ASSIGNMENT MODEL

MATAKULIAH RISET OPERASIONAL Pertemuan Ke-10

Riani Lubis
Program Studi Teknik Informatika
Universitas Komputer Indonesia

Masalah Penugasan (1)

- Salah satu metode yang digunakan untuk Penugasan adalah Metode Hungarian.
- Pada metode Hungarian, jumlah sumber-sumber yang ditugaskan harus sama persis dengan jumlah tugas yang akan diselesaikan.
- Setiap sumber harus ditugaskan hanya untuk satu tugas.
- Jadi masalah penugasan akan mencakup sejumlah m sumber yang mempunyai n tugas/tujuan (satu sumber untuk satu tujuan).
- Diasumsikan m = n, sehingga ada n! (n faktorial) kemungkinan.

Masalah Penugasan (2)

- Masalah ini dapat dijelaskan dengan mudah dalam bentuk matriks segi empat, dimana baris-barisnya menunjukkan sumber-sumber dan kolom-kolomnya menunjukkan tugas-tugas/tujuan-tujuan.
- Sumber : pekerja
- Tujuan/Tugas : pekerjaan, mesin-mesin
- Persoalan penugasan melibatkan penugasan karyawan ke tempat tugas, penjualan ke daerah, penawaran kontrak, atau fungsi-fungsi di pabrik.
- Dalam menggunakan metode penugasan, pihak manajemen mencari rute penugasan yang akan mengotpimumkan tujuan tertentu.

Masalah Penugasan (3)

- Jadi masalah penugasan menyangkut penempatan para pekerja pada bidang yang tersedia agar biaya yang ditanggung dapat diminimumkan.
- Pada model penugasan, jumlah pasokan pada setiap sumber dan jumlah permintaan pada setiap tujuan adalah satu. Artinya setiap pekerja hanya menangani satu pekerjaan dan sebaliknya setiap pekerjaan hanya ditangani satu pekerja.

Tabel Persoalan Penugasan

Ke Dari			TUJU	AN		Kanasitas	
		1	2	2		Kapasitas	
SUMBER	1	C ₁₁	C ₁₂		C _{1n}	1	
	2	C ₂₁	C ₂₂	•••	C _{1n}	1	
				•••			
	m	C _{m1}	C _{m1}	•••	C _{mn}	1	
Kapa	sitas	1	1		1		

Dimana,

X_{ij}: unit alokasi dari sumber i ke tujuan j (hanya bernilai 1 atau 0)

C_{ii}: parameter alokasi dari sumber i ke tujuan j

Dalam hal ini berlaku:

- 1. $X_{i1} + X_{i2} + ... + X_{in} = 1$ untuk i = 1,2,...,m. Artinya bahwa pada tiap i hanya ada satu X_{ij} yang bernilai 1 sedangkan yang lainnya bernilai 0.
- 2. $X_{1j} + X_{2j} + ... + X_{mj} = 1$ untuk i = 1,2,...,n. Artinya bahwa pada tiap j hanya ada satu Xij yang bernilai 1 sedangkan yang lainnya bernilai 0.
- 3. Nilai alokasi dari sumber ke tujuan sangat bergantung kepada nilai Cij dan Xij, namun karena Xij hanya bernilai 1 atau 0 maka nilai alokasi tersebut sangat dipengaruhi oleh Cij.

Perumusan Model Penugasan

Min/Maks: $Z = \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} X_{ij}$				
Balanced	Unbal	anced		
$\sum_{i=1}^m S_i = \sum_{j=1}^n D_j$	$\sum_{i=1}^m S_i < \sum_{j=1}^n D_j$	$\sum_{i=1}^{m} S_i > \sum_{j=1}^{n} D_j$		
$\sum_{j=1}^{n} X_{ij} = 1$	$\sum_{j=1}^{n} X_{ij} = 1$	$\sum_{j=1}^{n} X_{ij} \le 1$		
$\sum_{i=1}^{m} X_{ij} = 1$	$\sum_{i=1}^{m} X_{ij} \le 1$	$\sum_{i=1}^{m} X_{ij} = 1$		
Xij = 0 atau 1 untuk semua i dan j				
i = 1, 2,, m i = 1, 2,, m				
	Balanced $\sum_{i=1}^{m} S_i = \sum_{j=1}^{n} D_j$ $\sum_{j=1}^{n} X_{ij} = 1$ $\sum_{i=1}^{m} X_{ij} = 1$ Xij i =	Balanced Unbal $\sum_{i=1}^{m} S_i = \sum_{j=1}^{n} D_j \qquad \sum_{i=1}^{m} S_i < \sum_{j=1}^{n} D_j$ $\sum_{j=1}^{m} X_{ij} = 1 \qquad \sum_{j=1}^{m} X_{ij} = 1$ $\sum_{i=1}^{m} X_{ij} = 1 \qquad \sum_{i=1}^{m} X_{ij} \leq 1$ Xij = 0 atau 1 untuk se		

