
W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

™

PENDER

UML
THOMAS A.
PENDER

UML modeling tools,
self-assessment
software, and
more on CD-ROM

30 Sessions
That Will Have
You Working
with UML in
Only 15 Hours

U
M

L

HOUR

15

15
he big day is Monday. The day you get to show off what you
know about the Unified Modeling Language. The problem is, you’re not

really up to speed. Maybe it’s been a while since you worked with UML. Or
maybe you just like a challenge. In any event, we’ve got a solution for
you — UML Weekend Crash Course. Open the book Friday evening and on
Sunday afternoon, after completing 30 fast, focused sessions, you’ll be able
to dive right in and start modeling business processes, objects, data, XML,
and more. It’s as simple as that.

Get Up to Speed on UML —
in a Weekend!
Get Up to Speed on UML —
in a Weekend!

CD-ROM INCLUDES:

• System Architect
trial version

• Describe Enterprise
trial version

• Supplemental
illustrations and
cheat sheets

• Assessment software

• Fully searchable
e-version of the book

• Complete UML
specification

System Requirements:

PC with Pentium 200 or higher,
running Windows NT or 2000,
64 MB RAM, CD-ROM drive.
See the “What’s on the CD-ROM”
appendix for details and
complete system requirements.

Category:

Programming/
Data Modeling & Design

WEEKEND CRASH COURSEWEEKEND CRASH COURSE

T

™

ISBN 0-7645-4910-3

,!7IA7G4-fejbag!:p;M;t;t;T

The Curriculum
FRIDAY
Evening: 4 Sessions, 2 Hours
• What Is the UML?
• UML and Development

Methodologies
• How to Approach the

UML
• Defining Requirements

for the Case Study

SATURDAY
Morning: 6 Sessions, 3 Hours
• Understanding the Use

Case Model
• Building the Use Case

Diagram
• Building the Use Case

Narrative
• Identifying the Use Case

Scenarios
• Modeling the Static View:

The Class Diagram
• The Class Diagram:

Associations

SATURDAY, continued
Afternoon: 6 Sessions, 3 Hours
• The Class Diagram: Aggre-

gation and Generalization
• Applying the Class

Diagram to the Case Study
• Modeling the Static View:

The Object Diagram
• Modeling the Functional

View: The Activity Diagram
• Applying the Activity

Diagram to the Case Study
• Modeling the Dynamic

View: The Sequence
Diagram

Evening: 4 Sessions, 2 Hours
• Applying the Sequence

Diagram to the Case Study
• Modeling the Dynamic

View: The Collaboration
Diagram

• Applying the Collaboration
Diagram to the Case Study

• Modeling the Dynamic
View: The Statechart
Diagram

SUNDAY
Morning: 6 Sessions, 3 Hours
• Applying the Basic

Statechart to the Case
Study

• Modeling the Extended
Features of the Statechart

• Applying the Extended
Statechart Features to the
Case Study

• Modeling the Development
Environment

• Modeling the Static View:
The Component Diagram

• Modeling the Static View:
The Deployment Diagram

Afternoon: 4 Sessions, 2 Hours
• Introduction to Web

Development with Java
• Analysis and Architectural

Design of a Web
Application

• Design of a Web
Application

• UML Modeling Tools

WEEKEND
CRASH
COURSE

HOURS

*85555-BADCCb
For more information on
Wiley Publishing, Inc., go to
www.wiley.com/compbooks/

$29.99 US
$44.99 CAN
£23.99 UK incl. VAT

4910-3 Cover 5/30/02 3:33 PM Page 1

UML
Weekend Crash Course™

014910-3 FM.F 5/31/02 2:03 PM Page i

014910-3 FM.F 5/31/02 2:03 PM Page ii

UML
Weekend Crash Course™

Thomas A. Pender

Best-Selling Books • Digital Downloads • e-Books • Answer Networks • e-Newsletters • Branded Web Sites • e-Learning

