
Top Ten Use Case Mistakes

February 2001

"Use case driven" means writing the user manual first, then writing the
code. This practice reinforces the fundamental notion that a system must
conform to the needs of the users, instead of your users conforming to the
system.

by Doug Rosenberg and Kendall Scott

Read part 1: Driving Design with Use Cases
Read part 2: Driving Design: The Problem Domain

Welcome to the third in a series of five articles that provides a prepublication look at the
annotated example from the forthcoming book, Applied Use Case Driven Object
Modeling (Addison-Wesley, 2001; tentatively scheduled for April). We're following the
process detailed in our first book, Use Case Driven Object Modeling with UML
(Addison-Wesley, 1999), as we dissect the design of an Internet bookstore. In this
article, we show common mistakes, and then explain how to correct them.

Within the ICONIX process, one of the early steps involves building a use case model.
This model is used to capture the user requirements of a new system (whether it's being
developed from scratch or based on an existing system) by detailing all the scenarios
that users will perform. Use cases drive the dynamic model and, by extension, the entire
development effort.

Figure 1 shows where use case
modeling resides within the "big
picture" of the ICONIX process.

The Key Elements
The task of building use cases for your
new system is based on immediately
identifying as many as you can, and
then establishing a continuous loop of
writing and refining the text that
describes them. Along the way, you
will discover new use cases, and also
factor out commonality in usage.

You should keep one overriding
principle in mind during your effort to
identify use cases: They should have
strong correlations with material found
in the system's user manual. The connection between each use case and a distinct
section of your user guide should be obvious. It reinforces the fundamental notion that
you are designing a system that will conform to the viewpoints of the users. It also

Figure 1. The "Big Picture" for Use Case Driven
Object Modeling

The diagram portrays the essence of a
streamlined approach to software development
that includes a minimal set of UML diagrams and
some valuable techniques that take you from use
cases to code quickly and efficiently.

provides a convenient summary of what "use case driven" means: Write the user
manual, then write the code. If you're reengineering a legacy system, you can simply
work backward from the user manual.

Once you have some text in place for a use case, it's time to refine it by making sure the
sentences are clear and discrete, the basic format of your text is noun-verb-noun, and the
actors and potential domain objects are easy to identify. You should also update your
domain model—the subject of our previous article, "Driving Design: The Problem
Domain" (Jan. 2001)—as you discover new objects and expand your understanding of
the objects you'd previously found. And, it's important to determine all possible
alternate courses of action for each use case wherever possible, an activity which should
take up the majority of the time.

You can use several mechanisms to factor out common usage, such as error handling,
from sets of use cases. This is usually effective, because breaking usage down to atomic
levels will ease the analysis effort and save you lots of time when drawing sequence
diagrams. Whether you use UML's generalization and includes and extends
relationships, or OML's invokes and precedes relationships, which we recommend in
our book, your goal should be a set of small, precise, reusable use cases.

You should feel comfortable proceeding to the next phases of the development process
when you've achieved the following goals:

• You've built use cases that together account for all of the desired functionality of the
system.

• You've produced clear and concise written descriptions of the basic course of action,
along with appropriate alternative courses of action, for each use case.

• You've factored out scenarios common to more than one use case, using whichever
constructs you're most comfortable with.

The Top 10 Use Case Modeling Errors
Contrary to the principles we just discussed are a number of common errors that we
have seen students make when they're doing use case modeling on their projects for the
first time. Our "top 10" list follows.

10. Don't write functional requirements instead of usage scenario text. Requirements
are generally stated in terms of what the system shall do, while usage scenarios describe
actions that the users take and the responses that the system generates. Eventually, our
use case text will be used as a run-time behavioral specification for the scenario we'll
describe, and this text will sit on the left margin of a sequence diagram. We want to be
able to easily see how the system (shown with objects and messages) implements the
desired behavior, as described in the use case text. So, we need to clearly distinguish
between usage descriptions (behavior) and system requirements.

9. Don't describe attributes and methods rather than usage. Your use case text shouldn't
include too many presentation details, but it should also be relatively free of details
about the fields on your screens. Field names often match the names of attributes on
your domain classes, which we discussed in January's article. Methods shouldn't be
named or described in use case text because they represent how the system will do
things, as opposed to what the system will do.

8. Don't write the use cases too tersely. When it comes to writing text for use cases,
expansive is preferable. You need to address all of the details of user actions and system
responses as you move into robustness analysis and interaction modeling, so you might
as well put some of those details in your use cases. Remember also that your use cases
will serve as the foundation for your user manual. It's better to err on the side of too
much detail when it comes to user documentation.

