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Session Outlines & ObjectivesSession Outlines & Objectives

Outlines

� The PID control algorithms

� The practical aspects

Objectives

2PID Control

� Understand what the PID control is

� Know the functions of each PID control terms

� Be able to select the right combination of PID control element 

for various process control application objectives

� Know the additional features installed to the controller to be 

implemented in practice
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What is PID Control?What is PID Control?

�The PID stands for Proportional - Integrator -

Derivative

�Also known as three-term control

�It’s implemented as a computer program today
• The controller comes in many different forms
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• The controller comes in many different forms

• PID control is often combined with logic, sequential functions, selectors, 

and simple function blocks to build the complicated automation systems
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Why PID Control?Why PID Control?

�The PID algorithm is simple, easy to 

understand, and relatively easier to tune than 

the other controller
• It became the standard tool when process control emerged in the 

1940s

• In process control today, more than 90% of the control loops are of 

4PID Control

• In process control today, more than 90% of the control loops are of 

PID type
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Key Concepts (1)Key Concepts (1)

� The PID algorithm doesn’t know the correct output to bring 

the process variable to the setpoint
• The algorithm must have process measurement to perform

• It merely continues to move the output in the direction which should move the 

process toward the setpoint

� The PID algorithm must be ‘tuned’ for the particular 
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� The PID algorithm must be ‘tuned’ for the particular 

process loop
• Each of the terms of the PID equation must be understood

• The tuning is based on the dynamics of the process response
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Key Concepts (2)Key Concepts (2)

�Manual & Auto modes
• Manual mode

� The human operator adjusts the output to operate the process

� Manual Mode is very useful when unusual conditions exist:

� Plant start-up

� Plant shut-down

� Emergencies
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� Emergencies

• Auto mode

� The control algorithm manipulates the output to hold the process 

measurements at their setpoints

� Should be the most common mode for normal operation
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PID Control AlgorithmPID Control Algorithm

� Comprises three elements:
• Proportional – also known as Proportional Gain or simply Gain

• Integral – also known as Automatic Reset or simply Reset

• Derivative – also known as Rate or Pre-Act

� Available in several combinations of these elements:
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� Available in several combinations of these elements:
• Proportional only (P)

• Proportional and Integral (PI) (most common)

• Proportional, Integral, and Derivative (PID)

• Proportional and Derivative (PD)
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P = proportional gain (dimensionless)

= controller output (%)

b = bias (%) (also known as manual reset)

e = ( SP – PV ) (%) � “reverse action”, or 

.CO = P e + b

Proportional Mode (1)Proportional Mode (1)
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e = ( SP – PV
m
) (%) � “reverse action”, or 

= – ( SP – PVm ) (%) � “direct action”e

� Some manufacturers use Proportional Band (PB) instead of 

proportional gain
• PB is the % change in the input which a 100% change in the output

PB =
100

P

100
PB

CO = P  e + b =          e + b.
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� Proportional-only control can produces an offset
• The offset can be reduced by increasing the controller gain (or 

decreasing the proportional band). But one cannot make the controller 

gain arbitrarily large since too high a gain induces oscillation and/or 

instability

Proportional Mode (2)Proportional Mode (2)

PV
m

SP
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time
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Small P
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• To remove offset, the human operator has to “reset” the controller 

manually by adjusting the value of the manual reset (the “b” term)

Proportional Mode (2)Proportional Mode (2)

PV
m

SP
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time

Manual reset

Manual reset

P constant
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CO

T
m
= integral time (minute per repeat or

second per repeat)

= controller output (%)

e

CO =          e dt
1
T
m
∫ 

Integral (Automatic Reset) Mode (1)Integral (Automatic Reset) Mode (1)
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T
m

∫ dt
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e = ( SP – PVm ) (%) � “reverse action” or 

= – ( SP – PVm ) (%) � “direct action”e

� Some manufacturers use repeat per minute (or repeat per second) 

instead of minute per repeat (or second per repeat)

• Repeat per minute (or second) is the time it takes the reset (or integral) element to 

repeat (reset) the action of the proportional element

repeat per minute (T
r
) =

1
minute per repeat (T

m
) CO = T

r
e dt∫ 
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� As long as error exists, the controller will change its 

output; hence it is capable of driving the error to zero

� Speed of response is reduced (compared to P-only mode)

Integral (Automatic Reset) Mode (2)Integral (Automatic Reset) Mode (2)

PV
m

SP
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time

P-only

Small P

I-only
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ProportionalProportional--Integral Mode (1)Integral Mode (1)

SP e
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CO
1
T
m

∫ dt
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CO = P e +            e dt
1
T
m
∫ ( )
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ProportionalProportional--Integral Mode (2)Integral Mode (2)

� Response of PI controller to step change in error

Response equal
in magnitude to
Proportional
response

Output response

for various

values of Tm
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Proportional
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ProportionalProportional--Integral Mode (3)Integral Mode (3)

PV
m

SP
PI

� It combines the best features of the proportional and 

integral modes
• The proportional offset is eliminated with little loss of response speed
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time

P-only

Small P

I-only
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Derivative Mode (1)Derivative Mode (1)

