
Rekayasa Internet
Susmini I. Lestariningati, M.TTeknik Komputer

Examples of Cisco router products:
Cisco 700 series

Cisco 1000 series

Cisco 1600 series

Cisco 2500 series

Cisco 2600 series

Cisco 3600 series

Cisco 4500 series

For example...To understand routing, imagine the

Berkeley Hotel and all the other fellow hotels in its chain

have trained their operators to be more efficient.When

guest Jane Tipton at the Berkeley Hotel calls guest Rita

Brown at the Ashton Hotel, the operator at the Berkeley

knows the best way to patch that call through. He sends

it to the Pembrook operator, who passes it to the

Ashton. If there’s ever a problem with the switchboard at

the Pembrook, the operator at the Berkeley can use an

alternate route to get the call through—for example, by

routing it to another hotel’s switchboard, which in

turns sends the call to the Ashton.

6

Uninterruptible Power Supplies

Uninterruptible power supplies (UPS) are not essential to networks

but are highly recommended. They use constantly recharging

batteries to prevent momentary power outages from shutting

down your network servers or clients. Most of them also

provide protection against potentially damaging voltage spikes

and surges.

Bridges

As the network becomes crowded with users or traffic, bridges

can be used to break them into multiple segments. Switches

are basically multiple bridges in a single device. Bridges help

reduce congestion by keeping traffic from traveling onto the

network “backbone” (the spine that connects various segments

or “subnetworks”). If a user sends a message to someone in

his own segment, it stays within the local segment. Only those

packets intended for users on other segments are passed onto

the backbone. In today’s networks, switches are used where

the simplicity and relative low cost of bridges are desired.

3. Process to
Process

 TCP and UDP

Reminder from last lecture

• IP sends data from place to place. TCP or UDP sit above it at
either end.

• When you use the internet you use addresses like http://
facebook.com or lestariningati@yahoo.com

• These addresses must then be converted to an IP address e.g.
144.32.100.24

• This means that data (packets) can get from A to B.
• But what happens if data is lost, how do we know where they are

going to and how can we put packets back together into data?

Emailing a friend

your computer

G/169
router

UNIKOM

JANET
transatlantic
cable

US backbone
LAN

your friend's
computer

ISP

Types of Data Deliveries

Routing - Network Layer

• How do packets know where to go?
• This problem is known as routing.
• The oldest (and easiest) solution is static routing.
• Each computer has a table saying where to go to get to each other

computer.
• On a Local Area Network (LAN) list all machines on your subnet

and the address of the external router for everything else.
• Most machines only need to know how to get to their nearest

router.

TCP and UDP - Transport Layer

• Once we’ve got our IP packet safely to its destination what
happens next?

• Having stripped off the header, the first thing we find is another
header.

• The second header provides information on which port to enter the
machine on and where to send the reply.

• It also provides a checksum to check the data is valid.
• There’s TCP and UDP on Transport Layer

Introduction - Transport Layer

• On a single device, people can use multiple services such as e-mail, the web,
and instant messaging to send messages or retrieve information.

• Applications such as e-mail clients, web browsers, and instant messaging
clients allow people to use computers and networks to send messages and
find information.

• Data from each of these applications is packaged, transported, and delivered
to the appropriate server daemon or application on the destination device.

• The processes described in the OSI Transport layer accept data from the
Application layer and prepare it for addressing at the Network layer. The
Transport layer is responsible for the overall end-to-end transfer of application
data. The role of the Transport layer is encapsulating application data for use
by the Network layer.

Journey of an email

To: dave@distant.com
From: richard@manor

Dave,
 Great to see you
the other day...

Look up IP
name for
distant.com

Dav e, Gr

eat to s

Packetise
the data

Dav

Add TCP
header to
first packet

Dav

Add IP
header to
front of that

Get first
hop from
routing table

SYN
SYN,ACK

ACK
Set up
the TCP
connection

Send the
first packet
to its first
hop

And so on
for further
hops.

