
Characteristic of Object
Citra N., MT

UNIKOM

Why Object

• Objects are easier for people to understand: This
is because the objects are derived from the
business that we’re trying to automate, rather
than being influenced too early by computer-
based procedures or data storage requirements.

• For example, in a bank system, we program in
terms of bank accounts, bank tellers and
customers, instead of diving straight into
account records, deposit and withdrawal
procedures, and loan qualification algorithms.

• Data and processes are not artificially separated

• In traditional methods, the data that needs to be
stored is separated early on from the algorithms
that operate on that data and they are then
developed independently.

• In Object oriented development, data and
processes are kept together in small, easy-to-
manage packages; data is never separated from
the algorithms.

• Code can be reused more easily: With the traditional
approach, we start with the problem that needs to
be solved and allow that problem to drive the entire
development. We end up with a monolithic solution
to today’s problem. But tomorrow always brings a
different problem to solve; no matter how close the
new problem is to the last one we dealt with, we’re
unlikely to be able to break open our monolithic
system and make it fit.

• Object orientation is mature and well proven.
Applying objects in such areas as software,
databases and networks is now well understood.

• A model is a representation of a problem domain
or a proposed solution that allows us to talk, or
reason, about the real thing. This allows us to
increase our understanding and avoid potential
pitfalls.

• A model allows us to learn a without actually
building anything. Much of software
development involves creating and refining
models, rather than cutting lines of code.

• From the perspective of human cognition, an object
is any of the following:

• A tangible and/or visible thing
• Something that may be comprehended intellectually
• Something toward which thought or action is

directed

• ―An object is an entity that has state, behavior, and
identity. The structure and behavior of similar
objects are defined in their common class. The terms
instance and object are interchangeable.‖

Object
• All objects have attributes: for example, a car

has a manufacturer, a model number, a color
and a price; a dog has a breed, an age, a color
and a favorite toy. Objects also have behavior:
a car can move from one place to another and a
dog can bark.

Attributes

• An attribute is a property of an object, such as its size,
position, name, price, font, interest rate, or whatever. In
UML, each attribute can be given a type, which is either a
class or a primitive. If we choose to specify a type, it
should be shown to the right of the attribute name, after
a colon. (We might choose not to specify attribute types
during analysis, either because the types are obvious or
because we don’t want to commit ourselves yet.)

• Attributes can be shown on a class diagram by adding a
compartment under the class name. To save space, we
can document them separately instead as an attribute
list, complete with descriptions.

Object notation

Classes

• A class is a set of objects that share a common
structure, common behavior, and common
semantics.

• A single object is simply an instance of a class.

• A class is a category. All objects that belong to
the same category have the same attributes and
operations (but the values of the attributes may
change from object to object).

Class

• When designing a class hierarchy, you should bear in
mind that most superclasses are abstract. This follows
from the fact that inheritance hierarchies are naturally
derived from the bottom up:

 1. We look for the concrete concepts that exist in our
problem domain and reason about their knowledge and
behavior.

 2. We look for commonalities between the concrete
classes so that we can introduce more general
superclasses.

 3. We group superclasses into more superclasses, until
we arrive at our most general root class (Fruit or
Collection, for example).

Relationship

• The relationship between any two objects
encompasses the assumptions that each makes
about the other, including what operations can be
performed and what behavior results. We have
found that two kinds of object relationships are of
particular interest in object-oriented analysis and
design, namely:

 1. Links, denote peer-to-peer or client/supplier
relationships

 2. Aggregation, denotes a whole/part hierarchy, with
the ability to navigate from the whole (also called
the aggregate) to its parts. In this sense, aggregation
is a specialized kind of association

Association, Labels, Roles and Comments

• All relationships, except inheritance, can be given an
association label, indicating the nature of the
association. If it’s not obvious which way the association
name should be read, a black arrowhead can be used.

Generalization

• The concept of a class allows us to make statements
about a set of objects that we treat exactly the same
way. But sometimes we run into objects that are
only partially alike.

• A generalization is a taxonomic relationship
between a more general classifier and a more
specific classifier. Each instance of the specific
classifier is also an indirect instance of the general
classifier. Thus, the specific classifier inherits the
features of the more general classifier.

What is Generalization?

• One class inherits from another

Truck

tonnage

GroundVehicle

weight

licenseNumber

Car

owner

register()

getTax()

Person

0..*

Trailer

1

ancestor

decendent

generalization

size

Association

• An association specifies a semantic relationship
that can occur between typed instances. An
instance of an association is called a link

• An association between two classes indicates
that objects (instances) of one class may be
related (linked) to objects of the other class. You
specify an association at the class level; you
specify a link at the object level.

Association

• Association is a weak form of connection: the objects
may be part of a group, or family, of objects but
they’re not completely dependent on each other.

• For example, consider a car, a driver, a passenger
and another passenger. When the driver and the two
passengers are in the car, they’re associated: they all
go in the same direction, they occupy the same
volume in space, and so on. But the association is
loose: the driver can drop off one of the passengers
to go their separate way, so that the passenger is no
longer associated with the other objects.

Aggregation (“is a part of”)

• Aggregation: A special form of association that
specifies a whole-part relationship between the
aggregate (whole) and a component part.