Masalah Minimasi

Langkah-langkahnya:

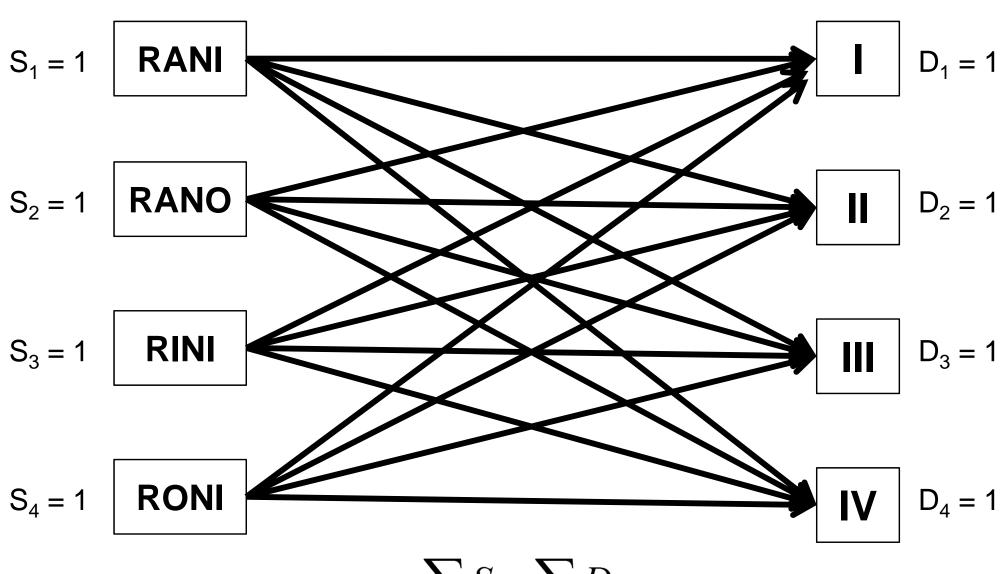
- 1. Melakukan **pengurangan baris** dengan cara :
 - a. Memilih nilai terkecil setiap baris
 - b. Seluruh elemen dalam tiap baris dicari selisihnya dengan nilai minimum dalam baris yang sama, sehingga diperoleh *reduced cost* matriks (matriks biaya yang telah dikurangi)
- 2. Melakukan **pengurangan kolom** (berdasarkan hasil tabel langkah 1):
 - a. Pilih biaya terkecil setiap kolom
 - b.Seluruh elemen dalam tiap kolom dicari selisihnya dengan nilai minimum dalam tiap kolom yang sama, sehingga diperoleh matriks total opportunity cost.

3. Membentuk **penugasan optimum**

Prosedur praktis untuk melakukan tes optimalisasi adalah dengan menarik sejumlah minimum garis horisontal dan/atau vertikal untuk meliputi seluruh elemen bernilai nol dalam total opportunity cost matriks. Jika jumlah garis sama dengan ukuran matriks maka penugasan telah optimal. Jika tidak maka harus direvisi

