
METHODOLOGIES
Citra N., MT

Objectives

• To introduce software process models
• To describe three generic process models and

when they may be used
• To describe outline process models for

requirements engineering, software
development, testing and evolution

• Information System is a combination of people,
hardware, software, communication devices, network
and data resources that processes (can be storing,
retrieving, transforming information) data and
information for a specific purpose.

• The operation theory is just similar to any other system,
which needs inputs from user (key in instructions and
commands, typing, scanning). The inputted data then
will be processed (calculating, reporting) using
technology devices such as computers, and produce
output (printing reports, displaying results) that will be
sent to another user or other system via a network and a
feedback method that controls the operation.

Definition

• A methodology is a description of the steps a
development team should go through in order to
produce a high-quality system.

• A methodology also describes what should be produced
(documents, diagrams, code, etc.) and what form the
products should take (for example, content, icons,
coding style).

• At every stage, a methodology specifies what we should
do next, so we’re not left scratching our heads, thinking
‘Okay, what now?’

• A methodology helps us to produce code that is more
extensible (easier to change), more reusable (applicable
to other problems) and easier to debug (because it has
more documentation).

Definition

• A methodology is a systematic way of doing things.
It is a repeatable process that we can follow from the
earliest stages of software development through to
the maintenance of an installed system. As well as
the process, a methodology should specify what
we’re expected to produce as we follow the process
(and what form the products should take).

• A methodology will also include advice or
techniques for resource management, planning,
scheduling and other management tasks.

Benefits

• Documentation: All methodologies promote thorough
documentation of every stage of the development effort, so
that the finished system is not an impenetrable monolith.

• Reduced latency: Since the workflows, activities, roles and
inter-dependencies are better understood, there is less
opportunity for human (and other) resources to lie idle for
want of something to do.

• Improved chances of delivery on time and within budget.
• Better communication between users, sales people, managers

and developers: A good methodology is based on logic and
common sense, so it will be easy for all participants to grasp
the basics; thus, we have a more orderly development, with
less scope for misunderstanding and wasted effort.

A good methodology
• Planning: Deciding what needs to be done.
• Scheduling: Mapping out when things will be done.
• Resourcing: Estimating and acquiring the human, software, hardware and

other resources that are needed.
• Workflows: The subprocesses within the wider development effort (for

example, designing the system architecture, modeling the problem domain
and planning the development effort).

• Activities: Individual tasks within a workflow, such as testing a component,
drawing a class diagram or detailing a use case, too small or indefinable to
be a workflow in their own right.

• Roles: The parts played by personnel within the methodology (developer,
tester or sales person).

• Artifacts: The products of the development effort: pieces of software, design
documents, training plans and manuals.

• Education: Deciding how to train personnel, if necessary, to fulfill their
required roles; deciding how end users (staff, customers, sales people) will
learn how to use the new system. For the purposes of this book, we won’t be
looking at the details of an industrial methodology

Clasical phase

Requirement
• Requirements capture is about discovering what we’re

going to achieve with our new piece of software and has
two aspects. Business modeling involves understanding
the context in which our software will operate – if we
don’t understand the context, we have little chance of
producing something to enhance that context.

• System requirements modeling (or functional
specification) means deciding what capabilities the new
software will have and writing down those capabilities.
We need to be clear about what our software will do and
what it won’t do, so that the development doesn’t veer off
into irrelevant areas and we know both when we’ve
finished and whether we’ve been successful.

Clasical phase

Analysis
• Analysis means understanding what we’re

dealing with. Before we can design a solution, we
need to be clear about the relevant entities, their
properties and their inter-relationships. We also
need to be able to verify our understanding. This
can involve customers and end users, since
they’re likely to be subject-matter experts.

Clasical phase

Design
• In the design phase, we work out how to solve the

problem. In other words, we make decisions, based
on experience, estimation and intuition, about what
software we will write and how we will deploy it.
System design breaks the system down into logical
subsystems (processes) and physical subsystems
(computers and networks), decides how machines
will communicate, chooses the right technologies for
the job, and so on.

• In subsystem design we decide how to cut each
logical subsystem into effective, efficient and
feasible code.

