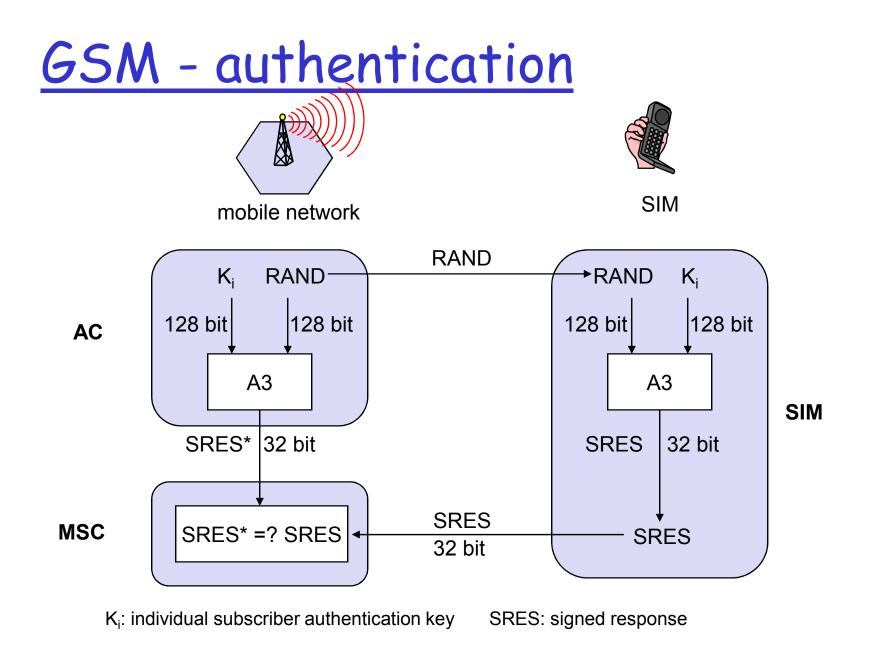
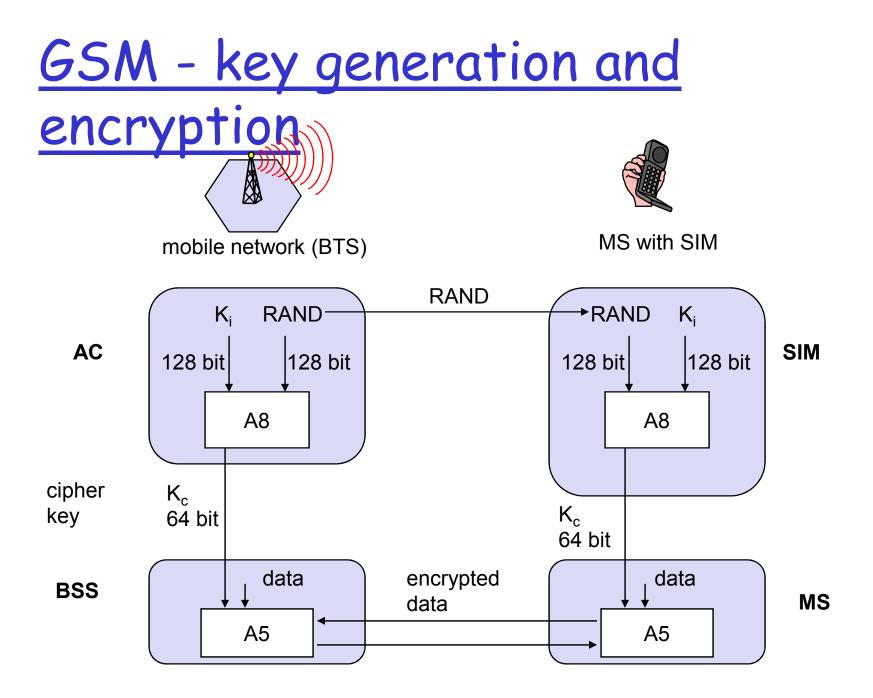