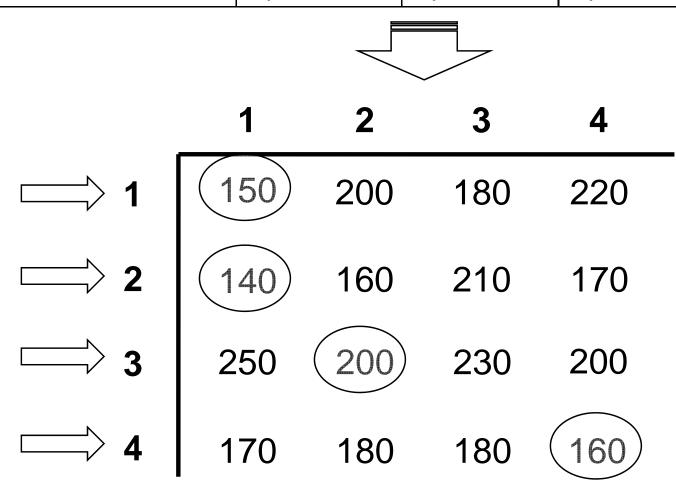
4. Melakukan revisi tabel

- a. Untuk merevisi total opportunity cost, pilih angka terkecil yang tidak terliput (dilewati) garis.
- b. Kurangkan angka yang tidak dilewati garis dengan angka terkecil
- c. Tambahkan angka yang terdapat pada persilangan garis dengan angka terkecil
- d. Kembali ke langkah 3

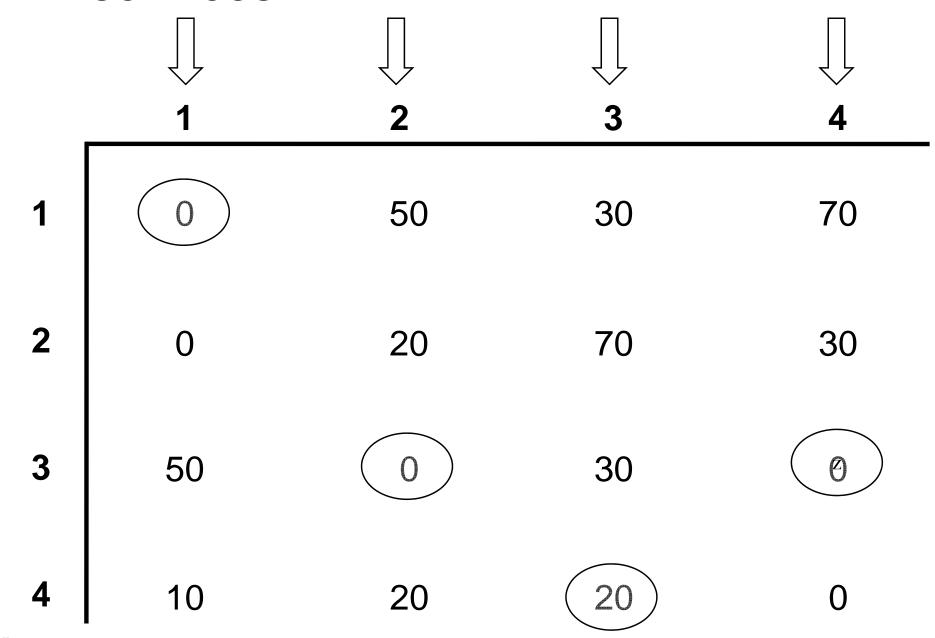

Contoh:

Sebuah perusahaan mempunyai 4 jenis pekerjaan untuk diselesaikan oleh 4 karyawan. Biaya penugasan tiap karyawan untuk tiap jenis pekerjaan adalah berbeda. Setiap karyawan mempunyai tingkat keterampilan, pengalaman kerja, dan latar belakang pendidikan yang berbeda. Sehingga biaya penyelesaian pekerjaan yang sama oleh para karyawan yang berlainan juga berbeda (ditunjukkan dalam tabel biaya di bawah).

PEKERJAAN KARYAWAN	I	II	III	IV
RANI	Rp. 150	Rp. 200	Rp. 180	Rp. 220
RANO	Rp. 140	Rp. 160	Rp. 210	Rp 170
RINI	Rp. 250	Rp. 200	Rp. 230	Rp. 200
RONI	Rp. 170	Rp. 180	Rp. 180	Rp. 160


