Reminder from last lecture

* IP sends data from place to place. TCP or UDP sit above it at
either end.
* When you use the internet you use addresses like http://

3. Process to
facebook.com or lestariningati@yahoo.com

Process
TCP and UDP

* These addresses must then be converted to an IP address e.g.
144.32.100.24
« This means that data (packets) can get from A to B.

* But what happens if data is lost, how do we know where they are
going to and how can we put packets back together into data?

Rekayasa Internet
Teknik Komputer Susmini I. Lestariningati, M.T

Emailing a friend Types of Data Deliveries

our computer
y N p

- Processes Processes

N
)@j Node to node: Data link layer
cee Host to host: Network layer
Process to process: Transport layer

|
|
|
: Node to : Nodeto | \
|
|
I
|
1

|
|
|
| Nodeto :Nodeto
|
|
I

II node | node Node to node node | node \\
e T T
transatlantic ™) Host to host \
cable \ LA ’%ﬂ ’l Process to process \‘
your friend's
us backbone/

computer

Routing - Network Layer TCP and UDP - Transport Layer

+ How do packets know where to go? * Once we’ve got our IP packet safely to its destination what
« This problem is known as routing. happens next?
+ The oldest (and easiest) solution is static routing. * Having stripped off the header, the first thing we find is another
* Each computer has a table saying where to go to get to each other header.
computer. » The second header provides information on which port to enter the
+ On a Local Area Network (LAN) list all machines on your subnet machine on and where to send the reply.
and the address of the external router for everything else. * It also provides a checksum to check the data is valid.
* Most machines only need to know how to get to their nearest * There’s TCP and UDP on Transport Layer
router.
Introduction - Transport Layer Journey of an email
+ On a single device, people can use multiple services such as e-mail, the web, SYI?IYII:CK
and instant messaging to send messages or retrieve information. A(':K
+ Applications such as e-mail clients, web browsers, and instant messaging)) Look up IP __ [e=v][< o] /S4et up
clients allow people to use computers and networks to send messages and Y name for the TCP_
find information. Trom: rienardemancy distant.com Packetise conngection
_— . . bave, the data
+ Data from each of these applications is packaged, transported, and delivered Great to see you
to the appropriate server daemon or application on the destination device —
h ed in th T | ; N Py /Get first.— Add 1P~ Add TCP
e processes described in the OSI Transport layer accept data from the g hop from header to header to
Application layer and prepare it for addressing at the Network layer. The = E routing table front of that first packet
Transport layer is responsible for the overall end-to-end transfer of application Send the \ Destination gets packet
data. The role of the Transport layer is encapsulating application data for use first packet And so on - and returns ACK
by the Network layer. to its first for further l
y yer hop hops. Start sending rest of data

Transport Layer

The Transport layer also
encompasses these functions:

a) Enables multiple
applications to communicate

The Transport layer prepares

over the network at the

same time on a single device Fr—
b) Ensures that, if required, all

the data is received reliably

and in order by the correct

application
c) Employs error handling

mechanisms

APPLICATION
DATA

application data for transport over the | Transport | Transport

network and processes network data

=

i

Network.

e
Physical

2. Segmenting data and managing each piece:

Segmentation

INSTANT MULTIPLE WEB PAGES
MESSAGING .! —_—
- =
= -

EdMAIL
IP TELEPHONY
(voIP)

To: you@example.com
From: me@example.com
Subject: E-mail

STREAMING VIDEO

The Transport layer divides the data into segments that are sasier to manage and transport.

+ As each application creates a

stream data to be sent to a
remote application, this data
must be prepared to be sent
across the media in manageable
pieces. The Transport layer
protocols describe services that
segment this data from the
Application layer. This includes
the encapsulation required on
each piece of data. Each piece of
application data requires headers
to be added at the Transport
layer to indicate to which
communication it is associated.