Dr. Yeffry Handoko Putra


Department of Computer Engineering Universitas Komputer Indonesia

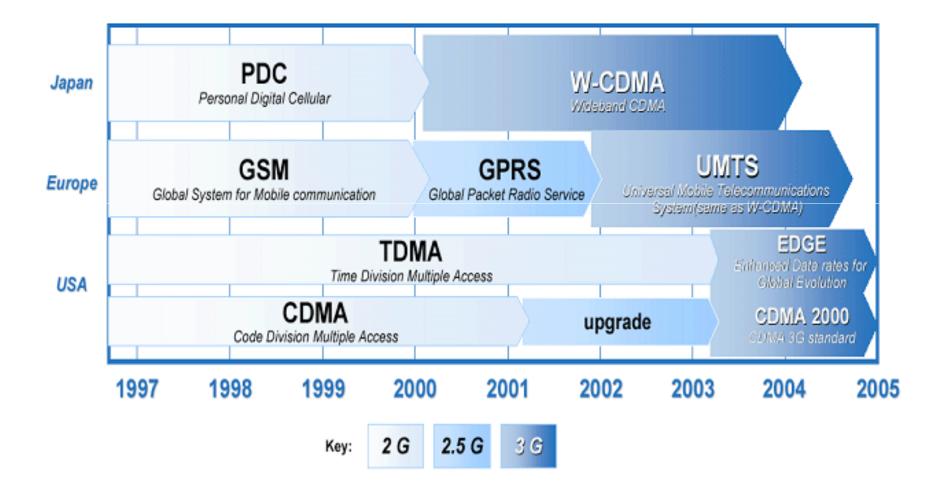

Security in GSM

Security services

- o access control/authentication
 - user
 SIM (Subscriber Identity Module): secret PIN (personal identification number)
 - SIM \Rightarrow network: challenge response method
- confidentiality
 - voice and signaling encrypted on the wireless link (after successful authentication)
- anonymity
 - temporary identity TMSI (Temporary Mobile Subscriber Identity)
 - newly assigned at each new location update (LUP)
 - encrypted transmission
- □ 3 algorithms specified in GSM
 - A3 for authentication ("secret", open interface)
 - A5 for encryption (standardized)
 - A8 for key generation ("secret", open interface)

"secret": • A3 and A8 available via the Internet • network providers can use stronger mechanisms

Data services in GSM I


- Data transmission standardized with only 9.6 kbit/s
 - o advanced coding allows 14.4 kbit/s
 - not enough for Internet and multimedia applications
- HSCSD (High-Speed Circuit Switched Data)
 - mainly software update
 - bundling of several time-slots to get higher AIUR (Air Interface User Rate, e.g., 57.6 kbit/s using 4 slots @ 14.4)
 - advantage: ready to use, constant quality, simple
 - disadvantage: channels blocked for voice transmission

AIUR [kbit/s]	TCH/F4.8	TCH/F9.6	TCH/F14.4
4.8	1		
9.6	2	1	
14.4	3		1
19.2	4	2	
28.8		3	2
38.4		4	
43.2			3
57.6			4

Data services in GSM II

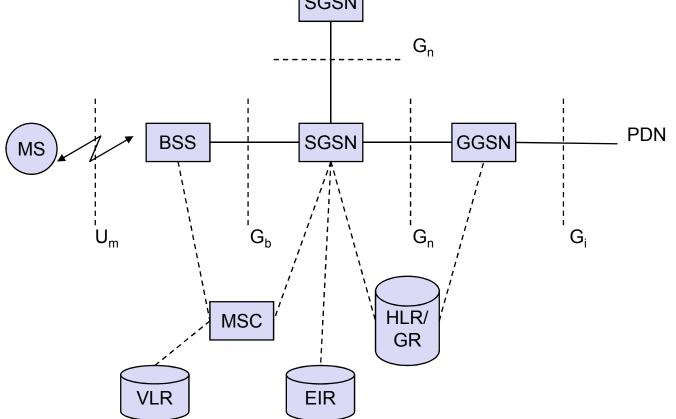
- GPRS (General Packet Radio Service)
 - packet switching
 - using free slots only if data packets ready to send (e.g., 50 kbit/s using 4 slots temporarily)
 - standardization 1998, introduction 2001
 - advantage: one step towards UMTS, more flexible
 - disadvantage: more investment needed (new hardware)
- □ GPRS network elements
 - GSN (GPRS Support Nodes): GGSN and SGSN
 - GGSN (Gateway GSN)
 - interworking unit between GPRS and PDN (Packet Data Network)
 - SGSN (Serving GSN)
 - supports the MS (location, billing, security)
 - GR (GPRS Register)
 - user addresses

Timeline of Technology Evolution

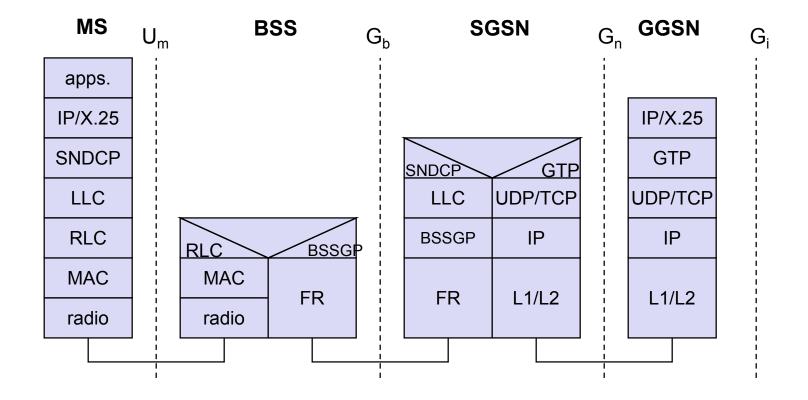
<u>GPRS quality of service</u>

Reliability class	Lost SDU probability	Duplicate SDU probability	Out of sequence SDU probability	Corrupt SDU probability
1	10 ⁻⁹	10 ⁻⁹	10 ⁻⁹	10 ⁻⁹
2	10 ⁻⁴	10 ⁻⁵	10 ⁻⁵	10 ⁻⁶
3	10 ⁻²	10 ⁻⁵	10 ⁻⁵	10 ⁻²

