
 A!erage per"or#ance and !aria$i%it&

`The continued fantasy that there is, will be, or should be a single computer architecture for all

problem spaces  or a single yardstick to measure such things! continues to fascinate me. "hy

should computing be different from everything else in Human experience#'

 eit! "ierman# in comp$%enc!mar&s

 '( )*& #ean !a%ues+

The performance of a computer system is truly multidimensional. As a result, it

can be very misleading to try to summarize the overall performance of a com-

puter system with a single number. $or instance, a computer system may be

optimized to execute some types of programs very well. However, this specializa-

tion may cause it to perform very poorly when executing a different class of

applications. %ince the measured execution times of the different classes of appli-

cations running on this system will have a very wide range, trying to summarize

the performance of this system over all classes of applications using a single mean

value can result in very misleading conclusions.

&evertheless, human nature being what it is, people continue to want a simple

way to compare different computer systems. As a result, there continues to be a

very strong demand to reduce the performance of a computer system to a single

number. The hope is that this single number will somehow capture the essential

performance of the system so that comparing performance can be reduced to

simply comparing a single mean value for each system. "hile this is an impos-

sible goal, mean values can be useful for performing coarse comparisons.

$urthermore, the performance analyst may be pressured to calculate mean

values, and will certainly see others use mean values to (ustify some result or

conclusion. )onsequently, it is important to understand how to correctly calcu-

late an appropriate mean value, and how to recognize when a mean has been

calculated incorrectly or is being used inappropriately.

As you read this chapter, keep in mind that the computer industry is very

competitive, with considerable amounts of money at stake. *ach manufacturer
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wants their system to have a better performance than their competitors' systems,

so they invest a great deal of time and effort in comparing the performances of

their system with those of their competitors'. This intense competition pressures

them to put the best possible `spin' on their performance numbers. The seemingly

simple question of choosing the correct mean to use, which you would probably

assume should be made on purely mathematical grounds, is a good example of

the controversy that can develop as a result of these competitive pressures. The

discussion of benchmark programs in )hapter + will further highlight the

pressures performance analysts face to put results in the most favorable light

possible.

 ', -ndices o" centra% tendenc&

The previous chapter pointed out the importance of making several measure-

ments of a program's execution time since the execution time is sub(ect to a

variety of nondeterministic effects. The problem then is to summarize all of

these measurements into a single number that somehow speci/es the center of

the distribution of these values. 0n addition, you may wish to summarize the

performance of a system using a single value that is somehow representative of

the execution times of several different benchmark programs running on that

system. There are three different in'ices of centra( ten'enc) that are commonly

used to summarize multiple measurements1 the mean, the median, and the mode.

 ','( .*e sa#p%e #ean

The samp(e arit!metic mean, or a*erage, is the most commonly used measure of

central tendency. 0f the possible values that could be measured are thought of as

a random process on the discrete random variable +, the e,pecte' *a(ue of +,

denoted   ! !, is de/ned to be

  ! ! �
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where $" is the probability that the value of the random variable + is #", and there

are n total values. This value is also referred to as the -rst moment of the random

variable +.

4sing the term `sample' when discussing the mean value emphasizes the fact

that the values used to calculate the mean are but one possible sample of values

that could have been measured from the experimental process. This sample

mean, denoted  #, is our approximation of the true mean of the underlying
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random variable +. This true mean is typically denoted  . 0ts true value cannot

actually be known since determining this value would require an in/nite number

of measurements. The best we can do is approximate the true mean with the

sample mean. 0n )hapter 5 we discuss techniques for quantifying how close the

sample mean is to the true mean. "hen there is no chance of confusing whether

we mean sample mean or true mean, we simply use the more convenient term

`mean.'