Purpose of Transport Layer

1. Tracking the individual communication between applications

on the source and destination hosts:

Tracking the Conversations

INSTANT = MULTIPLE WEB PAGES
MESSAGING m e
S ®i
T
A =
\

E-MAIL

4 | IP TELEPHONY

To: you@example.com (VOIP)

From: me@example.com
Subject: E-mail

<Ne(work

The Transport layer segments the data and manages the separation of data for different
applications. Multiple applications running on a device receive the correct data.

o ... ®
STREAMING VIDEO

» Any host may have multiple
applications that are
communicating across the
network. Each of these
applications will be
communicating with one or
more applications on remote
hosts. It is the responsibility
of the Transport layer to
maintain the multiple
communication streams
between these applications.

3. Reassembling the segments into streams of application data:

INSTANT MULTIPLE WEB PAGES
MESSAGING = —_—
svad {7
X e
| - g "\ . -
E-MAIL

0 IP TELEPHONY

To: you@example.com {VOIP)

From: me@example.com
Subject: E4mail

1
’(1
Data ogimentation facilitates data carriage
;# | by the lower network layers.
I < ,
Err

o checking can be performed on the data
in the segment to check if the segment was
changed during transmission.

Segmentation allows session
e xing — multiple
applications can use the

network at the same tim

STREAMING VIDEO

« At the receiving host, each
piece of data may be directed
to the appropriate application.
Additionally, these individual
pieces of data must also be
reconstructed into a complete
data stream that is useful to
the Application layer. The
protocols at the Transport layer
describe the how the Transport
layer header information is
used to reassemble the data
pieces into streams to be
passed to the Application layer.

4

. Identifying the different applications:

In order to pass data streams to the proper applications, the
Transport layer must identify the target application. To accomplish
this, the Transport layer assigns an application an identifier. The
TCP/IP protocols call this identifier a port number.

Each software process that needs to access the network is
assigned a port number unique in that host. This port number is
used in the transport layer header to indicate to which application
that piece of data is associated.

Transport Layer Ports

Port numbers are used to

Dest. Port = 23
Send packets to my
Telnet application

keep track of different

conversations that cross

the network at the same Q Q

time.

Port numbers identify

>
which upper layer service | a [1028 | 23 [|_T

is needed, and are needed

when a host communicates
with a server that uses
multiple services.

What are ports?

+ Ports are conceptual “points of entry” into a host computer.

* They do not correspond with real hardware but are an abstraction
for convenience.

+ Usually a service is associated with a port (e.g. http on port 80).

« Servers “listen on a port” for connection attempts.

* Ports provide one level of internet security.

» Generally, low number ports (<100) are reserved for special

services.

Ports for Clients

« Clients and servers both use ports to distinguish what process
each segment is associated with.
» Source ports, which are set by the client, are determined

dynamically, usually a randomly assigned a number above 1023.

1. Client requests a web page from server 1032 80
2. Server responds to client 80 1032

Protocols and Port Numbers Protocols and Port Numbers

APPLICATION APPLICATION

LAYER ‘ LAYER ‘

g A

TRANSPORT TRANSPORT UDP 69

LAYER TCP Header 4 LAYER N

NETWORK

NETWORK LAYER IP Header

LAYER

IP Header (

DATA LINK ETHERNET

DATA LINK ETHERNET

LAYER

SOURCE ADDR
0000 1B 09 08 07

DESTINATION ADDR|

TCP
PREAMBLE oo HEADER

LAYER

DATA

DESTINATION ADDR
000018 122334

SOURCE ADDR 2 o
00001809 08 07 HEADER | HEADER DATA

| PREAMBLE

chl

TCP and UDP Position of UDP, TCP, and SCTP in TCP/IP suite

The TCP and UDP based services keep track of the various applications that are

communicating. To differentiate the segments and datagrams for each application, App"ﬁ;;’e': SMTP FTP TFTP DNS SNMP
both TCP and UDP have header fields that can uniquely identify these

applications.These unique identifiers are the port numbers.

In the header of each segment or datagram, there is a source and destination port. Tfanslg)?; SCTP Tcp UDP

The source port number is the number for this communication associated with the

originating application on the local host. The destination port number is the number

for this communication associated with the destination application on the remote Network P
host. taver

» Port numbers are assigned in various ways, depending on whether the message is)
a request or a response. While server processes have static port numbers assigned Datiallyll:

Underlying LAN or WAN

to them, clients dynamically chooses a port number for each conversation. Physical technology

layer

Socket

* The combination between IP address and port number is called

socket and it’s unique connection.

