Data Communication

#6. Data Link Layer
susmini |. Lestariningati, M. T

Introduction to Data Link Layer

- The data link layer transforms the physical layer, a raw transmission
facility, to a link responsible for node-to-node (hop-to-hop)
communication. Specific responsibilities of the data link layer include
framing, addressing, flow control, error control, and media access control.

- The data link layer divides the stream of bits received from the network
layer into manageable data units called frames. The data link layer adds a

header to the frame to define the addresses of the sender and receiver of

the frame.

From network layer To network layer

L |

- Data T2 | Frame - Data T2 | Frame

Data link layer l I Data link layer

To physical layer From physical layer

Intermediate system
system

End

Y Intermediate

Hop-to-hop delivery

|‘ 'l‘

Hop-to-hop delivery | Hop-to-hop delivery
< <

>
>

N
7
B E
Data link Data link Data link

A
I
I Physical Physical Physical
|

-_I» nyl

Hop-to-hop delivery ~ Hop-to-hop delivery Hop-to-hop delivery

« The data link layer also adds reliability to the physical layer by adding
mechanisms to detect and retransmit damaged, duplicate, or lost frames. When
two or more devices are connected to the same link, data link layer protocols are

necessary to determine which device has control over the link at any given time.

Error Control

« Error detection and correction or error control are techniques that
enable reliable delivery of digital data over unreliable
communication channels.

« Many communication channels are subject to channel noise, and
thus errors may be introduced during transmission from the source
to a receiver.

« Error detection technigques allow detecting such errors, while error

correction enables reconstruction of the original data.

Error Detection and Correction

- Data can be corrupted during transmission. For reliable
communication, error must be detected and corrected

- are implemented either at the data link layer or the transport layer
of the OSI model

« The general definitions of the terms are as follows:

- Error detection is the detection of errors caused by noise or
other impairments during transmission from the transmitter to
the receiver.

- Error correction is the detection of errors and reconstruction of

the original, error-free data.

Types of Errors

- Single Bit Error

 Burst Error

Errors

| Single-bit . ‘ Burst '

Single Bit Error

- Single-Bit Error
- Is when only one bit in the data unit has changed
- ex : ASCIl STX - ASCII LF

0 changed to 1

A .

OOOOllOlOI‘fOOOOOO

Received Sent

Multiple Bit Error

- Multiple-Bit Error
- IS when two or more nonconsecutive bits in the data unit have

changed
- ex : ASCII B - ASCII LF

Two errors

ofofof1{o}—p{ofofofo]1]o]1]0
Sent Received

Burst Error

« Burst Error
- means that two or more consecutive bits in the data unit have

changed

Length of burst
error (S bits)

Sent
OJT1T1O01O01O]T1T1O1O01O01T1T1OQ1O0]O01O07}T111

i i iBits corrupted by burst error

Oj1joj111J14o031J0111010J0J0]1¢}1

Received

Redundancy Concepts

« The general idea for achieving error detection and correction is to
add some redundancy (i.e., some extra data) to a message, which

receivers can use to check consistency of the delivered message,
and to recover data determined to be corrupted.

Data
101000000001010101010

Accept

Reject

1011101

Redundancy check

Receiver Sender
Data & redundancy check
101000000001010101010 | 1011101 j€&——

« Error-detection and correction schemes can be either systematic or non-
systematic:

* In a systematic scheme, the transmitter sends the original data, and
attaches a fixed number of check bits (or parity data), which are derived
from the data bits by some deterministic algorithm. If only error detection
Is required, a receiver can simply apply the same algorithm to the received
data bits and compare its output with the received check bits; if the values
do not match, an error has occurred at some point during the
transmission.

* In a system that uses a non-systematic code, the original message is
transformed into an encoded message that has at least as many bits as

the original message.

Error Detection Methods

« Detection methods
- VRC (Vertical Redundancy Check)
- LRC (Longitudinal Redundancy)
- CRC (Cyclical redundancy Check)

- Checksum
‘ Detection methods I

| VRC . | LRC ' | CRC . | Checksum .