CO = D
de

dt
SP e
+

PV
m

D
d

dt

CO

CO

D = derivative time (minute or second) 

= controller output (%)

e
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e = ( SP – PVm ) (%) � “reverse action” or 

= – ( SP – PVm ) (%) � “direct action”e

� Speed of response is increased (compared to P-only 

mode)

� Hypersensitive to noise and other high-frequency 

disturbances
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Derivative Mode (2)Derivative Mode (2)

� A steady-state error signal, however, is not recognized by 

D controllers, because regardless of how big the error, its 

rate of change is zero. Therefore, derivative-only 

controllers are not used in practice

� They are usually found in combination with other control 

elements, mostly in combination with proportional control
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elements, mostly in combination with proportional control
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ProportionalProportional--Derivative Mode (1)Derivative Mode (1)
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de

dt
CO = P e + D + b( )

PV
m
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ProportionalProportional--Derivative Mode (2)Derivative Mode (2)

� Response of PD controller to ramp change in error

Response due to

C
o
n
tr
o
ll
er
 O
u
tp
u
t 
(C
O
)

Response due to
Proportional and
Derivative modesResponse due to

Proportional and
Derivative modes

Theoretical

Actual
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ProportionalProportional--Derivative Mode (3)Derivative Mode (3)

� PD control can produces an offset

� To avoid proportional offset, the bias “b” should be set 

when the PVm is at setpoint

� Commonly found in slow-response process control, e.g. 

temperature, pH, composition controls
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ProportionalProportional--IntegralIntegral--Derivative Mode (1)Derivative Mode (1)

SP e
+

P

+ CO

+

1
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∫ dt

+

� Combine the best feature of P, I, and D terms
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de

dt
CO = P e +         e dt + D( )1

T
m
∫ 

PV
m

+

D
d

dt
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ProportionalProportional--IntegralIntegral--Derivative Mode (2)Derivative Mode (2)

P-only – notice the offset       
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time

P and I – offset gone     

P, I and D – best           
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Additional PID ConceptsAdditional PID Concepts

Interactive vs. Non-interactive PID Algorithm

� Refer to interaction between the reset and derivative 

terms

� Also known as ‘series’ or ‘parallel’ 

� Almost all analog controllers are interactive
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�Many digital controller are non-interactive, some are 

interactive

� The only difference is in the tuning of controller with 

derivative
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Reset Windup (1)Reset Windup (1)

� All actuators have limitations:
• Ex.: A motor has limited speed, a valve cannot be more than fully opened 
or fully closed

�Windup phenomena is caused by the interaction of 
integral action and saturations

�When this happens the feedback loop is broken and the 
system runs as an open loop because the actuator will 
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system runs as an open loop because the actuator will 
remain at its limit independently of the process output
• If a controller with integrating action is used, the error will continue to be 
integrated. This means that the integral term may become very large or, 
colloquially, it “winds up”

• It is then required that the error has opposite sign for a long period before 
things return to normal

• The consequence is that any controller with integral action may give large 
transients when the actuator saturates
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Reset Windup (2)Reset Windup (2)
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� Note that controller output saturates causing area “A” to accumulate 

by the integral action

� After the disturbance returns to its normal level, the controller output 

remains saturated for a period of time causing an upset in PVm

Time

cCO
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AntiAnti--Reset WindupReset Windup

yyspSP  PV
m
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� When the manipulated variable saturates, the integral is not allowed 

to accumulate

� When control returns, the controller takes immediate action and the 

process returns smoothly to the setpoint

Time

cCO 
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Methods for AntiMethods for Anti--Reset WindupReset Windup

� Turn off the integral when a valve saturates or a control 

loop is not in use.

� Clamp the controller output to be greater than 0% and 

less than 100%.

� Apply internal reset feedback

� Apply external reset feedback
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� Apply external reset feedback
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Bumpless Transfer (1)Bumpless Transfer (1)

� Practically all controllers can be run in two modes: 

manual or automatic

�When the system is in manual mode, the control algorithm 

produces a control signal that may be different from the 

manually generated control signal, or vice versa. It is 

necessary to make sure that the two outputs coincide at 
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necessary to make sure that the two outputs coincide at 

the time of switching. This is called bumpless transfer

�With bumpless transfer, an internal setpoint is used for 

the controller and the internal setpoint is ramped at a slow 

rate from the initial conditions to the actual desired 

setpoint to order to provide a smooth startup of a control 

loop
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� Comparison of true and internal setpoint

True Setpoint

Bumpless Transfer (2)Bumpless Transfer (2)
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Time

Internal Setpoint
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Bumpless Transfer (3)Bumpless Transfer (3)

� Control Performance with and without bumpless transfer

w/o bumpless transfer
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Time

w/ bumpless transfer
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Derivative on Process Rather than Error (1)Derivative on Process Rather than Error (1)

The Facts:
• A step change in the set point results in a step change in the process

• The derivative term acts on the rate of change of the error

• The rate of change of a step change is very large

• An operator step change of the setpoint would causes a very large change in 

the output, upsetting the process
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Fig. Process variable and valve response
to a setpoint change using standard PID

time
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Derivative on Process Rather than Error (2)Derivative on Process Rather than Error (2)