C:\>netstat

Active Connections

Proto Local Address Foreign Address State

TCP kenpc:3126 192.168.0.2:netbios-ssn ESTABLISHED
TCP kenpc:3158 207, .1:38,.126'.:1 52:htEp ESTABLISHED
TCP kenpc:3159 207.138.126.169:http ESTABLISHED
TCP kenpc:3160 207.138.126.169:http ESTABLISHED
TCP kenpc:3161 sc.msn.com:http ESTABLISHED
TCP kenpc:3166 wWww.cisco.com:http ESTABLISHED
cr\>

Some Well-Known TCP Ports

Port Application Description
9 Discard Discard all incoming data port
7 Echo Echo
19 Chargen Exchange streams of data port
20 FTP-Data File transfer data port
21 FTP-CMD File transfer command port
23 Telnet Telnet remote login port
25 SMTP Simple Mail Transfer Protocol port
53 DOMAIN Domain Name Service
79 Finger Obtains information about active users
80 HTTP Hypertext Transfer Protocol port
88 Kerberos Authentication Protocol
110 POP3 PC Mail retrieval service port
119 NNTP Network news access port
161 SMTP Network Management
179 BGP Border Gateway Protocol
513 Rlogin Remote Login In

Port Numbers

Well Known Ports (Numbers 0 to 1023) - These numbers are reserved for services and applications. They
are commonly used for applications such as HTTP (web server) POP3/SMTP (e-mail server) and Telnet. By
defining these well-known ports for server applications, client applications can be programmed to request a
connection to that specific port and its associated service.

Registered Ports (Numbers 1024 to 49151) - These port numbers are assigned to user processes or
applications. These processes are primarily individual applications that a user has chosen to install rather
than common applications that would receive a Well Known Port. When not used for a server resource, these

ports may also be used dynamically selected by a client as its source port.

Dynamic or Private Ports (Numbers 49152 to 65535) - Also known as Ephemeral Ports, these are usually
assigned dynamically to client applications when initiating a connection. It is not very common for a client to
connect to a service using a Dynamic or Private Port (although some peer-to-peer file sharing programs do).
Using both TCP and UDP

- Some applications may use both TCP and UDP. For example, the low overhead of UDP enables DNS to
serve many client requests very quickly. Sometimes, however, sending the requested information may
require the reliability of TCP. In this case, the well known port number of 53 is used by both protocols
with this service.

TCP Ports UDP Ports

EortNuras Reoge Epe kot Port Number Range Port Group
0101023 A Well Known (Contact) Ports Do 1023 A Well Known (Contact) Ports
TERESE A Begsisv B, 102410 49151 A Registered Ports

4915210 65535

Registered TCP Poits:
1863 MSN Messenger
8008 Alternate HTTP.
8080 Alternate HTTP.

Private and/or Dynamic Ports 4915210 65535 Private and/or Dynamlc Ports

Well Known TCP Ports Registered UDP Ports: Well Known UDP Ports:

R 1812 RADIUS Authentication Protocol 59 TFTP
25 SMTP 2000 Cisco SCCP (VoIP) 520 RIP
80 HTTP 5004 RTP {Voice and Video Transport Protocol)

110 POP3 5060 SIP (VolP)

194 Intemet Relay Chat (IRC)
443 Secure HTTP (HTTPS)

TCP and UDP Ports

0t0 1023 A Well Known (Contact) Ports
1024 to 49151 A Registered Ports

49152 to 65535 | Private and/or Dynamic Poits
|

Reglstered TCP/UDP Common Ports: Well Known TCP/UDP Commen Ports:
1433 Ms saL 53 DNS
2948 WAP (MMS) 161 SNMP

531 AOL Instant Messenger, IRC

Determining the Need for Reliability

+ Some applications, such as online games or VoIP, can tolerate + Applications, such as databases, web pages, and e-mail, require that all
some loss of some data. If these applications used TCP, they may of the sent data arrive at the destination in its original condition, in order
experience large delays while TCP detects data loss and for the data to be useful. Any missing data could cause a corrupt

retransmits data. These delays would be more detrimental to the communication that is either incomplete or unreadable. Therefore, these