VRC (Vertical Redundancy Check)

- A parity bit is added to every data unit so that the total number of

1s(including the parity bit) becomes even for even-parity check or
odd for odd-parity check

« VRC can detect all single-bit errors. It can detect multiple-bit or

burst errors only the total number of errors is odd/even

/ 1100001 | Data

1100001 | 1

Receiver

1| VRC

Sender

Example of Even Parity

[1 00110 10| Orginal Data

Even _O"\o—i .
Odd Parity Generator

Parity Bit
LSB MSB /Trant:mitted Data
[1001 1010 0 with Parity
FIGURE 3-1 Appending Parity Bit
LSB MSB LSB MSB
|01 0000 10| ASCl 11000010 ASCI |
B B
Even - Even—o.\o_i -
0dd _O'\o—| Parity Generator Odd Parity Generator
LSB MSB LSB MSB .
Adding 110000 10 1| Adding
[0 100001 00fpyy | Parity

a b

LRC (Longitudinal Redundancy Check)

« Parity bits of all the positions are assembled into a new data unit,
which is added to the end of the data block

Original data
11100111 11011101 00111001 10101001

A 4

11100111
11011101
00111001
—> | 10101001
» 10101010

>

hlllOOlll 11011101 00111001 10101001 10101010
Original data plus LRC

A 4

A 4

LRC

EXAMPLE 34

Determine the states of the LRC bits for the asynchronous ASCII message “Help!™

SOLUTION

The first step in understanding the process 1s to list each of the message’s characters
with their ASCII code and even VRC parity bit:

LSB MSB VRC CHARACTER
0 0 0 l 0 0 l 0 H
l 0 l 0 0 l l 0 e
0 0 l l 0 1 l 0 l
0 0 0 0 l l l l p
l 0 0 0 0 l 0 0 !

Next, for each vertical column, find the LRC bit by applying the exclusive OR
function. To make this process easier, you can consider the results of the exclusive
OR process as being low or zero (0), if the number of ones (1) are even, and one (1)
if the count 1s odd. For instance, in the LSB column, there are two 1°s, so the LRC
bit for that column 1s a 0. And for the rest:

LSB MSB VRC CHARACTER
0 0 0 1 0 0 1 0 H
1 0 1 0 0 1 1 0 e
0 0 1 1 0 1 1 0 1
0 0 0 0 1 1 1 1 D
1 0 0 0 0 1 0 0 !
0 0 0 0 1 0 0 1 LRC

EXAMPLE 3-5

Show how a good message would produce an LRC of 0 at the receiver.

SOLUTION

Repeat the process as before, but include the LRC character this time. Note that the
number of Is in each column are always even if there are no errors present:

LSB MSB VRC CHARACTER
0 0 0 l 0 0 1 0 H
l 0 l 0 0 l 1 0 e
0 0 1 1 0 l 1 0 l
0 0 0 0 l l 1 l p
l 0 0 0 0 l 0 0 !
0 0 0 0 l 0 0 1 LRC
0 0 0 0 0 0 0 0 Receiver LRC

EXAMPLE 3-6

[llustrate how LRC/VRC 1s used to correct a bad bit.

SOLUTION

We will use the same message, but by placing an error in the received data would
cause the | character to print as an 4. You can compare the data with the good
example to satisfy yourself as to which bit 1s bad and confirm that the LRC process

does indeed pick out the same bit.

LSB MSB VRC CHARACTER
0 0 0 l 0 0 1 0 H
l 0 1 0 0 1 1 0 e
0 0 0 1 0 1 l 0 h
0 0 0 0 l l l l p
1 0 0 0 0 1 0 0 !
0 0 0 0 l 0 0 l LRC
0 0 1 0 0 0 0 l Received LRC

CRC (Cyclic Redundancy Check)

* IS based on binary division.

Divisor

|

Remainder

Zero, accept
Nonzero, reject

Data

CRC

Receiver

Data 00...0
n bits

Divisor | n+1 bits

Sender

. Data plus extra
e US|ng MOdUlal’ 2 zeros. The number
of zeros is one less
n/mel ; than the number of
DIVISIOﬂ il bits in the divisor.
Divisor
\ 111101
1 1T01)100100}J000
110 1*
1000
1101
010
110 lv
1110
110 lv
When the leftmost bit
. . 0110
of the remainder is zero, 0000
we must use 0000 instead >‘_V
of the original divisor. 1100
1101
001

Remainder

Quotient

Divisor \

\ 111101 Data plus CRC received
/
1 101)100100001
110 1*
1000
1101
1010
110 1v
1110
110 lv
When the leftmost bit
. . 0110
of the remainder is zero, 0000
we must use 0000 instead >’_V
of the original divisor. 1101
1101
000

Result

Polynomials

« CRC generator (divisor) is most often represented not as a string

of 1s and 0s, but as an algebraic polynomial.