Destination gets packet
and returns ACK

Start sending rest of data

Transport Layer

T h e Tr a n s p o r t l a y e r a l s o
encompasses these functions:

a) E n a b l e s m u l t i p l e
applications to communicate
over the network at the
same time on a single device

b) Ensures that, if required, all
the data is received reliably
and in order by the correct
application

c) Employs error handl ing
mechanisms

Purpose of Transport Layer

• Any host may have multiple
a p p l i c a t i o n s t h a t a r e
communicating across the
network. Each of these
a p p l i c a t i o n s w i l l b e
communicating with one or
more applications on remote
hosts. It is the responsibility
of the Transport layer to
m a i n t a i n t h e m u l t i p l e
communication streams
between these applications.

1. Tracking the individual communication between applications
on the source and destination hosts:

• As each application creates a
stream data to be sent to a
remote application, this data
must be prepared to be sent
across the media in manageable
pieces. The Transport layer
protocols describe services that
segment this data from the
Application layer. This includes
the encapsulation required on
each piece of data. Each piece of
application data requires headers
to be added at the Transport
layer to indicate to which
communication it is associated.

2. Segmenting data and managing each piece:
• At the receiving host, each

piece of data may be directed
to the appropriate application.
Additionally, these individual
pieces of data must also be
reconstructed into a complete
data stream that is useful to
the Application layer. The
protocols at the Transport layer
describe the how the Transport
layer header information is
used to reassemble the data
pieces into streams to be
passed to the Application layer.

3. Reassembling the segments into streams of application data:

4. Identifying the different applications:
In order to pass data streams to the proper applications, the
Transport layer must identify the target application. To accomplish
this, the Transport layer assigns an application an identifier. The
TCP/IP protocols call this identifier a port number.
Each software process that needs to access the network is
assigned a port number unique in that host. This port number is
used in the transport layer header to indicate to which application
that piece of data is associated.

What are ports?

• Ports are conceptual “points of entry” into a host computer.
• They do not correspond with real hardware but are an abstraction

for convenience.
• Usually a service is associated with a port (e.g. http on port 80).
• Servers “listen on a port” for connection attempts.
• Ports provide one level of internet security.
• Generally, low number ports (<100) are reserved for special

services.

Transport Layer Ports

• Port numbers are used to
keep track of different
conversations that cross
the network at the same
time.

• Port numbers ident i fy
which upper layer service
is needed, and are needed
when a host communicates
with a server that uses
multiple services.

Ports for Clients

• Clients and servers both use ports to distinguish what process
each segment is associated with.

• Source ports, which are set by the client, are determined
dynamically, usually a randomly assigned a number above 1023.

Destination Port Source Port
1. Client requests a web page from server 1032 80

1032802. Server responds to client

FCS PREAMBLE DESTINATION ADDR
00 00 1B 12 23 34 SOURCE ADDR

00 00 1B 09 08 07 FIELD
TYPE

ETHERNET

6
Source IP Address; 128.66.12.2

Destination IP Address; 128.66.13.1
IP Header

TCP Header

IP
HEADER TCP

HEADER DATA

Source Port
5512 Destination Port

23

Telnet

DATA LINK
LAYER

NETWORK
LAYER

TRANSPORT
LAYER

APPLICATION
LAYER

Protocols and Port Numbers

FCS PREAMBLE DESTINATION ADDR
00 00 1B 12 23 34 SOURCE ADDR

00 00 1B 09 08 07 FIELD
TYPE

ETHERNET

17
Source IP Address; 128.66.12.2

Destination IP Address; 128.66.13.1

IP Header

UDP

IP
HEADER TCP

HEADER DATA

Source Port
5512 Destination Port

69

TFTP

DATA LINK
LAYER

NETWORK
LAYER

TRANSPORT
LAYER

APPLICATION
LAYER

Protocols and Port Numbers

TCP and UDP

• The TCP and UDP based services keep track of the various applications that are
communicating. To differentiate the segments and datagrams for each application,
both TCP and UDP have header fields that can uniquely identify these
applications.These unique identifiers are the port numbers.