Diagram Jaringan Distribusi Awal

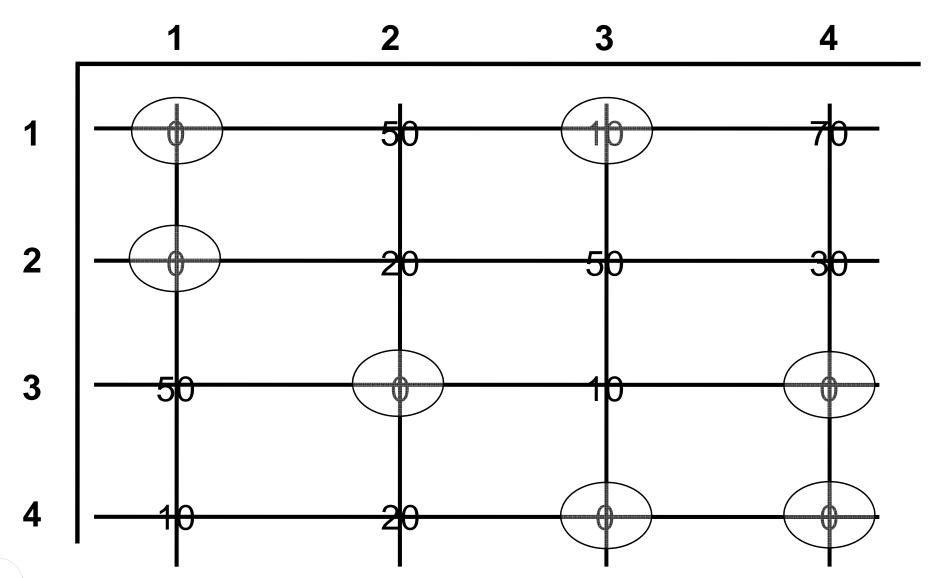
$$\sum S = \sum D$$


PEKERJAAN KARYAWAN	I	II	III	IV
RANI	Rp. 150	Rp. 200	Rp. 180	Rp. 220
RANO	Rp. 140	Rp. 160	Rp. 210	Rp 170
RINI	Rp. 250	Rp. 200	Rp. 230	Rp. 200
RONI	Rp. 170	Rp. 180	Rp. 180	Rp. 160

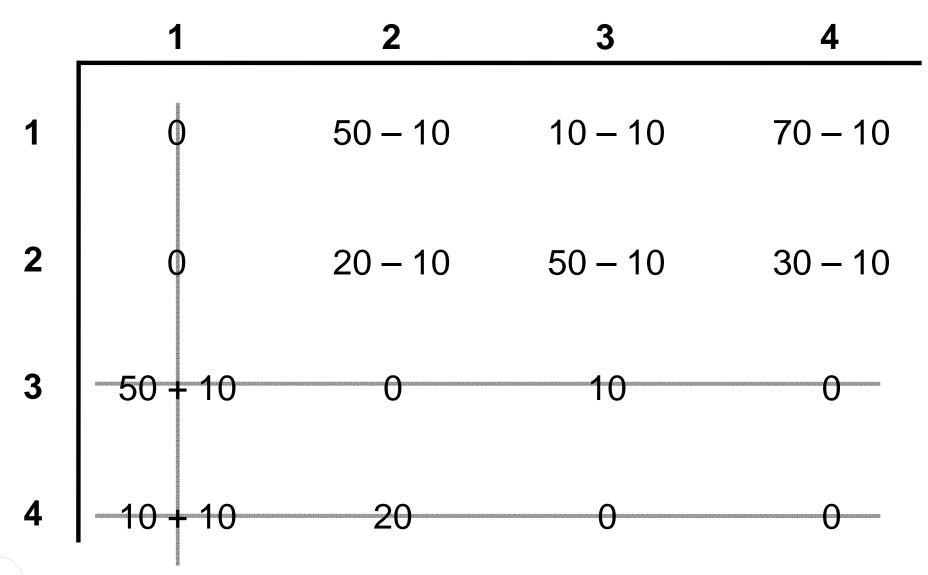
Pengurangan Baris

	1	2	3	4
1	150 – 150	200 – 150	180 – 150	220 – 150
2	140 – 140	160 – 140	210 – 140	170 – 140
3	250 – 200	200 – 200	230 – 200	200 – 200
4	170 – 160	180 – 160	180 – 160	160 – 160

