

#### UNIVERSITAS KOMPUTER INDONESIA

Wireless and Mobile Communication

Chap 4 Antennas & Propagation Signal Encoding

Dr. Yeffry Handoko Putra Department of Computer Engineering





# Introduction

- An antenna is an electrical conductor or system of conductors
  - Transmission radiates electromagnetic energy into space
  - Reception collects electromagnetic energy from space
- In two-way communication, the same antenna can be used for transmission and reception



#### Antenna Evolution

- Antennas Have Always Been the Part That Makes a Wireless Device <u>Wireless</u>
- Have Traditionally Been External, Connectorized Components
  - Misunderstood, considered "black magic"
  - Gangly, obtrusive
  - Added on at the end of the design
- Antennas for Mobile Devices Have Evolved Since Their Introduction

- Whips  $\rightarrow$  Retractables  $\rightarrow$  Stubbies  $\rightarrow$  Embedded



4



# Wired/Wireless Networks of Today



 $\odot$ 

## Antenna Performance

- Better Performance is Usually Achieved by Increased S/N in the Wireless Link
  - Performance improvements can be realized by higher gain antenna (if beam is properly focused)
    - <u>Example</u>: Want horizontal beam for cell phone, zenith beam for GPS
- Increased Gain Can be Used in Different Ways
  - Better cell coverage area
    - Increase cell size / range
    - Given all mobiles at max power, then less dropouts
  - Less battery power
    - Given strong signal area, then reduced Tx Battery
    - Especially critical in CDMA networks
  - Some combination of above





Increase Cell Coverage



Reduce Dropouts



# **THEORY OF ANTENNA**



# **Radiation Patterns**

- Radiation pattern
  - Graphical representation of radiation properties of an antenna
  - Depicted as two-dimensional cross section
- Beam width (or half-power beam width)
  - Measure of directivity of antenna
  - Angle within which power radiated is at least half of that in most preferred direction
- Reception pattern
  - Receiving antenna's equivalent to radiation pattern
- Omnidirectional vs. directional antenna



# Types of Antennas

- Isotropic antenna (idealized)
  - Radiates power equally in all directions
- Dipole antennas
  - Half-wave dipole antenna (or Hertz antenna)
  - Quarter-wave vertical antenna (or Marconi antenna)
- Parabolic Reflective Antenna
  - Used for terrestrial microwave and satellite applications
  - Larger the diameter, the more tightly directional is the beam





#### Antenna - Ideal

Isotropics antenna: In free space radiates power equally in all direction. Not realizable physically



#### Antenna - <mark>Real</mark>

- Not isotropic radiators, but always have directive effects (vertically and/or horizontally)
- A well defined radiation pattern measured around an antenna
- Patterns are visualised by drawing the set of constant-intensity surfaces

#### Antenna – Real - Simple Dipoles

• Not isotropic radiators, e.g., dipoles with lengths  $\lambda/4$  on car roofs or  $\lambda/2$  as Hertzian dipole



• Example: Radiation pattern of a simple Hertzian dipole shape of antenna is proportional to the wavelength

Deparment of Computer Engineering

Universitas Komputer Indonesia



 $( \bigcirc )$ 

#### Antenna – Real - Sdirected and Sectorized

 Used for microwave or base stations for mobile phones (e.g., radio coverage of a valley)



# Antenna Gain

- Antenna gain
  - Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna (isotropic antenna)
- Expressed in terms of effective area
  - Related to physical size and shape of antenna



#### Antenna Gain

Relationship between antenna gain and effective area



- G = antenna gain
- A<sub>e</sub> = effective area
- *f* = carrier frequency
- c = speed of light ( $\approx 3 \times 10^8 \text{ m/s}$ )

•  $\lambda$  = carrier wavelength



#### Antenna - Ideal - contd.

 $W/m^2$ 

• The power density of an ideal loss-less antenna at a distance *d* away from the transmitting antenna:

$$P_a = \frac{P_t G_t}{4\pi d^2}$$

Note: the area is for a sphere.

- $G_t$  is the transmitting antenna gain
- The product *P<sub>t</sub>G<sub>t</sub>* : Equivalent Isotropic Radiation Power (EIRP)

which is the power fed to a perfect isotropic antenna to get the same output power of the practical antenna in hand.