C D applications are designed to use a Transport layer protocol that
application than small data losses. Some applications, such as PP 9 P yer p
o . . implements reliability. The additional network overhead is considered to
DNS, will simply retry the request if they do not receive a response, , o
be required for these applications.
and therefore they do not need TCP to guarantee the message

Other applications are more tolerant of the loss of small amounts of data.
delivery. The low overhead of UDP makes it very desirable for such For example, if one or two segments of a video stream fail to arrive, it
applications. would only create a momentary disruption in the stream. This may appear

as distortion in the image but may not even be noticeable to the user.

Transport Layer Protocols

Connectionless vs Connection-oriented Protocols

TCRIIP Motel = « Connection-oriented - Two computers
+ IP Telephony r— + SMTP/POP (Email) conqeot before sendlngl any data, sendelr !ets == ‘HTTP‘ ‘ SMTP‘ ‘ e ‘ ‘ DNS ‘ |TFTP‘
+ Streaming Video + HTTP receiver know that data is on the way; recipient
| Application acknowledges receipt of data (ACK) or denies
Required Protocol l Prosantation e receipt (NACK). The ACKing and NACKing is
ProperF'ies Required Protocol called handshaking. (Type supported by TCP). TCP UDP
. L::' . | Session "“’.P”::"sabh Reliable, but carries overhead burden.
+ Does not require l‘ S Tiansp } e o e date + Connectionless — Computers involved know ~——
knowledg _ + Resend lost data nothing about each other or the data being
+ Does not resend m— + Delivers data in
ioetdata Internet it sent. Makes no attempt to cause networks 1P
* Delivers dataas it [D senders and receivers to exchange information
ames Moo about their availability or ability to |
| Ehysical communicate with one another, “best effort” e Many LANs
delivery. (Type supported by IP, UDP). Not i LAN and WANs
Application developers choose the appropriate Transport Layer protocol based on the reliable, but faster and may be good enough.

nature of the application. Also upper layer apps may worry about errors

and reliability processing, so no need to do it
twice.

TCP and UDP Protocols

*+ The two most common Transport layer protocols of TCP/IP
protocol suite are Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP). Both protocols manage the
communication of multiple applications. The differences between
the two are the specific functions that each protocol implements.

Transmission Control Protocol (TCP)

« TCP is a connection-oriented protocol, described in RFC 793. TCP
incurs additional overhead to gain functions. Additional functions
specified by TCP are the same order delivery, reliable delivery, and
flow control. Each TCP segment has 20 bytes of overhead in the
header encapsulating the Application layer data, whereas each UDP
segment only has 8 bytes of overhead.

+ Applications that use TCP are:
- Web Browsers
- E-mail

- File Transfers

User Datagram Protocol (UDP)

+ UDP is a simple, connectionless protocol, described in RFC 768. It

has the advantage of providing for low overhead data delivery. The
pieces of communication in UDP are called datagrams. These
datagrams are sent as "best effort" by this Transport layer protocol.

* Applications that use UDP include:

- Domain Name System (DNS)
- Video Streaming
- Voice over IP (VoIP)

Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP)

+ The reliability of TCP communication is performed using connection-oriented sessions. Before a
host using TCP sends data to another host, the Transport layer initiates a process to create a
connection with the destination.

Establishes a session between source host and source destination (this ensures that each
host is prepared and aware for the connection).

The destination host sends acknowledgements to the source for the segments that it
receives.

As the source receives an acknowledgement, it knows that the data has been successfully
delivered and can quit tracking that data.

If the source does not receive an acknowledgement within a predetermined amount of time,
it retransmits that data to the destination.

The establishment of the sessions creates overhead in the form of additional segments
being exchanged.

There is also additional overhead on the individual hosts created by the necessity to keep
track of which segments are awaiting acknowledgement and by the retransmission process.