Delay	SDU size 128 byte		SDU size 1024 byte		
class	mean	mean 95 percentile		95 percentile	
1	< 0.5 s	< 1.5 s	< 2 s	< 7 s	
2	< 5 s	< 25 s	< 15 s	< 75 s	
3	< 50 s	< 250 s	< 75 s	< 375 s	
4	unspecified				


Examples for GPRS device classes

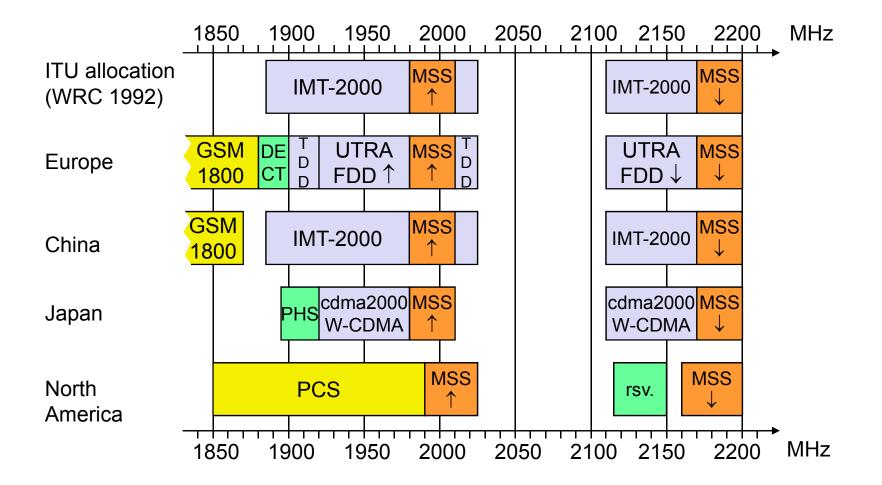
Class	Receiving slots	Sending slots	Maximum number of slots
1	1	1	2
2	2	1	3
3	2	2	3
5	2	2	4
8	4	1	5
10	4	2	5
12	4	4	5


<u>GPRS user data rates in kbit/s</u>

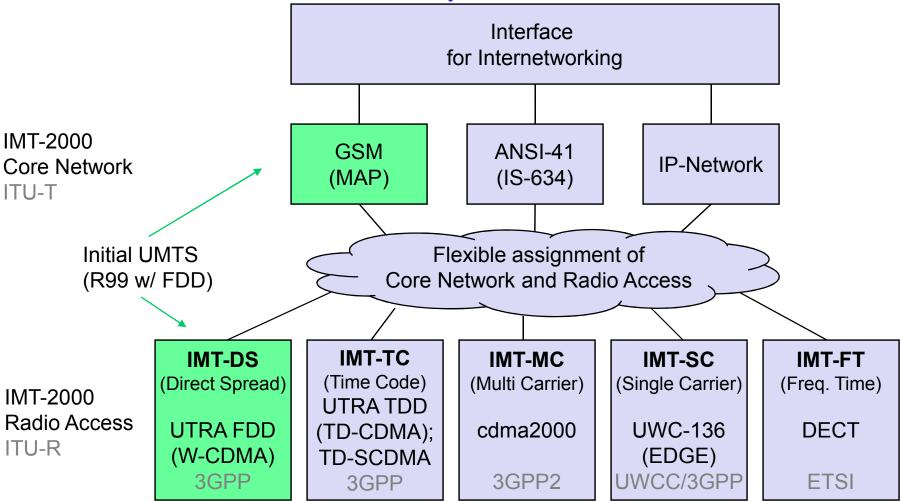
Coding scheme	1 slot	2 slots	3 slots	4 slots	5 slots	6 slots	7 slots	8 slots
CS-1	9.05	18.1	27.15	36.2	45.25	54.3	63.35	72.4
CS-2	13.4	26.8	40.2	53.6	67	80.4	93.8	107.2
CS-3	15.6	31.2	46.8	62.4	78	93.6	109.2	124.8
CS-4	21.4	42.8	64.2	85.6	107	128.4	149.8	171.2

<u>GPRS architecture and</u> <u>interfaces</u>

GPRS protocol architecture


UMTS and IMT-2000

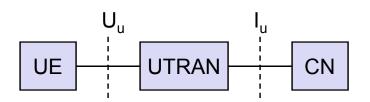
- Proposals for IMT-2000 (International Mobile Telecommunications)
 - UWC-136, cdma2000, WP-CDMA
 - UMTS (Universal Mobile Telecommunications System) from ETSI