6iven n different measurements that we wish to average together, we typically

assume that the probabilities of obtaining any of the n values are all equally

likely. Thus, our estimate of the sample mean, commonly referred to as the

arit!metic mean, is

 #A � 2

n
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n
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As an example of how to calculate a mean, consider the /ve measurements

shown in Table 3.2. The average value is simply the sum of the n � 8 measure-

ments divided by n, giving  #% � 28:9.

 ',', .*e sa#p%e #edian

:y design, one of the properties of the sample mean is that it gives equal weight

to all measurements. As a result, one value that is signi/cantly different from the

other values, called an out(ier, can have a large in;uence on the computed value

of the resulting mean. $or example, if we add a sixth measurement with the value

7<< to the /ve measurements in Table 3.2, the new value for the mean is

 #% � 5=:8. This value is substantially higher than most of the measurements

and does not seem to capture our `sense' of the central tendency of the six

measurements.

The me'ian is an index of central tendency that reduces the skewing effect of

outliers on the value of the index. 0t is found by /rst ordering all of the n

measurements. The middle value is then de/ned to be the median of the set of

measurements. 0f n is even, the median is de/ned to be the mean of the middle

two values. 4sing this de/nition, the median of the /ve values in Table 3.2 is 2=.

0f the sixth measurement of 7<< is also included in this set of measurements, the

median becomes the mean of #5 and #8 which is 2+. %o, while adding the sixth

value to the set of measurements increases the mean from 28.9 to 5=.8, the

median increases only from 2= to 2+. Thus, given the large outlier in these

measurements, the median appears to more intuitively capture a sense of the

central tendency of these data than does the mean.

)* +n$ices of centra& ten$enc' ,



 ',' .*e sa#p%e #ode

The mo'e is simply the value that occurs most frequently. &ote that the mode

need not always exist for a given set of sample data. 0n the example data of Table

3.2, no one value occurs more than once, so there is no mode. $urthermore, the

mode need not be unique. 0f there are several #" samples that all have the same

value, for instance, there would be several modes, speci/cally each of those #"
sample values.

 ','/ 0e%ecting a#ong t*e #ean1 #edian1 and #ode

>ne nice property of the arithmetic mean is that it gives equal weight to all of the

measured values. As a result, it incorporates information from the entire sample

of data into the /nal value. However, this property also makes the mean more

sensitive to a few outlier values that do not cluster around the rest of the samples.

The median and mode, on the other hand, do not ef/ciently use all of the

available information, but, as a result, they are less sensitive to outliers. %o the

question becomes that of which index of central tendency is most appropriate for

a given situation. The answer to this question lies in the type of data being

analyzed, and in its general characteristics.

.ategorica( data are those that can be grouped into distinct types or cate-

gories. $or example, the number of different computers in a organization man-

ufactured by different companies would be categorical data. The mode would be

the appropriate index to use in this case to summarize the most common type of

computer the organization owns. The mean and median really do not make sense

in this context.

0f the sum of all measurements is a meaningful and interesting value, then the

arithmetic mean is an appropriate index. The sum of all of the values shown in

Table 3.2 is the total time required to execute all /ve of the programs tested,
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-a%&e )*.*  ample e!ecution"time measurements

used to demonstrate t#e calculation of t#e mean

and median

?easurement *xecution time

#2 2<

#7 7<

#3 28

#5 29

#8 2=
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which is an interesting and meaningful value. Thus, the mean of these measure-

ments is also meaningful. However, the sum of the ?$@>B% ratings that could

be calculated using these execution times is not a meaningful value.

)onsequently, it is inappropriate to calculate an arithmetic mean for

?$@>B%  this issue is discussed further in %ection 3.3.7!.