Clients Sending TCP Requests

HTTP response: Server SMTP Response:
Source Port 80 Source Port 25
Destination Port 49&2 Destination Port 51152

. HTTP: Port 80 .
Client1 SMTP: Port 25 \ Client 2
Client requests to TCP 7t
, server
HTTP Request: \ /" SMTP Request:
Source Port: 49152 Server response to TCP clients use Source Port: 51152
Destination Port: 80 random port numbers as the Destination Port: 25

destination port.

TCP Segment Structure

TCP Header

Bitoffset 0 1 2 3 4 5 6 7 8 9101112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

0 Source port Destination port

32 Sequence number

64 Acknowledgment number
clefu[ae[r[s[r

9 | Dataofset | Resemed |W|c|® C|s|s ¥|1 Window Size
R E|c|k m|T|N|¥

128 Checksum Urgent pointer

160 Options (if Data Offset > §)

Source port (16 bits) — identifies the sending port
Destination port (16 bits) — identifies the receiving port
Sequence number (32 bits) — has a dual role

If the SYN flag is set, then this is the initial sequence number. The sequence number of the actual first data byte (and the

acknowledged number in the corresponding ACK) will then be this sequence number plus 1.
If the SYN flag is clear, then this is the sequence number of the first data byte
+ Acknowledgment number (32 bits)
Data offset (4 bits) — specifies the size of the TCP header in 32-bit words
Reserved (4 bits) - for future use and should be set to zero
Flags (8 bits) (aka Control bits) — contains 8 1-bit flags

« Window (16 bits) — the size of the receive window, which specifies the number of bytes that the receiver is currently willing to

receive.
Checksum (16 bits) — The 16-bit checksum field is used for error-checking of the header and data

Urgent pointer (16 bits) - if the URG flag is set, then this 16-bit field is an offset from the sequence number indicating the last

urgent data byte.

TCP C tion Establist t and Terminati

@ Send SYN
{SEQ=100 CTL=SYN) x SYN received
/ Send SYN,ACK @
SYN received (SEQ=300 ACK=101 CTL=SYN,ACK)
Established

(SEQ=101 ACK=301 CTL=ACK| 3

A sends SYN request to B
B sends ACK response and SYN request to A
A sends ACK response to B

TCP Connection Establishment and Termination
A B

=3 =

@ Send FIN
\i FIN received
(| SendACK @
ACK received

Send FIN @

FIN received "/'/

@ Send ACK|——___ |

ACK received

A sends FIN request to B
B sends ACK response to A
B sends FIN request to A
A sends ACK response to B

TCP 3-way Handshake (SYN, ACK)

13 ©.2UL1U9 19Z.108.254.258 IV.1.1.1 DNS Stanoara query|,
14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [S
15 6.202513 192.168.254.254 10.1.1.1 TCP http > 1069 [s)
16 6.202543 10.1.1.1 192.168.254.254 TCP 1069 > http [AC
17 6.202651 10.1.1.1 192.168.254.254 HTTP GET / HTTP/1.1

El

@ Frame 15 (62 Dytes on wire, 62 bytes captured)
Ethernet II, src: Cisco_cf:66:40 (00:0c:85:cf:66:40), Dst: Quantaco_bd:0c:
Internet Protocol, Src: 192.168.254.254 (192.168.254.254), Dst: 10.1.1.1 C
) Transmission Control Protocel, Src Port: http (80), Dst Port: 1069 (1069),
Source port: http (80)
pestination port: 1069 (1069)
Sequence number: 0 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 28 bytes
= Flags: Ox12 (SYN, ACK)
0... +... = Congestion window Reduced (CwR): NOt set
.0.. = ECN-Echo: Not set [~

o Lmemnt s _Mas _one

A protocol analyzer shows server response in frame 15 |

+ ACK flag set to indicate a valid Acknowledgement number

» Acknowledgement number response to initial sequence number as relative value of 1
« SYN flag set to indicate the Initial sequence number for the server to client session

« Destination port number of 1069 to corresponding to the clients source port

+ Source port number of 80 (HTTP) indicating the web server service (httpd)

MECEC

TCP 3-way Handshake (SYN)

13 6.201109 192.168.254.254 10.1.1.1 DNS Standard gquery ITA
14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [SYn