014910-3 FM.F 5/31/02 2:03 PM Page iii

UML Weekend Crash Course ™
Published by
Wiley Publishing, Inc.
909 Third Avenue
New York, NY 10022
www.wiley.com
Copyright © 2002 by Wiley Publishing, Inc., Indianapolis, Indiana
LOC: 2002103278
ISBN: 0-7645-4910-3
Manufactured in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/SQ//QW/QS/IN
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed
to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax
(317) 572-4447, E-Mail: permcoordinator@wiley.com.
Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives or written sales materials. The advice and strategies con-
tained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither
the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not lim-
ited to special, incidental, consequential, or other damages.
For general information on our other products and services or to obtain technical support, please contact our Customer
Care Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be avail-
able in electronic books.
Trademarks: Wiley, the Wiley Publishing logo, Weekend Crash Course and related trade dress are trademarks or regis-
tered trademarks of Wiley Publishing, Inc., in the United States and other countries, and may not be used without
written permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not
associated with any product or vendor mentioned in this book.

is a trademark of Wiley Publishing, Inc.

014910-3 FM.F 5/31/02 2:03 PM Page iv

About the Author
Tom Pender is the author of six courses on the UML. He has taught throughout the
United States and 12 other countries. He has over 20 years’ experience in systems develop-
ment in industries as diverse as coal mining, power plants, wholesale distribution, ware-
housing, insurance, investing, materials management, weather satellites, and retail. He has
spent the past four years teaching and consulting with companies who are transitioning to
object-oriented technologies. In addition to writing, Tom enjoys collecting silver-age comic
books, and studying science and history.

014910-3 FM.F 5/31/02 2:03 PM Page v

Credits

Acquisitions Editor
Terri Varveris

Project Editor
Sara Shlaer

Technical Editor
Lou Varveris

Copy Editor
Elizabeth Kuball

Editorial Manager
Mary Beth Wakefield

Vice President and Executive Group
Publisher
Richard Swadley

Vice President and Executive Publisher
Bob Ipsen

Vice President and Publisher
Joseph B. Wikert

Editorial Director
Mary Bednarek

Project Coordinator
Nancee Reeves

Graphics and Production Specialists
Beth Brooks
Sean Decker
Melanie DesJardins
Kristin McMullan
Heather Pope

Quality Control Technicians
Dave Faust
John Greenough
Andy Hollandbeck
Carl Pierce
Dwight Ramsey

Permissions Editor
Carmen Krikorian

Media Development Specialist
Travis Silvers

Proofreading and Indexing
TECHBOOKS Production Services

014910-3 FM.F 5/31/02 2:03 PM Page vi

With thanks to Lynne Angeloro
for her support and friendship

014910-3 FM.F 5/31/02 2:03 PM Page vii

014910-3 FM.F 5/31/02 2:03 PM Page viii

W elcome to the UML Weekend Crash Course. So why another UML book? The Weekend
Crash Course series is designed to give you quick access to the topics you want to
learn. You won’t find a ton of reference material in this book. You won’t find a

book that assumes you have a specific programming background. Instead, you will find the
material you need to get the job done, no matter what your background.

You are about to experience the joy of discovering and modeling a complete software
system design from start to finish. You will be equipped with tools to work with client and
technical professionals alike and to overcome so much of the confusion and frustration
common to software projects. You will master one of the most practical and useful tools in
current technology, the Unified Modeling Language.

Who Should Read This Book
This crash course is designed to provide you with a set of short lessons that you can grasp
quickly — in one weekend. The book is intended for three audience categories:

� Programmers who want or need to learn more about design and specifically how the
tools of the UML help in design. Perhaps you have seen the modeling tools used on
projects and want to know how to use them yourself. This course provides 30
focused sessions on the most practical aspects of the UML modeling tools. You will
learn the role of each diagram, the notations to draw them, and how to apply them
using a realistic case study.