$inally, if the sample data contain a few values that are not clustered together

with the others, the median may give a more meaningful or intuitive indication of

the central tendency of the data than does the mean. As an example, assume that

we wish to determine how much memory is installed in the workstations in our

laboratory. "e investigate and /nd that 78 machines contain 2= ?:ytes of

memory, 39 machines contain 37 ?bytes, four machines contain =5 ?bytes,

and one machine contains 2<75 ?bytes. The sum of these values is the total

amount of memory in all of the machines, which is calculated to be 7,9C=

?bytes. %ince this sum is a meaningful value by itself, the mean value of 57.=

?bytes per machine is also a meaningful value. However, =3 of the =9 machines

have 37 ?bytes of memory or less, making the mean value somewhat misleading.

0nstead, the median value of 37 ?bytes gives a value that is more indicative of

the `typical' machine.

 ' 2t*er t&pes o" #eans

To complicate matters further, once we have decided that the mean is the appro-

priate index of central tendency to use for the current situation, we must decide

which t)pe of mean to useD %o far we have discussed the arithmetic mean, but, in

fact, there are two other means that are commonly used to summarize computer-

systems performance E the harmonic mean and the geometric mean.

4nfortunately, these means are sometimes used incorrectly, which can lead to

erroneous conclusions.

 ' '( 3*aracteristics o" a good #ean

0t is possible to apply the formulas described below to calculate a mean value

from any set of measured values. However, depending on the physical meaning

of these measured values, the resulting mean value calculated need not make any

sense. 0n particular, as discussed in )hapter 7, there are several characteristics

that are important for a good performance metric. %ince a mean value is calcu-

lated directly from the more basic performance metrics described in )hapter 7,

any such mean value should also satisfy all of those characteristics.

$or instance, if time values are to be averaged together, then the resulting

mean value should be 'irect() proportiona( to the total weighted time. Thus, if the

)*) 0t1er t'pes of means 2



total execution time were to double, so would the value of the corresponding

mean, as desired. )onversely, since a rate metric is calculated by dividing the

number of operations executed by the total execution time, a mean value calcu-

lated with rates should be in*erse() proportiona( to the total weighted time. That

is, if the total execution time were to double, the value of the corresponding mean

of the rates should be reduced to one-half of its initial value. 6iven these basic

assumptions, we can now determine whether the arithmetic mean, geometric

mean, and harmonic mean produce values that correctly summarize both execu-

tion times and rates.

Throughout the following discussion, we assume that we have measured the

execution times of n benchmark programs2 on the same system. )all these times

&" 2 " " " n. $urthermore, we assume that the total work performed by each of

the n benchmark programs is constant. %peci/cally, we assume that each bench-

mark executes / ;oating-point operations. This workload then produces an

execution rate for benchmark program i of '" � (!&" ;oating-point operations

executed per second. "e relax this constant-work assumption in %ection 3.3.8

when we discuss how to calculate weighted means.

 ' ', .*e arit*#etic #ean

As discussed above, the arithmetic mean is de/ned to be

 #A � 2

n
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where the #" values are the individual measurements being averaged together. 0n

our current situation, #" � &" so that the mean execution time is

&A � 2

n

X

n
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This equation produces a value for &A that is directly proportional to the total

execution time. Thus, the arithmetic mean is the correct mean to summarize

execution times.

0f we use the arithmetic mean to summarize the execution rates, we /nd

'A � 2

n
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2 A %enc!mar& program is any program that is used to measure the performance of a computer system.
)ertain programs are sometimes de/ned as a standard reference that can be used for comparing per-
formance results. %ee )hapter + for more details.
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This equation produces a result that is directly proportional to the sum of the

inverse of the execution times. However, in terms of the characteristics described

in %ection 3.3.2, we need a value that is inversely proportional to the sum of the

times. "e conclude, then, that the arithmetic mean is inappropriate for summar-

izing rates.

 ' ' .*e *ar#onic #ean

The second type of mean that is commonly used by performance analysts is the

!armonic mean. 0t is de/ned to be

 #H � n
Pn

"�2 2!#"
�3:=�

where, as before, the #" values represent the n separate values that are being

averaged together.

