METODE SIMPLEKS

MATAKULIAH RISET OPERASIONAL Pertemuan Ke-3

Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Pendahuluan (1)

- Metode simpleks merupakan sebuah prosedur matematis berulang untuk menemukan penyelesaian optimal soal programa linier.
- Digunakan jika variabel keputusan lebih besar dari dua (karena sulit menggambarkan grafik berdimensi banyak)
- Dirancang untuk menyelesaikan masalah PL yang melibatkan dua variabel atau lebih
- Prinsipnya metode ini menyelesaikan masalah PL melalui perhitungan ulang (iterasi) dimana langkah-langkah perhitungan yang sama diulang berkali-kali sampai solusi optimum diperoleh.

Pendahuluan (2)

- Model PL harus diubah ke dalam bentuk umum (standar form) yang memiliki sifat-sifat :
 - Semua pembatas harus berbentuk persamaan(=) dengan ruas kanan non-negatif
 - 2. Semua variabel non-negatif
 - 3. Fungsi tujuan dapat maksimum/minimum

Terminologi (1)

Variabel Slack :

- Membuat nilai ruas kiri sama dengan ruas kanan pada kendala yang berupa pembatas
- Menampung sisa kapasitas/kapasitas yang tidak digunakan pada kendala yang berupa pembatas

• Variabel Surplus:

- Membuat nilai ruas kiri sama dengan nilai ruas kanan pada kendala yang berupa syarat.
- Menampung kelebihan nilai ruas kiri pada kendala yang berupa syarat.

Terminologi (2)

Variabel artifisial berfungsi untuk memperluas daerah fisibel

Variabel non-basis adalah variabel yang bernilai nol.

Variabel basis adalah variabel yang bernilai positif

Bentuk Standar PL

Fungsi Tujuan :

Maks/Min
$$Z = c_1x_1 + c_2x_2 + ... + c_nx_n$$

Fungsi Pembatas:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n \le b_2$

.

$$a_{m1}x_1 + a_{m2}x_2 + ... + a_{mn}x_n \le b_m$$

 $x_1, x_2, ..., x_n \ge 0$

dimana;

c_n: cost/profit x_n: variabel keputusan

a_{mn}: parameter pembatas b_m: pembatas

Cara Transformasi Bentuk Formulasi

1. Pembatas/Constrain

- Pembatas/kendala menunjukkan keterbatasan penggunaan suatu sumber daya.
- Pembatas bertanda ≤ atau ≥ diubah jadi persamaan (=) dengan menambahkan suatu variabel slack atau mengurangkan suatu variabel surplus di ruas kiri pembatas.

Contoh:

 $X_1 + X_2 \le 15$ ditambahkan variabel slack $S_1 \ge 0$ pada ruas kiri sehingga diperoleh persamaan ;

$$X_1 + X_2 + S_1 = 15$$

Contoh:

 $3X_1 + 2X_2 - 3X_3 \ge 15$ dikurangkan surplus variabel $S_1 \ge 0$ dan ditambahkan variabel dummy (variabel artifisial /R) $R_1 \ge 0$ pada ruas kiri sehingga diperoleh persamaan ;

$$3X_1 + 2X_2 - 3X_3 - S_1 + R_1 = 15$$

Contoh:

 $3X_1 + 2X_2 = 18$ ditambahkan variabel **dummy** (variabel **artifisial** /R) $R_1 \ge 0$ pada ruas kiri sehingga diperoleh persamaan;

$$3X_1 + 2X_2 + R_1 = 18$$

 Ruas kanan pada persamaan yang bersifat/bernilai negatif dapat diubah jadi positif dengan mengalikan ruas kiri & ruas kanan dengan (-1)

Contoh:

$$(-5X_1 + X_2 = -25) \times (-1) \Rightarrow 5X_1 - X_2 = 25$$

 Pertidaksamaan fungsi pembatas dapat berubah arah dengan mengalikan ruas kiri & ruas kanan dengan (-1)

Contoh:

$$(-5X_1 + X_2 \le -25) \times (-1) \implies 5X_1 - X_2 \ge 25$$

Jika fungsi pembatas mempunyai bentuk :

$$|a_{11}x_1 + a_{12}x_2| \le b_1$$

maka nilainya:

$$a_{11} x_1 + a_{12} x_2 \le b_1$$
 dan $-a_{11} x_1 - a_{12} x_2 \ge b_1$

2. Variabel

Jika suatu variabel keputusan tidak terbatas dalam tanda, maka akan mempunyai dua nilai berdasarkan pada persamaan :

$$y_i = y_i' - y_i''$$
 dimana $y_i' dan y_i'' \ge 0$

3. Fungsi Tujuan

Fungsi tujuan yang pada mulanya maksimasi dapat diubah jadi minimasi dengan mengalikan ruas kiri dan ruas kanan dengan negatif.

