
Sequence Diagrams

 A sequence diagram shows interactions between objects.
Sequence diagrams are used during subsystem design,
but they’re equally applicable to dynamic modeling
during analysis, system design and even requirements
capture.

 A sequence diagram describes the sequence of operations
during one scenario of a system use case and determines
which object carries out each operation. The UML
categorizes it as an interaction diagram—a diagram that
highlights how objects interact with each other.

 Some business analysts use sequence diagrams as an
alternative to activity diagrams with partitions
(swimlanes). Instead of drawing one complex activity
diagram to cover all scenarios, the BA draws one simple
sequence diagram for each scenario.

 Each diagram is simple, since it describes only one
scenario. The disadvantage of sequence diagrams for this
purpose is that they require the BA to work out not only
which object performs each action but also which object
requests the action.

 On the other hand, sequence diagrams are an excellent
way to design the distribution of operations among
classes for programming purposes.

Essentials: Lifelines and Messages

 In sequence diagrams, the entities of interest (which are
the same as for object diagrams) are written horizontally
across the top of the diagram. A dashed vertical line,
called the lifeline, is drawn below each object. These
indicate the existence of the object.

 Messages (which may denote events or the invocation of
operations) are shown horizontally. The endpoints of the
message icons connect with the vertical lines that
connect with the entities at the top of the diagram.
Messages are drawn from the sender to the receiver.
Ordering is indicated by vertical position, with the first
message shown at the top of the diagram, and the last
message shown at the bottom. As a result, sequence
numbers aren’t needed.

Types of Interaction

Advanced Concepts: Destruction Events

 A destruction event indicates when an object is
destroyed. It is shown as an X at the end of a lifeline.
If this object is involved in a composition, the other
involved objects may also be destroyed.

 Sequence diagrams are conceptually very simple;
however, you can add other elements to make them
more expressive in the presence of certain
complicated patterns of interaction.

Advanced Concepts: Execution Specification

 Simple sequence diagrams may not indicate the focus of control as
messages are passed. The vertical lines descending from each object in
a sequence diagram with a box representing the relative time that the
flow of control is focused in that object.

Advanced Concepts: Interaction Use

 UML 2.0 has various constructs available to simplify complex sequence
diagrams. The first we will discuss is the interaction use. An interaction
use is merely a way to indicate on a sequence diagram that we want to
reuse an interaction that is defined elsewhere.

Advanced Concepts: Control Constructs

 Just as we saw fragments being used to simplify sequence diagrams,
they can similarly be used to indicate flow control constructs on
sequence diagrams.

The Communications Diagrams

 Like the sequence diagram, the communication diagram
is categorized in the UML as an interaction diagram.
Both diagrams can show the sequencing of operations for
a scenario and indicate which object does which
operation. However, each highlights a different aspect of
the collaboration: The communication diagram
highlights structure—the ways in which objects are
linked to each other—while the sequence diagram
highlights timing —the order in which messages are sent
between objects. In a communication diagram, objects
are connected by solid lines (links). The messages are
indicated as labeled arrows above the links. Each
message is numbered to indicate sequencing.

 A sequence diagram that duplicates most of the
semantics of the communication diagram shown. The
advantage of using a sequence diagram is that it is easier
to read the passing of messages in relative order.
Sequence diagrams are often better than object diagrams
for capturing the semantics of scenarios early in the
development lifecycle, before the protocols of individual
classes have been identified. Early sequence diagrams
tend to focus on events as opposed to operations because
events help to define the boundaries of a system under
development. The advantage of using an object diagram
is that it scales well to many objects with complex
invocations. Each diagram has compelling benefits.

