Top Ten Use Case Mistakes

February 2001

"Usecasedriven" meanswriting theuser manual first, then writing the
code. Thispracticereinforcesthe fundamental notion that a system must
conform to the needs of the users, instead of your users conforming to the
system.

by Doug Rosenberg and Kendall Scott

Read part 1Driving Design with Use Cases
Read part 2Driving Design: The Problem Domain

Welcome to the third in a series of five articleattprovides a prepublication look at the
annotated example from the forthcoming bo®dgplied Use Case Driven Object
Modeling(Addison-Wesley, 2001, tentatively scheduled friA. We're following the
process detailed in our first boddse Case Driven Object Modeling with UML
(Addison-Wesley, 1999), as we dissect the desigandhternet bookstore. In this
article, we show common mistakes, and then explawm to correct them.

Within the ICONIX process, one of the early stapsoives building a use case model.
This model is used to capture the user requirenw@rasiew system (whether it's being
developed from scratch or based on an existingsy)sby detailing all the scenarios
that users will perform. Use cases drive the dyeanodel and, by extension, the entire
development effort.

. Figure 1. The "Big Picture" for Use Case Driven
Figure 1 shows where use case Object Modeling

modeling resides within the "big bomic o :
picture” of the ICONIX process. ' = LPTTT
B 5 = Jp

TheKey Elements W1 Frokce R PO e |
The task of building use cases for yo S %ﬂm:?_/ s
new system is based on immediately

identifying as many as you can, and W W

then establishing a continuous loop ¢

writing and refining the text that sate Mo)
describes them. Along the way, you E. — %ﬁ _—
will discover new use cases, and als i = _
factor out commonality in usage. Model Diagram

The diagram portrays the essence of a '
You should keep one overriding streamlined approach to software development

principle in mind during your effort to that includes a minimal set of UML diagrams and
identify use cases: They should have some valuable techniques that take you from use
strong correlations with material four €3S t0 code quickly and efficiently.

in the system's user manual. The connection bet@aeim use case and a distinct
section of your user guide should be obvious.iitffoeces the fundamental notion that

you are designing a system that will conform towissvpoints of the users. It also

provides a convenient summary of what "use casenltimeans: Write the user
manual, then write the code. If you're reengingganegacy system, you can simply
work backward from the user manual.

Once you have some text in place for a use casénie to refine it by making sure the
sentences are clear and discrete, the basic fafyaur text is noun-verb-noun, and the
actors and potential domain objects are easy tdifgleYou should also update your
domain model—the subject of our previous articlriVing Design: The Problem
Domairt' (Jan. 2001)—as you discover new objects and ekgaar understanding of
the objects you'd previously found. And, it's imjpot to determine all possible
alternate courses of action for each use case wérgpessible, an activity which should
take up the majority of the time.

You can use several mechanisms to factor out comusage, such as error handling,
from sets of use cases. This is usually effecheeause breaking usage down to atomic
levels will ease the analysis effort and save yas df time when drawing sequence
diagrams. Whether you use UML's generalizationinoldidesandextends

relationships, or OML'swvokesandprecedeselationships, which we recommend in

our book, your goal should be a set of small, gesaieusable use cases.

You should feel comfortable proceeding to the mrdases of the development process
when you've achieved the following goals:

« You've built use cases that together account for all of the desired functionality of the
system.

« You've produced clear and concise written descriptions of the basic course of action,
along with appropriate alternative courses of action, for each use case.

* You've factored out scenarios common to more than one use case, using whichever
constructs you're most comfortable with.

TheTop 10 Use Case Modeling Errors

Contrary to the principles we just discussed anaraber of common errors that we
have seen students make when they're doing useraading on their projects for the
first time. Our "top 10" list follows.

10.Don't write functional requirements instead of usagenario textRequirements

are generally stated in terms of what the systeati db, while usage scenarios describe
actions that the users take and the responsethéhaystem generates. Eventually, our
use case text will be used as a run-time behavspetification for the scenario we'll
describe, and this text will sit on the left margira sequence diagram. We want to be
able to easily seleowthe system (shown with objects and messages) imguits the
desired behavigras described in the use case text. So, we neddandy distinguish
between usage descriptions (behavior) and systeuireenents.

9. Don't describe attributes and methods rather thaage.Your use case text shouldn't
include too many presentation details, but it st@iso be relatively free of details
about the fields on your screens. Field names oftatch the names of attributes on
your domain classes, which we discussed in Jarsuarytle. Methods shouldn't be
named or described in use case text because thegsemt how the system will do
things, as opposed to what the system will do.

8. Don't write the use cases too tersélhen it comes to writing text for use cases,
expansive is preferable. You need to address #fieofietails of user actions and system
responses as you move into robustness analysigt@ndction modeling, so you might
as well put some of those details in your use cd&&emember also that your use cases
will serve as the foundation for your user manlial better to err on the side of too
much detail when it comes to user documentation.

7.Don't divorce yourself completely from the useeifdce.One of the fundamental
notions of "use case driven" is that the developgream conforms the design of the
system to the viewpoints of the users. You canthtowithout being specific as to

what actions the users will perform on your screé&sswve mentioned for item number
nine, you don't need to talk about fields in yose gase text, and you don't want to
discuss the cosmetic appearance of your screem&vieo, you can let your prototypes,
in whatever form they take, do that work for yowuydo need to discuss those features
of the user interface that allow the useteibthe system to do something

6. Don't avoid explicit names for your boundary obgeBoundary objects are the
objects with which actors will interact. These fneqtly include windows, screens,
dialogs and menus. In keeping with our theme dlisiag ample detail and being
explicit about user navigation, we submit thatnggessary to name your boundary
objects explicitly in your use case text. It's atsportant to do this because you will
explore the behavior of these objects during raimssd analysis (the subject of the next
article in this series), and it can only reduce iguity and confusion to name them
early.