Contoh:

maksimumkan
$$Z = 5X_1 + 2X_2 + 3X_3$$

sama artinya dengan,
minimumkan $(Z = 5X_1 + 2X_2 + 3X_3) \times (-1)$
 $-Z = -5X_1 - 2X_2 - 3X_3$

Contoh

 Kasus diambil berdasarkan kasus perusahaan kaca WYNDOR GLASS.

Fungsi Tujuan:

Maksimasi
$$z = 3 X_1 + 5 X_2$$

Pembatas:

$$X_1 \le 4$$
 $2X_2 \le 12$
 $3 X_1 + 2 X_2 \le 18$
 $X_1 \ge 0$
 $X_2 \ge 0$

Maka penyelesaianya adalah sebagai berikut :

1. Konversikan formulasi matematik awal ke bentuk standar Simpleks

Formulasi matematik awal : Formulasi Bentuk Standar Simpleks:

Fungsi Tujuan:

Maksimasi
$$Z=3 X_1 + 5 X_2$$

Fungsi Tujuan:

Maksimasi
$$Z = 3 X_1 + 5 X_2$$
 atau

$$Z - 3 X_1 - 5 X_2 = 0$$

Fungsi Pembatas:

$$X_1 \le 4$$

 $2X_2 \le 12$
 $3X_1 + 2X_2 \le 18$
 $X_1, X_2 \ge 0$

Fungsi Pembatas:

$$X_1 + S_1 = 4$$

 $2X_2 + S_2 = 12$
 $3X_1 + 2X_2 + S_3 = 18$
 $X_1 X_2 S_1 S_2 S_3 \ge 0$

2. Nilai-nilai dalam bentuk standar dimasukkan ke dalam tabel simpleks

Formulasi Bentuk Standar Simpleks:

Pers.

(0)
$$Z - 3 X_1 - 5 X_2$$
 = 0
(1) $X_1 + S_1 = 4$
(2) $2X_2 + S_2 = 12$
(3) $3 X_1 + 2 X_2 + S_3 = 18$

Jika berada pada pusat koordinat (0,0), maka nilai $X_1 = 0$ dan $X_2 = 0$, sedangkan nilai $S_1 = 4$, $S_2 = 12$, dan $S_3 = 18$.

Maka dalam hal ini, X_1 dan X_2 disebut variabel non-basis karena bernilai nol. Sedangkan S_1 , S_2 , dan S_3 disebut variabel basis karena bernilai positip.

Formulasi Bentuk Standar Simpleks:

Pers.

(0)
$$Z - 3 X_1 - 5 X_2 = 0$$

(1) $X_1 + S_1 = 4$
(2) $2X_2 + S_2 = 12$
(3) $3 X_1 + 2 X_2 + S_3 = 18$

(3)
$$3 X_1 + 2 X_2 + S_3 = 18$$

Tabel Simpleks:

VARIABEL VARIABEL **NON-BASIS BASIS** Iterasi 0 SOLUSI **BASIS** S_1 S_2 Z (RHS)

RIGHT

HAND

SIDE

_								
	Z S ₁ S ₂ S ₃	1 0 0	- 3	- 5 0	0	0	0	0
	S_1	0	1		1	0	0	4
	S_2	0	0	2	0	1	0	12
	S_3	0	3	2	0	0	1	12 18

3. Tentukan Entering Variable (EV)

Memilih variabel non-basis yang akan memasuki variabel basis dengan cara :

- F. Tujuan maksimasi → pilih variabel non-basis yang mempunyai nilai negatif terbesar (nilai paling kecil)
- F. Tujuan minimasi → pilih variabel non-basis yang mempunyai nilai positif terbesar (nilai paling besar)

Iterasi	Iterasi 0 ENTERING VARIABEL NON BASIS										
BASIS	Z	X ₁	X ₂	S ₁	S ₂	S ₃	SOLUSI (RHS)				
z	1	- 3	- 5	0	0	0	0				
S ₁	0	1	0	1	0	0	4				
S ₂	0	0	2	0	1	0	12				
S ₃	0	3	2	0	0	1	18				

4. Tentukan Leaving Variable (LV)

Memilih rasio yang mempunyai nilai **positif terkecil** yang akan meninggalkan variabel basis.