15 6.202513 192.168.254.254 10315151 TCP http > 1069 [SYA
16 6.202543 10.1.1.1 192.168.254.254 TCP 1069 > http [ﬂCk
17 A& INIAST 1A 1 1 1 107 1A% 284 84 WTTD AET / WTTO/A

@ Frame 14 (62 bytes on wire, 62 bytes captured)
Ethernet II, Src: Quantaco_bd:0c:7¢ (00:c0:9f:bd:0c:7¢), Dst: Cisco_cf:66:4¢(
Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.:
= Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), ¢
source port: 1069 (1069)
pestination port: http (80)
Sequence number: 0 (relative sequence number)
Header length: 28 bytes
= Flags: 0x02 (SYN)

0... = Congestion window Reduced (CwR): NoOT set

.0.. = ECN-Echo: Not set

««0. = Urgent: Not set ~
- o — arbnowTlndemant s hMat cnt -
4 »

Protocol Analyzer shows initial client request for session in frame 14 |

TCP segment in this frame shows:
+ SYN flag set to validate an initial Sequence number
Randomized sequence number valid (relative value is 0)
+ Random source port 1069
Well known destination port is 80 (HTTP port) indicates web server (httpd)

TCP 3-way Handshake (ACK)

13 6.201109 192.168.254.254 10.1.1.1 DNS Standard query ref.
14 6.202100 10.1.1.1 192.168.254.254 TCP 1069 > http [SYN]
15 6.202513 192.168.254.254 10.1.1.1 TCP http > 1069 [SYN,

= -

17 6.202651 10.1.1.1 102.168.254.254 HTTP GET / HTTP/L.1

@ Frame 16 (54 bytes on wire, 54 bytes captured)
@ Ethernet II, Src: QuantaCo_bd:0c:7c (00:c0:9f:bd:0c:7c), Dst: Cisco_cf:66:40
@ Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.25
= Transmission Control Protocol, Src Port: 1069 (106%9), Dst Port: http (80), Se
Source port: 1069 (1069)
pestination port: http (80)
Sequence number: 1 (relative sequence number)
Acknowledgement number: 1 (relative ack number)
Header length: 20 bytes
= Flags: 0x10 (ACK)

0... = Congestion window Reduced (CwWR): Not set

.0.. = ECN-Echo: Not set [
. ..0. = Urgent: NOt set __|¥
< I

Protocol Analyzer shows client response to session in frame 16 |

The TCP segment in this frame shows:
ACK flag set to indicate a valid Acknowledgement number
+ Acknowledgement number response to initial sequence number as relative value of
1
+ Source port number of 1069 to corresponding
« Destination port number of 80 (HTTP) indicating the web server service (httpd)

TCP Session Termination (FIN)

TCP Session Termination (ACK)

19 6.203857 102.168.254.254 10.1.1.1 HTTP HTTP/L.1 200 OK (.
10 6,203857 192.168.254.254 10.1.1.1 HTTP HTTR/1.1 200 OK ([« 20 6.203876 192.168.254.254 10.1.1.1 TcP http > 1069 [FIN,
20 6.203876 192.168.254.254 10.1.1.1 TCP http > 1069 [FIN, 21 6.203899 10.1.1.1 192.168.254.254 TCP 1069 > http [ACK]
g% gggiggg igﬂi iggiggg;‘:ggi IE:: iggg ; hh::g Eml 22 6.204139 10.1.1.1 192.168.254.254 TCP 1060 > http [FIN,
23 6.204416 192.168.254.254 10.1.1.1 TP heep > 1069 [Ack] e NSO
21 A AOARR 11 g fg o= L | 107 162 7284 I84 nae crandard miorg A

| Frame 21 (54 bytes on wire, 54 bytes captured)
Ethernet II, Sre: Cisco_cf:66:40 (00:0c:85:cf:66:40), Dst: Quantaco_bd:0c:7ec) Ethernet II, Src: QuantacCo_bd:0c:7c (00:c0:9f:bd:0c:7c), Dst: Cisco_cf:66:40
Internet Protocol, src: 102.168.254.254 (102.168.254.254), Dst: 10.1.1.1 (10. Internet Protocol, src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.2%
; Transmission Control Protocol, Src Port: http (80), Dst Port: 1069 (1069), Se = Transmission Control Protocol, Src Port: 1069 (106%), Dst Port: http (80), Se& -
Source port: http (80) Source port: 1069 (1069)
pestination port: 1069 (1069) pestination port: http (80)
Sequence number: 440 (relative sequence number) Sequence number: 414 (relative seqguence number)
Acknowledgement number: 414 (relative ack number) acknowledgement number: 441 (relative ack number)