#### Antenna - Ideal - contd.

• The strength of the signal is often defined in terms of its Electric Field Intensity *E*, because it is easier to measure.

#### Antenna - Ideal - contd.

- The receiving antenna is characterized by its effective aperture A<sub>e</sub>, which describes how well an antenna can pick up power from an incoming electromagnetic wave
- The effective aperture  $A_e$  is related to the gain  $G_r$  as follows:

 $A_e = P_r / P_a => \qquad A_e = G_r \lambda^2 / 4\pi$ 

which is the equivalent power absorbing area of the antenna.  $G_r$  is the receiving antenna gain and  $\lambda = c/f$ 



### **Propagation Modes**

- Ground-wave propagation
- Sky-wave propagation
- Line-of-sight propagation
- Non line of sight propagation

0

#### Deparment of Computer Engineering Universitas Komputer Indonesia

# **Ground Wave Propagation**





### **Ground Wave Propagation**

- Follows contour of the earth
- Can Propagate considerable distances
- Frequencies up to 2 MHz
- Example
  - AM radio



# Sky Wave Propagation





# **Sky Wave Propagation**

- Signal reflected from ionized layer of atmosphere back down to earth
- Signal can travel a number of hops, back and forth between ionosphere and earth's surface
- Reflection effect caused by refraction
- Examples
  - Amateur radio
  - CB radio



# Line-of-Sight Propagation





# Propagation Non line of sight

- Reflection (rough terrain, moving vehicle)
- Diffraction (edge of Building)
- Scattering (building)antenna



# Line-of-Sight Propagation

- Transmitting and receiving antennas must be within line of sight
  - Satellite communication signal above 30 MHz not reflected by ionosphere
  - Ground communication antennas within *effective* line of site due to refraction
- Refraction bending of microwaves by the atmosphere
  - Velocity of electromagnetic wave is a function of the density of the medium
  - When wave changes medium, speed changes
  - Wave bends at the boundary between mediums



# Line-of-Sight Equations

Optical line of sight

$$d = 3.57\sqrt{h}$$

• Effective, or radio, line of sight

$$d = 3.57\sqrt{\mathrm{K}h}$$

- *d* = distance between antenna and horizon (km)
- *h* = antenna height (m)

• K = adjustment factor to account for refraction, rule of thumb K = 4/3

Deparment of Computer Engineering Universitas Komputer Indonesia

### Line-of-Sight Equations

Maximum distance between two antennas for LOS propagation:

$$3.57\left(\sqrt{\mathrm{K}h_1} + \sqrt{\mathrm{K}h_2}\right)$$

- *h*<sub>1</sub> = height of antenna one
- *h*<sub>2</sub> = height of antenna two



### LOS Wireless Transmission Impairments

- Attenuation and attenuation distortion
- Free space loss
- Noise
- Atmospheric absorption
- Multipath
- Refraction
- Thermal noise



#### Attenuation

- Strength of signal falls off with distance over transmission medium
- Attenuation factors for unguided media:
  - Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal
  - Signal must maintain a level sufficiently higher than noise to be received without error
  - Attenuation is greater at higher frequencies, causing distortion



#### Free Space Loss

Free space loss, ideal isotropic antenna



- P<sub>t</sub> = signal power at transmitting antenna
- *P*<sub>r</sub> = signal power at receiving antenna

( )

- $\lambda$  = carrier wavelength
- *d* = propagation distance between antennas
- $c = \text{speed of light} (\approx 3 \times 10^8 \text{ m/s})$

where d and  $\lambda$  are in the same units (e.g., meters)

Deparment of Computer Engineering Universitas Komputer Indonesia

### Free Space Loss

• Free space loss equation can be recast:

$$L_{dB} = 10 \log \frac{P_t}{P_r} = 20 \log \left(\frac{4\pi d}{\lambda}\right)$$
  
= -20 \log(\lambda) + 20 \log(d) + 21.98 dB  
= 20 \log(\frac{4\pi fd}{c}\) = 20 \log(f) + 20 \log(d) - 147.56 dB



#### Free Space Loss

• Free space loss accounting for gain of antennas



- G<sub>t</sub> = gain of transmitting antenna
- *G*<sub>r</sub> = gain of receiving antenna
- $A_{t}$  = effective area of transmitting antenna
- A<sub>r</sub> = effective area of receiving antenna