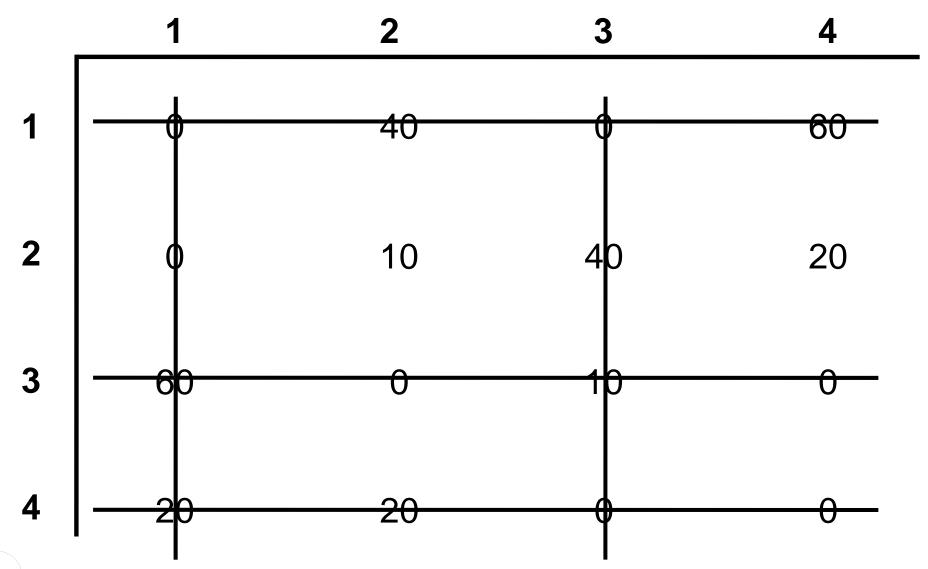
REDUCED COST MATRIX:


Pengurangan Kolom

	1	2	3	4
1	0 - 0	50 – 0	30 – 20	70 – 0
2	0 – 0	20 – 0	70 – 20	30 – 0
3	50 – 0	0 — 0	30 – 20	0 - 0
4	10 – 0	20 – 0	20 – 20	0 - 0

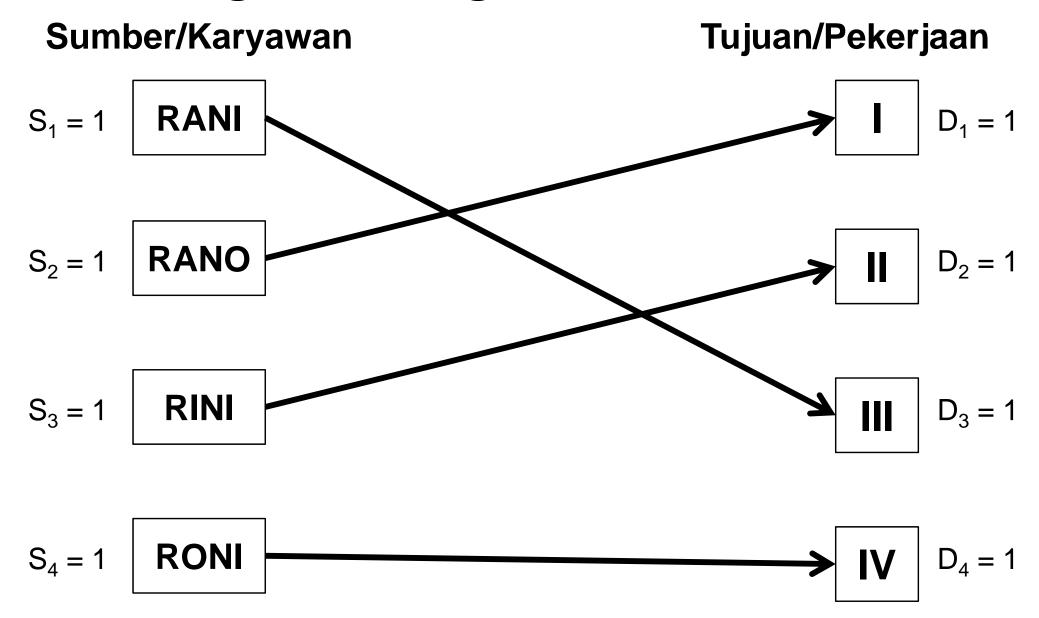

TOTAL OPPORTUNITY COST MATRIX:

ı	1	2	3	4
1	0	50	10	70
2	0	20	50	30
3	50	0	10	0
4	10	20	0	0


TES OPTIMALISASI:

TES OPTIMALISASI:

REVISED MATRIX:



REVISED MATRIX:

Berikut tabel penugasannya (Solusi):

PENU	BIAYA (Rp)	
KARYAWAN	PEKERJAAN	
RANI	III	180
RANO		140
RINI	II	200
RONI	IV	160
TC	680	

Diagram Jaringan Distribusi Akhir

Masalah Maksimasi (1)

- Dalam masalah maksimasi, elemen-elemen matriks menunjukkan tingkat keuntungan.
- Efektivitas pelaksanaan tugas oleh karyawan diukur dengan jumlah kontribusi keuntungan.
- Langkah-langkahnya :
 - 1. Melakukan **pengurangan baris** dengan cara :
 - a. Memilih nilai terbesar setiap baris
 - b. Seluruh elemen dalam tiap baris dicari selisihnya dengan nilai maksimum dalam baris yang sama, sehingga menghasilkan *Matrix Opportunity Loss.*

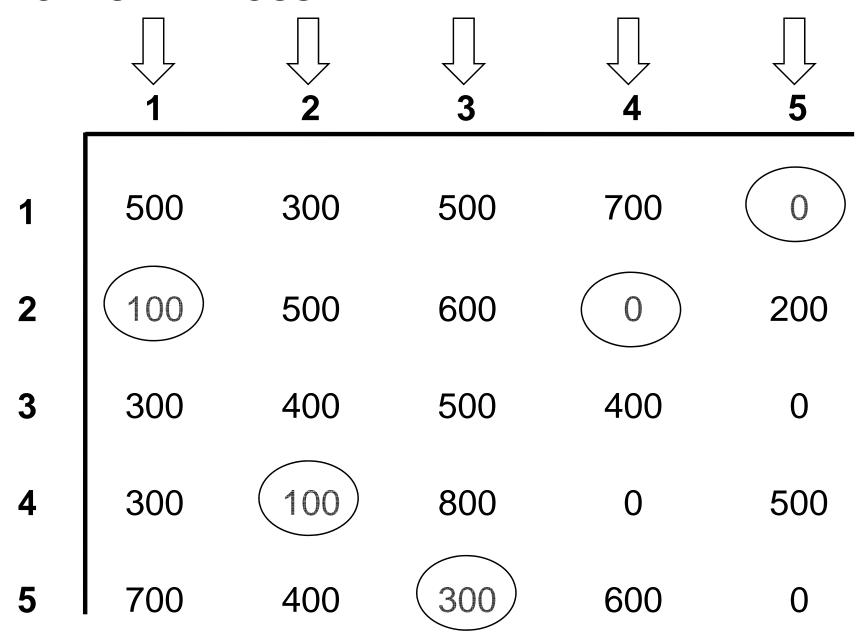
Masalah Maksimasi (2)

- 2. Melakukan pengurangan kolom (berdasarkan hasil tabel langkah 1):
 - a. Pilih biaya terkecil setiap kolom
 - b. Seluruh elemen dalam tiap kolom dicari selisihnya dengan nilai minimum dalam tiap kolom yang sama, sehingga menghasilkan Matriks Total Opportunity Loss.
- 3. Membentuk **penugasan optimum**

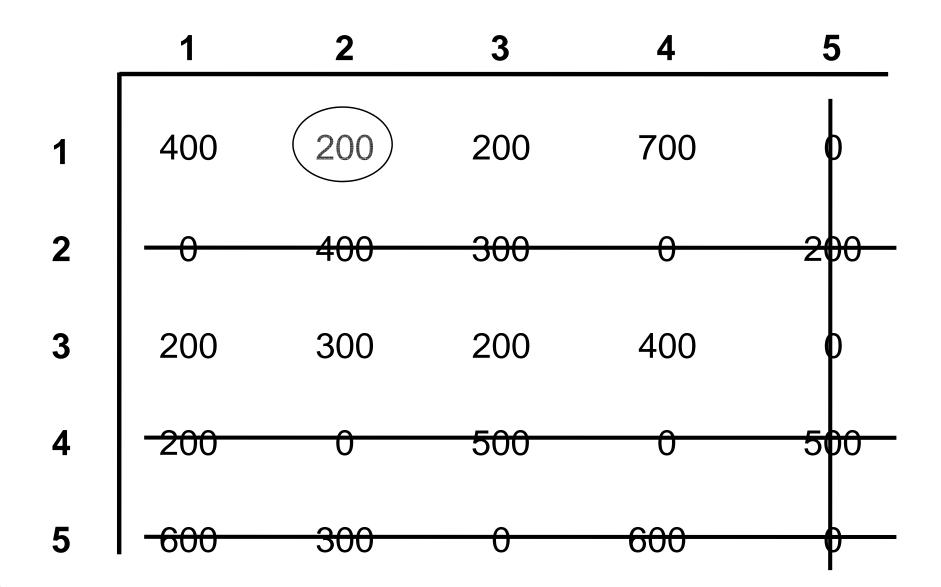
Prosedur praktis untuk melakukan tes optimalisasi adalah dengan menarik sejumlah minimum garis horisontal dan/atau vertikal untuk meliputi seluruh elemen bernilai nol dalam total opportunity loss matrix. Jika jumlah garis sama dengan ukuran matriks maka penugasan telah optimal. Jika tidak maka harus direvisi

