsre r=0

e Find all customers who have an account at all
branches located in Brooklyn.

select distinct S.custfomername
from depositoras 5
where not exists |
(select branch-name
from branch
where branch-city = "Brooklyn™)
except
(select R . branch-name
from depositoras T, account as R
where T account-number = R.account-number and
S.customername = T.customername))

Note that X =Y = @ U X [Y Cannot write this query using = all and its variants

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Views

e Provide a mechanism to hide certain data from the
view of certain users. To create a view we use the

command:

create view vas <query expression=

where:
= <query expression=> is any legal expression
* The view name is represented by v

e A view consisting of branches and their customers

create view all-customer as
iselect branch-name, customername

from depositor, account
where depositor account-number = account account-number)

union (select branch-name, customer-name

from borrower, loan
where borrower loan-number = loan.lean-number)

« Find all customers of the Perryridge branch
select customername

from ali-customer
where branch-name = "Perryridge’

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Derived Relations

e Find the average account balance of those branches

where the average account balance is greater than
$1200.

select branch-name, avg-balance
from (select branch-name, avqg (balance)
from account

group by branch-name)
as result (branch-name, avg-balance)

where avg-balance > 1200

Note that we do not need to use the having clause,

since we compute the temporary (view) relation
result in the from clause, and the attributes of resuit

can be used directly in the where clause.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Modification of the Database — Deletion

e Delete all account records at the Perryridge branch

delete from account
where branch-name = 'Perryridge’

e Delete all accounts at every branch located in Needham
city.

delete from account
where branch-namein (select branch-name
from branch

where branch-city = 'Needham’)
delete from depositor
where asccount-number in
(select account-number
from branch, account
where branch-city = 'Needham’
and branch.branch-name = account.branch-name)

e Delete the record of all accounts with balances below the
average at the bank.

delete from account
where balance < (select avg (balance)
from account)

Problem: as we delete tuples from deposit, the average balance changes. Solution used in SQL:
1. First, compute avg balance and find all tuples to delete
2. Next, delete all tuples found above (without recomputing avg or retesting the tuples)

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Modification of the Database — Insertion
e Add a new tuple to account

insert into account
values ("A-9732', 'Perryridge’,1200)

or equivalently
insert into account (branch-name, balance, account-number)

values (‘Perryridge’, 1200, 'A-9732")

e Add a new tuple to account with balance set to null
insert into account
values (‘A-777''Perryridge’, nulf)

e Provide as a gift for all loan customers of the Perryridge

branch, a $200 savings account. Let the loan number serve
as the account number for the new savings account

insert into account select loan-number, branch-name, 200
from loan
where branch-name = 'Perryridge’

insert into depositor select customer-name, loan-number
from loan, borrower
where branch-name = Perryridge’
and Joan.account-number = borrower.account-number

The select from where statement is fully evaluated before any of its results are inserted into the
relation (otherwise queries like insert into tablel, select * from table1 would cause problems)

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Modification of the Database — Updates

+ [ncrease all accounts with balances over $10,000 by 6%, all other
accounts receive 5%.
update account

set balance = balance+ 1.06
where balance > 10000

update account
set balance = balance+ 1.05
where balance < 10000

The order is important
* Update of a View

— Create a view of all loan data in loan relation, hiding the amount attribute

create view branch-loan as

select branch-name, loan-number
from loan

— Add a new tuple to branch-loan

insert into branch-loan
values ('Perryridge’, 'L-307)

This insertion must be represented by the insertion of the tuple
('L-307', "Perryridge’, null)
into the /oan relation

Updates on more complex views are difficult or impossible to translate, and hence are
disallowed. Most SQL implementations allow updates only on simple views (without aggregates)
defined on a single relation

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Joined Relations

e Join operations take two relations and return as a
result another relation.

¢ These additional operations are typically used as
subqguery expressions in the from clause
¢ Join condition — defines which tuples in the two

relations match, and what attributes are present in
the result of the join.

e Join type — defines how tuples in each relation that
do not match any tuple in the other relation (based
on the join condition) are treated.

