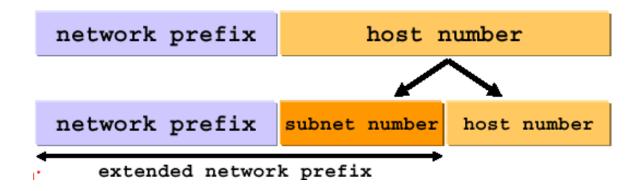

SUBNETING

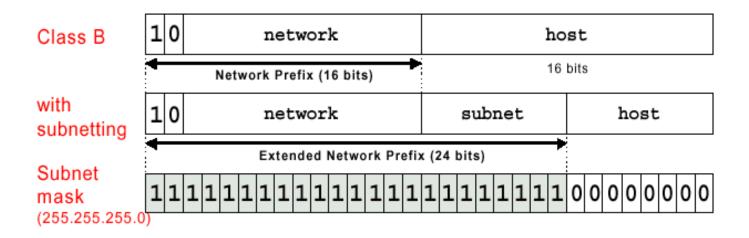
Subnetting

- Problem: Organisasi mempunyai Multiple network yg di-manage secara independen
 - Solusi 1: alokasikan satu atau lebih address class C utk tiap jaringan
 - Sulit di-manage
 - Dari luar organisasi, tiap jaringan harus addressable



Solusi 2: tambah level hierarki dari IP addressing

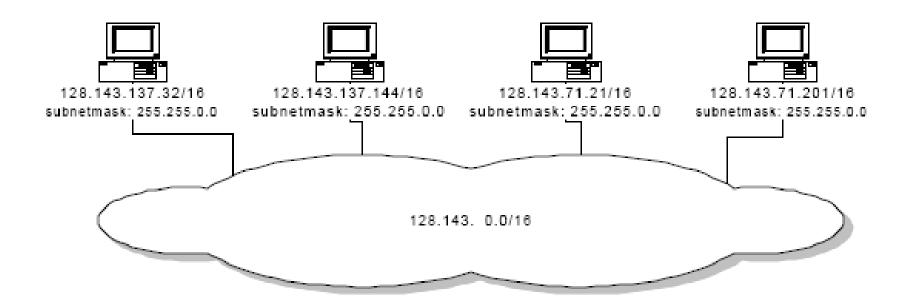
Idea Dasar Subnetting


- Pecah bagian host number dari IP address kedlm subnet number dan host number (lebih kecil)
- Hasil: hierarki 3-layer

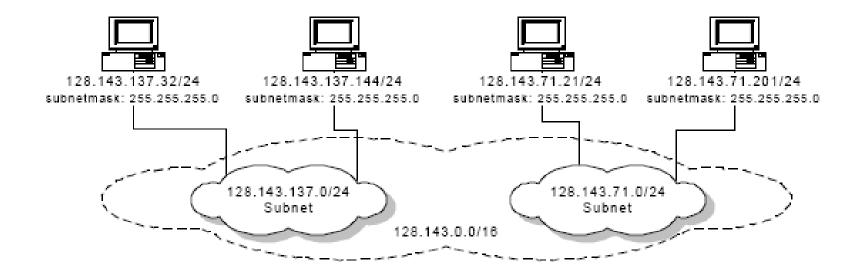
- Lalu:
 - Subnet dp secara bebas dialokasikan dlm organisasi
 - Secara internal, subnet diperlakukan sbg jaringan terpisah
 - Struktur subnet tdk terlihat dari luar organisasi

Subnet Masks

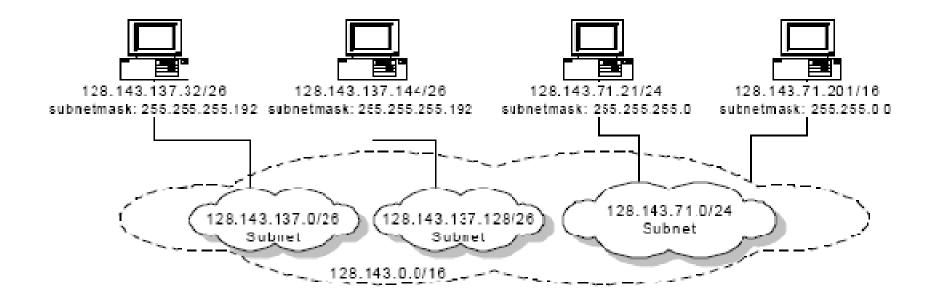
 Router dan host menggunakan extended network prefix (subnet mask) utk identifikasi awal host number



