./-//,'.
e

-

f
:
!_ ’ v

.

T

Graphic Processing Unit

|

Oscar Karnalim
Sulaeman Santoso
Puanta Della M

Why GPU ?
o

* Computer Graphics demands are skyrocketing

— Games, Movies, Simulation, etc
e Better graphics = more computation

 CPU is not sufficient to deal with graphic
demands

A little example

* Asingle 3D human model requires 10.000 —
12.0000 vertices

 To animate or renders a single model requires
a multiplication of that 10k-12k vertices

e A modern MMORPG can handle battles
between 200+ player

how much computation would

a scene like this reguirgd ?

GPU to the rescue
o
° Graphics Processing Unit

* Unit specially desighed to handle graphic
computation

e Special architecture to achieve efficient
computation

computation

A history of GPU

* 1980 : IBM’s PGA

1989 : OPEN GL release
pipeline graphics beginning

penGL

A history of GPU (2)

e 1993 : Sillicon Graphic’s Reality Engine

3DFX, Nvidia, ATIl, Matrox

A (ATI

NVIDIA RADEDON

GRAPHICS

T

SiliconGraphics

A history of GPU (3)

e 1999 : full hardware pipeline
AGP port
the term GPU is invented

fixed function pipeline

A history of GPU (4)

e 2001 : Programmable pipeline

shader program

S

A history of GPU (5)
-

e 2002 : Fully programmable pipeline

pixel shader, vertex shader
DirectX 9

A history of GPU (6)

e 2004 : High level Shader language (Brook , Sh)
e 2006 : Parallel graphic processing
Nvidia CUDA

SANVIDIA.

CUDA.

A history of GPU (7)

2010 : Nvidia Fermi = General purpose GPU

o ——— —— -
e

e
an
5)
3)
3 |
3 |
l:':l
S
gl
3
\"
F les

reneh SSETI 7 T

A history of GPU (8)
- o

e 2010 : Combining CPU with GPU
AMD APU
Intel Larrabee

A history of GPU (9)

e Late 2011: GPU for multiplatform
OpenCL

How does it work ?

Device

Multiprocessor N

* Multiprocessors

_— M u Itico res Multiprocessor 2

Multiprocessor 1

e Memory level

Shared Memory

— Register I I I
Registers Registers Registers
Instruction
— shared memory Unit
Processor 1 Processor 2 L A Processor M
— constant cache " ' '
— texture cache l []

— global memory

Memory Level

* Global Memory

for every thread

* Shared Memory

for thread in same block

* Constant Memory

read-only, global memory’s cache

Memory Level (2)

* Texture Memory
optimized for 2D spatial locality

* Register Memory
Owned by every thread

Main Technique

* Multiple parallel simple processors
 Multiple ALUs on each core processors
* |Interleaving operation to avoid latency

GPU processing pipeline

Basic pipeline component of GPU

host vertex | Inang!e pmel | memory
interface prnresslng setup prucessmq interface

Host interface

* Main gateway between CPU and GPU
* Receive instruction and geometry information
e Returns output in form of vertex stream

Vertices

Y

Vertex processing

* Receive vertex stream
* Mapping vertex to screen space

— Done with linear transformation
— Or other complex transformation (e.g : morphing)

 Does not form or remove any vertex

Primitives

Triangle setup

* Transform screen space to pixel
* Hidden surface removal
* Fragment construction

gitsy

Fragments

Pixel processing

* Process data on each fragment

e Calculate the value of pixels

* Texture mapping and other arithmetic
operation is done in this stage

it

Fragments (shaded)

Memory interface

* Write the pixel result into the framebuffer

e Zbuffer test, stencil, and alpha test is done
within this stage

e On modern GPU z and color information is
compressed

Command buffer

 CPU and GPU works in parallel with each
other

e CPU and GPU communicate via the Command
buffer

 CPU puts instruction and GPU runs them

GPU reads commands

| Pending GPU commands I

'

CPU writes commands here

The need for synchronization

o
* The use of Semaphore
— Blocks data used by GPU
— CPU must wait resulting stall
* Inlining data
— Data is passed within the command buffer
* Renaming data
— Creating new block of data for tempo\raw}’gi—g\e

— Deletes them when GPU finishes

We believe in CUDA

* High level shader programming language

* Created for general purpose computing with
GPU

* Applied with C, C++, Fortran

CUDA architecture

Application

+

CUDA Libraries

.

CUDA Runtime

N

CUDA Driver

'

CUDA's API

¥
* Two types of API :
— CUDA high level API
— CUDA low level API

GPU Assembly / | Kernel Object
Kernel Code : Code

(bar.s) i (bar.gpu)
cudacc

Front End and . Executable
Global Optimizer ?

Integrated Source
(foo.c, bar.cu)

CPU Host Code | Host Binary

Host Compiler

(foo.c, bar.c) (f00.0, bar.o)

CUDA'’s limitation

Low precision double floating point operation
CUDA can only run on Nvidia’s graphic card
Does not support recursive

Bus latency between GPU and CPU

GPU’s limitation
* Low Double floating point precision

* Latency between GPU and CPU

* Large Power consumption

/
,

P \

. . 0/04 ’\ : -.*

- -

Thank you