0f we use the harmonic mean to summarize execution-time values, then #" � &"

and we obtain the following expression1

&H � n
Pn

"�2 2!&"
: �3:+�

This value is obviously not directly proportional to the total execution time, as

required in terms of the properties of a good mean in %ection 3.3.2. Thus, we

conclude that the harmonic mean is inappropriate for summarizing execution-

time measurements.

"e /nd that the harmonic mean is the appropriate mean to use for summar-

izing rates, however. 0n this case, #" � '" � (!&", giving

'H � n
Pn

"�2 2!'"

� n
Pn

"�2 &"!(
� (n

Pn
"�2 &"

: �3:9�

This value, which is simply the total number of operations executed by all of the

programs measured divided by the sum of all of the execution times, is obviously

inversely proportional to the total execution time. Thus, the harmonic mean is

appropriate for summarizing rate measurements.

Example. )onsider the measurements shown in Table 3.7. The arithmetic

mean of the execution times is easily calculated using the sum of the total

times. The execution rates are calculated by dividing the total number of ;oat-

ing-point operations executed in each program by its corresponding execution

time. The harmonic mean of these rates is then found by calculating the value

'H � 8!� 2
5<8

� 2
3=+

� 2
5<8

� 2
52C

� 2
399

�. &otice that this value is the same as that

obtained by taking the ratio of the total number of ;oating-point operations

executed by all of the programs to the sum of their execution times  within the

error due to rounding off!. ^

)*) 0t1er t'pes of means).



 ' '/ .*e geo#etric #ean

%ome performance analysts have advocated the geometric mean as the appro-

priate mean to use when summarizing normalized numbers. 0n fact, it is the mean

that is used to summarize the normalized execution times measured in the %B*)

benchmark  see %ection 7.3.5!. 0t also has been suggested that it is the most

appropriate mean to use when summarizing measurements with a wide range

of values since a single value has less in;uence on the geometric mean than it

would on the value of the arithmetic mean.

The geometric mean is de/ned to be the nth root of the product of the n

individual #" values. That is,

 #6 � n ��������������������������������
#2#7 # # # #" # # # #n

$ �
Y

n

"�2

#"

ÿ !2!n

: �3:C�

4nfortunately, as we will see below, the geometric mean is not an appropriate

mean to summarize either times or rates, irrespective of whether they are normal-

ized.

Broponents of the geometric mean say that one of its key advantages is that it

maintains consistent relationships when comparing normalized values regardless

of the basis system used to normalize the measurements. To test this assertion,

we compare the performance of three different computer systems when executing

/ve different benchmark programs. The programs are run on the different sys-

tems, producing the execution-time measurements shown in Table 3.3. 4sing the

geometric mean of these measurements to compare these systems shows that )3

performs the best, followed by )7 and )2, in that order. &ormalizing the mea-

surements using )2 as the basis produces the same rank ordering of systems, as
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-a%&e )* * $n e!ample of calculating t#e #armonic mean

?easurement  i! &"  s! (  2<C $@>B! '"  ?$@>B%!

2 372 23< 5<8

7 53= 2=< 3=+

3 795 228 5<8

5 =<2 787 52C

8 597 29+ 399

P8
"�2 #" 7275 955

&A 578

'H 3C=
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shown in Table 3.5. %imilarly, Table 3.8 shows that the same ordering is again

preserved when all of the measurements are normalized relative to system )7.

4nfortunately, although the geometric mean produces a consistent ordering of

the systems being compared, it is the wrong ordering. Table 3.= shows the sums

of the execution times of the benchmark programs for each system along with the

arithmetic means of these execution times. "hen these times are used to rank the

performances of the three different systems, we see that )7 performs the bestF

that is, it produces the shortest execution time, followed by )2 and then )3. %ince

the execution time is the measure of performance in which we are ultimately most

interested, it is apparent that the geometric mean produced the wrong ordering.

"e conclude that, although the geometric mean is consistent regardless of the

normalization basis, it is consistently wrong.