Solution: Let derivative act only on process rather than 

error

SP e
+

P

+ CO

1
T
m

∫ dt

+
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.
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Derivative on Process Rather than Error (3)Derivative on Process Rather than Error (3)

� Process variable and valve response to a setpoint change

MV
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Fig. Process variable and valve response
to a setpoint change using

“Derivative on Process Measurement” PID
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Derivative on Filtered ProcessDerivative on Filtered Process
Rather than Process (1)Rather than Process (1)

The Fact:

• The derivative mode is hypersensitive to noise

34PID Control
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Gain on Process Rather than Error (1)Gain on Process Rather than Error (1)

The Facts:
• In applications with high gain, a step change can result in a sudden, large 

movement in the valve

• Not as severe as derivative effect, but still can upset the process
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Fig. Process variable and valve response
to a setpoint change using

“Gain on error and Derivative on Process Measurement” PID
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Gain on Process Rather than Error (2)Gain on Process Rather than Error (2)

Solution: Let gain act only on process rather than error

SP e
+

P

+ CO

P

T
m

∫ dt
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Gain on Process Rather than Error (3)Gain on Process Rather than Error (3)

� Process variable and valve response to a setpoint change

MV
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Fig. Process variable and valve response
to a setpoint change using

“Gain and Derivative on Process Measurement” PID
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Digital PID Algorithms (1)Digital PID Algorithms (1)

� Data acquisition concepts

Continuous signal

sample

Sampled signal

∆t

Original signal

38PID Control

∆t Sampled signal

2∆t

Original signal

∆t = sampling time

Shannon’s sampling theorem:

The sampling frequency must be greater or equal to two times of the highest 

frequency occurring in the signal to be sampled 
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� Integral

Digital PID Algorithms (2)Digital PID Algorithms (2)

∫ e dt ≅ ∆t   Σ ei. ≅
de

dt

ei – ei-1
∆t

� Derivative
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de

dt
CO = P e +         e dt + D( )1

T
m
∫ 

CO = P ei +            ei +         (ei – ei-1)[ ]∆t
T
m
Σ

Continuous form:

Digital form:
D

∆t

i = sampling instant
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Digital PID Algorithms (3)Digital PID Algorithms (3)

� Two forms of digital PID algorithms:
• Positional form

COi = P ei +            ei dt +         (ei – ei-1)[ ]∆t
T
m
Σ

D

∆t

40PID Control

• Velocity form

� Inherently have anti reset windup feature

COi = COi-1 + P (ei – ei-1) +         ei +         (ei – 2ei-1+ei-2)[ ]∆t
T
m

D

∆t
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Several Offered PID Algorithms (1)Several Offered PID Algorithms (1)

Distributed Control System (DCS)

� Honeywell TDC 3000
• Offers 4 (four) PID equations; A, B, C, and D

TDC 3000 P mode I mode D mode
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Algorithm A Error Error Error

Algorithm B Error Error Measurement

Algorithm C Measurement Error Measurement

Algorithm D Not used Error
Not used
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Several Offered PID Algorithms (2)Several Offered PID Algorithms (2)

Distributed Control System (DCS)

� Foxboro I/A Series

� Yokogawa Centum CS 3000

� Bailey

� ABB
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� ABB
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Programmable Logic Controller (PLC)

�Modicon 984

Several Offered PID Algorithms (3)Several Offered PID Algorithms (3)

TDC 3000 P mode I mode D mode
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P-only

PI

PID
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Programmable Logic Controller (PLC)

�Modicon

� Allan-Bradley
• PLC-5

• SLC500

� Siemens

Several Offered PID Algorithms (3)Several Offered PID Algorithms (3)
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� Siemens

� Fuji Electric
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Flow and liquid pressure control

� Fast response with no time delay (no pipe/transportation)

� Usually with small high-frequency noise

� PI controller with intermediate controller gain

Guidelines for Common Control Loops (1)Guidelines for Common Control Loops (1)
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Liquid level control

� Noisy due to splashing and turbulence

� High gain, low integral action of PI controller for 

integrating process

� Conservative setting for averaging control when it is used 

for damping the fluctuation of the inlet stream

June 2003

Gas pressure control

� Usually fast and self regulating

� PI controller with small integral action (large reset time)

Temperature control

Guidelines for Common Control Loops (2)Guidelines for Common Control Loops (2)
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�Wide variety of the process nature

� Usually slow response with time delay

� Use PID controller to speed up the response
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Composition control

� Similar to temperature control usually with larger noise 

and more time delay

� Effectiveness of derivative action is limited

� Temperature and composition controls are the prime 

candidates for advance control strategies due to its 

Guidelines for Common Control Loops (3)Guidelines for Common Control Loops (3)
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candidates for advance control strategies due to its 

importance and difficulty of control
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Session SummarySession Summary

� PID control, which is the most widely used control 

algorithm in process control application, comes in different 

forms and terms

� Each of the terms of the PID equation must be 

understood to obtain a right combination of the PID 

control elements for various process control application 
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control elements for various process control application 

objectives


