# **APPLIED IT FOR BUSINESS**

Chapter

5

# Data Resource Management

Irawan Afrianto, M.T Program Magister Manajemen Univesitas Komputer Indonesia (UNIKOM)

# **Learning Objectives**

- Explain the business value of implementing data resource management processes and technologies in an organization
- Outline the advantages of a database management approach to managing the data resources of a business, compared to a file processing approach
- Explain how database management software helps business professionals and supports the operations and management of a business

# **Learning Objectives**

- Provide examples to illustrate the following concepts
  - Major types of databases
  - Data warehouses and data mining
  - Logical data elements
  - Fundamental database structures
  - Database development

#### **Logical Data Elements**



# **Logical Data Elements**

#### • Character

- A single alphabetic, numeric, or other symbol
- Field or data item
  - Represents an attribute (characteristic or quality) of some entity (object, person, place, event)
    - Examples: salary, job title
- Record
  - Grouping of all the fields used to describe the attributes of an entity
    - Example: payroll record with name, SSN, pay rate

# **Logical Data Elements**

- File or table
  - A group of related records
- Database
  - An integrated collection of logically related data elements

# **Electric Utility Database**



### **Database Structures**

- Common database structures...
  - Hierarchical
  - Network
  - Relational
  - Object-oriented
  - Multi-dimensional

# **Hierarchical Structure**

- Early DBMS structure
- Records arranged in tree-like structure
- Relationships are one-to-many



#### **Network Structure**

- Used in some mainframe DBMS packages
- Many-to-many relationships

Network Structure



# **Relational Structure**

**Department Table** 

| Deptno | Dname | Dloc | Dmgr |
|--------|-------|------|------|
| Dept A |       |      |      |
| Dept B |       |      |      |
| Dept C |       |      |      |
|        |       |      |      |
|        |       |      |      |
|        |       |      |      |

#### **Employee Table**

| Empno | Ename | Etitle | Esalary | Deptno |
|-------|-------|--------|---------|--------|
| Emp 1 |       |        |         | Dept A |
| Emp 2 |       |        |         | Dept A |
| Emp 3 |       |        |         | Dept B |
| Emp 4 |       |        |         | Dept B |
| Emp 5 | ***** | ****** |         | Dept C |
| Emp 6 |       |        |         | Dept B |

#### • Most widely used structure

- Data elements are stored in tables
- Row represents a record; column is a field
- Can relate data in one file with data in another, if both files share a common data element

# **Relational Operations**

- Select
  - Create a subset of records that meet a stated criterion
    - Example: employees earning more than \$30,000
- Join
  - Combine two or more tables temporarily
  - Looks like one big table
- Project
  - Create a subset of columns in a table

# **Multidimensional Structure**

- Variation of relational model
  - Uses multidimensional structures to organize data
  - Data elements are viewed as being in cubes
  - Popular for analytical databases that support Online Analytical Processing (OLAP)

#### **Multidimensional Model**





|       | Profit        |              | /             |   | /             |      |   |   |
|-------|---------------|--------------|---------------|---|---------------|------|---|---|
|       | Total Expense | ses /        |               | / | 5             |      | - | 1 |
| / M   | argin         | /            |               | / |               | - 20 | 1 |   |
| / coc | S             | /            |               | / |               | /    |   | 1 |
| Sales |               | Ea<br>Actual | ast<br>Budget | W | est<br>Budget | /    | 1 | 1 |
| TV    | January       |              | 1             |   | -             | 1    | 1 | 1 |
|       | February      |              |               | - |               | 1    | 1 | 1 |
|       | March         |              |               | 1 |               | 1    | 1 | 1 |
|       | Qtr 1         |              |               |   |               | /    | 1 | 1 |
| VCR   | January       | -            |               | - |               | V    | 1 | 1 |
|       | February      | -            | -             |   |               | 1    | 1 | 1 |
|       | March         | -            | -             |   | -             | 1    | 1 |   |
|       | Qtr 1         |              | -             |   | -             | 1    |   |   |



# **Object-Oriented Structure**

- An **object** consists of
  - Data values describing the attributes of an entity
  - Operations that can be performed on the data
- Encapsulation
  - Combine data and operations
- Inheritance
  - New objects can be created by replicating some or all of the characteristics of parent objects

#### **Object-Oriented Structure**



Source: Adapted from Ivar Jacobsen, Maria Ericsson, and Ageneta Jacobsen, *The Object Advantage: Business Process Reengineering with Object Technology* (New York: ACM Press, 1995), p. 65. Copyright @ 1995, Association for Computing Machinery. By permission.