5. Don't write in the passive voice, using a perspectither than the user'd. use case
is most effectively written from the user's pergpecas a set of present-tense verb
phrases in active voice. The tendency of engineeuse passive voice is well-
established, but use cases should state the attiainte user performs, and the
system's responses to those actions. This kinekoid only effective when it's
expressed in the active voice.

4. Don't describe only user interactions; ignore syst@sponseslhe narrative of a use
case should be event- response oriented, as ie,sjfdtem does this when the user does
that." The use case should capture a good deahaf happens "under the covers" in
response to what the actor is doing, whether tetesycreates new objects, validates
user input, generates error messages or whateggereRber that your use case text
describes both sides of the dialog between thearsgthe system.

3. Don't omit text for alternative courses of acti@asic courses of action are generally
easier to identify and write text for. That doesm&an, however, that you should put off
dealing with alternative courses until, say, detadlesign. Far from it. In fact, it's been
our experience that when important alternative sesiof action are not uncovered until
coding and debugging, the programmer responsible/fiting or fixing the code tends

to treat them in ways that are most convenienhiior. Needless to say, this isn't healthy
for a project.

2. Don't focus on something other than what isitieisa use case, such as how you get
there or what happens afterward. Several promiagthiors, such as Alistair Cockburn
and Larry Constantine, advocate the use of longypticated use case templates.

Spaces for preconditions and post-conditions anergdly present on these templates.
We like to think of this as the 1040 "long form"papach to use case modeling, in
comparison to the 1040EZ-like template that we adte (two headings: Basic Course
and Alternate Course). You shouldn't insist on gisimg and complex use case

templates just because they appeared in a boakidez '

1. Don't spend a month deciding whether to useided or extends. In our years of
teaching use case driven development, we've yetda situation where we've needed
more than one mechanism for factoring out commonaNhether you use UML's
include construct, or OML's invoke and precede raa@ms, or something else that
you're comfortable with, doesn't matter; simplykpome way of doing things and stick
with it. Having two similar constructs is worse thiaaving only one. It's just too easy to
get confused—and bogged down—when you try to usie [Bmn't spin your wheels.

®
Figure 2shows use case text that contains violationsvefdi the top 10 rules.
Did you spot the violations?

« Use case one is too terse. There is no reference to what kind of information the
customer enters, nor to the page he or she is looking at. The text doesn't explain what
is involved in validating the data that the customer entered. And the use case doesn't
describe how the customer needs to respond to an error condition.

e Use case two doesn't have explicit names for the relevant boundary objects.

« Use case three reveals how useless it can be to obsess about using a complicated use
case template. The name of the use case expresses the goal clearly enough; the
content of the basic course will make the stated precondition and postcondition
redundant.

e Use case four lacks alternate courses, even though it should be fairly clear from the
context that some validation needs to occur, and that there are several possible error
conditions (for instance, the system can't find the e-mail address, or the password that
the customer entered doesn't match the one that is stored).

* Use case five doesn't specify how the system responds when the customer presses the
update button.

Figure 3shows the use case text with the mistakes codecte

Our next article will demonstrate how to do robesmanalysis in order to tighten up
use cases and make it easier to head into detldn. See you next month.

Figure 2. The 1040 "Long Form" Approach to Use Cases

Basic course: The Customer enters the required information. The system
validates the information and creates 2 new Account object,

Alternate course: If any data is invalid, the system displays ar appro-
priate error message.

#

The user submits the request. The system displays anaother page that
contains the search results.

Name: Log In

Goal: To log a user into the system,

Precandition: The User is not already logged into the system.

Basic course: The Customer types his or her e-mail address and password ...

Postcondition: The User is logged info the system.

#3

The Customer makes changes to the Shopping Cart and presses the
Update button. Then the Customer presses the Check Out button. When
the Customer has finished specifying the billing and shipping informa-
tion, the system creates an Order.

#

The Customer types his e-mail address and password, and then presses
the Log In button. The system starts a Session and displays the Main
Page.

#5
Use case text that contains violations of five of the top 10 rules.

[back to text

Figure 3. The 1040EZ Approach to Use Cases

Basic course: The Customer entars the required information on the
Greate Account Page. The system validates the e-mail address is in an
acceptable format, and ensures that the Customer does not already have
an account, and then creates a new Account object.

Alternate course: If the Customer typed 2 bad e-mail address, the
system displays an error message to that effect and asks the Customer
to type a new address,

Alternate course: If the Customer has already created an account, the
system displays a message to that efiect.

#

The user presses the Submit button. The system performs the search and
displays the results on the Search Results Page,

2

Basic course: The Customer types his e-mail address and password ...

#3

Basic course: The Customer types his or her e-mail address and pass-
word, and then presses the Log In button. The system validates the login
information, and then starts a Session and displays the Main Page.

Alternate course: If the system can't find the e-mail address, it displays
a message to that efiect and prompts the Customer to enter a different
address.

Alternate course: If the password that the Customer entered doesn't
match the stored password, the system displays a message to that
effect and asks the Customer to enter a different passward,

4

The Customer makes changes to the Shoopping Cart and presses the
Update button. The system updates the contents of the Shopping Cart
appropriately. Then the Custamer presses the Check Out button. When
the Customer has finished specifying the billing and shipping informa-
tion, the system creates an Order.

#5
The use case text with the mistakes corrected.

back to text