• In the header of each segment or datagram, there is a source and destination port.
The source port number is the number for this communication associated with the
originating application on the local host. The destination port number is the number
for this communication associated with the destination application on the remote
host.

• Port numbers are assigned in various ways, depending on whether the message is
a request or a response. While server processes have static port numbers assigned
to them, clients dynamically chooses a port number for each conversation.

Position of UDP, TCP, and SCTP in TCP/IP suite

Socket

• The combination between IP address and port number is called
socket and it’s unique connection.

Port Numbers

• Well Known Ports (Numbers 0 to 1023) - These numbers are reserved for services and applications. They
are commonly used for applications such as HTTP (web server) POP3/SMTP (e-mail server) and Telnet. By
defining these well-known ports for server applications, client applications can be programmed to request a
connection to that specific port and its associated service.

• Registered Ports (Numbers 1024 to 49151) - These port numbers are assigned to user processes or
applications. These processes are primarily individual applications that a user has chosen to install rather
than common applications that would receive a Well Known Port. When not used for a server resource, these
ports may also be used dynamically selected by a client as its source port.

• Dynamic or Private Ports (Numbers 49152 to 65535) - Also known as Ephemeral Ports, these are usually
assigned dynamically to client applications when initiating a connection. It is not very common for a client to
connect to a service using a Dynamic or Private Port (although some peer-to-peer file sharing programs do).

• Using both TCP and UDP
- Some applications may use both TCP and UDP. For example, the low overhead of UDP enables DNS to

serve many client requests very quickly. Sometimes, however, sending the requested information may
require the reliability of TCP. In this case, the well known port number of 53 is used by both protocols
with this service.

Some Well-Known TCP Ports

Port Application Description
9 Discard Discard all incoming data port
7 Echo Echo
19 Chargen Exchange streams of data port
20 FTP-Data File transfer data port
21 FTP-CMD File transfer command port
23 Telnet Telnet remote login port
25 SMTP Simple Mail Transfer Protocol port
53 DOMAIN Domain Name Service
79 Finger Obtains information about active users
80 HTTP Hypertext Transfer Protocol port
88 Kerberos Authentication Protocol
110 POP3 PC Mail retrieval service port
119 NNTP Network news access port
161 SMTP Network Management
179 BGP Border Gateway Protocol
513 Rlogin Remote Login In

TCP Ports UDP Ports

TCP and UDP Ports

• Some applications, such as online games or VoIP, can tolerate
some loss of some data. If these applications used TCP, they may
experience large delays while TCP detects data loss and
retransmits data. These delays would be more detrimental to the
application than small data losses. Some applications, such as
DNS, will simply retry the request if they do not receive a response,
and therefore they do not need TCP to guarantee the message
delivery. The low overhead of UDP makes it very desirable for such
applications.

Determining the Need for Reliability

• Applications, such as databases, web pages, and e-mail, require that all
of the sent data arrive at the destination in its original condition, in order
for the data to be useful. Any missing data could cause a corrupt
communication that is either incomplete or unreadable. Therefore, these
applications are designed to use a Transport layer protocol that
implements reliability. The additional network overhead is considered to
be required for these applications.

• Other applications are more tolerant of the loss of small amounts of data.
For example, if one or two segments of a video stream fail to arrive, it
would only create a momentary disruption in the stream. This may appear
as distortion in the image but may not even be noticeable to the user.

Connectionless vs Connection-oriented Protocols

• Connection-oriented – Two computers
connect before sending any data, sender lets
receiver know that data is on the way; recipient
acknowledges receipt of data (ACK) or denies
receipt (NACK). The ACKing and NACKing is
called handshaking. (Type supported by TCP).
Reliable, but carries overhead burden.