# Free Space Loss

 Free space loss accounting for gain of other antennas can be recast as

$$L_{dB} = 20\log(\lambda) + 20\log(d) - 10\log(A_tA_r)$$
$$= -20\log(f) + 20\log(d) - 10\log(A_tA_r) + 169.54\text{dB}$$



# **Categories of Noise**

- Thermal Noise
- Intermodulation noise
- Crosstalk
- Impulse Noise

#### Deparment of Computer Engineering Universitas Komputer Indonesia

# **Thermal Noise**

- Thermal noise due to agitation of electrons
- Present in all electronic devices and transmission media

 $( \bigcirc )$ 

- Cannot be eliminated
- Function of temperature
- Particularly significant for satellite communication



### **Thermal Noise**

Amount of thermal noise to be found in a bandwidth of 1Hz in any device or conductor is:

 $N_0 = \mathbf{k}T(\mathbf{W}/\mathbf{Hz})$ 

- N<sub>0</sub> = noise power density in watts per 1 Hz of bandwidth
- k = Boltzmann's constant = 1.3803 x 10<sup>-23</sup> J/K
- *T* = temperature, in kelvins (absolute temperature)

Deparment of Computer Engineering Universitas Komputer Indonesia

### **Thermal Noise**

Noise is assumed to be independent of frequency

 $( \bigcirc )$ 

• Thermal noise present in a bandwidth of *B* Hertz (in watts):

$$N = \mathbf{k}TB$$

or, in decibel-watts

$$N = 10 \log k + 10 \log T + 10 \log B$$
  
= -228.6 dBW + 10 log T + 10 log B



# Noise Terminology

- Intermodulation noise occurs if signals with different frequencies share the same medium
  - Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies
- Crosstalk unwanted coupling between signal paths
- Impulse noise irregular pulses or noise spikes
  - Short duration and of relatively high amplitude
  - Caused by external electromagnetic disturbances, or faults and flaws in the communications system
  - Primary source of error for digital data transmission



# Expression $E_b/N_0$

• Ratio of signal energy per bit to noise power density per Hertz

$$\frac{E_b}{N_0} = \frac{S/R}{N_0} = \frac{S}{kTR}$$

- The bit error rate for digital data is a function of  $E_b/N_0$ 
  - Given a value for  $E_b/N_0$  to achieve a desired error rate, parameters of this formula can be selected
  - As bit rate R increases, transmitted signal power must increase to maintain required  $E_b/N_0$



# **Other Impairments**

- Atmospheric absorption water vapor and oxygen contribute to attenuation
- Multipath obstacles reflect signals so that multiple copies with varying delays are received
- Refraction bending of radio waves as they propagate through the atmosphere



# **Multipath Propagation**

- Reflection occurs when signal encounters a surface that is large relative to the wavelength of the signal
- Diffraction occurs at the edge of an impenetrable body that is large compared to wavelength of radio wave
- Scattering occurs when incoming signal hits an object whose size is in the order of the wavelength of the signal or less





Figure 5.10 Sketch of Three Important Propagation Mechanisms: Reflection (R), Scattering (S), Diffraction (D) [ANDE95]

#### Effects of Multipath Propagation

- Multiple copies of a signal may arrive at different phases
  - If phases add destructively, the signal level relative to noise declines, making detection more difficult
- Intersymbol interference (ISI)
  - One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit



# Fading

- Time variation of received signal power caused by changes in the transmission medium or path(s)
- In a fixed environment:
  - Changes in atmospheric conditions
- In a mobile environment:
  - Multipath propagation

0

Deparment of Computer Engineering Universitas Komputer Indonesia

# **Types of Fading**

- Fast fading
- Slow fading
- Flat fading
- Selective fading
- Rayleigh fading
- Rician fading



# **Error Compensation Mechanisms**

- Forward error correction
- Adaptive equalization
- Diversity techniques

#### Deparment of Computer Engineering Universitas Komputer Indonesia

# Forward Error Correction

- Transmitter adds error-correcting code to data block
  - Code is a function of the data bits

 $( \bigcirc )$ 

- Receiver calculates error-correcting code from incoming data bits
  - If calculated code matches incoming code, no error occurred
  - If error-correcting codes don't match, receiver attempts to determine bits in error and correct