 Ada berbagi cara subnetting. Subnetting dg mask 255.255.255.0 cukup umum

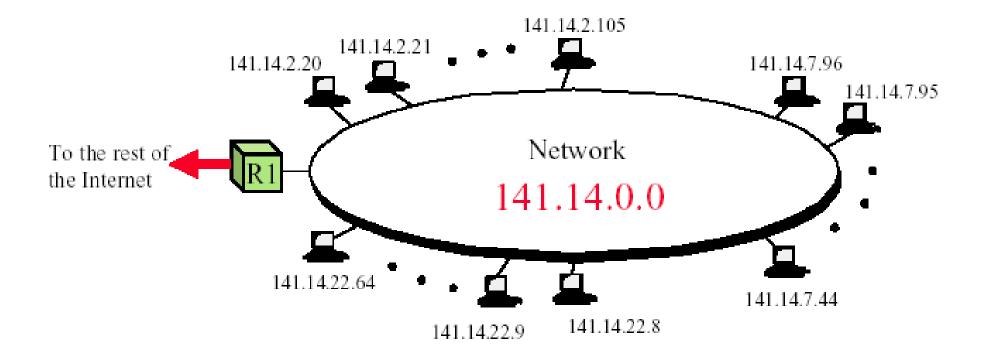

Keuntungan Subnetting

- Dg subnetting IP address menggunakan hierarki 3-layer
 - Network
 - Subnet
 - Host
- Meningkatkan efisiensi IP address dg tdk mengkonsumsi keseluruhan address class B dan C utk tiap jaringan fisik
- Mengurangi kompleksitas router. Krn eksternal router tdk mengetahui mengenai subnetting, kompleksitas tabel routing pd eksternal router dikurangi
- Cat. Panjang subnet mask tdk perlu sama utk tiap subnetworks

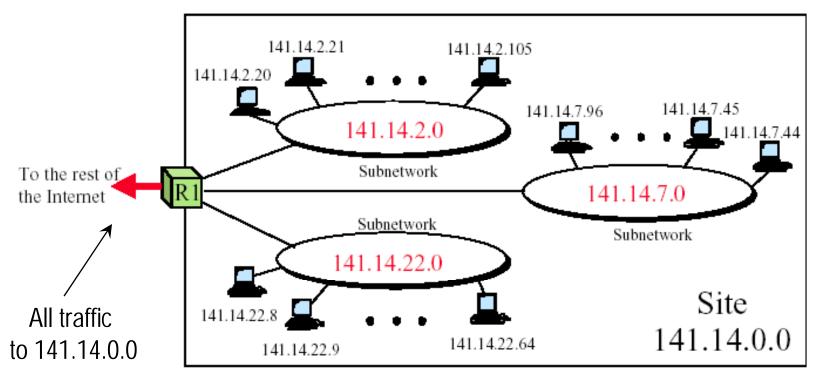

Network Tanpa Subnetting

Network Dg Subnetting (1)