Clasical phase

Coding
• This is where we do writing pieces of code that work

together to form subsystems, which in turn
collaborate to form the whole system.

• Although we would expect most of the difficult
coding decisions to have been made before we reach
this phase (during design), there is still plenty of
scope for creativity: although the public interfaces of
our software components will have been well
designed, specified and documented, programmers
have free to decide on the inner workings. As long as
the end result is effective and correct, everyone will
be happy.

Clasical phase

Testing
• When our software is complete, it must be tested

against the system requirements to see if it fits
the original goals.

• As well as this kind of conformance testing, it’s a
good idea to see if our software can be broken
via its external interfaces – this helps to protect
us against accidental or malicious abuse of the
system when it’s been deployed.

Clasical phase

Implementation
• In the implementation phase, we’re concerned

with getting the hardware and software to the
end users, along with manuals and training
materials.

• This may be a complex process, involving a
gradual, planned transition from the old way of
working to the new.

Clasical phase

Maintenance
• When our system is implemented, it has only just been

born. A long life stretches before it, during which it has
to stand up to everyday use – this is where the real
testing happens.

• As software developers, we’re normally interested in
maintenance because of the faults (bugs) that are found
in our software. We must find the faults and remove
them as quickly as possible, rolling out fixed versions of
the software to keep the end users happy. As well as
faults, our users may discover deficiencies (things that
the system should do but doesn’t) and extra
requirements (things that would improve the system).
From the business point of view, we would hope to fix
and improve our software over time to maintain
competitive advantage.

(1) Evolutionary development
• Underlying idea

▫ Give an initial implementation to the users and
then refinine it through many versions based on
user feedback

• Exploratory development

▫ Objective is to work with customers and to evolve a
final system from an initial outline specification.
Should start with well-understood requirements

• Throw-away prototyping
▫ Objective is to understand the system

requirements. Should start with poorly understood
requirements

Evolutionary development…

Validation
Final
version

Development
Intermediate

versions

Specification
Initial
version

Outline

description

Concurrent

activities

(2) Component-based software

engineering
• Reuse occurs informally in almost all software projects
• Based on systematic reuse where systems are integrated

from existing components or COTS (Commercial-off-
the-shelf) systems.

• Process stages
▫ Component analysis

▫ Requirements modification

▫ System design with reuse

▫ Development and integration

• This approach is becoming increasingly used as
component standards have emerged

 Process iteration and hybrid models

• LARGE SYSTEMS need different approaches for
different parts

• System requirements always evolve during a
project
▫ So process iteration where earlier stages are

reworked is always part of the process for large
systems

• Two (related) approaches
▫ Incremental development
▫ Spiral development

(3) Incremental development
• The development and delivery is broken down

into increments with each increment
delivering part of the required functionality

• User requirements are prioritised and the
highest priority requirements are included in
early increments

• Once the development of an increment is
started, the requirements are frozen
▫ But requirements for later increments can

continue to evolve

(4) Extreme programming

• New approach to development based on the
development and delivery of very small
increments of functionality

• Relies on constant code improvement, user
involvement in the development team and
pairwise programming

• Good for small teams

OBJECT-ORIENTED METHODOLOGIES

• Object-oriented methodologies tend not to be
too prescriptive: the developers are given some
choice about whether they use a particular type
of diagram, for example. Therefore, the
development team must select a methodology
and agree which artifacts are to be produced,
before they do any detailed planning or
scheduling.

• When object-oriented programming was
catching on, in the 1990s, developers invented
object-oriented methodologies, better suited to
an object-oriented programming style.

• These days, one of the market leading
methodologies is the Rational Unified Process
(RUP) [Jacobson et al. 99], owned by IBM.
Roughly speaking, RUP is a convergence of
Objectory, Booch and OMT.

• First dimension describe as horizontal
represent dinamics aspects of software
development, explaining about stages in UP and
their major milestone. The stages are Inception,
Elaboration, Construction, dan Transition.

• Second dimension describe as vertical
represents statics aspects of software
development, explaining main activity for each
stages. Key are who, what, how dan when.

UP Dimensions

UP (Unified Process)

UP advantages

• Improve productivity

• Deliver high quality system

• Lower maintenance cost

• Facilitate reuse

• Manage complexity