� Team leaders and analysts who need a tool to help communicate what the project is
all about. You haven’t written code in a while, but you know what you want the sys-
tem to do for your clients. You need a way to express the requirements in a way that
all the participants can understand and support throughout the project life cycle. The
course sessions break down the diagrams to clearly explain why and how you would
use them. I also provide tips on how to make sure that what you’re doing is correct.

� Business analysts and clients who need to communicate with systems developers.
One of the challenges in projects is finding a common language, a way to communi-
cate effectively and consistently. The UML provides a common ground for business
and technical professionals. The examples in the course are nontechnical yet very
practical for establishing a common language to describe critical business systems.

Preface

014910-3 FM.F 5/31/02 2:03 PM Page ix

To get the most out of this book, you should be familiar with software projects and the
various participants. I don’t cover project management or much of the technology used in
projects. In fact, I assume you know the project-related concepts like code, databases, pro-
grams, requirements, business processes, clients, developers, and analysts.

What You Need To Have
The requirements for the course are very basic. You can create all the diagrams with pencil
and paper. If you like, you can download any one of the modeling tools mentioned in the
book. Nearly all vendors provide an evaluation copy for 15 to 30 days, more than enough
time to complete the course and try out the tool. For a list of vendor sites see Session 30.
I’ll offer two cautions regarding the use of tools: First, there are a few free tools out there,
but most of them are not complete and might get in the way of your work. Second, if you
are struggling with the tool, go back to paper until you finish the course. Focus on learning
the concepts, then work on using a tool. The concepts are more important than the
mechanics of a particular tool.

What Results Can You Expect?
How realistic is it to try to learn the UML in one weekend? The UML is like many things you
learn. Grasping the basics is easy, but it can take years to master the application. The UML
defines ten diagrams. Five of those get used a lot; the other five are more specialized and
are used less frequently. All of the concepts represented in the diagrams should already be
familiar, concepts such as clients, business processes, and messages. The toughest part is
learning the terminology. That is why the course focuses on giving you definitions and lots
of examples.

There is more to the UML than I could possibly cover in 15 hours. But I can give you a
solid understanding of the core concepts that will support 80 percent of your work. You will
know the purpose of each diagram, how the diagrams work together, the entire notation to
construct each diagram, and even ways to test your work. After you work through the
examples and the case study, you should be able to immediately start applying your new
understanding at work with confidence.

Weekend Crash Course Layout and Features
This book follows the Weekend Crash Course layout and includes the standard features of
the series so that you can be assured of mastering the UML within a solid weekend. You
should take breaks throughout. I’ve arranged things so that the 30 sessions last approxi-
mately 30 minutes each. The sessions are grouped within parts that take two or three hours
to complete. At the end of each session, you’ll find “Quiz Yourself” questions, and at the
end of each part, you’ll find part review questions. These questions let you test your knowl-
edge and practice your newfound skills. (The answers to the part review questions are in
Appendix A.) Between sessions, take a break, grab a snack, and refill that beverage glass,
before plunging into the next session!

This Weekend Crash Course contains 30 half-hour sessions organized within six parts. The
parts correspond to a time during the weekend, as outlined in the following sections.

Prefacex

014910-3 FM.F 5/31/02 2:03 PM Page x

Part I: Friday Evening
In this part, I provide the background of the UML and how you can approach it to get the
most out of it. I cover a brief history of the UML and what exactly the UML defines. Next,
I briefly cover some sample methodologies to explain the context in which you will use the
UML. I also cover an overview of the diagrams supported by the UML and the fundamental
object-oriented concepts used throughout the development of those diagrams.

When the background is complete, you will dive into the Case Study to gather requirements.

Part II: Saturday Morning
This part covers the application of the Use Case Model, from the diagram through narratives
and scenarios to fully document user requirements. You will learn to identify and define Use
Cases in terms that can be verified by your clients. You will explain the requirements of
each Use Case so that they form the foundation for testing throughout the project. Then,
based on the requirements, you will begin the construction of the Class diagram, including
classes and associations.