Header length: 20 bytes Header Tength: 20 bytes
- Flags: Ox11 (FIN, ACK) ! = Flags: Oxlg (ACK) &
n

Frame 20 (60 bytes on wire, 60 bytes captured)

O+

W e
G

0... = congestion window Reduced (CWR): NOt set .Y

4] il - = connastinn window baducad (Cwpd: NAt cat ﬁ{'
| < J N
+ A protocol analyzer shows details of + The destination and source ports —| —‘
frame 20, TCP FIN request. + The header field contents and values + A protocol analyzer shows details of + The destination and source ports
frame 21, TCP ACK response. + The header field contents and values

TCP Session Termination (ACK)

TCP Segment Reassembly

19 6.203857 192.168.254.254 10.1.1.1 HTTP HTTR/L.1 200 OK (.

20 6.203876 192.168.254.254 10.1.1.1 TCP http > 1069 [FIN,

21 6.203899 10.1.1.1 192.168.254.254 TCP 1069 > http [ACK]

22 6.204139 10.1.1.1 192.168.254.254 TCP 1069 > http [FIN, I
23 6.204416 192.168.254.254 10.1.1.1 TCP http > 1069 [ACK] + When services send data using TCP, segments may arrive at their destination
24 A AQAAR TN T 1 1 102 1AR 284 284 NS ctrandard Anarg A

) Frame 21 (54 bytes on wire, 54 bytes captured) out of order. For the original message to be understood by the recipient, the

+)
Ethernet II, Src: QuantaCo_bd:0c:7¢ (00:¢0:9F:bd:0c:7¢), Dst: Cisco_cf:66:40
Internet Protocol, src: 10.1.1.1 (10.1.1.1), Dst: 192.168.254.254 (192.168.25
= Transmission Control Protocol, Src Port: 1069 (1069), Dst Port: http (80), Se
source port: 1069 (1069)
pestination port: http (80)
Sequence number: 414 (relative sequence number)
Acknowledgement number: 441 (relative ack number)
Header length: 20 bytes
= Flags: 0x10 (ACK)
n

N " v
= ronnactinn window badicad (cwpY e nat cat . [

data in these segments is reassembled into the original order. Sequence

numbers are assigned in the header of each packet to achieve this goal.

TCP Segments Are Re-Ordered at the Destination

Different segments may
take different routes. N\
\'\ h\\,
N
&

3
" Nasamanti
Data
Segment 2

Data is Segment 3

<

Segment 1 TCP re-
orders the
Segment2 gogments | Segment2

Segment 1

_

Having taken
different tothe

Segment 6

Segment 3

+ A protocol analyzer shows details of * The destination and source ports aivided nto it i
frame 21, TCP ACK response. + The header field contents and values segments. | Segmentd i | Segments Segment4
Segments Mrveoutol g onta Segment 5

order.

Segment 6 Segment 3 Segment 6

User Datagram Protocol (UDP)

« Some applications, such as online games or VolP, can tolerate
some loss of some data. If these applications used TCP, they may
experience large delays while TCP detects data loss and
retransmits data. These delays would be more detrimental to the
application than small data losses. Some applications, such as
DNS, will simply retry the request if they do not receive a response,
and therefore they do not need TCP to guarantee the message
delivery. The low overhead of UDP makes it very desirable for such
applications.