0t is easy to see why the geometric mean produces the wrong ordering when it

is used to average together execution times. 0n this case, #" � &", and

&6 �
Y

n

"�2

&"

ÿ !2!n

: �3:2<�

This value is obviously not directly proportional to the total execution time.

%imilarly, averaging together execution rates with the geometric mean produces

'6 �
Y

n

"�2
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ÿ !2!n
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which is not inversely proportional to the total execution time. :oth &6 and '6

violate the characteristics of a good mean value, forcing the conclusion that the

geometric mean is inappropriate for summarizing both execution times and

rates, irrespective of whether they are normalized.

)*) 0t1er t'pes of means

-a%&e )*)* E!ecution times of five %enc#mar& programs e!ecuted on t#ree different

systems

Brogram )2 )7 )3

2 52+ 755 235

7 93 +< +<

3 == 283 238

5 3C,55C 33,87+ ==,<<<

8 ++7 3=9 3=C

6eometric mean 89+ 8<3 5CC

Gank 3 7 2

))
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-a%&e )*4* '#e e!ecution times of t#e %enc#mar& programs in

'a%le ()( normali*ed +it# respect to t#at of S,

Brogram )2 )7 )3

2 2.< <.8C <.37

7 2.< <.95 <.98

3 2.< 7.37 7.<8

5 2.< <.98 2.=+

8 2.< <.59 <.58

6eometric mean 2.< <.9= <.95

Gank 3 7 2

-a%&e )*!* '#e e!ecution times of t#e %enc#mar& programs in

'a%le ()( normali*ed +it# respect to t#at of S-

Brogram )2 )7 )3

2 2.+2 2.<< <.88

7 2.2C 2.<< 2.<<

3 <.53 2.<< <.99

5 2.29 2.<< 2.C+

8 7.2< 2.<< 2.<<

6eometric mean 2.2+ 2.<< <.CC

Gank 3 7 2

-a%&e )*(* '#e total and average e!ecution times of t#e

%enc#mar& programs in 'a%le ()()

Brogram )2 )7 )3

2 52+ 755 235

7 93 +< +<

3 == 283 238

5 3C,55C 33,87+ ==,<<<

8 ++7 3=9 3=C

Total time 5<,+9+ 35,3=7 ==,+C9

Arithmetic mean 928+ =9+7 23,357

Gank 7 2 3

)4



 ' '4 )eig*ted #eans

The above de/nitions for the arithmetic and harmonic means implicitly assume

that each of the n individual measurements being averaged together is equally

important in calculating the mean. 0n many situations, however, this assumption

need not be true. $or instance, you may know that half of the time you use your

computer system you are running program 2, with the remaining time split

evenly between four other application programs. 0n this case, then, you would

like the mean value you calculate to re;ect this mix of application-program

usage.

This type of 0eig!te' mean can easily be calculated by assigning an appro-

priate fraction, or 0eig!t, to the measurement associated with each program.

That is, a value *" is assigned to program i such that *" is a fraction representing

the relative importance of program i in calculating the mean value, and

X

n

"�2

*" � 2: �3:27�

0n the situation mentioned above, program 2 is used half of the time, so *" � <:8.

The other four programs are used equally in the remaining half of the time,

giving *7 � *3 � *5 � *8 � <:278. 6iven these weights, the formula for calcu-

lating the arithmetic mean becomes

 #A w �
X

n

"�2

*"#" �3:23�

and the harmonic mean becomes

 #H w � 2
Pn

"�2 *"!#"
: �3:25�

"e ignore the geometric mean in this discussion since it is not an appropriate

mean for summarizing either execution times or rates.

 '/ 5uanti"&ing !aria$i%it&

"hile mean values are useful for summarizing large amounts of data into a

single number, they unfortunately hide the details of how these data are actually

distributed. 0t is often the case, however, that this distribution, or the *aria%i(it)

in the data, is of more interest than the mean value.