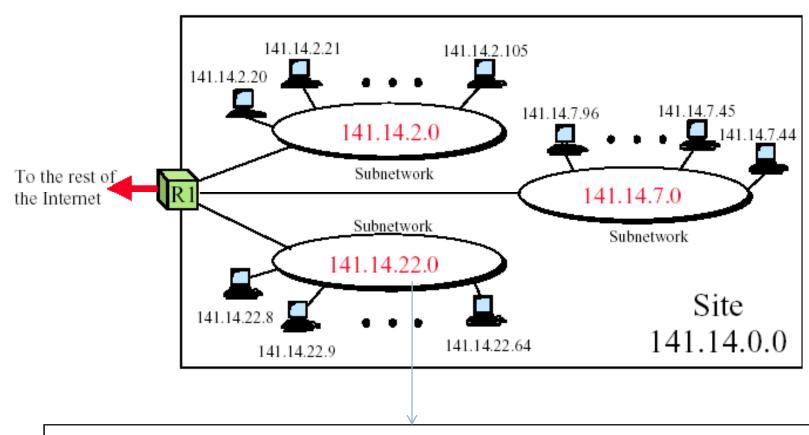
Network Dg Subnetting (2)



Penanggulangan (memperlambat habisnya IP address)


- Subnetting
- Supernetting alias Classless Inter-Domain Routing (CIDR)

Tanpa Subnetting

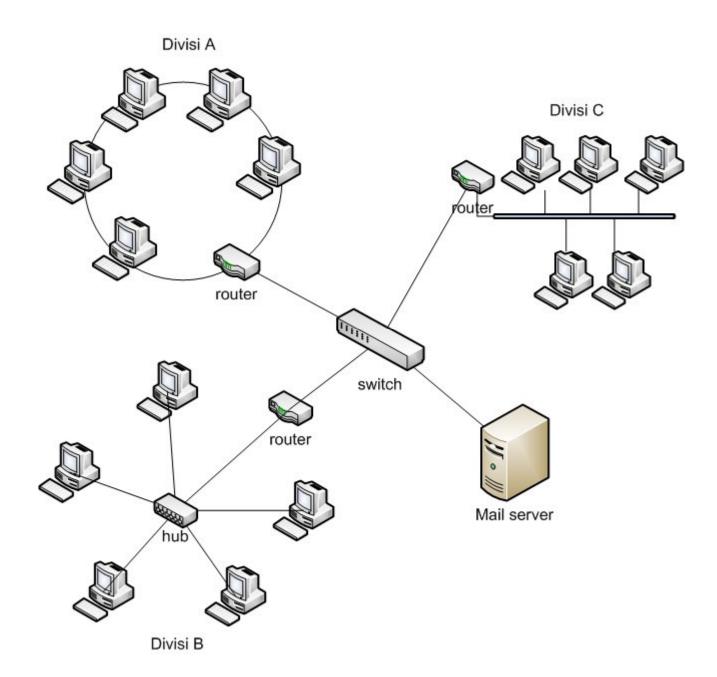

Subnetting

Keterangan gambar

- Jaringan dengan satu alamat kelas B tetapi memiliki lebih dari satu jaringan fisik
- Hanya router lokal (R1) yang mengetahui adanya beberapa jaringan fisik
- Router yang berada di Internet (in the rest of Internet) merutekan seluruh trafik ke jaringan di atas seolah-olah jaringan tersebut hanya terdiri dari satu buah jaringan

Dengan Subnetting

Router lokal menggunakan oktet ke-3 untuk membedakan masing-masing jaringan


Subnetting

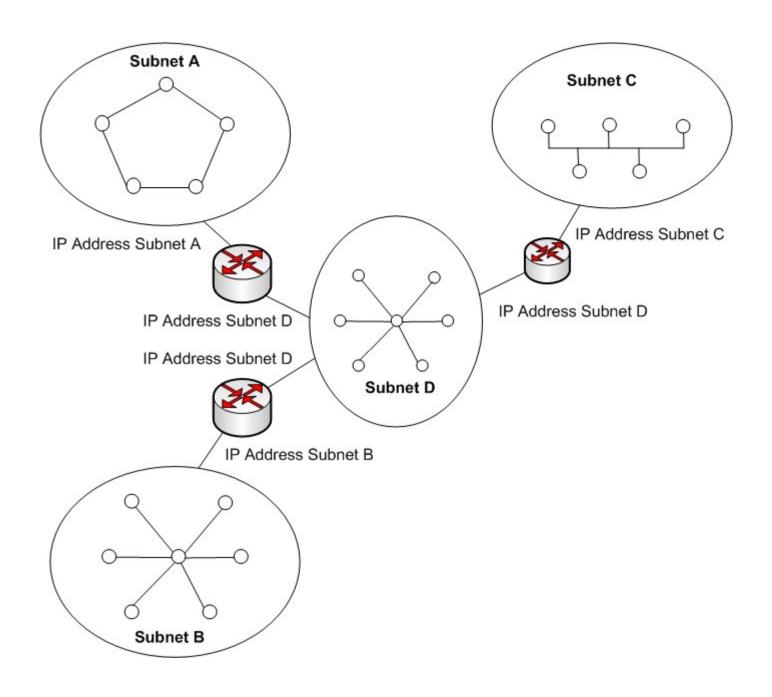
Mempelajari Subnetting dengan contoh kasus