### **Object-Oriented Structure**

- Used in object-oriented database management systems (OODBMS)
- Supports complex data types more efficiently than relational databases
  - Examples: graphic images, video clips, web pages

# **Evaluation of Database Structures**

#### Hierarchical

- Works for structured, routine transactions
- Can't handle many-to-many relationship
- Network
  - More flexible than hierarchical
  - Unable to handle ad hoc requests

#### Relational

- Easily responds to ad hoc requests
- Easier to work with and maintain
- Not as efficient/quick as hierarchical or network

#### **Database Development**

- Database Administrator (DBA)
  - In charge of enterprise database development
  - Improves the integrity and security of organizational databases
  - Uses Data Definition Language (DDL) to develop and specify data contents, relationships, and structure
  - Stores these specifications in a data dictionary or a metadata repository

# **Data Dictionary**

- A data dictionary
  - Contains data about data (metadata)
  - Relies on specialized software component to manage a database of data definitions
- It contains information on..
  - The names and descriptions of all types of data records and their interrelationships
  - Requirements for end users' access and use of application programs
  - Database maintenance
  - Security

#### **Database Development**



# **Data Planning Process**

- Database development is a top-down process
  - Develop an enterprise model that defines the basic business process of the enterprise
  - Define the information needs of end users in a business process
  - Identify the key data elements that are needed to perform specific business activities (entity relationship diagrams)



### **Database Design Process**

- Data relationships are represented in a data model that supports a business process
- This model is the schema or subschema on which to base...
  - The physical design of the database
  - The development of application programs to support business processes

#### **Database Design Process**

- Logical Design
  - Schema overall logical view of relationships
  - Subschema logical view for specific end users
  - Data models for DBMS
- Physical Design
  - How data are to be physically stored and accessed on storage devices

# **Logical and Physical Database Views**



#### **Types of Databases**



### **Operational Databases**

- Stores detailed data needed to support business processes and operations
  - Also called subject area databases (SADB), transaction databases, and production databases
  - Database examples: customer, human resource, inventory

# **Distributed Databases**

- Distributed databases are copies or parts of databases stored on servers at multiple locations
  - Improves database performance at worksites
- Advantages
  - Protection of valuable data
  - Data can be distributed into smaller databases
  - Each location has control of its local data
  - All locations can access any data, any where
- Disadvantages
  - Maintaining data accuracy

# **Distributed Databases**

#### • Replication

- Look at each distributed database and find changes
- Apply changes to each distributed database
- Very complex

#### Duplication

- One database is master
- Duplicate the master after hours, in all locations
- Easier to accomplish

#### **External Databases**

- Databases available for a fee from commercial online services, or free from the Web
  - Examples: hypermedia databases, statistical databases, bibliographic and full text databases
  - Search engines like Google or Yahoo are external databases

# **Hypermedia Databases**

- A hypermedia database contains
  - Hyperlinked pages of multimedia
  - Interrelated hypermedia page elements, rather than interrelated data records

# **Components of Web-Based System**



# **Data Warehouses**

- Stores static data that has been extracted from other databases in an organization
  - Central source of data that has been cleaned, transformed, and cataloged
  - Data is used for data mining, analytical processing, analysis, research, decision support
- Data warehouses may be divided into data marts
  - Subsets of data that focus on specific aspects of a company (department or business process)

#### **Data Warehouse Components**



#### **Applications and Data Marts**



# **Data Mining**

- Data in data warehouses are analyzed to reveal hidden patterns and trends
  - Market-basket analysis to identify new product bundles
  - Find root cause of qualify or manufacturing problems
  - Prevent customer attrition
  - Acquire new customers
  - Cross-sell to existing customers
  - Profile customers with more accuracy