# Adaptive Equalization

- Can be applied to transmissions that carry analog or digital information
  - Analog voice or video
  - Digital data, digitized voice or video
- Used to combat intersymbol interference
- Involves gathering dispersed symbol energy back into its original time interval
- Techniques
  - Lumped analog circuits
  - Sophisticated digital signal processing algorithms



# **Diversity Techniques**

- Space diversity:
  - Use multiple nearby antennas and combine received signals to obtain the desired signal
  - Use collocated multiple directional antennas
- Frequency diversity:
  - Spreading out signal over a larger frequency bandwidth
  - Spread spectrum
- Time diversity:
  - Noise often occurs in bursts
  - Spreading the data out over time spreads the errors and hence allows FEC techniques to work well
  - TDM
  - Interleaving



# Signal Encoding Techniques



#### Reasons for Choosing Encoding Techniques

Digital data, digital signal

 $( \mathbf{O} )$ 

- Equipment less complex and expensive than digital-to-analog modulation equipment
- Analog data, digital signal
  - Permits use of modern digital transmission and switching equipment



### Reasons for Choosing Encoding Techniques

- Digital data, analog signal
  - Some transmission media will only propagate analog signals
  - E.g., unguided media
- Analog data, analog signal
  - Analog data in electrical form can be transmitted easily and cheaply
  - Done with voice transmission over voice-grade lines



# Signal Encoding Criteria

- What determines how successful a receiver will be in interpreting an incoming signal?
  - Signal-to-noise ratio
  - Data rate
  - Bandwidth
- An increase in data rate increases bit error rate
- An increase in SNR decreases bit error rate
- An increase in bandwidth allows an increase in data rate



# **Comparing Encoding Schemes**

- Signal spectrum
  - With lack of high-frequency components, less bandwidth required
  - With no dc component, ac coupling via transformer possible
  - Transfer function of a channel is worse near band edges
- Clocking
  - Ease of determining beginning and end of each bit position

# **Comparing Encoding Schemes**

Signal interference and noise immunity

- Performance in the presence of noise
- Cost and complexity
  - The higher the signal rate to achieve a given data rate, the greater the cost



# Digital Data to Analog Signals

- Amplitude-shift keying (ASK)
  - Amplitude difference of carrier frequency
- Frequency-shift keying (FSK)
  - Frequency difference near carrier frequency
- Phase-shift keying (PSK)
  - Phase of carrier signal shifted



Figure 6.2 Modulation of Analog Signals for Digital Data

# Amplitude-Shift Keying

- One binary digit represented by presence of carrier, at constant amplitude
- Other binary digit represented by absence of carrier

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ 0 & \text{binary 0} \end{cases}$$

• where the carrier signal is  $A\cos(2\pi f_c t)$ 

 $( \bigcirc )$ 



# Amplitude-Shift Keying

- Susceptible to sudden gain changes
- Inefficient modulation technique
- On voice-grade lines, used up to 1200 bps
- Used to transmit digital data over optical fiber



# Binary Frequency-Shift Keying (BFSK)

 Two binary digits represented by two different frequencies near the carrier frequency

$$s(t) = \begin{cases} A\cos(2\pi f_1 t) & \text{binary 1} \\ A\cos(2\pi f_2 t) & \text{binary 0} \end{cases}$$

• where  $f_1$  and  $f_2$  are offset from carrier frequency  $f_c$  by equal but opposite amounts

### Binary Frequency-Shift Keying (BFSK)

• Less susceptible to error than ASK

0

- On voice-grade lines, used up to 1200bps
- Used for high-frequency (3 to 30 MHz) radio transmission
- Can be used at higher frequencies on LANs that use coaxial cable



#### Multiple Frequency-Shift Keying (MFSK)

- More than two frequencies are used
- More bandwidth efficient but more susceptible to error

$$s_i(t) = A \cos 2\pi f_i t$$
  $1 \le i \le M$ 

- $f_i = f_c + (2i 1 M)f_d$
- *f*<sub>c</sub> = the carrier frequency
- $f_d$  = the difference frequency
- *M* = number of different signal elements = 2<sup>*L*</sup>
- L = number of bits per signal element

Deparment of Computer Engineering Universitas Komputer Indonesia

#### Multiple Frequency-Shift Keying (MFSK)

• To match data rate of input bit stream, each output signal element is held for:

T<sub>s</sub>=LT seconds

- where T is the bit period (data rate = 1/T)
- So, one signal element encodes *L* bits