UMTS

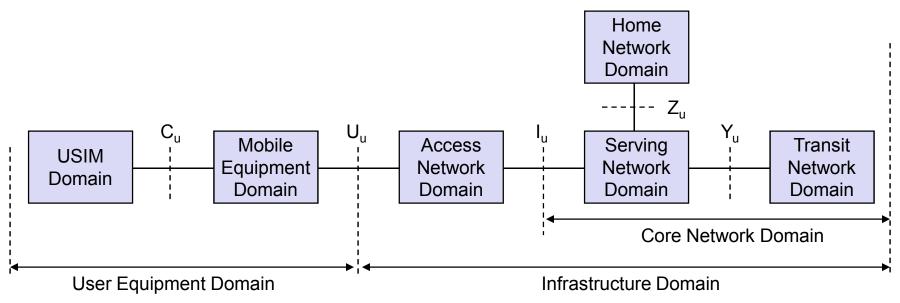
- UTRA (was: UMTS, now: Universal Terrestrial Radio Access)
- enhancements of GSM
 - EDGE (Enhanced Data rates for GSM Evolution): GSM up to 384 kbit/s
 - CAMEL (Customized Application for Mobile Enhanced Logic)
 - VHE (virtual Home Environment)
- fits into GMM (Global Multimedia Mobility) initiative from ETSI
- requirements
 - min. 144 kbit/s rural (goal: 384 kbit/s)
 - min. 384 kbit/s suburban (goal: 512 kbit/s)
 - up to 2 Mbit/s urban

Frequencies for IMT-2000

IMT-2000 family


<u>GSM and UMTS Releases</u>

	Stages	Rel	Spec version	Europeianal fragme data indiantiva anhy
	 (0: feasibility study) 	Kei	number	Functional freeze date, indicative only
	• 1: service description from a service-	Rel-10	10.x.y	Stage 1 ?
	user's point of view			Stage 2 ?
	 2: logical analysis, breaking the problem down into functional elements and the 			Stage 3 ?
	information flows amongst them	Rel-9	9.x.y	Stage 1 freeze December 2008 Stage 2 June 2009?
	 3: concrete implementation of the protocols between physical elements 			Stage 3 freeze December 2009?
	onto which the functional elements have	Rel-8	8.x.y	Stage 1 freeze March 2008
	been mapped			Stage 2 freeze June 2008
_	• (4: test specifications)			Stage 3 freeze December 2008
	Note	Rel-7	7.x.y	Stage 1 freeze September 2005
	 "Release 2000" was used only temporarily and was eventually replaced by "Release 4" and "Release 5" 			Stage 2 freeze September 2006
				Stage 3 freeze December 2007
	Additional information:	Rel-6	6.x.y	December 2004 - March 2005
	• <u>www.3gpp.org/releases</u>	Rel-5	5.x.y	March - June 2002
	 <u>www.3gpp.org/ftp/Specs/html-info/</u> 	Rel-4	4.x.y	March 2001
	<u>SpecReléaseMatrix.htm</u>	R00	4.x.y	see note 1 below
			9.x.y	
		R99	3.x.y	March 2000
			8.x.y	
		R98	7.x.y	early 1999
		R97	6.x.y	early 1998
		R96	5.x.y	early 1997
		Ph2	4.x.y	1995
		Ph1	3.x.y	1992


<u>UMTS architecture</u> (Release 99 used here!)

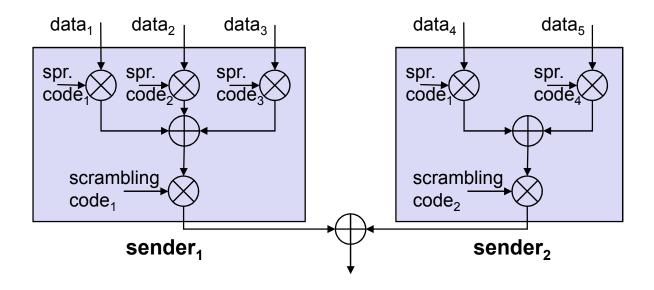
UTRAN (UTRA Network)

- Cell level mobility
- Radio Network Subsystem (RNS)
- Encapsulation of all radio specific tasks
- UE (User Equipment)
- CN (Core Network)
 - Inter system handover
 - Location management if there is no dedicated connection between UE and UTRAN

