

Business Intelligence and Corporate Performance Management

Information Technology For Management 6th Edition

Turban, Leidner, McLean, Wetherbe Lecture Slides by L. Beaubien, Providence College

John Wiley & Sons, Inc.

Chapter 11

Learning Objectives

- Understand the drivers for BI
- Understand the structure and components of BI
- OLAP, querying, multidimensional analysis
- Data visualization and BI
- Real time BI and competitive Intelligence

BI components

Data warehouse

Business analytics

Business Performance Management

User Interface

BI components and Architecture

Business Value of Bl

TABLE 11.1 Business Value of BI Analytical Applications							
Analytical Application	Business Question	Business Value					
Customer segmentation	What market segments do my customers fall into and what are their characteristics?	Personalize customer relationships for higher customer satisfaction and retention.					
Propensity to buy	Which customers are most likely to respond to my promotion?	Target customers based on their need to increase their loyalty to your product line. Also, increase campaign profitability by focusing on the most likely to buy.					
Customer profitability	What is the lifetime profitability of my customers?	Make business interaction decisions based on the overall profitability of customers or customer segments.					
Fraud detection	How can I detect which transactions are likely to be fraudulent?	Quickly detect fraud and take immediate action to minimize cost.					
Customer attrition	Which customers are at risk of leaving?	Prevent loss of high-value customers and le go of lower-value customers.					
Channel optimization	What is the best channel to reach my customers in each segment?	Interact with customers based on their preference and your need to manage cost.					

Source: Ziama and Kasher (2004). Courtesy of Teradata, divison of NCR Corp.

BI, Data, and the Warehouse

Business Intelligence

7

Analytics in Example

Knowledge Discovery

TABLE 11.3 Stages in the Evolution of Knowledge Discovery

Evolutionary Stage	Business Question	Enabling Technologies	Characteristics
Data collection (1960s)	What was my total revenue in the last five years?	Computers, tapes, disks	Retrospective, static data delivery
Data access (1980s)	What were unit sales in New England last March?	Relational databases (RDBMS), structured query language (SQL)	Retrospective, dynamic data delivery at record level
Data warehousing and decision support (early 1990s)	What were the sales in region A, by product, by salesperson?	OLAP, multidimensional databases, data warehouses	Retrospective, dynamic data delivery at multiple levels
Intelligent data mining (late 1990s)	What's likely to happen to the Boston unit's sales next month? Why?	Advanced algorithms, multiprocessor computers, massive databases	Prospective, proactive information delivery
Advanced intelligent system Complete integration	What is the best plan to follow? How did we perform	Neural computing, advanced AI models, complex optimization,	Proactive, integrative; multiple business partners
(2000-2004)	compared to metrics?	Web Services	

Factors of Multidimensionality

Dimensions

Data Visualization

	Planes		Tra	iins	Automobiles		
	This Year	Next Year	This Year	Next Year	This Year	Next Year	
Canada	740	888	140	168	640	768	
Japan	430	516	290	348	150	180	
France	320	384	460	552	210	252	
Germany	425	510	430	516	325	390	

(a)

			Hours	
		This Year Next Year		
	Canada	740		-
	Canada	/40	888	Н
Planes	Japan	430	516	
	France	320	384	
	Germany	425	510	
	Canada	140	168	
Traine	Japan	290	348	
manno	France	460	552	
	Germany	430	516	
	Canada	640	768	
Automobiles	Japan	150	180	
- accinobiloo	France	210	252	
	Germany	325	390	+
Travel	Country +		+	

(b)

• V	Vorksheet1-	View1-TU1	ORIAL		· 🔺]
				Hour	s	
			This Year	Next Year	÷	
	Canada		740	888		
	Japan		430	516		
Planes		France	320	384		
	_	Germany	425	510		• The software adds Total rows
	Europe	Total	745	894		- The contracte adds Forth Town.
	Canada		140	168		• The software calculates
	Japan		290	348		"Novt Year" totale
Trains		France	460	552		Next feat totals.
	1	Germany	430	516		
	Europe	Total	890	1068		
	Canada		640	768		
	Japan		150	180		
Automobiles		France	210	252		
		Germany	325	390		
	Europe	Total	535	642	+	Showe how formula 1 calculator calls
Travel	Country 4			•		(in this case, the colle in
	Next Year = (This Year)*1.2					

11

GIS Functions

Real Time BI

BI Monitoring and Evaluation

- Benchmarks
- Scorecards
- BAM (Business activity monitoring)
- Dashboards

BI monitoring and Evaluation (Continued)

BI monitoring and Evaluation (Continued)

16

Managerial Issues

- **Cost/Benefit and Justification Issues.**
- Why BI projects fail.
- Systems Development and Integration.
- Legal / Ethical Issues

Chapter 11

Copyright © 2008 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful. Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.