- Perhatikan baik-baik contoh kasus berikut ini!

Contoh kasus subnetting kelas C

- Sebuah perusahaan bernama xxx telah membeli sejumlah IP address kelas C.
 - IP Address yang dibeli mulai dari 192.179.220.0- 192.179.220.255
- Sebagai administrator jaringan , anda diminta untuk mengatur network dengan ketentuan sbb:
 - Ada 3 buah divisi (A, B, C)
 - Divisi A telah memiliki LAN menggunakan teknologi IBM token ring dengan jumlah host sekitar 40 bh, divisi B akan dibuat LAN dengan menggunakan topologi star dengan jumlah host sekitar 38 buah, sedangkan divisi C memerlukan 5 buah host sehingga cukup dibangun menggunakan topologi bus
 - Masing-masing divisi harus dibuat subnet dan setiap divisi harus dapat saling berkomunikasi via jaringan dan menggunakan server mail

Menentukan alokasi IP yang dibutuhkan

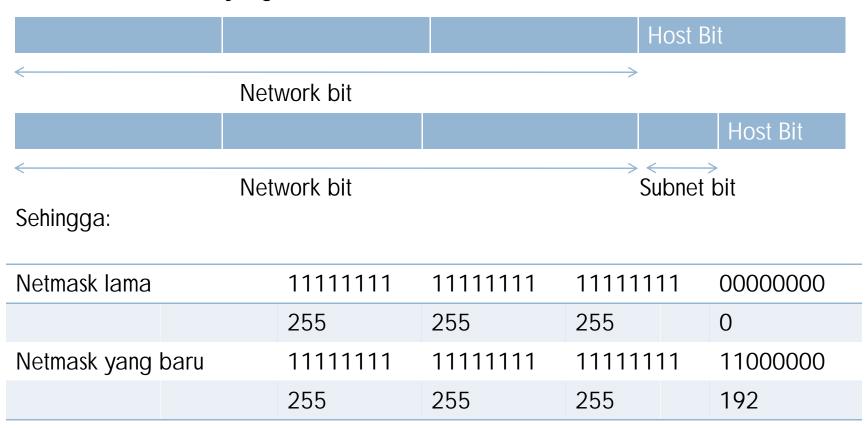

- Kita akan membuat LAN untuk 4 buah divisi. Masing-masing LAN memiliki sebuah router yang menggunakan 2 buah NIC.
- Apabila router tidak akan digunakan untuk keperluan lain, berarti alokasi jumlah IP Address untuk setiap divisi bertambah 2 setelah dijumlahkan dengan router

ALOKASI	JUMLAH IP	KETERANGAN
Divisi A	42	40 untuk Host, 2 untuk router
Divisi B	40	38 untuk Host, 2 untuk router
Divisi C	7	5 untuk Host, 2 untuk router
Mail Server	1	

Alokasi IP Address sebanyak 90 buah ini masih bisa dipernuhi, karena IP Address yang dibeli berjumlah 255 buah

Menentukan total jumlah subnet

- Setiap LAN harus dibuat subnet yang berbeda.
 Artinya apabila ada 3 buah LAN untuk 3 divisi maka harus ada sekurang-kurangnya 3 buah subnet juga.
- Apakah jumlah LAN total identik dengan jumlah subnet total?