7. Don't divorce yourself completely from the user interface. One of the fundamental
notions of "use case driven" is that the development team conforms the design of the
system to the viewpoints of the users. You can't do this without being specific as to
what actions the users will perform on your screens. As we mentioned for item number
nine, you don't need to talk about fields in your use case text, and you don't want to
discuss the cosmetic appearance of your screens; however, you can let your prototypes,
in whatever form they take, do that work for you. You do need to discuss those features
of the user interface that allow the user to tell the system to do something.

6. Don't avoid explicit names for your boundary objects. Boundary objects are the
objects with which actors will interact. These frequently include windows, screens,
dialogs and menus. In keeping with our theme of including ample detail and being
explicit about user navigation, we submit that it's necessary to name your boundary
objects explicitly in your use case text. It's also important to do this because you will
explore the behavior of these objects during robustness analysis (the subject of the next
article in this series), and it can only reduce ambiguity and confusion to name them
early.

5. Don't write in the passive voice, using a perspective other than the user's. A use case
is most effectively written from the user's perspective as a set of present-tense verb
phrases in active voice. The tendency of engineers to use passive voice is well-
established, but use cases should state the actions that the user performs, and the
system's responses to those actions. This kind of text is only effective when it's
expressed in the active voice.

4. Don't describe only user interactions; ignore system responses. The narrative of a use
case should be event- response oriented, as in, "The system does this when the user does
that." The use case should capture a good deal of what happens "under the covers" in
response to what the actor is doing, whether the system creates new objects, validates
user input, generates error messages or whatever. Remember that your use case text
describes both sides of the dialog between the user and the system.

3. Don't omit text for alternative courses of action. Basic courses of action are generally
easier to identify and write text for. That doesn't mean, however, that you should put off
dealing with alternative courses until, say, detailed design. Far from it. In fact, it's been
our experience that when important alternative courses of action are not uncovered until
coding and debugging, the programmer responsible for writing or fixing the code tends
to treat them in ways that are most convenient for him. Needless to say, this isn't healthy
for a project.

2. Don't focus on something other than what is "inside" a use case, such as how you get
there or what happens afterward. Several prominent authors, such as Alistair Cockburn
and Larry Constantine, advocate the use of long, complicated use case templates.

Spaces for preconditions and post-conditions are generally present on these templates.
We like to think of this as the 1040 "long form" approach to use case modeling, in
comparison to the 1040EZ-like template that we advocate (two headings: Basic Course
and Alternate Course). You shouldn't insist on using long and complex use case

templates just because they appeared in a book or article.

1. Don't spend a month deciding whether to use includes or extends. In our years of
teaching use case driven development, we've yet to find a situation where we've needed
more than one mechanism for factoring out commonality. Whether you use UML's
include construct, or OML's invoke and precede mechanisms, or something else that
you're comfortable with, doesn't matter; simply pick one way of doing things and stick
with it. Having two similar constructs is worse than having only one. It's just too easy to
get confused—and bogged down—when you try to use both. Don't spin your wheels.

Figure 2 shows use case text that contains violations of five of the top 10 rules.

Did you spot the violations?

• Use case one is too terse. There is no reference to what kind of information the
customer enters, nor to the page he or she is looking at. The text doesn't explain what
is involved in validating the data that the customer entered. And the use case doesn't
describe how the customer needs to respond to an error condition.

• Use case two doesn't have explicit names for the relevant boundary objects.
• Use case three reveals how useless it can be to obsess about using a complicated use

case template. The name of the use case expresses the goal clearly enough; the
content of the basic course will make the stated precondition and postcondition
redundant.

• Use case four lacks alternate courses, even though it should be fairly clear from the
context that some validation needs to occur, and that there are several possible error
conditions (for instance, the system can't find the e-mail address, or the password that
the customer entered doesn't match the one that is stored).

• Use case five doesn't specify how the system responds when the customer presses the
update button.

Figure 3 shows the use case text with the mistakes corrected.

Our next article will demonstrate how to do robustness analysis in order to tighten up
use cases and make it easier to head into detailed design. See you next month.

Figure 2. The 1040 "Long Form" Approach to Use Cases

Use case text that contains violations of five of the top 10 rules.

[back to text]

Figure 3. The 1040EZ Approach to Use Cases

The use case text with the mistakes corrected.

[back to text]