• Connectionless – Computers involved know
nothing about each other or the data being
sent. Makes no attempt to cause networks
senders and receivers to exchange information
about the i r ava i l ab i l i t y o r ab i l i t y to
communicate with one another, “best effort”
delivery. (Type supported by IP, UDP). Not
reliable, but faster and may be good enough.
Also upper layer apps may worry about errors
and reliability processing, so no need to do it
twice.

TCP and UDP Protocols

• The two most common Transport layer protocols of TCP/IP
protocol suite are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). Both protocols manage the
communication of multiple applications. The differences between
the two are the specific functions that each protocol implements.

User Datagram Protocol (UDP)

• UDP is a simple, connectionless protocol, described in RFC 768. It
has the advantage of providing for low overhead data delivery. The
pieces of communication in UDP are called datagrams. These
datagrams are sent as "best effort" by this Transport layer protocol.

• Applications that use UDP include:
- Domain Name System (DNS)
- Video Streaming
- Voice over IP (VoIP)

Transmission Control Protocol (TCP)

• TCP is a connection-oriented protocol, described in RFC 793. TCP
incurs additional overhead to gain functions. Additional functions
specified by TCP are the same order delivery, reliable delivery, and
flow control. Each TCP segment has 20 bytes of overhead in the
header encapsulating the Application layer data, whereas each UDP
segment only has 8 bytes of overhead.

• Applications that use TCP are:
- 	 Web Browsers
- 	 E-mail
- 	 File Transfers

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP)

• The reliability of TCP communication is performed using connection-oriented sessions. Before a
host using TCP sends data to another host, the Transport layer initiates a process to create a
connection with the destination.

- Establishes a session between source host and source destination (this ensures that each
host is prepared and aware for the connection).

- The destination host sends acknowledgements to the source for the segments that it
receives.

- As the source receives an acknowledgement, it knows that the data has been successfully
delivered and can quit tracking that data.

- If the source does not receive an acknowledgement within a predetermined amount of time,
it retransmits that data to the destination.

- The establishment of the sessions creates overhead in the form of additional segments
being exchanged.

- There is also additional overhead on the individual hosts created by the necessity to keep
track of which segments are awaiting acknowledgement and by the retransmission process.

TCP Segment Structure

• Source port (16 bits) – identifies the sending port
• Destination port (16 bits) – identifies the receiving port
• Sequence number (32 bits) – has a dual role
• If the SYN flag is set, then this is the initial sequence number. The sequence number of the actual first data byte (and the

acknowledged number in the corresponding ACK) will then be this sequence number plus 1.
• If the SYN flag is clear, then this is the sequence number of the first data byte
• Acknowledgment number (32 bits)
• Data offset (4 bits) – specifies the size of the TCP header in 32-bit words
• Reserved (4 bits) – for future use and should be set to zero
• Flags (8 bits) (aka Control bits) – contains 8 1-bit flags
• Window (16 bits) – the size of the receive window, which specifies the number of bytes that the receiver is currently willing to

receive.
• Checksum (16 bits) – The 16-bit checksum field is used for error-checking of the header and data
• Urgent pointer (16 bits) – if the URG flag is set, then this 16-bit field is an offset from the sequence number indicating the last

urgent data byte.

 A sends SYN request to B
 B sends ACK response and SYN request to A
 A sends ACK response to B

A sends FIN request to B
B sends ACK response to A
B sends FIN request to A
A sends ACK response to B

TCP Segment Reassembly

• When services send data using TCP, segments may arrive at their destination
out of order. For the original message to be understood by the recipient, the
data in these segments is reassembled into the original order. Sequence
numbers are assigned in the header of each packet to achieve this goal.

User Datagram Protocol (UDP)

User Datagram Protocol

• UDP is a simple protocol that provides the basic Transport layer functions. It much lower
overhead than TCP, since it is not connection-oriented and does not provide the
sophisticated retransmission, sequencing, and flow control mechanisms.

• This does not mean that applications that use UDP are always unreliable. It simply means
that these functions are not provided by the Transport layer protocol and must be
implemented elsewhere if required.