A !istogram is a useful device for displaying the distribution of a set of mea-

sured values. To generate a histogram, /rst /nd the minimum and maximum

values of the measurements. Then divide this range into % subranges. *ach of

)*4 5uantif'ing #aria%i&it')!



these subranges is called a histogram ce(( or %uc&et. &ext, count the number of

measurements that fall into each cell. A plot of these counts on the vertical axis

with the cells on the horizontal axis in a bar-chart format is the histogram. 0t is

also possible to normalize the histogram by dividing the count in each cell by the

total number of measurements. The vertical axis then represents the fraction of

all measurements that falls into that cell.

>ne dif/culty in constructing a histogram is determining the appropriate size

for each cell. There is no hard and fast rule about the range of values that should

be grouped into a single cell, but a good rule of thumb is that the width of the

cells should be ad(usted so that each cell contains a minimum of four or

/ve measurements.  This rule of thumb comes indirectly from our typical

assumptions about the distribution of measurement errors, which is discussed

in )hapter 5.!

Example. )onsider an experiment in which the performance analyst measures

the sizes of messages sent on two different computer networks. The average

message size for network A was calculated to be 25.C kbytes, while the average

for network : was found to be 25.+ kbytes. >n the sole basis of these mean

values, the analyst may conclude that the characteristics of the message traf/c

carried on each network are roughly similar. To verify this conclusion, the

message-size measurements are grouped into histogram cells, each with a

width of 8 kbytes, as shown in Table 3.+. That is, the /rst cell is the number

of messages within the range <E8 kbytes, the second cell counts the number of

messages within the range 8E2< kbytes, and so forth. As shown in the plots of

these two histograms in $igures 3.2 and 3.7, the messages on the two networks

have completely different distributions, even though they have almost identical

means. ^

This example demonstrates the problem with relying on a single value to

characterize a group of measurements. 0t also shows how the additional detail

in a histogram can provide further insights into the underlying system behavior.

However, while the two histograms in this example are obviously substantially

different, visually comparing two histograms can be imprecise. $urthermore,

histograms can often provide too much detail, making it dif/cult to quantita-

tively compare the spread of the measurements around the mean value. "hat is

needed, then, is a single number that somehow captures how `spread out' the

measurements are. 0n con(unction with the mean value, this in'e, of 'ispersion

provides a more precise metric with which to summarize the characteristics of a

group of measurements. The question then becomes one of choosing an appro-

priate metric to quantify this dispersion.

Berhaps the simplest metric for an index of dispersion is the range. The range is

found by taking the difference of the maximum and minimum of the measured

values1

"#erage performance an$ #aria%i&it')(



+max � max

 i
#" ÿ min

 i
#": �3:28�

Although it is simple to calculate, the range does not use all of the available

information in summarizing the dispersion. Thus, it is very sensitive to a few

extreme values that need not be representative of the overall set of measure-

ments. A slight improvement is to /nd the maximum of the absolute values of

the difference of each measurement from the mean value1

!max � max

 !
%#" ÿ  #%: �3:2=�
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-a%&e )*,* '#e num%er of messages of t#e indicated si*es sent

on t+o different net+or&s

?essage size  kbytes! &etwork A &etwork :

< " #" " 8 22 3C

8 " #" " 2< 7+ 78

2< " #" " 28 52 29

28 " #" " 7< 37 8

7< " #" " 78 72 2C

78 " #" " 3< 27 57

3< " #" " 38 5 <

$igure 3.2 A histogram plot of the data for network A from Table 3.+.
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Again, however, this value does not ef/ciently take advantage of all of the

available information, and is overly sensitive to extreme values.