Masalah Maksimasi (3)

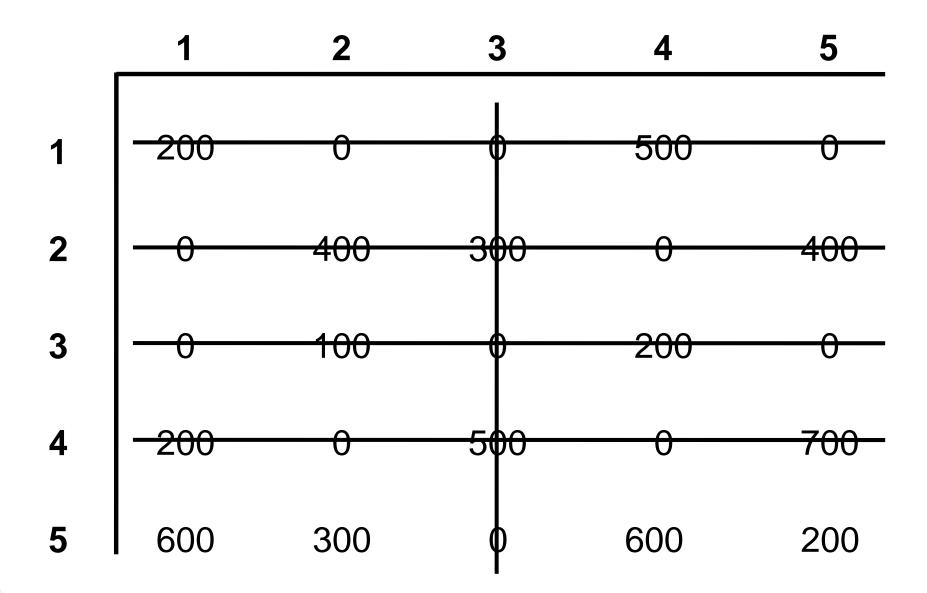
- 4. Melakukan revisi tabel
 - a. Untuk merevisi total opportunity loss, pilih angka terkecil yang tidak terliput (dilewati) garis.
 - b. Kurangkan angka yang tidak dilewati garis dengan angka terkecil
 - c. Tambahkan angka yang terdapat pada persilangan garis dengan angka terkecil
 - d. Kembali ke langkah 3


Contoh:

Sebuah perusahaan mempunyai 5 jenis pekerjaan untuk diselesaikan oleh 5 karyawan, dimana menugaskan setiap karyawan akan mendatangkan keuntungan yang berbedabeda bagi perusahaan tersebut seperti yang ditunjukkan oleh tabel di bawah ini:


PEKERJAAN KARYAWAN	I	II	III	IV	V
RANI	Rp. 1000	Rp. 1200	Rp. 1000	Rp. 800	Rp. 1500
RANO	Rp. 1400	Rp. 1000	Rp. 900	Rp 1500	Rp. 1300
RINI	Rp. 900	Rp. 800	Rp. 700	Rp. 800	Rp. 1200
RONI	Rp. 1300	Rp. 1500	Rp. 800	Rp. 1600	Rp. 1100
RINA	Rp. 1000	Rp. 1300	Rp. 1400	Rp. 1100	Rp. 1700