Menentukan range IP masing-masing subnet

- Range IP address ini diperoleh setelah kita melakukan subnetting.
 - Mula-mula tentukan subnet mana yang memerlukan IP
 Address paling banyak. (dalam contoh divisi A yaitu 40 host)
 - Menentukan jumlah bit host yang terpakai untuk subnetting.
 - Pembagian porsi network dan host suatu IP address didasari pada perhitungan bilangan biner.
 - 2^N-2= available subnet
 - $2^{N} >= 40 \rightarrow N = 6 (2^{6}=64) \rightarrow$ jumlah bit host yang terpakai adalah 6 bit, sehingga jumlah bit host yang terpakai untuk network bit adalah 8-6=2

Menentukan Netmask yang baru

Menentukan Netmask yang baru

Dalam membentuk Network Address adalah mengganti semua bit host dengan 0

Network Address									
	27	26	2 ⁵	24	23	22	21	20	
	128	64	32	16	8	4	2	1	
Subnet A	0	0	0	0	0	0	0	0	0
Subnet B	0	1	0	0	0	0	0	0	64
Subnet C	1	0	0	0	0	0	0	0	128
Subnet D	1	1	0	0	0	0	0	0	192

Dalam membentuk Broadcast Address adalah mengganti semua bit host dengan 1

Broadcast Address									
	27	26	2 ⁵	24	23	22	2 ¹	20	
	128	64	32	16	8	4	2	1	
Subnet A	0	0	1	1	1	1	1	1	63
Subnet B	0	1	1	1	1	1	1	1	127
Subnet C	1	0	1	1	1	1	1	1	191
Subnet D	1	1	1	1	1	1	1	1	255

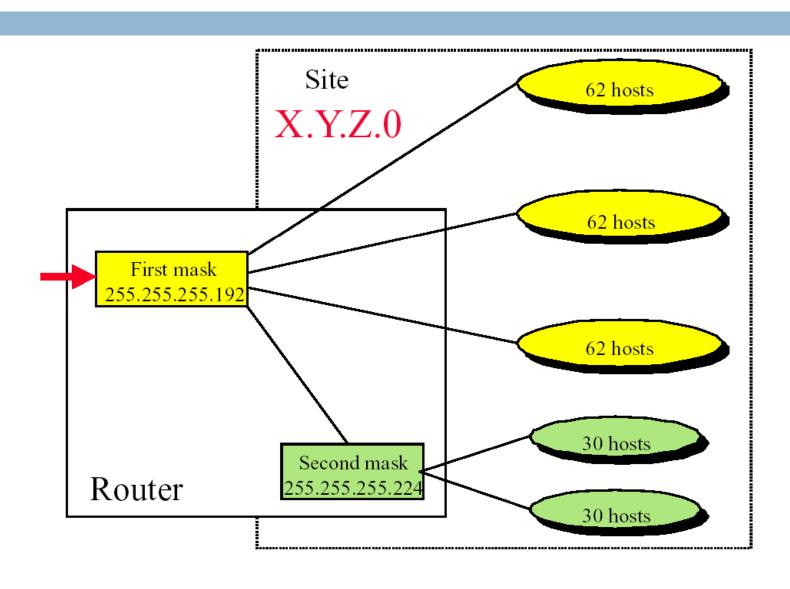
Subnet	Network Address	Range IP Address	Broadcast Address
Α	192.179.220.0	192.179.220.1 s/d 192.179.220.62	192.179.220.63
В	192.179.220.64	192.179.220.65 s/d 192.179.220.126	192.179.220.127
С	192.179.220.128	192.179.220.129 s/d 192.179.220.190	192.179.220.191
D	192.179.220.192	192.179.220.193 s/d 192.179.220.254	192.179.220.255