Management Decision Support and Intelligent Systems

Information Technology For Management 6th Edition

Turban, Leidner, McLean, Wetherbe Lecture Slides by L. Beaubien, Providence College

John Wiley & Sons, Inc.

Chapter 12

Learning Objectives

- Describe the concepts of managerial, decision making, and computerized support for decision making.
- Justify the role of modeling and models in decision making.
- Describe decision support systems (DSSs) and their benefits, and describe the DSS structure.
- Describe the support to group (including virtual) decision making.
- Describe organizational DSS and executive support systems, and analyze their role in management support.
- Describe artificial intelligence (AI) and list its benefits and characteristics.

Learning Objectives (Continued)

- List the major commercial AI technologies
- Define an expert system and its components and describe its benefits and limitations.
- Describe natural language processing and compare it to speech understanding.
- Describe Artificial Neural Networks (ANNs) and their characteristics and major applications. Compare it to fuzzy logic and describe its role in hybrid intelligent systems.
- Describe automated decision support advantages and areas of application
- Describe special decision support applications including the support of frontline employees.

Decision Process

Decision Complexity

5

Characteristics and Capabilities of DSSs

- Sensitivity analysis is the study of the impact that changes in one (or more) parts of a model have on other parts.
- What-if analysis is the study of the impact of a change in the assumptions (input data) on the proposed solution.
- Goal-seeking analysis is the study that attempts to find the value of the inputs necessary to achieve a desired level of output.

Structure and Components of DSSs

- Data management subsystem contain all the data that flow from several sources.
- Model management subsystem contains completed models and the building blocks necessary to develop DSS applications.
- User interface covers all aspects of the communications between a user and the DSS.
- Users are the persons faced with the problem or decision that the DSS is designed to support.
- Knowledge-based subsystems provide the required expertise for solving some aspects of the problem.

DSS Process

Organizational Decision Support System (ODSS)

- Organizational Decision Support System (ODSS) is a DSS that focuses on an organizational task or activity involving a sequence of operations and decision makers and provides the following:
 - It affects several organizational units or corporate problems;
 - It cuts across organizational functions or hierarchical layers;
 - Olt involves computer-based and (usually) communications technologies.

Executive Information (Support) Systems

- Executive information system (EIS) also known as an executive support system (ESS), is a computer-based technology designed specifically for the information needs of top executives and provides for:
 - Rapid access to timely information;
 - O Direct access to management reports;
 - Very user friendly and supported by graphics.
 - Exception reporting reporting of only the results that deviate from a set of standards.
 - Drill down reporting investigating information in increasing detail.
 - C Easily connected within online information services and e-mail.
 - Include analysis support, communications, office automation and intelligence support.

Enterprise Decision Simulator

- Technology that supports the informational needs of executives in the so-called "corporate war room".
- Management Cockpit is a strategic management room that enables top-level decision makers to pilot their businesses better.
- The environment encourages more efficient management meetings and boosts team performance via effective communication.

Enterprise Decision Simulator (Continued)

- Key performance indicators and information relating to critical success factors are displayed graphically on the walls of the meeting room.
- The cockpit environment is integrated with SAP's ERP products and reporting systems.
- External information can be easily imported to the room to allow competitive analysis.

Intelligent Systems

Expert systems (ESs) are attempts to mimic human experts. It is decision-making software that can reach a level of performance comparable to a human expert in some specialized and usually narrow problem area. The idea is simple: expertise is transferred from an expert or other source of expertise to the computer.

- The transfer of expertise from an expert to a computer and then to the user involves four activities:
 - O Knowledge acquisition (from experts or other sources)
 - OKnowledge representation (organized as rules or frames in the computer)
 - O Knowledge inferencing is performed in a component called the inference engine of the ES and results in the recommendation.
 - O Knowledge transfer to the user (the expert's knowledge has been transferred to users).