A better, and perhaps the most commonly accepted, index of dispersion is the

variance. The samp(e *ariance is our calculated estimate of the actual variance of

the underlying distribution from which our measurements are taken. 0t incorpo-

rates all of the information available about the difference of each measurement

from the mean value. 0t is de/ned to be

,
7 �

Pn
"�2�#" ÿ  #�7

nÿ 2
�3:2+�

where the #" are the n independent measurements, and  # is the corresponding

arithmetic mean. &otice in this equation that only nÿ 2 of the differences #" ÿ  #

are independent. That is, the nth difference, #n ÿ  #, could be computed given the

other nÿ 2 differences. Thus, the number of 'egrees of free'om in this equation,

which is the number of independent terms in the sum, is nÿ 2. As a result, the

sum of the squared differences in this equation is divided by nÿ 2 instead of n.

This equation de/nes the sample variance, but it is not particularly useful for

calculating the variance given a set of measurements. $urthermore, this de/ni-

tion requires our knowing the mean value,  #, before calculating the variance.

This implies that two passes must be made through the data, once to calculate

the mean and a second pass to /nd the variance. This requirement makes it

dif/cult to calculate the variance `on the ;y' as the data are being generated,

"#erage performance an$ #aria%i&it'

$igure 3.7 A histogram plot of the data for network : from Table 3.+.
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for instance. To facilitate calculating the variance, we can expand *quation

 3.2+! to give

,
7 �

Pn
"�2�#" ÿ  #�7

nÿ 2
� 2

nÿ 2

X

n

"�2

�#7
" ÿ 7  ##" �  #

7�

� n
Pn

"�2 #
7
" ÿ �

Pn
"�2 #"�

7

n�nÿ 2� :

�3:29�

This equation shows that, to calculate the variance, we need to make only a

single pass through the data to /nd the sum of the #" values and the sum of the #7
"

values. "e can then use these sums to calculate both the mean and the variance.

>ne of the problems in using the variance to obtain an indication of how large

the dispersion of data is relative to the mean is that the units of the variance are

the square of the units of the values actually measured. 0n the above example, for

instance, the units of the individual measurements, and so, therefore, of the

mean, are bytes. The units of the variance, however, are bytes squared. This

squared relationship of the units of the variance to those of the mean makes it

dif/cult to compare the magnitude of the variance directly with the magnitude of

the mean.

A more useful metric for this type of comparison is the stan'ar' 'e*iation,

which is de/ned as the positive square root of the variance. That is, the sample

standard deviation is
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nÿ 2
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"ith this de/nition, the mean and standard deviation have the same units,

making comparisons easier. $inally, use of the coef-cient of *ariation  )>I!

eliminates the problem of speci/c units by normalizing the standard deviation

with respect to the mean. The coef/cient of variation is de/ned to be

-./ � ,!  # �3:7<�

and so provides a dimensionless value that compares the relative size of the

variation in the measurements with the mean value of those measurements.

 '4 0u##ar&

%everal different types of means can be used to summarize a collection of mea-

surements with a single number. Although this summarization hides much of the

information provided by the n different measurements, human nature persists in

wanting to reduce performance to a single number to simplify the task of making

)*! 6ummar')2



comparisons. )onsequently, it is important for the performance analyst to

understand the de/nitions of the different means, and how to use each appro-

priately. The following points summarize how to select an appropriate mean for

a given situation.

.  he arithmetic mean. The arithmetic mean is the appropriate choice whenever

the sum of the raw results has some physical meaning and is an `interesting'

value. $or example, the sum of execution times is a total execution time, which

is both meaningful and interesting. %imilarly, the total number of bytes sent by

messages on a communications network has physical meaning and by itself is

an interesting value. The arithmetic mean should not be used to summarize

rates.

.  he harmonic mean. The harmonic mean is the appropriate mean for summar-

izing rates since it reduces to the total number of operations executed by all of

the test programs divided by the total time required to execute those opera-

tions, which is simply the de/nition of the total execution rate. 0t is not

appropriate to use the harmonic mean to summarize measurements that

should be summarized using the arithmetic mean, such as execution times.