Problem

- Jika anda perhatikan dengan seksama, subnet C dan D hanya memerlukan sedikit IP Address, yaitu 6 IP Address untuk subnet C dan 4 IP Address untuk subnet D
- Tentu saja hal ini tidak efisien, karena ada sekian puluh IP Address yang tidak digunakan, dan sayangnya kelebihan IP Address tersebut tidak dapat dialokasikan untuk subnet A dan subnet B

Cara mengatasinya

- Salah satu mengatasinya adalah memperkecil kapasitas subnet C dan subnet D.
- Artinya adalah kita harus membuat sub- subnet dari subnet C dan subnet D
- □ How?
 - Carilah :
 - Network dan subnet mask address sub-subnet yang baru
 - Netmask yang baru
 - Range IP address untuk sub-subnet yang baru



111111111	11111111	11111111	11	Host Bit	
Netmask subnet C 255.255.255.192					
111111111	11111111	111111111	11	???	

Netmask Sub-subnet C

255.255.255. ???

Variable subnetting

Subnet routing algorithm

- Tabel ruting konvensional hanya mengandung informasi (network address, next hop address)
 - Network address mengacu pada IP address dari jaringan yang dituju (misalnya N) sedangkan next hop address adalah alamat router berikutnya yang digunakan untuk mengirimkan datagram ke N
- Tabel ruting dengan subnet mask :
 (subnet mask, network address,next hop address)
 - Router menggunakan subnet mask untuk meng-ekstrak subnet id dari IP address tujuan. Hasilnya dibandingkan dengan entry network address. Jika sesuai, maka datagram dikirimkan melalui router yang ada di next hop address

Classless Inter-Domain Routing (CIDR)

- Subnetting ditemukan pada tahun 80-an
- Tahun 1993 semakin disadari bahwa untuk menghemat IP address tidak boleh hanya mengandalkan teknik subnetting
- Lahirlah Classless addressing (supernet addressing/supernetting)

Mengapa classless addressing?

- Classfull address tidak membagi network address secara merata pada setiap kelas
 - Ada kurang dari 17000 alamat kelas B yang dapat di-assigned tetapi ada lebih dari 2 juta alamat kelas C
- Permintaan akan alamat kelas C sangat lambat
- Permintaan yang banyak terhadap kelas B akan mempercepat habisnya alamat kelas B (Running Out of Address Space (ROADS) problem)

- Misalnya ada sebuah organisasi skala menengah yang ingin bergabung ke Internet
- Mereka akan lebih suka memesan satu alamat IP kelas B karena
 - Kelas C tidak dapat mengakomodasi lebih dari 254 hosts
 - Alamat IP kelas B memiliki jumlah bit yang cukup untuk melakukan subnetting secara leluasa
- Untuk menghemat alamat IP kelas B dengan supernetting, organisasi tersebut diberikan satu blok alamat IP kelas C
 - Ukuran blok harus cukup besar sedemikian hingga organisasi tersebut dapat memberi alamat pada setiap jaringannya

Contoh

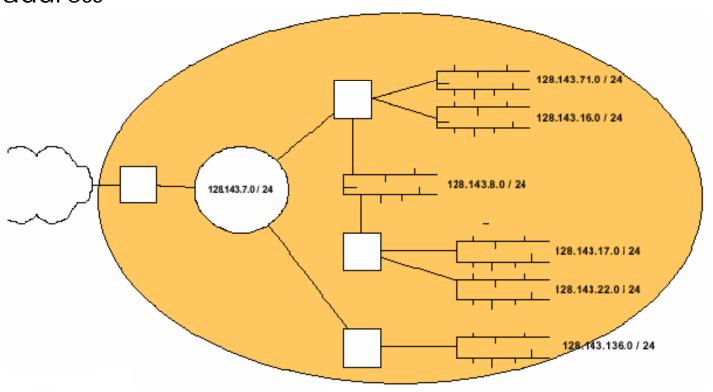
- Organisasi meminta kelas B dan bermaksud menggunakan oktet ke tiga sebagai field subnet (ada 28-2 = 254 subnet dengan masing-masing memiliki jumlah host 254; jumlah total host 254x254 = 64516)
- Dengan supernetting, organisasi itu dapat diberi sebanyak 256 alamat IP kelas C yang berurutan (dengan blok sebesar ini, jumlah network yang bisa diberi alamat adalah 254 network; masing-masing network dapat mengakomodasi 254 host)
 - Keinginan organisasi tercapai, alamat kelas B bisa dihemat