#### Multiple Frequency-Shift Keying (MFSK)

Total bandwidth required

 $2Mf_d$ 

- Minimum frequency separation required  $2f_d = 1/T_s$
- Therefore, modulator requires a bandwidth of *W<sub>d</sub>*=2<sup>L</sup>/LT=M/T<sub>s</sub>



Figure 6.4 MFSK Frequency Use (M = 4)



# Phase-Shift Keying (PSK)

#### • Two-level PSK (BPSK)

- Uses two phases to represent binary digits

$$s(t) = \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ A\cos(2\pi f_c t + \pi) & \text{binary 0} \end{cases}$$

$$= \begin{cases} A\cos(2\pi f_c t) & \text{binary 1} \\ -A\cos(2\pi f_c t) & \text{binary 0} \end{cases}$$

# Phase-Shift Keying (PSK)

• Differential PSK (DPSK)

 $\bigcirc$ 

#### - Phase shift with reference to previous bit

- Binary 0 signal burst of same phase as previous signal burst
- Binary 1 signal burst of opposite phase to previous signal burst



# Phase-Shift Keying (PSK)

#### • Four-level PSK (QPSK)

- Each element represents more than one bit

$$S(t) = \begin{cases} A\cos\left(2\pi f_c t + \frac{\pi}{4}\right) & 11\\ A\cos\left(2\pi f_c t + \frac{3\pi}{4}\right) & 01\\ A\cos\left(2\pi f_c t - \frac{3\pi}{4}\right) & 00\\ A\cos\left(2\pi f_c t - \frac{\pi}{4}\right) & 10 \end{cases}$$
Department of Computer Engineering

# Phase-Shift Keying (PSK)

- Multilevel PSK
  - Using multiple phase angles with each angle having more than one amplitude, multiple signals elements can be achieved

$$D = \frac{R}{L} = \frac{R}{\log_2 M}$$

- *D* = modulation rate, baud
- R = data rate, bps
- M = number of different signal elements =  $2^{L}$
- L = number of bits per signal element



### Performance

- Bandwidth of modulated signal  $(B_{\tau})$ 
  - ASK, PSK  $B_{\tau}=(1+r)R$
  - $B_{\tau}=2DF+(1+r)R$ – FSK

 $( \bigcirc )$ 

- R = bit rate
- 0 < r < 1; related to how signal is filtered
- $DF = f_2 f_c = f_c f_1$

Deparment of Computer Engineering Universitas Komputer Indonesia

### Performance

Bandwidth of modulated signal  $(B_T)$   $B_T = \left(\frac{1+r}{L}\right)R = \left(\frac{1+r}{\log_2 M}\right)R$ – MPSK  $B_T = \left(\frac{(1+r)M}{\log_2 M}\right)R$ 

– MFSK

- L = number of bits encoded per signal element
- M = number of different signal elements



#### Quadrature Amplitude Modulation

- QAM is a combination of ASK and PSK
  - Two different signals sent simultaneously on the same carrier frequency
    - $s(t) = d_1(t)\cos 2\pi f_c t + d_2(t)\sin 2\pi f_c t$



Figure 6.10 QAM Modulator

# Analog Data to Analog Signal

- Modulation of digital signals
  - When only analog transmission facilities are available, digital to analog conversion required
- Modulation of analog signals
  - A higher frequency may be needed for effective transmission
  - Modulation permits frequency division multiplexing

![](_page_38_Picture_6.jpeg)

# **Modulation Techniques**

- Amplitude modulation (AM)
- Angle modulation
  - Frequency modulation (FM)
  - Phase modulation (PM)

![](_page_38_Picture_13.jpeg)

#### **Amplitude Modulation**

Amplitude Modulation

# $s(t) = [1 + n_a x(t)] \cos 2\pi f_c t$

- $\cos 2\pi f_c t = \text{carrier}$
- x(t) = input signal
- $n_a$  = modulation index (< 1)
  - Ratio of amplitude of input signal to carrier
- a.k.a double sideband transmitted carrier (DSBTC)

![](_page_39_Figure_8.jpeg)

#### Figure 6.12 Spectrum of an AM Signal

# Amplitude Modulation

- Transmitted power  $P_t = P_c \left( 1 + \frac{n_a^2}{2} \right)$ 
  - $P_t$  = total transmitted power in s(t)
  - $P_c$  = transmitted power in carrier