Jain Types Join Conditions
inner join natural

left outer join on <predicate=
right outer join using (A, A, ... A)
full cuter join

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

e Relation loan

Joined Relations — Datasets for Examples

loan-number branch-name amount
L- 1?':' Dg'.;u_lnt.:.'.p'ln EDDD
L-230 Redwood 4000
L-260 Perryridge 1700

B Relation borrower

cuslomer-name

loan-number

Jones L-170
Smith L-230
Hayes L-155

B Note: borrower information missing for L-260 and loan
information missing for L-155%

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Joined Relations — Examples

e Joan inner join borrower on

loan.loan-number = borrower.loan-number

loan-number branch-name amount custfomer-name loan-numbear
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 smith L-230

B /oan left outer join borrower on

loan. loan-number = borrower.loan-number

loan-number branch-hame amount customername loan-number
L-170 Downtown 3000 Jones L-170
L-230 Redwood 4000 Smith L-230
L-260 Perryridge 1700 nuil nuil

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Joined Relations — Examples

e /oan natural inner join borrower

loan-number branch-name amount customername
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith

B [oan natural right outer join borrower

loan-number branch-hame amount customername
L-170 Downtown 3000 Jones
L-230 Redwood 4000 Smith
L-155 rull null Hayes

Basis Data -

Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Joined Relations — Examples

e Joan full outer join borrower using (loan-

number)
loan-number bhranch-nhame amount customername
L-170 Diowntown 3000 Janes
L-230 Redwood 4000 Smith
L-26&0 Perryridge 1700 null
L-155 null aull Hayes

B Find all customers who have either an account or a loan (but not both}
at the bank.

select customer-name
from (depositor natural full outer join borrower)
where account-numberis null or loan-numberis nuli

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Data Definition Language (DDL)

Allows the specification of not only a set of relations but
also information about each relation, including:

¢ The schema for each relation.

¢ The domain of values associated with each
attribute.

e Integrity constraints

¢ The set of indices to be maintained for each
relations.

e Security and authorization information for
each relation.

¢ The physical storage structure of each
relation on disk.

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Domain Types in SQL

« char(n). Fixed length character string, with user-specified length n.

+« varchar(n). Variable length character strings, with user-specified
maximum length n.

« int. Integer (a finite subset of the integers that is machine-dependent).

« smallint. Small integer {a machine-dependent subset of the integer
domain type).

« numeric(p,d). Fixed point number, with user-specified precision of p
digits, with n digits to the right of decimal point.

« real, double precision. Floating point and double-precision floating point
numbers, with machine-dependent precision.

+« float(n). Floating point number, with user-specified precision of at least n
digits.

« Null values are allowed in all the domain types. Declaring an attribute to
be not null prohibits null values for that attribute.

+« create domain construct in SQL-92 creates user-defined domain types

create domain person-name char(20) not null

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Date/Time Types in SQL

date. Dates, containing a (4 digit) year, month and
date

— E.g. date '2001-7-27"

time. Time of day, in hours, minutes and seconds.
— E.g. time '09:00:30° time '09:00:30.75°
timestamp: date plus time of day

— E.g. timestamp '2001-7-27 09:00:30.75°

Interval: period of time

— E.g. Interval '1" day

— Subtracting a date/time/timestamp value from another gives
an interval value

— Interval values can be added to date/time/timestamp values

Can extract values of individual fields from date /time /timestamp
E.g. extract (year from r.starttime)

Can cast string types to date /time /timestamp

E.g. cast <string-valued-expression> as date

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Create Table Construct

 An SQL relation is defined using the create
table command:

createtabler (A, D, A, D, ..., A D,
(integrity-cnnstraintli

(iﬁtegrity-constraiﬂth))
— ris the name of the relation
— each A, is an attribute name in the schema of relation r
— D is the data type of values in the domain of attribute
A

f

e Example:

create table branch
(branch-name char(15) not null,
branch-city char(30),

assets integer)

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Integrity Constraints in Create Table

 not null
e primary key (A, ..., A.)
e check (P), where Pis a predicate

Example: Declare branch-name as the primary key for branch
and ensure that the values of assets are non-negative.
create table branch

(branch-name char{15&),

branch-city char(30)

assets integer,

primary key (branch-name).

check {assetfs == 0))

primary key declaration on an attribute automatically ensures
not null in SQL-92 onwards, needs to be explicitly stated in

SQL-289

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

Drop and Alter Table Constructs

e The drop table command deletes all information
about the dropped relation from the database.

e The alter table command is used to add
attributes to an existing relation.

alter table radd A D

where A is the name of the attribute to be added
to relation r and D is the domain of A.

— All tuples in the relation are assigned null as the value
for the new attribute.

e The alter table command can also be used to
drop attributes of a relation
alter table rdrop A

where A is the name of an attribute of relation r
— Dropping of attributes not supported by many databases

Basis Data - Structure Query Language (SQL) - Alif Finandhita, dari A. Silberschatz, H.F. Korth, S. Sudarshan