- Supernetting menyebabkan informasi yang disimpan di router (yang dipertukarkan dengan router lain) akan sangat besar
 - Pada contoh sebelumnya: kalau menggunakan alamat kelas B hanya akan ada satu entry; bila menggunakan kelas C akan ada 256 entry
- CIDR memecahkan masalah ini
- Pada CIDR, satu blok alamat dinyatakan oleh satu entry dengan format (network address, count)
 - Network address adalah alamat terkecil dari suatu blok
 - Count menyatakan jumlah total network address di dalam suatu blok
 - Contoh: pasangan (192.5.48.0,3) menyatakan tiga network address yaitu 192.5.48.0, 192.5.49.0, 192.5.50.0
 - Dalam kenyataan, CIDR tidak hanya berlaku untuk kelas C

CIDR Address Blocks and Bit Masks

- CIDR mensyaratkan ukuran setiap blok alamat merupakan kelipatan dua dan menggunakan bit masks untuk mengidentifikasi ukuran blok
- Misalnya suatu organisasi diberi 2048 alamat yang berurutan mulai dari 128.211.168.0, maka range alamatnya adalah :
 - 128.211.168.0 (10000000 11010011 10101000 00000000) : the lowest 128.211.175.0 (10000000 11010011 10101111 00000000) : the highest
- CIDR memerlukan dua item untuk menyatakan suatu blok alamat :
 - 32 bit lowest address
 - 32-bit masks
- Untuk contoh di atas, mask CIDR terdiri dari 21 bit "1", yang artinya pemisahan antara prefix dan suffix terjadi setelah bit ke-21
 - Mask: 11111111 11111111 11111000 00000000

Notasi CIDR

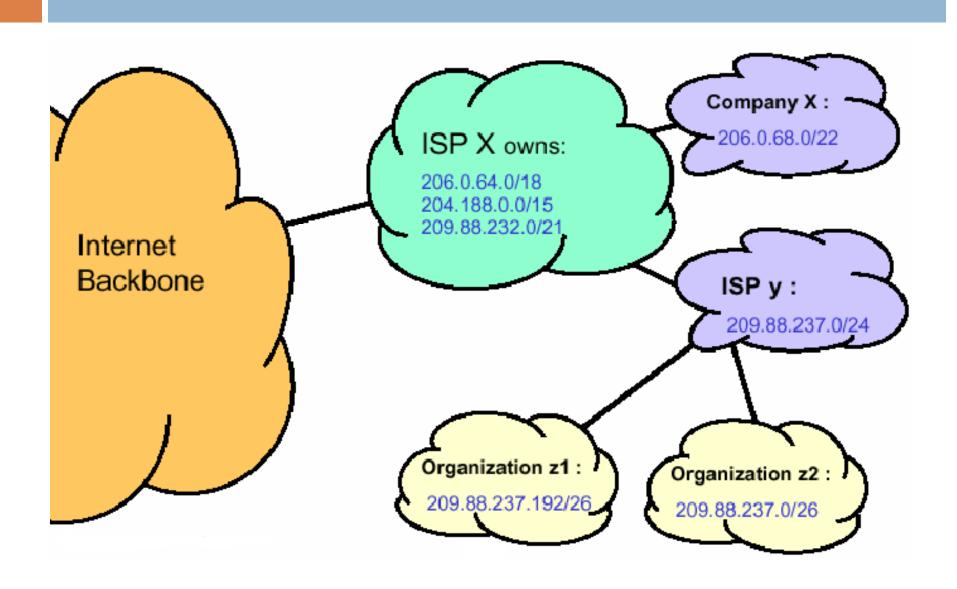

- Untuk identifikasi blok CIDR diperlukan address dan mask, maka dibuat notasi yang lebih pendek
 : CIDR notation (slash notation)
- Slash notation untuk contoh sebelumnya adalah 128.211.168.0/21 dimana 21 menyatakan 21bit masks