.  he geometric mean. Although it has been advocated as the best mean to use

for summarizing normalized values, the geometric mean is not appropriate for

summarizing either rates or times, irrespective of whether they are normalized.

. !ormali"ation. >wing to the mathematical dif/culties of averaging together

normalized values, it is best to /rst calculate the appropriate mean and then

perform the desired normalization.

0n addition to these mean values, we introduced the median and the mode as

other measures of central tendency. As the middle value in a collection of mea-

surements, the median is useful when the measurements have a few outlying

values that tend to distort the intuitive sense of the measurement's central ten-

dency. The mode is useful for quantifying the most common value among a set of

categorical measurements.

>ne of the problems with these single-value summaries of a collection of

measurements is that they hide their variability. A histogram is a useful graphical

representation for displaying this variability. The variance  or the standard

deviation! is a statistic that can be used to summarize in a single number the

variability shown in a histogram.

 '6 7or "urt*er reading

. This paper describes the three types of means and argues for the use of the

geometric mean for averaging normalized numbers1
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B. J. $leming and J. J. "allace, `How &ot To @ie "ith %tatistics1 The )orrect

"ay To %ummarize :enchmark Gesults,' .ommunications of t!e 1.M,

Iol. 7C, &o. 3, ?arch 2C9=, pp. 729E772.

. The following paper, however, argues against the use of the geometric mean.

0t also introduces several of the ideas of what constitutes a good mean that

were presented in this chapter1

James *. %mith, `)haracterizing )omputer Berformance with a %ingle

&umber,' .ommunications of t!e 1.M, >ctober 2C99, pp. 27<7E27<=.

Taken together, these two papers provide an interesting glimpse into the

controversy that can arise among performance analysts over such fundamen-

tal concepts as selecting an appropriate mean with which to summarize a set

of measured values.

. Almost any introductory statistics text will provide a development of the basic

types of means and the variance.

 '8 9:ercises

2. "hat aspects of a computer system's performance is it reasonable to summar-

ize with a single number#

7. 0t has been said  %mith, 2C99! that the geometric mean is consistent, but it is

consistently wrong. A mean is calculated according to a well-de/ned formula,

so in what sense can it be wrong#

3. "hich measure of central tendency, the mean, median, or mode, should be

used to summarize the following types of data1 size of messages in a commu-

nication network, number of cache hits and misses, execution time, ?$@>B%,

?0B%, bandwidth, latency, speedup, price, image resolution, and communi-

cation throughput# $or those for which the mean is the best choice, which

mean should be used  arithmetic, geometric, or harmonic!#

5. Table 3.9 shows the execution times measured for several different benchmark

programs when they are executed on three different systems. The last column

shows the number of instructions executed by each of the benchmark pro-

grams. Assuming that each benchmark should be equally weighted, calculate

the following values1

 a! the average execution time,

 b! the average ?0B% rate, and

 c! the average speedup and relative change when using )3 as the basis

system.

)*, 78ercises4.



 d! Are these average values reasonable summaries of the data presented#

"hy or why not#

8. Gepeat the above problem when benchmark program 2 represents 5<K of the

expected workload, benchmark program 7 38K, benchmark program 3 28K,

and benchmark programs 5 and 8 each 8K.

=. Letermine the coef/cient of variation of the execution times for each system

shown in Table 3.9.

"#erage performance an$ #aria%i&it'

-a%&e )*/* '#e times measured on several different systems for a fe+ %enc#mar&

programs

Brogram )2 )7 )3 &umber of instructions

2 33.5 79.9 79.3 2:58 & 2<2<

7 2C.C 77.2 78.3 +:C+ & 2<C

3 =.8 8.3 5.+ 3:22 & 2<C

5 95.3 +8.9 9<.2 3:++ & 2<2<

8 2<2.2 CC.5 +<.7 5:8= & 2<2<
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