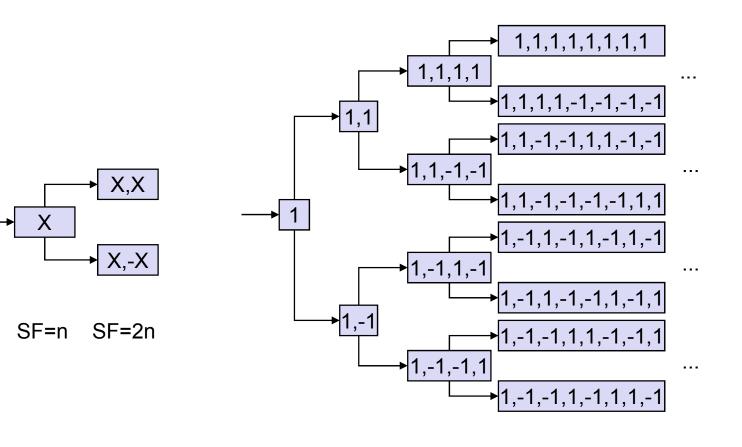
<u>UMTS domains and interfaces I</u>

User Equipment Domain

- Assigned to a single user in order to access UMTS services
- Infrastructure Domain
 - Shared among all users
 - Offers UMTS services to all accepted users

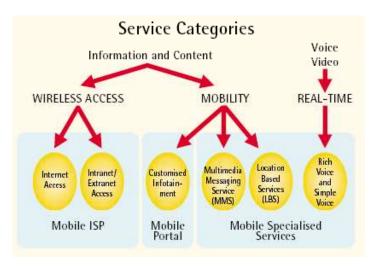

UMTS domains and interfaces II

Universal Subscriber Identity Module (USIM)


- Functions for encryption and authentication of users
- Located on a SIM inserted into a mobile device
- Mobile Equipment Domain
 - Functions for radio transmission
 - User interface for establishing/maintaining end-to-end connections
- Access Network Domain
 - Access network dependent functions
- Core Network Domain
 - Access network independent functions
 - Serving Network Domain
 - Network currently responsible for communication
 - Home Network Domain
 - Location and access network independent functions

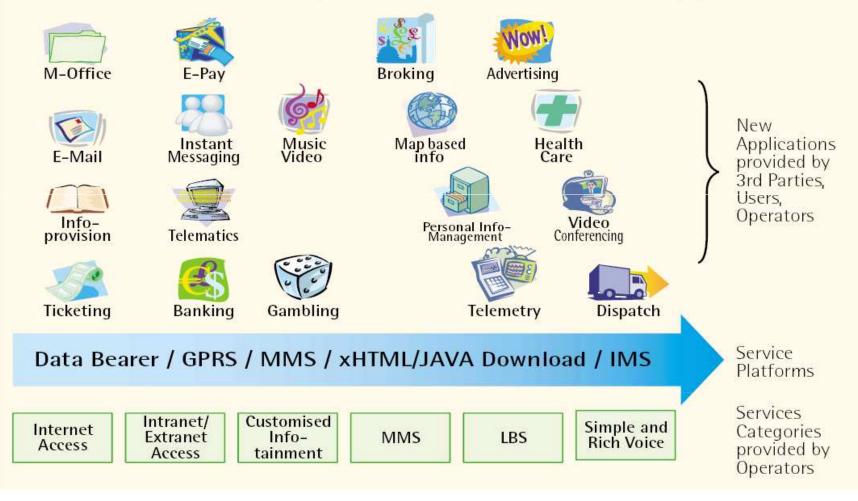
Spreading and scrambling of user data

- Constant chipping rate of 3.84 Mchip/s
- Different user data rates supported via different spreading factors
 - higher data rate: less chips per bit and vice versa
- User separation via unique, quasi orthogonal scrambling codes
 - users are not separated via orthogonal spreading codes
 - much simpler management of codes: each station can use the same orthogonal spreading codes
 - precise synchronization not necessary as the scrambling codes stay quasiorthogonal