User Datagram Protocol

UDP is a simple protocol that provides the basic Transport layer functions. It much lower
overhead than TCP, since it is not connection-oriented and does not provide the
sophisticated retransmission, sequencing, and flow control mechanisms.
This does not mean that applications that use UDP are always unreliable. It simply means
that these functions are not provided by the Transport layer protocol and must be
implemented elsewhere if required.
Although the total amount of UDP traffic found on a typical network is often relatively low,
key Application layer protocols that use UDP include:

- Domain Name System (DNS)

- Simple Network Management Protocol (SNMP)

- Dynamic Host Configuration Protocol (DHCP)

- Routing Information Protocol (RIP)

- Trivial File Transfer Protocol (TFTP)

- Online games

UDP Datagram Structure

bits 0-15 16 -31

0 Source Port Destination Port
32 Length Checksum
64 Data

Source port: This field identifies the sending port when meaningful and should be assumed to be
the port to reply to if needed. If not used, then it should be zero.

Destination port: This field identifies the destination port and is required.

Length: A 16-bit field that specifies the length in bytes of the entire datagram: header and data.
The minimum length is 8 bytes since that's the length of the header. The field size sets a theoretical
limit of 65,535 bytes (8 byte header + 65527 bytes of data) for a UDP datagram. The practical limit
for the data length which is imposed by the underlying IPv4 protocol is 65,507 bytes.

Checksum: The 16-bit checksum field is used for error-checking of the header and data. The
algorithm for computing the checksum is different for transport over IPv4 and IPv6. If the
checksum is omitted in IPv4, the field uses the value all-zeros. This field is not optional for IPv6.

UDP Datagram Reassembly

1

Different datagrams may

take different routes. a ﬁ
\\ |

24
” Datagram 1 Datagram 1 Out of order
Data > datagrams are
Datagram 2 Having taken Datagram 2 not re-ordered.
s different
Data is Datagram 3 routes to the Datagram 6
divided into inati
destination, Lost datagrams
datagrams. Datagram 4 datagrams Datagram 5 Rt adsait
Datagram 5 a"':: d::" of Datagram 4
~— Datagram 6

Denial of Service Attacks

DoS attacks are designed to deny services to legitimate users.
DoS attacks are used by hackers to overwhelm and crash systems.
SYN flooding is a DoS attack that exploits the three way handshake.

. Hacker initiates a SYN but spoofs =
the source IP address.
2. Target replies to the unreachable IP

address and waits for final ACK.

Send SYN —
Receive SYN

Send SYN

3. Hackers floods target with false Send SYN oy Send SYN/ACK

from responding to legitimate Send SN oy

SYN requests tying up its Send SYN .
connection resources, preventingit ~ Send SYN —_—— J \
connection requests. S

To defend against these attacks, decrease the connection timeout period
and increase the connection queue size. Software also exists that can
detect these types of attacks and initiate defensive measures.

UDP/TCP Operation Comparison

m There are two protocols at Layer 4 TCP UDP
— TCP and UDP. Both TCP and

UDP use IP as their underlying Connection-oriented Connectionless
protocol. delivery delivery, faster
m TCP must be used when Uses windows and No windows or ACKs

applications need to guarantee the | ACKs

deliv_ery_of a packet. When Full header Smaller header, less
applications do not need a overhead
guarantee, UDP is used. Sequencing No sequencing

m UDP is often used for applications - — -
and services such as real-time Provides reliability Relies on app layer

audio and video. These protocols for reliability

applications require less FTP, HTTP, SMTP, and | DNS, TFTP, SNMP,
overhead. They also do not need DNS and DHCP

to be re-sequenced since packets
that arrive late or out of order have
no value.

UDP segment format

Source Port Destination Port Length Checksum Data...

TUGAS

1. Buat resume tentang TCP dan UDP serta SCTP!
2. The following is a dump of a UDP header in hexadecimal format

06 32 000D 00 1C E2 17

What is the source port number?

What is the destination port number?

What is the total length of the user datagram?
What is the length of the data?

Is the packet directed from a client to a server or vise versa?

-~ ® a0 oTp

What is the client process?

3. The following is a dump of a UDP header in hexadecimal format

05320017 00000001 00000000 500207FF 00000000

- o a0 O p

@

What is the source port number?
What is the destination port number?
What the sequence number?

What is the acknowledgment number?
What is the length of the header?
What is the type of the segment?

What is the window size?

