

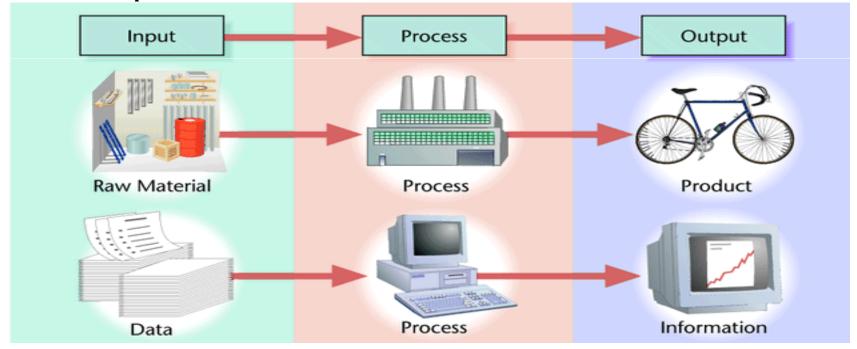
Overview IS and ISM

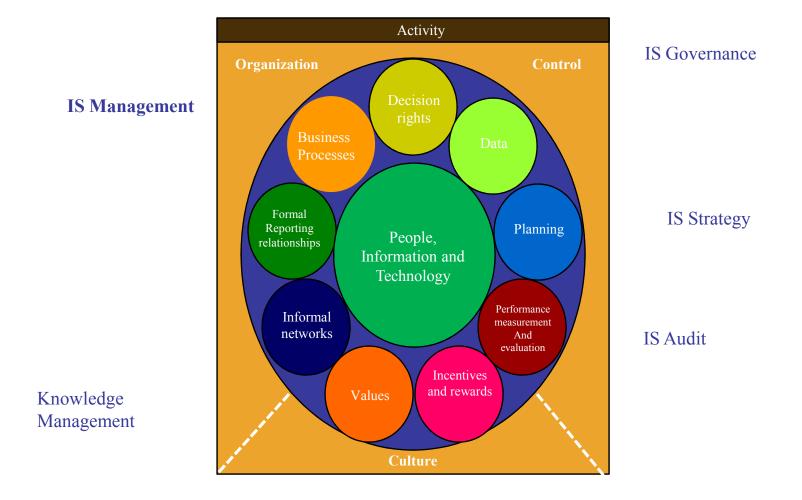
[shim] chap 1& 2

Dr. Ir. Yeffry Handoko Putra, M.T

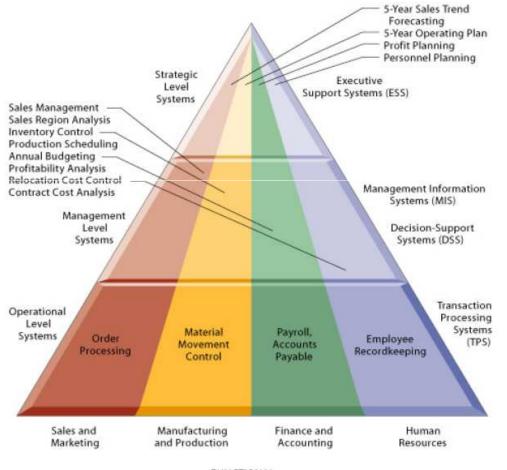
Information Process Cycle

- Information Process Cycle
 - Computer-based IS (CBIS) take data as raw material, process it, and produce information as output



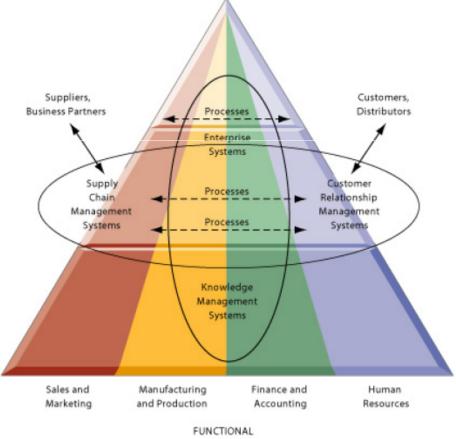

Figure 1.1 Input-process-output

Elemen IS dan MSI


- Computer Hardware
 - PC/Notebook (Client)
 - Server (mainframe)
 - Data Communication
- Computer Software
 - Operating System
 - Application

- Enterprise
 - Organisation
 - Human capital and IT Demand
 - Decision support system
 - POAC
 - Evaluation
 - Information resource (in house operatio, outsourcing)