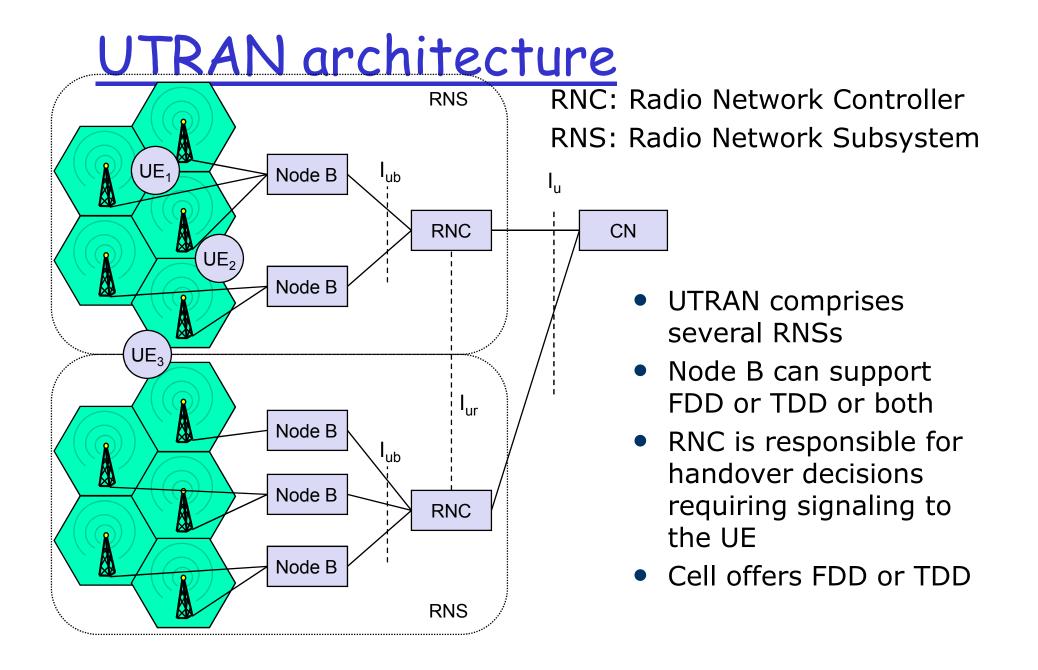


SF=1 SF=2 SF=4 SF=8

<u>Services</u>

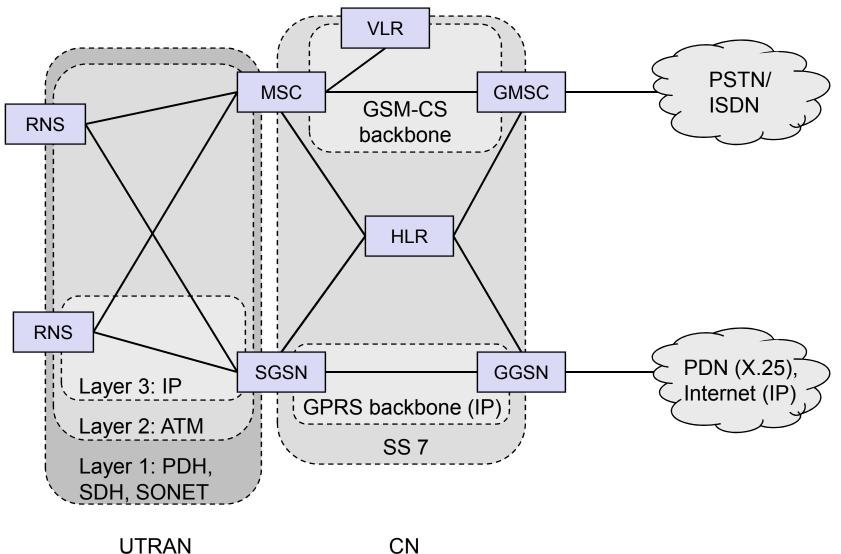

- In shaping future mobile services, the following characteristics should be taken into consideration: mobility, interactivity, convenience, ubiquity, easy access, immediacy, personalization, multimedia
- Services for 3G will evolve within 3 different areas:
 - Personal
 Communication
 - O Wireless Internet
 - Mobile Media (e.g. music, sports, news services)

