
Graphic Processing Unit
Oscar Karnalim

Sulaeman Santoso

Puanta Della M

Why GPU ?

• Computer Graphics demands are skyrocketing

– Games, Movies, Simulation, etc

• Better graphics = more computation

• CPU is not sufficient to deal with graphic
demands

A little example

• A single 3D human model requires 10.000 –
12.0000 vertices

• To animate or renders a single model requires
a multiplication of that 10k-12k vertices

• A modern MMORPG can handle battles
between 200+ player

how much computation would
a scene like this required ?

GPU to the rescue

• Graphics Processing Unit

• Unit specially designed to handle graphic
computation

• Special architecture to achieve efficient
computation

• Efficient at floating point operation and matrix
computation

GPU

A history of GPU

• 1980 : IBM’s PGA

• 1989 : OPEN GL release

 pipeline graphics beginning

A history of GPU (2)

• 1993 : Sillicon Graphic’s Reality Engine

 3DFX, Nvidia, ATI, Matrox

A history of GPU (3)

• 1999 : full hardware pipeline

 AGP port

 the term GPU is invented

 fixed function pipeline

A history of GPU (4)

• 2001 : Programmable pipeline

 shader program

A history of GPU (5)

• 2002 : Fully programmable pipeline

 pixel shader, vertex shader

 DirectX 9

A history of GPU (6)

• 2004 : High level Shader language (Brook , Sh)

• 2006 : Parallel graphic processing

 Nvidia CUDA

A history of GPU (7)

• 2010 : Nvidia Fermi General purpose GPU

A history of GPU (8)

• 2010 : Combining CPU with GPU

 AMD APU

 Intel Larrabee

A history of GPU (9)

• Late 2011: GPU for multiplatform

 OpenCL

How does it work ?

• Multiprocessors

– Multicores

• Memory level

– Register

– shared memory

– constant cache

– texture cache

– global memory

Memory Level

• Global Memory

for every thread

• Shared Memory

for thread in same block

• Constant Memory

read-only, global memory’s cache

Memory Level (2)

• Texture Memory

optimized for 2D spatial locality

• Register Memory

Owned by every thread

Main Technique

• Multiple parallel simple processors

• Multiple ALUs on each core processors

• Interleaving operation to avoid latency

GPU processing pipeline

• Basic pipeline component of GPU

Host interface

• Main gateway between CPU and GPU

• Receive instruction and geometry information

• Returns output in form of vertex stream

Vertex processing

• Receive vertex stream

• Mapping vertex to screen space

– Done with linear transformation

– Or other complex transformation (e.g : morphing)

• Does not form or remove any vertex

 Triangle setup

• Transform screen space to pixel

• Hidden surface removal

• Fragment construction

Pixel processing

• Process data on each fragment

• Calculate the value of pixels

• Texture mapping and other arithmetic
operation is done in this stage

Memory interface

• Write the pixel result into the framebuffer

• Zbuffer test, stencil, and alpha test is done
within this stage

• On modern GPU z and color information is
compressed

Command buffer

• CPU and GPU works in parallel with each
other

• CPU and GPU communicate via the Command
buffer

• CPU puts instruction and GPU runs them

The need for synchronization

• The use of Semaphore

– Blocks data used by GPU

– CPU must wait resulting stall

• Inlining data

– Data is passed within the command buffer

• Renaming data

– Creating new block of data for temporary storage

– Deletes them when GPU finishes

We believe in CUDA

• High level shader programming language

• Created for general purpose computing with
GPU

• Applied with C, C++, Fortran

CUDA architecture

CUDA’s API

• Two types of API :

– CUDA high level API

– CUDA low level API

CUDA’s limitation

• Low precision double floating point operation

• CUDA can only run on Nvidia’s graphic card

• Does not support recursive

• Bus latency between GPU and CPU

GPU’s limitation

• Low Double floating point precision

• Latency between GPU and CPU

• Large Power consumption

Thank you