Activity support by Information



FOUR MAJOR TYPE OF INFORMATION SYSTEM IN MANAGERIAL LEVEL

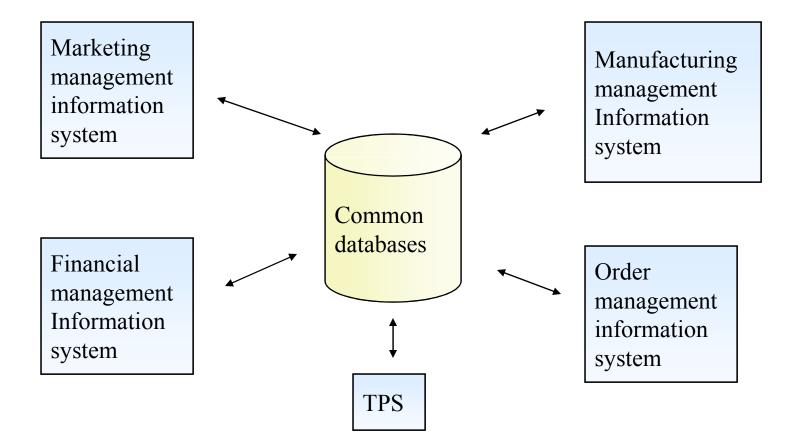
FUNCTIONAL AREAS

ENTERPRISE APPLICATION ARCHITECTURE

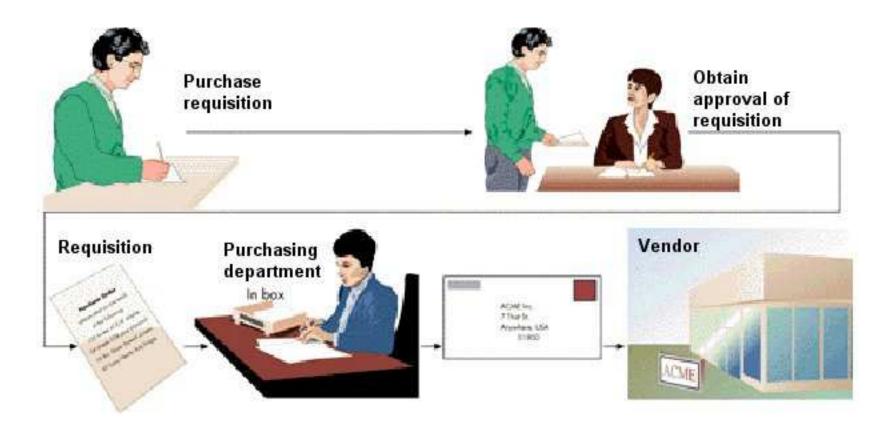
AREAS

Table 5.1 An information systems classification

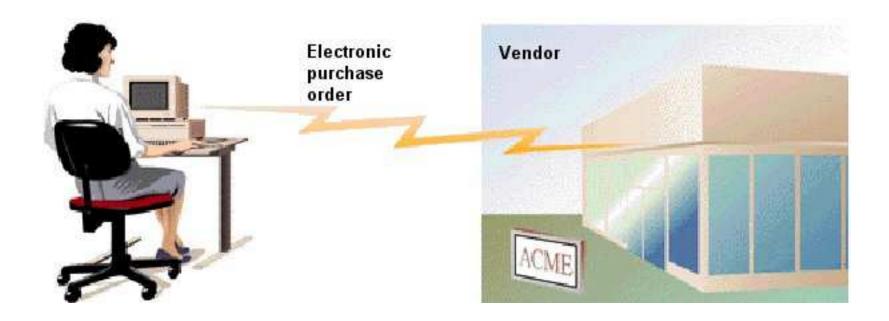
Type of information system	Transferable features	Examples
Transaction processing system	Control, procedures and rules, repetition	Processing credit card payments
Management information system	Emphasis on measurement and performance monitoring	Sales/production reports, receivables report showing invoices and payments
Decision support system	User control, models, semi- structured tasks	Production data models, insurance policy alternatives, current specification for machine operator
Executive information system	User-friendly interface and methods for data analysis	Flexible access to regional sales/corporate financial/ production data
Expert system	Use of inference in problem- solving, 'what if' scenarios, user-driven	Diagnosis of machine failure, pricing competitive bids, identifying trend changes
Office automation system	Multiple forms of information, immediacy and interactivity of communication, avoidance of unproductive work	Spreadsheets, email, e-calendars, desktop publishing, voicemail, video conferencing


Table 5.2 Types of information systems

Information system type	Purpose
Office automation system	Provides effective processing of organisational and business data, creates documents.
Communication system	Helps people work together by interacting and sharing information in many forms.
Transaction processing system	Collects and stores information about and controls some aspects of transactions.
Management information system and executive information system	Converts TPS data into information for monitoring and managing performance; provides easily accessible, interactive information.
Decision support system	Helps people make decisions by providing information, models or analytical tools.
Enterprise system	Creates and maintains consistent data-processing methods and an integrated database across multiple business functions.