Voice traffic will remain the primary business of 3G mobile networks

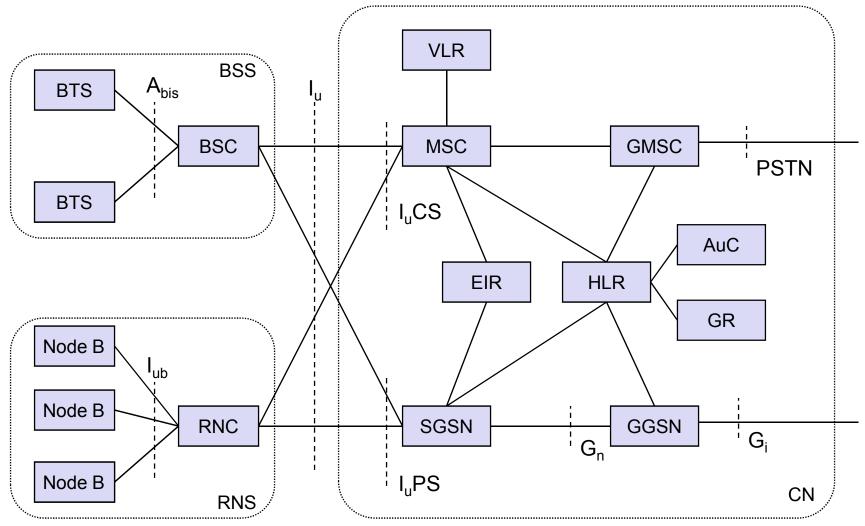


Network Services provide Platforms for Applications

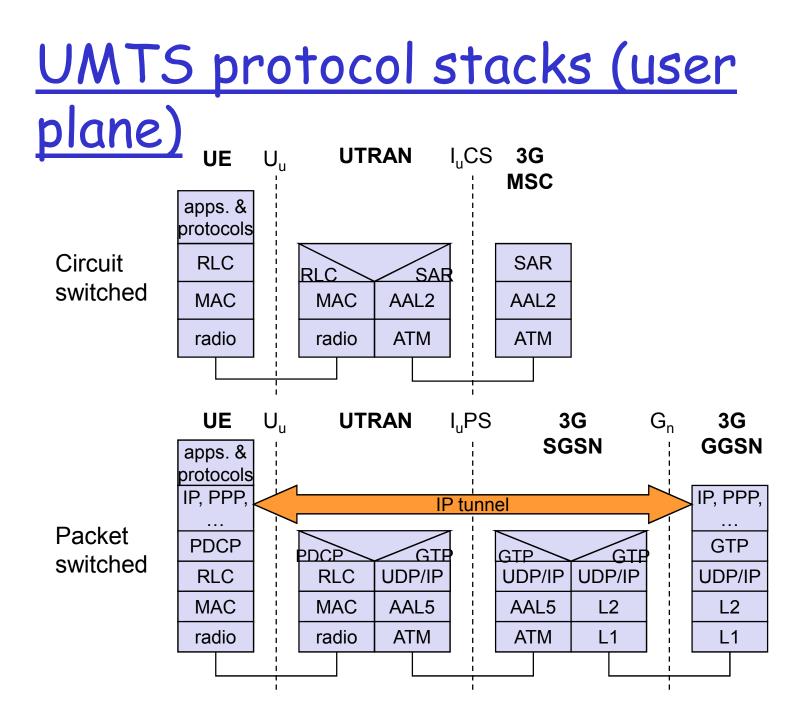
<u>Typical UTRA-FDD uplink data</u> <u>rates</u>


User data rate [kbit/s]	12.2 (voice)	64	144	384
DPDCH [kbit/s]	60	240	480	960
DPCCH [kbit/s]	15	15	15	15
Spreading	64	16	8	4

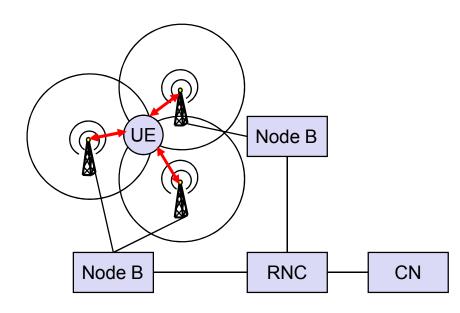
UTRAN functions


- Admission control
- Congestion control
- System information broadcasting
- Radio channel encryption
- Handover
- **SRNS** moving
- Radio network configuration
- Channel quality measurements
- Macro diversity
- Radio carrier control
- Radio resource control
- Data transmission over the radio interface
- Outer loop power control (FDD and TDD)
- Channel coding
- Access control

Core network: protocols


UTRAN

Core network: architecture

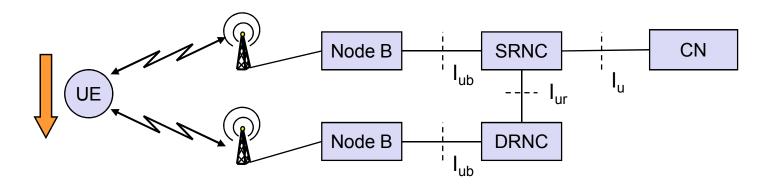


<u>Core network</u>

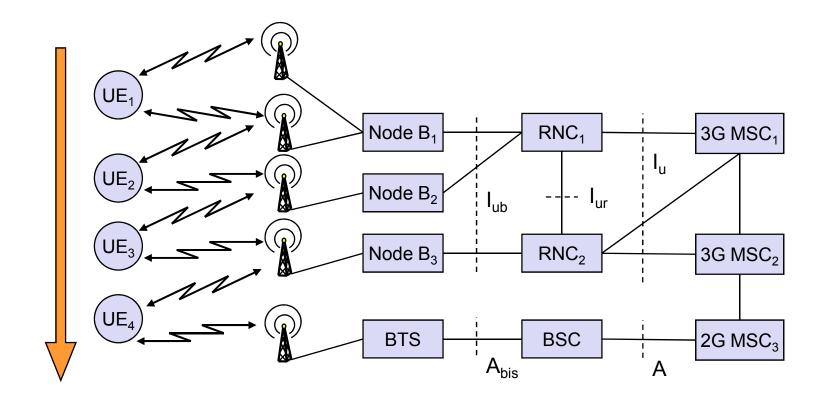
- The Core Network (CN) and thus the Interface I_u, too, are separated into two logical domains:
- Circuit Switched Domain (CSD)
 - Circuit switched service incl. signaling
 - Resource reservation at connection setup
 - GSM components (MSC, GMSC, VLR)
 - I_uCS
- Packet Switched Domain (PSD)
 - GPRS components (SGSN, GGSN)
 - I_uPS
- Release 99 uses the GSM/GPRS network and adds a new radio access!
 - Helps to save a lot of money ...
 - Much faster deployment
 - Not as flexible as newer releases (5, 6)