Rasio = Solusi (RHS) / EV

Titik temu dari LV dengan EV disebut "Elemen Poros"

ITERASI 0

BASIS	Z	X ₁	X ₂	S ₁	S_2	S ₃	SOLUSI (RHS)
z	1	- 3	- 5	0	0	0	0
S ₁	0	1	0	1	0	0	4
S ₂	0	0	2	0	1	0	12
S ₃	0	3	2	0	0	1	18

RASIO

$$18/2 = 9$$

LEAVING VARIABLE

ELEMEN POROS

Menghitung persamaan elemen poros baru dengan cara:

Pers. El. Poros = Pers. El. Poros Lama / El. Poros

Iterasi 0

BASIS	Z	X ₁	X ₂	S ₁	S_2	S_3	SOLUSI (RHS)
Z S ₁				ENTERII VARIAB			
S ₂							

LEAVING VARIABLE

Menghitung persamaan elemen poros baru dengan cara:

Pers. El. Poros = Pers. El. Poros Lama / El. Poros

BASIS	Z	X ₁	X_2	S ₁	S ₂	S ₃	SOLUSI (RHS)
z							
S ₁							
X ₂							
S ₃							

Menghitung persamaan elemen poros baru dengan cara:

Pers. El. Poros = Pers. El. Poros Lama / El. Poros

BASIS	Z	X ₁	X ₂	S ₁	S ₂	S ₃	SOLUSI (RHS)
Z							
S ₁							
X ₂	0/2 = 0	0/2 = 0	2/2 = 1				
S ₃							

Menghitung persamaan elemen poros baru dengan cara:

Pers. El. Poros = Pers. El. Poros Lama / El. Poros

BASIS	Z	X ₁	X ₂	S ₁	S ₂	S ₃	SOLUSI (RHS)
z							
S ₁							
X ₂	0	0	1	0	1/2	0	6
S ₃							

Hitung nilai baris baru selain baris LV (baris kunci)

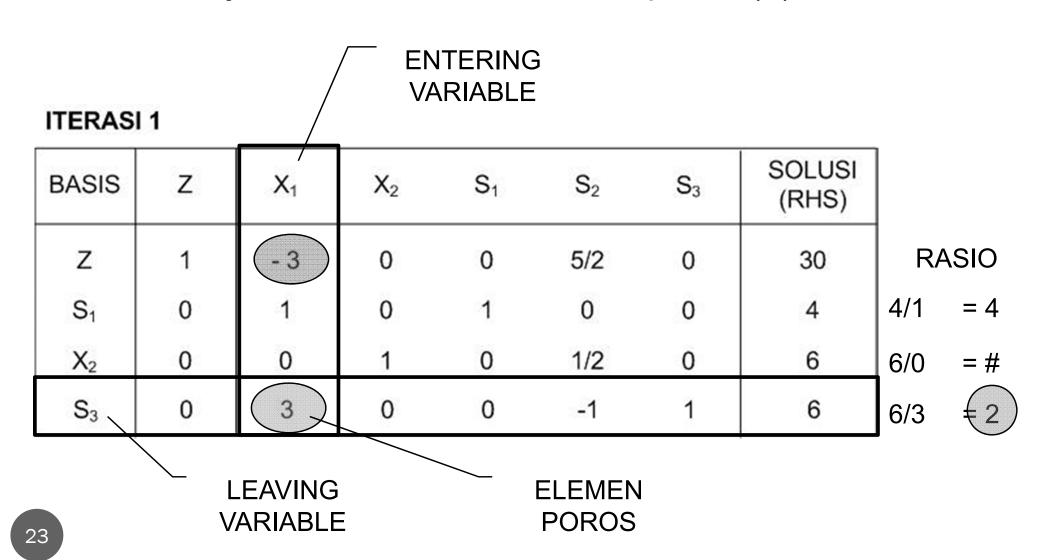
Menentukan persamaan baris baru selain persamaan elemen poros, dengan cara:

Pers. Baru = Pers. Lama – (El. Kolom Entering) X (Pers. El. Poros Baru)

BASIS	Z	X ₁	X_2	S ₁	S ₂	S ₃	SOLUSI (RHS)
Z S ₁	1	- 3	0				
X ₂ S ₃	0	0	1	0	1/2	0	6
		_ 1 - (-5	5 X 0)		<u>-</u> 5	5 - (-5 X 1)
1		`	,	- 3 -	- (-5 X 0)		

6. Hitung nilai baris baru selain baris LV (baris kunci)

Menentukan persamaan baris baru selain persamaan elemen poros, dengan cara :


Pers. Baru = Pers. Lama – (El. Kolom Entering) X (Pers. El. Poros Baru)