![](_page_40_Picture_4.jpeg)

# Single Sideband (SSB)

- Variant of AM is single sideband (SSB)
  - Sends only one sideband
  - Eliminates other sideband and carrier
- Advantages
  - Only half the bandwidth is required
  - Less power is required
- Disadvantages
  - Suppressed carrier can't be used for synchronization purposes

![](_page_40_Picture_15.jpeg)

# Angle Modulation

Angle modulation

$$s(t) = A_c \cos[2\pi f_c t + \phi(t)]$$

- Phase modulation
  - Phase is proportional to modulating signal

$$\phi(t) = n_p m(t)$$

•  $n_p$  = phase modulation index

Deparment of Computer Engineering Universitas Komputer Indonesia

# Angle Modulation

- Frequency modulation
  - Derivative of the phase is proportional to modulating signal

$$\phi'(t) = n_f m(t)$$

•  $n_f$  = frequency modulation index

![](_page_41_Picture_14.jpeg)

# Angle Modulation

- Compared to AM, FM and PM result in a signal whose bandwidth:
  - is also centered at f<sub>c</sub>
  - but has a magnitude that is much different
- Thus, FM and PM require greater bandwidth than AM

Angle Modulation

• Carson's rule  $B_T = 2(\beta + 1)B$ 

 $\bigcirc$ 

where

 $\beta = \begin{cases} n_p A_m & \text{for PM} \\ \frac{\Delta F}{B} = \frac{n_f A_m}{2\pi B} & \text{for FM} \end{cases}$ 

• The formula for FM becomes  $B_T = 2\Delta F + 2B$ 

![](_page_42_Picture_12.jpeg)

# Analog Data to Digital Signal

- Digitization: Often analog data are converted to digital form
- Once analog data have been converted to digital signals, the digital data:
  - can be transmitted using NRZ-L
  - can be encoded as a digital signal using a code other than NRZ-L
  - can be converted to an analog signal, using previously discussed techniques

![](_page_43_Picture_6.jpeg)

87

# Analog data to digital signal

- Pulse code modulation (PCM)
- Delta modulation (DM)

![](_page_43_Picture_12.jpeg)

#### **Pulse Code Modulation**

- Based on the sampling theorem
- Each analog sample is assigned a binary code
  - Analog samples are referred to as pulse amplitude modulation (PAM) samples
- The digital signal consists of block of *n* bits, where each *n*-bit number is the amplitude of a PCM pulse

![](_page_44_Figure_5.jpeg)

| Digit | Binary Equivalent | PCM waveform |
|-------|-------------------|--------------|
| 0     | 0000              |              |
| 1     | 0001              |              |
| 2     | 0010              |              |
| 3     | 0011              |              |
| 4     | 0100              |              |
| 5     | 0101              |              |
| 6     | 0110              |              |
| 7     | 0111              |              |

| Digit | Binary Equivalent | PCM waveform |
|-------|-------------------|--------------|
| 8     | 1000              |              |
| 9     | 1001              |              |
| 10    | 1010              |              |
| 11    | 1011              |              |
| 12    | 1100              | Ц            |
| 13    | 1101              |              |
| 14    | 1110              |              |
| 15    | 1111              |              |

# Pulse Code Modulation

- By quantizing the PAM pulse, original signal is only approximated
- Leads to quantizing noise
- Signal-to-noise ratio for quantizing noise  $SNR_{dB} = 20 \log 2^{n} + 1.76 dB = 6.02n + 1.76 dB$
- Thus, each additional bit increases SNR by 6 dB, or a factor of 4

![](_page_45_Picture_5.jpeg)

# Delta Modulation

- Analog input is approximated by staircase function
  - Moves up or down by one quantization level ( $\delta$ ) at each sampling interval
- The bit stream approximates derivative of analog signal (rather than amplitude)
  - 1 is generated if function goes up
  - 0 otherwise

![](_page_45_Picture_13.jpeg)

![](_page_46_Figure_0.jpeg)

### **Delta Modulation**

- Two important parameters
  - Size of step assigned to each binary digit ( $\delta$ )
  - Sampling rate
- Accuracy improved by increasing sampling rate
  - However, this increases the data rate
- Advantage of DM over PCM is the simplicity of its implementation

![](_page_46_Picture_9.jpeg)