CIDR Block Prefix	# Equivalent Class C	# of Host Addresses
/27	1/8th of a Class C	32 hosts
/26	1/4th of a Class C	64 hosts
/25	1/2 of a Class C	128 hosts
/24	1 Class C	256 hosts
/23	2 Class C	512 hosts
/22	4 Class C	1,024 hosts
/21	8 Class C	2,048 hosts
/20	16 Class C	4,096 hosts
/19	32 Class C	8,192 hosts
/18	64 Class C	16,384 hosts
/17	128 Class C	32,768 hosts
/16	256 Class C	65,536 hosts
	(= 1 Class B)	
/15	512 Class C	131,072 hosts
/14	1,024 Class C	262,144 hosts
/13	2,048 Class C	524,288 hosts

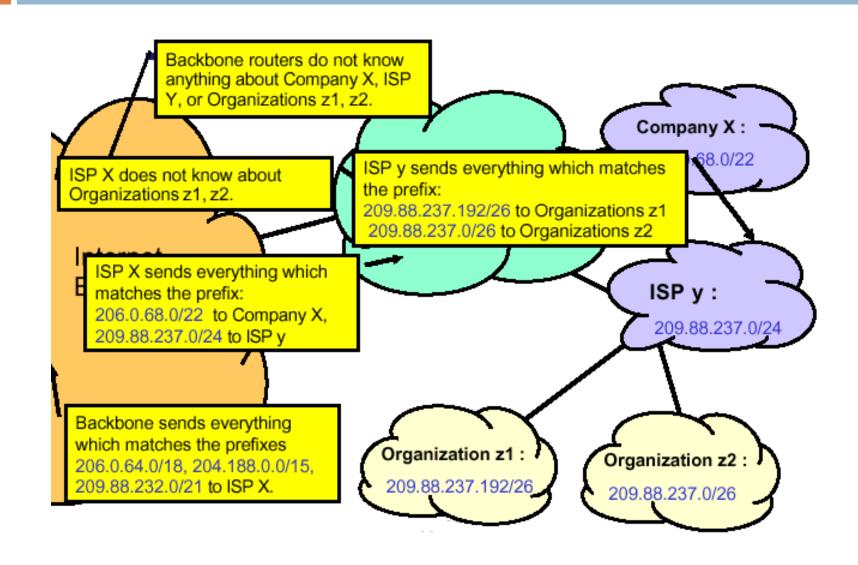
- Keuntungan classless addressing : fleksibilitas dalam pemberian blok IP address
- Misal sebuah ISP memiliki jatah alamat 128.211.0.0/16
 - ISP tsb. dapat memberi pelanggan mereka 2048 alamat dalam range /21 (seperti contoh sebelumnya)
 - Di lain waktu, mereka dapat memberi alamat kepada klien yang kecil (hanya dengan 2 komputer) dengan range /29 (128.211.176.212/29)

Addressing Plan Tipikal utk Organisasi

 Tiap jaringan layer-2 (Ethernet, FDDI) dialokasikan subnet address


CIDR dan Pengalokasian Address

 Backbone ISP mendpkan blok besar dari IP addresses space dan merelokasikan bagian dari blok address ke pelanggannya


Contoh:

- Mis. ISP memp. Blok address 206.0.64.0/18, merepresentasikan 16.384
 (2¹⁴) IP addresses
- Mis. Suatu client memerlukan 800 host addresses
- Dg classful addresses: perlu mengalokasikan address class B (dan menyia-nyiakan ~ 64.700 addresses) atau 4 individual class C (dan mengintrodusir 4 route baru dlm tabel routing Internet global)
- Dg CIDR, alokasikan /22 blok mis. 206.0.68.0/22 dan alokasikan blok 1.024 (2¹⁰) IP addresses

CIDR dan Informasi Routing

CIDR dan Informasi Routing