Intelligent Systems (cont'd)

The Benefits of Expert Systems

Benefit	Description				
Increased output and productivity	ESs can configure for each custom order. Increasing production capabilities				
Increased quality	ESs can provide consistent advise and reduce error rates.				
Capture and dissemination of scarce expertise	Expertise from anywhere in the world can be obtained and used.				
Operation in hazardous environments	Sensors can collect information that an ES interprets, enabling human workers to avoid hot, humid, or toxic environments.				
Accessibility to knowledge and help desks	ESs can increase the productivity of help – desk employee, or even automate this function.				
Reliability	ESs do not become tired or bored, call in sick or go on strike. They consistently pay attention to details.				
Ability to work with incomplete or uncertain information	Even with answer of ' don't know ' an ES can produce an answer, though it may not be a definite one.				
Provision of training	The explanation facility of an ES can serve as a teaching device and knowledge base for novices.				
Enhancement of decision- making and problem-solving capabilities	ESs allow the integration of expert judgment into analysis (e.g., diagnosis of machine malfunction and even medical diagnosis).				
Decreased decision-making time	ESs usually can make faster decision than humans working alone.				
Reduce downtime	ESs can quickly diagnose faster decisions than humans and prescribe repairs.				

Natural Language Processing & Voice Technologies

- Natural language processing (NLP): Communicating with a computer in English or whatever language you may speak.
- Natural language understanding/speech (voice) recognition: The ability of a computer to comprehend instructions given in ordinary language, via the keyboard or by voice.
- Natural language generation/voice synthesis: Technology that enables computers to produce ordinary language, by "voice" or on the screen, so that people can understand computers more easily.

Neural Networks

- Neural networks are a system of programs and data structures that approximates the operation of the human brain.
- Neural networks are particularly good at recognizing subtle, hidden, and newly emerging patterns within complex data as well as interpreting incomplete inputs.

Fuzzy Logic

- Fuzzy logic deals with the uncertainties by simulating the process of human reasoning, allowing the computer to behave less precisely and logically than conventional computers do.
 - OInvolves decision in gray areas.
 - OUses creative decision-making processes.

Simulation Systems

Simulation generally refers to a technique for conducting experiments (such as "what-if") with a computer on a model of a management system. Because DSS deals with semi structured or unstructured situations, it involves complex reality, which may not be easily represented by optimization or other standard models but can often be handled by simulation. Therefore, simulation is one of the most frequently used tools of DSSs.

Advantages of Simulation.

○ Allows for inclusion of the real-life complexities of problems.

○ Is descriptive.

- O Can handle an extremely wide variation in problem types.
- Can show the effect of compressing time.
- O Can be conducted from anywhere.

Why Managers Need IT Support

- A key to good decision making is to explore and compare many relevant alternatives. The more alternatives that exist, the more computerassisted search and comparisons are needed.
- Typically, decisions must be made under time pressure. Frequently it is not possible to manually process the needed information fast enough to be effective.

Why Managers Need It Support (Continued)

- It is usually necessary to conduct a sophisticated analysis in order to make a good decision. Such analysis requires the use of modeling.
- Decision makers can be in different locations and so is the information. Bringing them all together quickly and inexpensively may be a difficult task.

Managerial Issues

- Cost justification, intangible benefits. While some of the benefits of management support systems are tangible, it is difficult to put a dollar value on the intangible benefits of many such systems.
- Documenting personal DSS. Many employees develop their own DSSs to increase their productivity and the quality of their work. It is advisable to have an inventory of these DSSs and make certain that appropriate documentation and security measures exist.
- Security. Decision support systems may contain extremely important information for the livelihood of organizations. Taking appropriate security measures, especially in Web-based distributed applications, is a must.
- Ready-made commercial DSSs. With the increased use of Web-based systems and ASPs, it is possible to find more DSS applications sold off the shelf, frequently online. The benefits of a purchased or leased DSS application sometimes make it advisable to change business processes to fit a commercially available DSS.

Managerial Issues (Continued)

- Intelligent DSS. Introducing intelligent agents into a DSS application can greatly increase its functionality.
- Organizational culture. The more people recognize the benefits of a DSS and the more support is given to it by top management, the more the DSS will be used.
- Embedded technologies. Intelligent systems are expected to be embedded in at least 20 percent of all IT applications in about 10 years. It is critical for any prudent management to closely examine the technologies and their business applicability.
- Ethical issues. Corporations with management support systems may need to address some serious ethical issues such as privacy and accountability.

Chapter 12

Copyright © 2008 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful. Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. The purchaser may make back-up copies for his/her own use only and not for distribution or resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.