- Transaction Processing System (TPS)
- Management Reporting System (MRS)
- Executive Information System and support (EISS)
- Decision Support System (DSS)
- Office Information System (OIS)


MIS Schematic

Purchase Order - Traditional

Purchase Order – E-commerce

Manajemen Report

- Schedule Report
- On demand Report
- Exception Report
- Predictive Report
- Summary Report

Characteristics of good management reports

All the reports discussed above relate to business performance, and the value of information presented in them can be enhanced in the following ways:

- if reports are presented as frequently as is cost effective;
- if they are provided as soon after the reporting period as possible;
- by giving credit to good performance and highlighting reasons for below average performance;
- by including only controllable items;
- if reports are accurate and full comparisons made;
- by emphasising exceptional items requiring management attention.

Sumber Informasi

- In house operation
- Outsourcing

Managerial Task Hierarchy

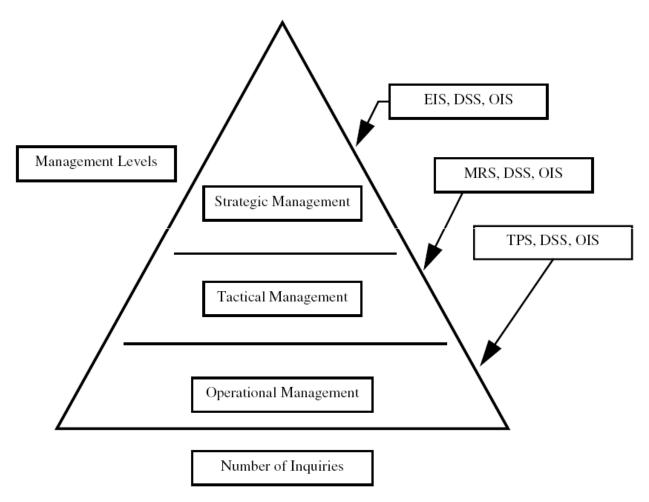


FIGURE 1.1 Management Task Hierarchy

Level of Management: What kind of Decision are made

TABLE 2.1A Comparison of the MISs at the Operational, Tactical, and Strategic Levels

Characteristic	Operational	Tactical	Strategic
Frequency	Regular, repetitive	Mostly regular	Often ad hoc (as needed)
Dependability of results	Expected results	Some surprises may occur	Results often contain surprises
Time period covered	Past	Comparative	Future
Level of data	Very detailed	Summaries of data	Summaries of data
Source of data	Internal	Internal and external	Internal and external
Nature of data	Highly structured	Some unstructured data	Highly unstructured (semistructured)
Accuracy	Highly accurate data	Some subjective data	Highly subjective data
Typical user	First-line supervisors	Middle managers	Top management
Level of decision	Task-oriented	Control and resource allocation oriented	Goal-oriented

MSI dan Decision Making Model

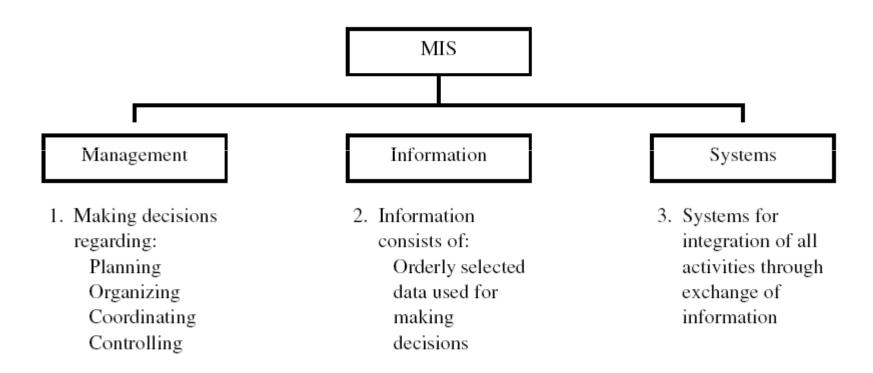
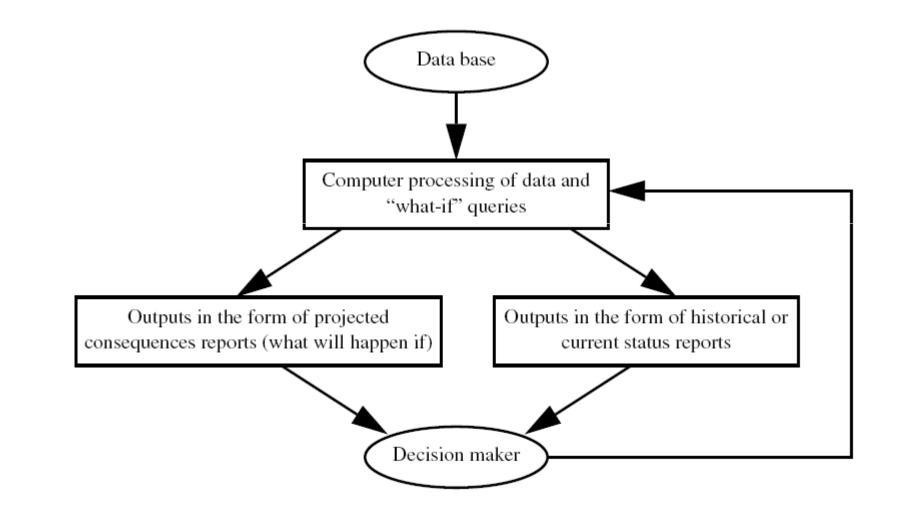