• Formally, in the UML, aggregation is considered
to be a specific type of association, where the
class on one end of the association represents a
whole and the class at the other end represents a
part.

Aggregation

• Aggregation means putting objects together to make
a bigger object. Manufactured items usually form
aggregations: for example, a microwave is made up
of a cabinet, a door, an indicator panel, buttons, a
motor, a glass plate, a magnetron, and so on.

• Aggregations usually form a part–whole hierarchy.
Aggregation implies close dependency, at least of the
whole to the part; for example, a magnetron is still a
magnetron if you take it out of its microwave, but
the microwave would be useless without the
magnetron, because it wouldn’t be able to cook
anything.

Composition Aggregation

• Composite aggregation, also known as composition, is a
special form of aggregation where in each part may
belong to only one whole at a time.

• Composite aggregation is a strong form of aggregation
that requires a part instance be included in at most one
composite at a time. If a composite is deleted, all of its
parts are normally deleted with it.

• Formally, composition is a specific kind of aggregation.
In aggregation, a part may belong to more than one
whole at the same time; in composite aggregation,
however, the object may belong to only one whole at a
time. The parts are destroyed whenever the whole is
destroyed—except for those parts that have been
removed prior to the deletion of the whole.

Inheritance

• Inheritance: The mechanism by which more
specific elements incorporate structure and
behavior of more general elements.

• Inheritance refers to the mechanism by which a
specialized class adopts—that is, inherits—all the
attributes, operations, and relationships of a
generalized class

Encapsulation

• Every day you use objects without knowing how they
work or what their internal structure is. This is a
useful aspect of the way we human objects interact
with other objects. It keeps us from having to know
too much. It also means that we can easily switch to
another object with a different internal structure as
long as it behaves the same way externally.

• Encapsulation refers to an object hiding its
attributes behind its operations (it seals the
attributes in a capsule, with operations on the edge).
Hidden attributes are said to be private.

Polymorphism
• Polymorphism means the ability to take on many

forms. The term is applied both to objects and to
operations.

• Polymorphism is a concept in type theory wherein a
name may denote instances of many different
classes as long as they are related by some common
superclass. Any object denoted by this name is thus
able to respond to some common set of operations
in different ways. With polymorphism, an operation
can be implemented differently by the classes in the
hierarchy. In this manner, a subclass can extend the
capabilities of its superclass or override the parent’s
operation,

• One Operation, Many Methods
• A polymorphic operation is one whose method may take

on many forms based on the class of the object carrying
it out.

• One Interface, Many Implementations
• Polymorphism means ―one interface, many possible

implementations.‖ Cars, for example, are designed with
polymorphism in mind. They all use the same interface—
an accelerator pedal—to change speed, even though the
internal method may differ from model to model. The
auto industry designs cars this way so that the drivers do
not have to learn a new interface for each newmodel of
car.

Abstraction

• Dahl, Dijkstra, and Hoare suggest that ―abstraction arises
from a recognition of similarities between certain objects,
situations, or processes in the real world, and the decision to
concentrate upon these similarities and to ignore for the time
being the differences‖ [42].

• Shaw defines an abstraction as ―a simplified description, or
specification, of a system that emphasizes some of the
system’s details or properties while suppressing others. A
good abstraction is one that emphasizes details that are
significant to the reader or user and suppresses details that
are, at least for the moment, immaterial or diversionary‖ [43].

• Berzins, Gray, and Naumann recommend that ―a concept
qualifies as an abstraction only if it can be described,
understood, and analyzed independently of the mechanism
that will eventually be used to realize it‖ [44].

Abstraction

• An abstraction denotes the essential
characteristics of an object that distinguish it
from all other kinds of objects and thus provide
crisply defined conceptual boundaries, relative
to the perspective of the viewer.

• Abstraction is one of the fundamental ways that
we as humans cope with complexity.

Encapsulation

• Encapsulation is the process of compartmentalizing the
elements of an abstraction that constitute its structure and
behavior; encapsulation serves to separate the contractual
interface of an abstraction and its implementation.

• Abstraction and encapsulation are complementary concepts:
Abstraction focuses on the observable behavior of an object,
whereas encapsulation focuses on the implementation that
gives rise to this behavior. Encapsulation is most often
achieved through information hiding (not just data hiding),
which is the process of hiding all the secrets of an object that
do not contribute to its essential characteristics; typically, the
structure of an object is hidden, as well as the implementation
of its methods.

Modularity/Decomposition

• Modularity is the property of a system that has been
decomposed into a set of cohesive and loosely coupled
modules.

• Modularization consists of dividing a program into
modules which can be compiled separately, but which
have connections with other modules.

• ―The act of partitioning a program into individual
components can reduce its complexity to some degree. . .
. Although partitioning a program is helpful for this
reason, a more powerful justification for partitioning a
program is that it creates a number of well-defined,
documented boundaries within the program. These
boundaries, or interfaces, are invaluable in the
comprehension of the program‖

• Thus, the principles of abstraction,
encapsulation, and modularity are synergistic.
An object provides a crisp boundary around a
single abstraction, and both encapsulation and
modularity provide barriers around this
abstraction.

Hierarchy

• Hierarchy is a ranking or ordering of
abstractions.

• The two most important hierarchies in a
complex system are its class structure the ―is a‖
hierarchy) and its object structure (the ―part of‖
hierarchy).