Part III: Saturday Afternoon
In the afternoon session, you will learn the rest of the Class diagram notation and apply it
to the case study. You will refine the Class diagram by applying aggregation, composition,
and inheritance. You will then test the Class diagram using the Object diagram, applying
test cases to validate your Class diagram notation. You will also learn to use the Activity
diagram to model logic, such as business processes and complex system behaviors. Then you
start modeling the interactions between objects using the Sequence diagram by bringing
together the test cases and the resources defined in your Class diagram.

Part IV: Saturday Evening
You will continue your application of the Sequence diagram. Then you will learn another,
complementary tool, the Collaboration diagram, to model object interactions. You will learn
the unique properties of these diagrams and how they can work together to reveal holes in
your design. For those objects that are constantly changing, you will learn the Statechart
diagram so that you can fully understand and document their behavior over time.

Part V: Sunday Morning
The application of the Statechart will continue into Sunday Morning with lots of practical
examples. By this time you will have seen a lot of diagrams. You will learn how to organize
your work using Package diagrams. Then, when the design is reaching the point where you
need to build the system, you will learn how to model the physical implementation using
the Component and Deployment diagrams.

Part VI: Sunday Afternoon
Sunday Afternoon you will learn how the UML diagrams are applied to the development of a
Web application. Finally, I will provide some information about modeling tools, including
evaluation criteria and sources to obtain evaluation copies.

Preface xi

014910-3 FM.F 5/31/02 2:03 PM Page xi

Features
First, as you go through each session, look for the following time status icons that let you
know how much progress you’ve made throughout the session:

The book also contains other icons that highlight special points of interest:

This flag is to clue you in to an important piece of information that you
should file away in your head for later.

This gives you helpful advice on the best ways to do things, or a tricky
technique that can make your UML modeling go smoother.

Never fail to check these items out because they provide warnings that you
should consider.

This states where in the other sessions related material can be found.

Accompanying CD-ROM
This Weekend Crash Course includes a CD-ROM. It contains trial software, a skills assessment
test, a copy of the UML standard, and some supplemental materials I think you will find it
useful. For a more complete description of each item on the CD-ROM, see Appendix B.

Reach Out
The publisher and I want your feedback. Please let us know of any mistakes in the book of if
a topic is covered particularly well. You can send your comments to the publisher at Wiley
Publishing, Inc., 909 Third Avenue, New York, NY, 10022 or e-mail them to www.wiley.com.
You also can e-mail me directly at tom@pender.com.

You are ready to begin your Weekend Crash Course. Stake out a weekend, stockpile some
snacks, cool the beverage of your choice, set your seat in the upright position, fasten your
seat belt, and get ready to learn the UML the easy way. Turn the page and start learning.

Cross-Ref

Never

Tip

Note

Prefacexii

014910-3 FM.F 5/31/02 2:03 PM Page xii

Preface ..ix

FRIDAY...2
Part I—Friday Evening ...4
Session 1–What Is the UML? ...5
Session 2–UML and Development Methodologies ..13
Session 3–How to Approach the UML ...23
Session 4–Defining Requirements for the Case Study ..35

SATURDAY ...46
Part II—Saturday Morning ..48
Session 5–Understanding the Use Case Model ..49
Session 6–Building the Use Case Diagram ...61
Session 7–Building the Use Case Narrative ..69
Session 8–Identifying the Use Case Scenarios ..81
Session 9–Modeling the Static View: The Class Diagram93
Session 10–The Class Diagram: Associations ..105

Part III—Saturday Afternoon ...116
Session 11–The Class Diagram: Aggregation and Generalization117
Session 12–Applying the Class Diagram to the Case Study129
Session 13–Modeling the Static View: The Object Diagram139
Session 14–Modeling the Functional View: The Activity Diagram149
Session 15–Applying the Activity Diagram to the Case Study157
Session 16–Modeling the Dynamic View: The Sequence Diagram167