<u>Support of mobility: macro diversity</u>

Multicasting of data via several physical channels


- Enables soft handover
- FDD mode only
- Uplink
 - simultaneous reception of UE data at several Node Bs
 - Reconstruction of data at Node B, SRNC or DRNC

Downlink


- Simultaneous transmission of data via different cells
- Different spreading codes in different cells

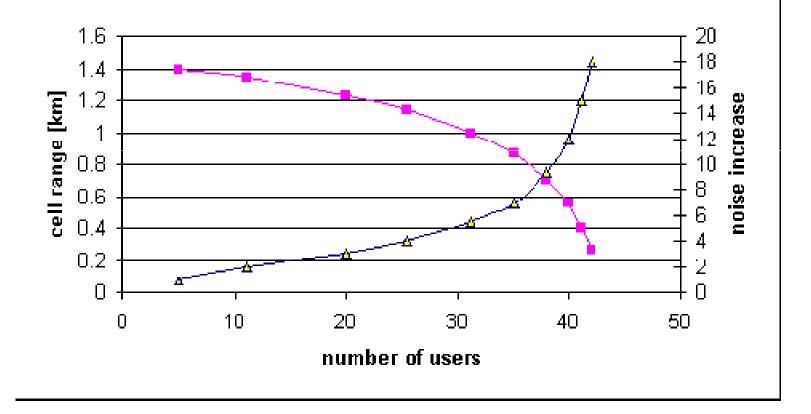
Support of mobility: handover

- From and to other systems (e.g., UMTS to GSM)
 - This is a must as UMTS coverage will be poor in the beginning
- **RNS** controlling the connection is called SRNS (Serving RNS)
- RNS offering additional resources (e.g., for soft handover) is called Drift RNS (DRNS)
- \Box End-to-end connections between UE and CN only via I_u at the SRNS
 - \circ Change of SRNS requires change of I_u
 - Initiated by the SRNS
 - Controlled by the RNC and CN

Example handover types in UMTS/GSM

Breathing Cells

GSM


- Mobile device gets exclusive signal from the base station
- Number of devices in a cell does not influence cell size

UMTS

- Cell size is closely correlated to the cell capacity
- Signal-to-nose ratio determines cell capacity
- Noise is generated by interference from
 - other cells
 - other users of the same cell
- Interference increases noise level
- Devices at the edge of a cell cannot further increase their output power (max. power limit) and thus drop out of the cell
 ⇒ no more communication possible
- Limitation of the max. number of users within a cell required
- Cell breathing complicates network planning

Breathing Cells: Example

Cell breathing and noise increase in UMTS voice

UMTS services (originally)

Data transmission service profiles

Service Profile	Bandwidth	Transport mode	
High Interactive MM	128 kbit/s	Circuit switched	Bidirectional, video telephone
High MM	2 Mbit/s	Packet switched	Low coverage, max. 6 km/h
Medium MM	384 kbit/s	Circuit switched	asymmetrical, MM, downloads
Switched Data	14.4 kbit/s	Circuit switched	
Simple Messaging	14.4 kbit/s	Packet switched	SMS successor, E-Mail
Voice	16 kbit/s	Circuit switched	

- Virtual Home Environment (VHE)
 - Enables access to personalized data independent of location, access network, and device
 - Network operators may offer new services without changing the network
 - Service providers may offer services based on components which allow the automatic adaptation to new networks and devices
 - Integration of existing IN services

Some current enhancements

- 🗖 GSM
 - EMS/MMS
 - EMS: 760 characters possible by chaining SMS, animated icons, ring tones, was soon replaced by MMS (or simply skipped)
 - MMS: transmission of images, video clips, audio
 - see WAP 2.0 / chapter 10
 - EDGE (Enhanced Data Rates for Global [was: GSM] Evolution)
 - 8-PSK instead of GMSK, up to 384 kbit/s
 - new modulation and coding schemes for GPRS → EGPRS
 - MCS-1 to MCS-4 uses GMSK at rates 8.8/11.2/14.8/17.6 kbit/s
 - MCS-5 to MCS-9 uses 8-PSK at rates 22.4/29.6/44.8/54.4/59.2 kbit/s

- HSDPA (High-Speed Downlink Packet Access)
 - initially up to 10 Mbit/s for the downlink, later > 20 Mbit/s using MIMO-(Multiple Input Multiple Output-) antennas
 - can use 16-QAM instead of QPSK (ideally > 13 Mbit/s)
 - user rates e.g. 3.6 or 7.2 Mbit/s
- HSUPA (High-Speed Uplink Packet Access)
 - initially up to 5 Mbit/s for the uplink
 - user rates e.g. 1.45 Mbit/s