	1	2	3	4	5
1	1000	1200	1000	800	1500
2	1400	1000	900	1500	1300
□ > 3	900	800	700	800	(1200)
4	1300	1500	800	1600	1100
5	1000	1300	1400	1100	1700


OPPORTUNITY LOSS MATRIX:

TOTAL OPPORTUNITY LOSS MATRIX:

REVISED MATRIX:

REVISED MATRIX:

	1	2	3	4	5
1	200	0	0	500	0
2	0	400	300	0	400
3	0	100	0	200	0
4	200	0	500	0	700
5	600	300	0	600	200

Berikut tabel penugasannya (Solusi):

AL	TERNATIF 1		ALTERNATIF 2			
PENUGASAN		BIAYA	PENU	GASAN	BIAYA	
KARYAWAN	PEKERJAAN	(Rp)	KARYAWAN	PEKERJAAN	(Rp)	
RANI		1200	RANI	V	1500	
RANO	I	1400	RANO	IV	1500	
RINI	V	1200	RINI	I	900	
RONI	IV	1600	RONI	II	1500	
RINA	III	1400	RINA	III	1400	
TC	TAL	6800	ТО	TAL	6800	

Jumlah Sumber ≠ Jumlah Tujuan

- Bila jumlah tujuan/pekerjaan lebih besar dari jumlah sumber/karyawan, maka harus ditambahkan tujuan/karyawan semu (*dummy worker*). Biaya semu sama dengan nol karena tidak akan terjadi biaya bila suatu pekerjaan ditugaskan ke karyawan semu.
- Bila jumlah sumber/karyawan lebih banyak daripada tujuan/ pekerjaan, maka ditambahkan pekerjaan semu (dummy job).
- Prosedur penyelesaian sama dengan langkah-langkah sebelumnya.

Contoh 1:

Sebuah perusahaan mempunyai 4 jenis pekerjaan untuk diselesaikan oleh 5 karyawan. Biaya penugasan tiap karyawan untuk tiap jenis pekerjaan adalah sebagai berikut :

PEKERJAAN KARYAWAN	I	II	III	IV
RANI	Rp. 150	Rp. 200	Rp. 180	Rp. 220
RANO	Rp. 140	Rp. 160	Rp. 210	Rp 170
RINI	Rp. 250	Rp. 200	Rp. 230	Rp. 200
RONI	Rp. 170	Rp. 180	Rp. 180	Rp. 160
RENI	Rp. 100	Rp. 150	Rp. 200	Rp. 100

	1	2	3	4	5 (Dummy)
1	150	200	180	220	0
2	140	160	210	170	0
3	250	200	230	200	0
4	170	180	180	160	0
5	100	150	200	100	0

Contoh 2:

Sebuah perusahaan mempunyai 4 jenis pekerjaan untuk diselesaikan oleh 5 karyawan. Biaya penugasan tiap karyawan untuk tiap jenis pekerjaan adalah sebagai berikut :

PEKERJAAN KARYAWAN	I	II	III	IV
RANI	Rp. 150	Rp. 200	Rp. 180	Rp. 220
RANO	Rp. 140	-	Rp. 210	Rp 170
RINI	Rp. 250	Rp. 200	Rp. 230	Rp. 200
RONI	Rp. 170	Rp. 180	Rp. 180	Rp. 160
RENI	Rp. 100	Rp. 150	Rp. 200	Rp. 100

	1	2	3	4	5 (Dummy)
1	150	200	180	220	0
2	140	M	210	170	0
3	250	200	230	200	0
4	170	180	180	160	0
5	100	150	200	100	0

Contoh 3:

Sebuah perusahaan mempunyai 4 jenis pekerjaan untuk diselesaikan oleh 3 karyawan. Keuntungan penugasan tiap karyawan untuk tiap jenis pekerjaan adalah sebagai berikut:

PEKERJAAN	ı		III	IV
KARYAWAN		11	111	17
RANI	Rp. 150	Rp. 200	Rp. 180	Rp. 220
RANO	Rp. 140	Rp. 160	Rp. 210	Rp 170
RINI	Rp. 250	Rp. 200	Rp. 230	Rp. 200

	1	2	3	4
1	150	200	180	220
2	140	160	210	170
3	250	200	230	200
4	0	0	0	0