# **Traditional File Processing**

- Data are organized, stored, and processed in independent files
  - Each business application designed to use specialized data files containing specific types of data records
- Problems
  - Data redundancy
  - Lack of data integration
  - Data dependence (files, storage devices, software)
  - Lack of data integrity or standardization

### **Traditional File Processing**



# **Database Management Approach**

- The foundation of modern methods of managing organizational data
  - Consolidates data records formerly in separate files into databases
  - Data can be accessed by many different application programs
  - A database management system (DBMS) is the software interface between users and databases

### **Database Management Approach**



#### **Database Management System**

- In mainframe and server computer systems, a software package that is used to...
  - Create new databases and database applications
  - Maintain the quality of the data in an organization's databases
  - Use the databases of an organization to provide the information needed by end users

# **Common DBMS Software Components**

#### • Database definition

- Language and graphical tools to define entities, relationships, integrity constraints, and authorization rights
- Nonprocedural access
  - Language and graphical tools to access data without complicated coding
- Application development
  - Graphical tools to develop menus, data entry forms, and reports

# **Common DBMS Software Components**

- Procedural language interface
  - Language that combines nonprocedural access with full capabilities of a programming language
- Transaction processing
  - Control mechanism prevents interference from simultaneous users and recovers lost data after a failure
- Database tuning
  - Tools to monitor, improve database performance

#### **Database Management System**

- Database Development
  - Defining and organizing the content, relationships, and structure of the data needed to build a database
- Database Application Development
  - Using DBMS to create prototypes of queries, forms, reports, Web pages
- Database Maintenance
  - Using transaction processing systems and other tools to add, delete, update, and correct data

# **DBMS Major Functions**



- Create: Database and Application Development
- Maintain: Database Maintenance
- Use: Database Interrogation

- End users use a DBMS query feature or report generator
  - Response is video display or printed report
  - No programming is required
- Query language
  - Immediate response to ad hoc data requests
- Report generator
  - Quickly specify a format for information you want to present as a report

#### SQL Queries

- Structured, international standard query language found in many DBMS packages
- Query form is SELECT...FROM...WHERE...

#### A Sample Natural Language-to-SQL Translation for Microsoft Access

#### Natural Language

WHAT CUSTOMERS HAD NO ORDERS LAST MONTH?

#### SQL

SELECT [Customers].[Company Name],[Customers].[Contact Name] FROM [Customers] WHERE not Exists {SELECT [Ship Name] FROM [Orders] WHERE Month {[Order Date]}=1 and Year {[Order Date]}=2004 and [Customers].[Customer ID]=[Orders].{[Customer ID]}

- Boolean Logic
  - Developed by George Boole in the mid-1800s
  - Used to refine searches to specific information
  - Has three logical operators: AND, OR, NOT
- Example
  - Cats OR felines AND NOT dogs OR Broadway

- Graphical and Natural Queries
  - It is difficult to correctly phrase SQL and other database language search queries
  - Most DBMS packages offer easier-to-use, point-and-click methods
  - Translates queries into SQL commands
  - Natural language query statements are similar to conversational English

### **Graphical Query Wizard**



### **Database Maintenance**

- Accomplished by transaction processing systems and other applications, with the support of the DBMS
  - Done to reflect new business transactions and other events
  - Updating and correcting data, such as customer addresses

# **Application Development**

- Use DBMS software development tools to develop custom application programs
  - Not necessary to develop detailed data-handling procedures using conventional programming languages
  - Can include data manipulation language (DML) statements that call on the DBMS to perform necessary data handling

#### Assesment

- Buat Makalah ( Kajian ) Tentang :
  - Distributed Databases
  - Hypermedia Databases
  - Sistem Datawarehouse
  - Data Mining
  - Web Mining
- Makalah (Tercetak dikumpulkan ) Online (Upload ke Kuliah Online Makalah + Slide)
- Presentasi Minggu Depan (Slide Maks 15 hal)
- Makalah berupa kajian dari berbagai sumber.
- Referensi disertakan.

# **End Of Chapter**

#### Thank U