ITERASI 1

BASIS	Z	X ₁	X ₂	S ₁	S ₂	S ₃	SOLUSI (RHS)
z	1	- 3	0	0	5/2	0	30
S ₁	0	1	0	1	0	0	4
X ₂	0	0	1	0	1/2	0	6
S ₃	0	3	0	0	-1	1	6

7. Ulangi langkah 3 s/d 7, sampai tidak ada variabel non-basis yang bertanda :

- F. Tujuan maksimasi → bertanda negatif (-)
- F. Tujuan minimasi → bertanda positif (+)

BASIS	Z	X ₁	X_2	S ₁	S_2	S_3	SOLUSI (RHS)
z	1	0	0	0	3/2	1	36
S ₁	0	0	0	1	1/3	- 1/3	2
X ₂	0	0	1	0	1/2	0	6
X ₁	0	1	0	0	-1/3	1/3	2

Karena variabel non-basis ≥ 0 semua, maka diperoleh nilai optimal :

$$X_1 = 2$$

 $X_2 = 6$
 $Z = 36 \times 1000 = 36000$

Penyelesaian PL

 Jika semua persamaan fungsi pembatas bertanda ≤ , maka diselesaikan dengan metode simpleks biasa

Jika satu/lebih persamaan fungsi pembatas bertanda
 ≥ atau = , maka diselesaikan dengan metoda Big M
 atau metoda Dua Phasa

Contoh Dengan Simpleks Biasa

F. Tujuan : $\min Z = 2X_1 - 3X_2$

F. Pembatas:

$$X_1 + X_2 \le 4$$

 $X_1 - X_2 \le 6$
 $X_1, X_2 \ge 0$

Konversi ke dalam bentuk standar/kanonik

F. Tujuan : $\min Z = 2X_1 - 3X_2 + 0S_1 + 0S_2$

 $Z - 2X_1 + 3X_2 - 0S_1 - 0S_2 = 0$

F. Pembatas:

$$X_1 + X_2 + S_1 = 4$$

 $X_1 - X_2 + S_2 = 6$
 $X_1, X_2, S_1, S_2 \ge 0$

ΕV **ITERASI 0 BASIS** Ζ X_1 X_2 S_1 S_2 SOLUSI -2 0 Ζ 3 0 0 S_1 0 0 4 S_2 0 0 6

ELEMEN

POROS

RASIO

-6

ITERASI 1

LV ·

BASIS	Z	X ₁	X ₂	S ₁	S ₂	SOLUSI
Z	1	-5	0	-3	0	-12
X ₂	0	1	1	1	0	4
S ₂	0	2	0	1	1	10

Solusi Optimal:

$$X_1 = 0$$

$$X_2 = 4$$

$$X_2 = 4$$

 $Z = -12$

Kasus-Kasus Khusus

1. Degenerasi

- Persoalan ini timbul jika variabel basis mempunyai nilai nol
 (0) atau ruas kanan mempunyai nilai nol
 (0)
- Pada kasus ini kemungkinan muncul 2 hal :
 - Pemilihan LV kembali ke langkah awal dan nilai yang dihasilkan oleh variabel keputusan & fungsi tujuan adalah sama → terjadi loop/cycling
 - 2. Degenerasi temporer ; pada ruas kanan mengandung nilai nol (0) tetapi hasil yang diperoleh pada langkah berikutnya akan menghilangkan nilai nol sehingga variabel keputusan mungkin akan berubah nilainya dan nilai fungsi tujuan akan sama dengan langkah sebelumnya
- Bila pada variabel non-basis yang telah berharga nol (0) kemudian pada iterasi berikutnya, kembali bernilai negatif (-).
 Maka optimalnya yang diambil adalah yang sebelumnya (untuk kasus maksimasi)

Contoh Degenerasi

F. Tujuan : maks $Z = 3X_1 + 9X_2$

F. Pembatas:

$$X_1 + 4X_2 \le 8$$

 $X_1 + 2X_2 \le 4$
 $X_1, X_2 \ge 0$

Konversi ke dalam bentuk standar/kanonik

F. Tujuan : $Z = 3X_1 + 9X_2 + 0S_1 + 0S_2$

 $Z - 3X_1 - 9X_2 - 0S_1 - 0S_2 = 0$

F. Pembatas:

$$X_1 + 4X_2 + S_1 = 8$$

 $X_1 + 2X_2 + S_2 = 4$
 $X_1, X_2, S_1, S_2 \ge 0$

BASIS	Z	X ₁	X_2	S ₁	S_2	SOLUSI
Z	1	-3	-9	0	0	0
S ₁	0	1	4	1	0	8
S ₂	0	1	2	0	1	4

ITERASI 1

BASIS	Z	X ₁	X ₂	S ₁	S ₂	SOLUSI
Z	1	-3/4	0	9/4	0	18
X ₂	0	1/4	1	1/4	0	2
S ₂	0	1/2	0	-1/2	1	0

BASIS	Z	X ₁	X_2	S ₁	S ₂	SOLUSI
Z	1	0	0	3/2	3/2	18
X ₂	0	0	1	-1/2	-1/2	2
X ₁	0	1	0	2	2	0

Karena variabel basis $X_1 = 0$, maka nilai optimal:

$$X_1 =$$

$$X_2 =$$

BASIS	Z	X ₁	X_2	S ₁	S ₂	SOLUSI
Z	1	0	0	3/2	3/2	18
X ₂	0	0	1	-1/2	-1/2	2
X ₁	0	1	0	2	2	0

Karena variabel basis $X_1 = 0$, maka nilai optimal:

$$X_1 = 0$$

$$X_2 = 2$$

$$Z = 18$$

Contoh Degenerasi Temporer

F. Tujuan : maks $Z = 3X_1 + 2X_2$

F. Pembatas:

$$4X_1 + 3X_2 \le 12$$

 $4X_1 + X_2 \le 8$
 $4X_1 - X_2 \le 8$
 $X_1, X_2 \ge 0$

Konversi ke dalam bentuk standar/kanonik

F. Tujuan : maks
$$Z = 3X_1 + 2X_2 + 0S_1 + 0S_2 + 0S_3$$

 $Z - 3X_1 - 2X_2 - 0S_1 - 0S_2 - 0S_3 = 0$

F. Pembatas:

$$4X_1 + 3X_2 + S_1 = 12$$

 $4X_1 + X_2 + S_2 = 8$
 $4X_1 - X_2 + S_3 = 8$
 $X_1, X_2, S_1, S_2, S_3 \ge 0$

BASIS	Z	X ₁	X_2	S ₁	S_2	S_3	SOLUSI
Z	1	-3	-2	0	0	0	0
S ₁	0	4	3	1	0	0	12
S ₂	0	4	1	0	1	0	8
S ₃	0	4	-1	0	0	1	8

ITERASI 1

BASIS	Z	X ₁	X ₂	S ₁	S ₂	S ₃	SOLUSI
Z	1	0	-5/4	0	3/4	0	6
S ₁	0	0	2	1	1	0	4
X ₁	0	1	1/4	0	1/4	0	2
S ₃	0	0	-2	0	-1	1	0

BASIS	Z	X ₁	X_2	S ₁	S ₂	S ₃	SOLUSI
Z	1	0	0	5/8	1/8	0	17/2
X ₂	0	0	1	1/2	-1/2	0	2
X ₁	0	1	0	-1/8	3/8	0	3/2
S ₃	0	0	0	1	-2	1	4

Nilai optimal:

$$X_1 =$$

 $X_2 =$
 $Z =$

$$X_2 =$$

$$Z = \dots$$

BASIS	Z	X ₁	X_2	S ₁	S ₂	S ₃	SOLUSI
Z	1	0	0	5/8	1/8	0	17/2
X ₂	0	0	1	1/2	-1/2	0	2
X ₁	0	1	0	-1/8	3/8	0	3/2
S ₃	0	0	0	1	-2	1	4

Nilai optimal:

$$X_1 = 3/2$$

 $X_2 = 2$

$$X_2 = 2$$

$$Z = 17/2$$

2. Solusi Optimum Banyak

Pada kasus ini tidak ada permasalahan pada pemilihan EV dan LV, tetapi nilai optimal yang dihasilkan pada langkah terakhir "sama" dengan nilai variabel keputusan yang berbeda

Contoh:

BASIS	Z	X ₁	X_2	S ₁	S ₂	SOLUSI
Z	1	0	-3			30
X ₁	0	1	1/3			3
S ₂	0	0	2			2

BASIS	Z	X ₁	X ₂	S ₁	S ₂	SOLUSI
Z	1					30
X ₁	0					1
X ₂	0					5

3. Solusi Tak Terbatas

- Pada kasus ini terdapat ruang solusi yang tidak terbatas sehingga fungsi tujuan dapat meningkat (untuk maksimasi) atau menurun (untuk minimasi) secara tidak terbatas.
- Biasanya nilai yang dimiliki oleh elemen yang ada di bawah EV bernilai satu atau nol.

4. Tidak Ada Solusi Optimal (Pseudo Optimal)

- Tidak memiliki solusi optimal. Meskipun ada, solusi optimalnya bernilai semu
- Pada kasus ini ditunjukkan dengan adanya nilai pada fungsi tunjuan yang mengandung M (nilai pinalti/variabel artifisial R)