• Although the total amount of UDP traffic found on a typical network is often relatively low,
key Application layer protocols that use UDP include:

- Domain Name System (DNS)
- Simple Network Management Protocol (SNMP)
- Dynamic Host Configuration Protocol (DHCP)
- Routing Information Protocol (RIP)
- Trivial File Transfer Protocol (TFTP)
- Online games

• Some applications, such as online games or VoIP, can tolerate
some loss of some data. If these applications used TCP, they may
experience large delays while TCP detects data loss and
retransmits data. These delays would be more detrimental to the
application than small data losses. Some applications, such as
DNS, will simply retry the request if they do not receive a response,
and therefore they do not need TCP to guarantee the message
delivery. The low overhead of UDP makes it very desirable for such
applications.

UDP Datagram Structure

• Source port: This field identifies the sending port when meaningful and should be assumed to be
the port to reply to if needed. If not used, then it should be zero.

• Destination port: This field identifies the destination port and is required.
• Length: A 16-bit field that specifies the length in bytes of the entire datagram: header and data.

The minimum length is 8 bytes since that's the length of the header. The field size sets a theoretical
limit of 65,535 bytes (8 byte header + 65527 bytes of data) for a UDP datagram. The practical limit
for the data length which is imposed by the underlying IPv4 protocol is 65,507 bytes.

• Checksum: The 16-bit checksum field is used for error-checking of the header and data. The
algorithm for computing the checksum is different for transport over IPv4 and IPv6. If the
checksum is omitted in IPv4, the field uses the value all-zeros. This field is not optional for IPv6.

UDP Datagram Reassembly UDP/TCP Operation Comparison
!  There are two protocols at Layer 4

– TCP and UDP. Both TCP and
UDP use IP as their underlying
protocol.

!  TCP must be used when
applications need to guarantee the
delivery of a packet. When
applications do not need a
guarantee, UDP is used.

!  UDP is often used for applications
and services such as real-time
audio and video. These
applications require less
overhead. They also do not need
to be re-sequenced since packets
that arrive late or out of order have
no value.

TCP UDP
Connection-oriented
delivery

Connectionless
delivery, faster

Uses windows and
ACKs

No windows or ACKs

Full header Smaller header, less
overhead

Sequencing No sequencing

Provides reliability Relies on app layer
protocols for reliability

FTP, HTTP, SMTP, and
DNS

DNS, TFTP, SNMP,
and DHCP

← 0 – 15 → ← 16 - 31 → ← 31 - 47 → ← 48 – 63 → 64 →

Source Port Destination Port Length Checksum Data…

UDP segment format

Denial of Service Attacks

1.  Hacker initiates a SYN but spoofs
the source IP address.

DoS attacks are designed to deny services to legitimate users.
DoS attacks are used by hackers to overwhelm and crash systems.
SYN flooding is a DoS attack that exploits the three way handshake.

To defend against these attacks, decrease the connection timeout period
and increase the connection queue size. Software also exists that can
detect these types of attacks and initiate defensive measures.

Send SYN
Receive SYN

Send SYN/ACK

Send SYN
Send SYN
Send SYN
Send SYN
Send SYN

2.  Target replies to the unreachable IP
address and waits for final ACK.

3.  Hackers floods target with false
SYN requests tying up its
connection resources, preventing it
from responding to legitimate
connection requests.

TUGAS

1. Buat resume tentang TCP dan UDP serta SCTP!
2. The following is a dump of a UDP header in hexadecimal format

a. What is the source port number?
b. What is the destination port number?
c. What is the total length of the user datagram?
d. What is the length of the data?
e. Is the packet directed from a client to a server or vise versa?
f. What is the client process?

06 32 00 0D 00 1C E2 17

3. The following is a dump of a UDP header in hexadecimal format

a. What is the source port number?
b. What is the destination port number?
c. What the sequence number?
d. What is the acknowledgment number?
e. What is the length of the header?
f. What is the type of the segment?
g. What is the window size?

05320017 00000001 00000000 500207FF 00000000