Polynomial

[x7+x5+x2+x+1

| | \

4 3
X X

\

x°
L
0

7 3 vV
(1 1 0O 111)

Divisor

Standard Polynomials

CRC-12 CRC-16 CRC-ITU-T
x12+ x11+ x3 +x+1 x16+ x15+ x2+ 1 x16+ x12+ x5+ 1
CRC-32

32 26 23 5
X +x +x +x22+xl6+x12+x11+x10+x8+x7+x +x4+x2+x+1

Checksum

« Checksum
- used by the higher layer protocols
* is based on the concept of redundancy (VRC, LRC, CRC)

Receiver Sender
Section 1 | » bits Section 1 | » bits
Section 2 | » bits Section 2 | n bits
Checksum Checksum
Section k | n bits Section k | n bits
Checksum
Sum Packet Sum
Complement Complement
If the result is 0, keep; |
otherwise, discard.
Result Checksum

 To create the checksum the sender does the following:

The unit is divided into K sections, each of n bits.

Section 1 and 2 are added together using one’s complement.
Section 3 is added to the result of the previous step.

Section 4 is added to the result of the previous step.

The process repeats until section k is added to the result of the
previous step.

The final result is complemented to make the checksum.

The receiver adds the data unit and the checksum field. If the result
1s all 1s, the data umtis accepted; otherwise it 1s discarded.

T

- T

Sum —0
Complement 0

Receiver T =T < Sender

5 0 28
| 0 0
4 17 0 A
10.12.14.5
12.6.7.9
4,5, and 0 » 01000101 00000000
28 » 00000000 00011100
1 » 00000000 00000001
0and 0 » 00000000 00000000
4 and 17 » 00000100 00010001
0 » 00000000 00000000
10.12 » 00001010 00001100
14.5 » 00001110 00000101
12.6 » 00001100 00000110
7.9 » 00000111 00001001
Sum » 01110100 01001110
Checksum » 10001011 10110001 —

TK36401 Internet Engineering @lestariningati

Network Layer

The network layer is responsible for host to host delivery and for routing the packets
through the routers.

End
Intermediate system
system

End

- Routers forwards packets from source to system
destination

Intermediate

S > i
Intermediate system
system

- May cross many separate networks
along the way S

Hop-to-hop delivery | Hop-to-hop delivery | Hop-to-hop delivery
[|
Source-to-destination delivery

- All packets use a common Internet : E

A F
Protocol |Network | Network | Network [4 |

+ Any underlying data link protocol %Z;ITF%F% l:htyl,k F}Eq 2htyllk E

| Source-to-destination delivery
I

L]
LI

- any higher layer transport protocol

Computer
Engineering

30

TK36401 Internet Engineering @lestariningati

IP Networking

Router

Q
-

Ethernet

data packet data packet

Eth IP |TCP]HTTP FDDI | IP | TCPyHTTP

So what does IP do?
Addressing
Fragmentation
e.g. FDDI maximum packet is 4500 bytes while Ethernet is 1500 byte, how to manage this?
Some error detection
Routers only forward packets to the next hop
they do not:
detect packet loss, packet duplication
Reassemble or retransmit packets

Computer
Engineering 31

TK36401 Internet Engineering @lestariningati

IP Header

Ver : Which version of IP is this?
HL : Header Length

How big is IP header? (in bytes/octets)
TOS : Type of Services

care/don’t care for delay, throughput, reliability,

cost Bit ke-0 4 g I 12 16 I 20 | 24 I 28

Length : How long is whole packet in bytes/octets? Yer | JBE| TOS Packet Length
Includes header Identification Flags | Fragmentation Ofset
Limits total paCke‘t to 64K Time to live ‘ Protocol Checksum
Redundant?

Source Address

TTL: Time To Live

How many more routers can this packet pass through/
Designed to limit packet from looping forever
Each router decrements TTL fields
If TTL is O then router discards packet

Destination Address

Padding

Data

Protocol: Which transport protocol is the data using?
i.e how should a host interpret the data
Checksum
Header contains simple checksum
validates content of header only
Recalculated at each hop
Routers need to update TTL
Hence straightforward to modify

Computer
Engineering 32

EXAMPLE 3-10
What is the checksum value for the extended ASCII message “Help!™?

SOLUTION
The checksum value is found by adding up the bytes representing the Help! characters:
01001000 H
01100101 e
01101100]
01110000 p
00100001 !

00010000 Checksum

Error Correction

- can be handled in two ways
1. when an error is discovered, the receiver can have the sender
retransmit the entire data unit.
2. a receiver can use an error-correcting code, which

automatically corrects certain errors.

