
Backtracking

5/12/2010

Graph Operations

� Traversal (search)

� Visit each node in graph exactly once

� Usually perform computation at each node

� Two approaches

� Breadth first search (BFS)

5/12/2010

� Breadth first search (BFS)

� Depth first search (DFS)

Breadth-first Search (BFS)
� Approach

� Visit all neighbors of

node first

� View as series of

expanding circles

� Keep list of nodes to visit

5/12/2010

� Keep list of nodes to visit

in queue

� Example traversal

1) n

2) a, c, b

3) e, g, h, i, j

4) d, f

Breadth-first Search (BFS)
� Example traversals

1

2 3

1

3 2

1

2 3

5/12/2010

4 5 6

7

6 5 4

7

5 6 4

7

Left to right Right to left Random

Depth-first Search (DFS)

� Approach

� Visit all nodes on path first

� Backtrack when path ends

� Keep list of nodes to visit in a

stack

5/12/2010

stack

� Example traversal

1) n, a, b, c, d, …

2) f …

Depth-first Search (DFS)
� Example traversals

1

2 6

1

4 2

1

2 6

5/12/2010

3 5 7

4

6 5 3

7

4 3 7

5

Left to right Right to left Random

The 4 Queens Problem

5/12/2010

The goal of this problem is to position n queens on nxn chessboard

so that no two quens threathen each other. That is no two queens may be

in the same row, column, or diagonal.

What is backtracking?

� It is a systematic search strategy of the state-space

of combinatorial problems

� It is mainly used to solve problems which ask for

finding elements of a set which satisfy some

5/12/2010

finding elements of a set which satisfy some

restrictions. Many problems which can be solved

by backtracking have the following general form:

“ Find S subset of A1 x A2 x … x An (Ak – finite sets)

such that each element s=(s1,s2,…,sn) satisfy some

restrictions”

What is backtracking?

Basic ideas:

� each partial solution is evaluated in order to

establish if it is promising (a promising solution

could lead to a final solution while a non-promising

one does not satisfy the partial restrictions induced

by the problem restriction)by the problem restriction)

� if all possible values for a component do not lead to

a promising partial solution then one come back to

the previously component and try another value for

it

5/12/2010

� backtracking implicitly constructs a state space tree:

� The root corresponds to an initial state (before the

search for a solution begins)

� An internal node corresponds to a promising � An internal node corresponds to a promising

partial solution

� An external node (leaf) corresponds to either to a

non-promising partial solution or to a final solution

5/12/2010

General algorithm for backtrack

Procedure checknode(v:node)

Begin

if promising(v) then

if there is a solution then

write the solutionwrite the solution

else

for each child u of v do

checknode(u)

end

end

end

end

5/12/2010

The 4 Queens Problem

5/12/2010

The 4 Queens Problem

5/12/2010

How to check the diagonal/column ?

5/12/2010

How to check the diagonal/column ?

Let col(i) be the column where the queen in the ith row is

located.

• Check column � col(i) = col(k)

• Check diagonal � col(i) – col(k) = i-k or col(i) – col(k) = k –

i

5/12/2010

i

Examples. In the figure, the queen in row 6 is being

threatened in its left diagonal by the queen in row 3, and

in its right diagonal by the queen in row 2.

col(6) – col(3)= 4 – 1= 3 = 6 – 3

col(6) – col(2)= 4 – 8= -4 =2 – 6

Backtracking algorithm for the n queens
Procedure queens(i:index);

Var j:index;

Begin

if promising(i) then

if i=n then

write(col[1] through col[n])

else

5/12/2010

else

for j:=1 to n do

col[i+1]:=j;

queens(i+1)

end

end

end

End;

Backtracking algorithm for the n queens
function promising(i:index):boolean;

Var k:index;

Begin

k:=1;

promising:=true;

while k<i and promising do

if col[i]=col[k] or abs(col[i]-col[k])=i-k then

5/12/2010

if col[i]=col[k] or abs(col[i]-col[k])=i-k then

promising:=false

end

k:=k+1

end

End;

tingkat i promising ket j aksi col

1 2 3 4

0 0 TRUE 1 col[i+1]=j --> col[1]=1 1

queens(i+1)=queens(1)

1 1 TRUE 1 col[i+1]=j --> col[2]=1 1 1

queens(i+1)=queens(2)

2 2 FALSE col[2]=col[1] finish 2 back to 1

1 1 2 col[i+1]=j --> col[2]=2 1 2

queens(i+1)=queens(2)

2 2 FALSE abs(col[2]-col[1])=2-1 finish 2 back to 1

1 1 3 col[i+1]=j --> col[2]=3 1 3

queens(i+1)=queens(2)

2 2 TRUE 1 col[i+1]=j --> col[3]=1 1 3 1

5/12/2010

2 2 TRUE 1 col[i+1]=j --> col[3]=1 1 3 1

queens(i+1)=queens(3)

3 3 FALSE col[3]=col[1] finish 3 back to 2

2 2 2 col[i+1]=j --> col[3]=2 1 3 2

queens(i+1)=queens(3)

3 3 FALSE abs(col[3]-col[2])=3-2 finish 3 back to 2

2 2 3 col[i+1]=j --> col[3]=3 1 3 3

queens(i+1)=queens(3)

3 3 FALSE col[3]=col[2] finish 3 back to 2

2 2 4 col[i+1]=j --> col[3]=4 1 3 4

queens(i+1)=queens(3)

3 3 FALSE abs(col[3]-col[2])=3-2 finish 3 back to 2

dst

Backtracking algorithm for the n queens

• Top level call to queens is

queens(0);

• Total number of nodes (lower bound):

5/12/2010

• Total number of nodes (lower bound):

1

1
...1

1

32

−

−
=+++++

+

n

n

nnnn

n

n

• Upper bound ?

The sum-of-subset Problem

• Recall the knapsack problem

• Goal : to find all the subset of integers that

sum to W

• Example :• Example :

w1 = 3, w2 = 4, w3 = 5, w4 = 6

• A node at the i-th level is non-promising if :

weight + wi+1 > w or

weight + total < W

5/12/2010

Permutation Generation

(*,*,*)

(1,*,*) (2,*,*) (3,*,*)

5/12/2010

(1,*,*) (2,*,*) (3,*,*)

(1,1,*) (1,2,*) (1,3,*)

(1,2,3) (1,3,2)

(2,1,*) (2,2,*) (2,3,*) (3,1,*) (3,2,*) (3,3,*)

(2,1,3) (2,3,1) (3,1,2) (3,2,1)

Another example

• Graph coloring

• Hamiltonian problem

• Knapsack problem

5/12/2010