FIGURE 2.1 The meaning of a management information system (MIS).

- MSI that generate report
- MSI that answer 'what-if' kind of question asked by management
- MSI that support Decision Making (Decision Support System)

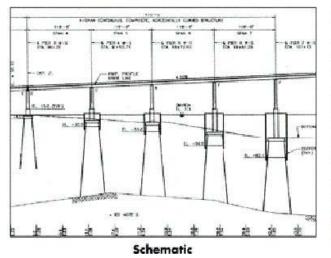
Level Managemen

- Lower Management (Supervisory/Operational)
- Middle Management (Tactical)
 - Deal with semistructured decision
- Top Management (Strategy)Title: CEO, COO, CFO, CIO

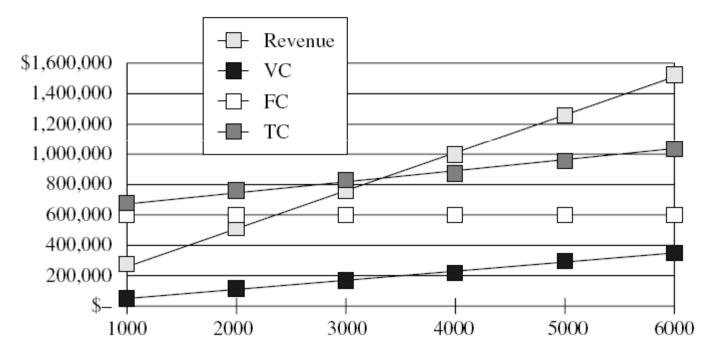
TABLE 2.2 Three Levels of Management and Information Needs

Consumer Product Business			
Strategic	Competitive		
Planning	Industry statistics		
Tactical	Sales analysis by customer		
	Reorder analysis of new products		
	Sales analysis by product line		
	Production planning		
Operational	Bill of materials		
	Manufacturing specifications		
	Product specifications		
	Order processing		
	On-line order inquiry		
	Finished goods inventory		
	Accounts receivable		
	General ledger		

Bank		
Strategic	Market forecast	
Planning	New product development Financial forecast	
Tactical	Branch profitability Product profitability	
Operational	Loan billing Accounting systems Policy issuance and maintenance	


Pemodelan MSI

Narrative


Physical

Mathematical

Graphical Model

Mathematical Model

$$X_{be} = \frac{FC}{(P-V)}$$

- X_b = break-even point,
- *P* = price or average revenue per unit,
- V = unit variable cost, and
- FC =total fixed costs

Model Management Software

- Financial Model
 - Cash flow
 - Internal rate and return
 - Investment analysis
- Statistical Model
 - Summary statistic
 - Trend projection
 - Hypothesis testing
 - Software: SPPS (Statistical Packages for Social Scientist), SAS (Statistical Anaylisis System), minitab

Cypress Consumer Products Corporation wishes to develop a forecasting model for its dryer sales by using multiple regression analysis. The marketing department prepared the following sample data.

Month	Sales of Washers (x ₁)	Disposable Income (x ₂)	Savings (x ₃)	Sales of Dryers (y)
January	\$45,000	\$16,000	\$71,000	\$29,000
February	42,000	14,000	70,000	24,000
March	44,000	15,000	72,000	27,000
April	45,000	13,000	71,000	25,000
May	43,000	13,000	75,000	26,000
June	46,000	14,000	74,000	28,000
July	44,000	16,000	76,000	30,000
August	45,000	16,000	69,000	28,000
September	44,000	15,000	74,000	28,000
October	43,000	15,000	73,000	27,000

		ependent Variable		ALESDRY	NGG	
Block Number Variable(s) En		ethod: Enter SALE	SWAS IN	COME SAVI	INGS	
variable(s) Ei	licited on Step	rumber				
1. SAVINGS						
2. SALESWA	S					
3. INCOME						
Multiple R		.99167				
R Square		.98340				
Adjusted R Sq	Juare	.97511				
Standard Error	r	.28613				
Analysis of Va	ariance					
2	DF	Sum of Squares	Mean	Square		
Regression	3	29.10878	9.702	93		
Residual	6	.49122	.081	87		
F = 118.51727	7 Si	gnif F = .0000				
Variables in th	Equation					
v arrables in u	le Equation					
Variable	в	SE B	Beta	Tolerance	VIF	Т
SALESWAS	.596972	.081124	.394097	.964339	1.037	7.359
INCOME	1.176838	.084074	.752425	.957217	1.045	13.998
	.405109	.042234	.507753	.987080	1.013	9.592
SAVINGS		4.877651			-9.389	

FIGURE 2.5 SPSS for Windows.

Optimization Model

- Techniques for establishing complex sets of mathematical equations and inequalities that represent objectives and constraints
- Sering disebut riset operasi, linier programming
- Contoh Aplikasi:
 - Selecting least-cost mix of ingredients for manufactured products
 - Developing an optimal budget
 - Determining an optimal investment portfolio (or asset allocation)
 - Allocating an advertising budget to a variety of media
 - Scheduling jobs to machines
 - Determining a least-cost shipping pattern
 - Scheduling flights
 - Gasoline blending
 - Optimal manpower allocation
 - Selecting the best warehouse location to minimize shipping costs

Contoh Linear Programming

The JKS Furniture Manufacturing Company produces two products: desks and tables. Both products require time in two processing departments, the Assembly Department and the Finishing Department. Data on the two products are as follows: The company wants to find the most profitable mix of these two products

	Products			
Processing	Desk	Table	Available Hours	
Assembly	2	4	100	
Finishing	3	2	90	
Contribution margin per unit	\$25	\$40		

Step 1

Define the decision variables as follows:

A = Number of units of desk to be produced

B = Number of units of table to be produced

Step 2

The objective function to maximize total contribution margin (CM) is

expressed as

Total CM = 25A + 40B

Then, formulate the constraints as inequalities.

 $2A + 4B \le 100$ (assembly constraint)

 $3A + 2B \le 90$ (finishing constraint)

In addition, implicit in any LP formulation are the constraints that restrict A

and B

to be nonnegative, i.e.,

A, B ≥ 0

Our LP model is:

Maximize: Total CM = 25A + 40B

Subject to: $2A + 4B \le 100$

 $3A + 2B \le 90$

A, B
$$\geq 0$$

- Decision Analysis Model with uncertainty: Diatasi dengan
 - Expected value
 - Standard deviasi
 - Coeficient of variation
- Decision Matrix
- Decision Tree

		Initial Investment (1)	Probability (2)	PV of Cash Inflows (3)	PV of Cash Inflows $(2) \times (3) = (4)$
			0.40	\$450,000	\$180,000
		\$225,000	0.50	200,000	100,000
	Product A		0.10	-100,000	-10,000
			Expected PV of	of cash inflows	\$270,000
Choice A or B		_			
	Product B		0.20	\$320,000	\$64,000
		\$80,000	0.60	100,000	60,000
		L	0.20	-150,000	-30,000
			Expected PV of	of cash inflows	\$94,000

For product A:

Expected NPV = expected PV -I = \$270,000 - \$255,000 = \$45,000

For product B:

Expected NPV = \$94,000 - \$80,000 = \$14,000

Based on the expected NPV, choose product A over product B; however, this analysis fails to recognize the risk factor in project analysis.

FIGURE 2.7 Decision tree.

- PERT (Program Evaluatioan and Review Technique) untuk planning, schedulling, costing coordinating, complex controlling misal dipakai pada:
 - Formulation of a master budget
 - Construction of buildings
 - Installation of computers
 - Scheduling the closing of books
 - Assembly of a machine
 - Research and development activities
 - Questions to be answered by PERT include
 - When will the project be finished?
 - What is the probability that the project will be completed by any given
 - time?