Part IV—Saturday Evening ..178
Session 17–Applying the Sequence Diagram to the Case Study179
Session 18–Modeling the Dynamic View: The Collaboration Diagram187
Session 19–Applying the Collaboration Diagram to the Case Study193
Session 20–Modeling the Dynamic View: The Statechart Diagram203

SUNDAY...214
Part V—Sunday Morning ...216
Session 21–Applying the Basic Statechart to the Case Study217
Session 22–Modeling the Extended Features of the Statechart227
Session 23–Applying the Extended Statechart Features to the Case Study237
Session 24–Modeling the Development Environment245
Session 25–Modeling the Static View: The Component Diagram255
Session 26–Modeling the Static View: The Deployment Diagram263

Contents at a Glance

014910-3 FM.F 5/31/02 2:03 PM Page xiii

Part VI—Sunday Afternoon ..276
Session 27–Introduction to Web Development with Java277
Session 28–Analysis and Architectural Design of a Web Application287
Session 29–Design of a Web Application ...297
Session 30–UML Modeling Tools ...307

Appendix A–Answers to Part Reviews ...317
Appendix B–What’s on the CD-ROM? ...329
Glossary ...333
Index ...345
End-User License Agreement ...359

014910-3 FM.F 5/31/02 2:03 PM Page xiv

Preface ..ix

FRIDAY...2
Part I—Friday Evening ...4
Session 1–What Is the UML? ...5

Establishing Standards ..5
Some History behind the UML ..6

What is and is not included in the UML Specification6
The UML metamodel ...6
The organization of the metamodel ..7

UML Extension Mechanisms ...8
Ten Diagrams ..9
The Continuing Refinement and Expansion of the UML10

Session 2–UML and Development Methodologies ...13
Some Current Methodologies ..13

The Rational Unified Process ...14
Strengths of the RUP ..15
Weaknesses of the RUP ...16

Shlaer-Mellor Method ..16
Strengths of Shlaer-Mellor ...17
Weaknesses of Shlaer-Mellor ..17

CRC ..18
Strengths of CRC ...19
Weaknesses of CRC ..19

Extreme Programming ...20
Strengths of XP ..20
Weaknesses of XP ..20

Resources ...21
Session 3–How to Approach the UML ...23

Views ...23
Functional View ...24
Static View ...25
Dynamic View ...26
Three views ..27

Object-Oriented Principles ...28
Abstraction ..28
What an object knows ...29

Information ..29
Behavior ..30

Contents

014910-3 FM.F 5/31/02 2:03 PM Page xv

Encapsulation ...30
To use the object ..30
To make the object work properly ..31
Giving an object purpose ..32
Encapsulation summary ...32

Session 4–Defining Requirements for the Case Study35
The Case Study Problem Statement ..35

Receiving ...36
Stocking ..36
Order fulfillment ..36
Shipping ..36

Types of Requirements ..36
Business process ..37
Constraints ...38
Rules ..38
Performance ..39

An Inventory Control System ..40
Identifying requirements ..40

Users ..40
Resources ...41
Functionality ...42

Avoiding early pitfalls ...42
Pitfall #1: Making assumptions ...43
Pitfall #2: Replicating existing implementations43
Pitfall #3: Mistaking preferences for requirements43

SATURDAY ...46
Part II—Saturday Morning ..48
Session 5–Understanding the Use Case Model ...49

The Purpose of the Use Case Model ..50
The Resources of the Use Case Model ...51

Use Case diagram ...51
Use Case narrative ..51
Use Case scenarios ..52

Defining the Elements of the Use Case Diagram ...52
Use Case system ...53
Use Case actors ..53
Use Cases ...54
Use Case relationships ...55

Association notation ...56
Stereotype notation ...56
<<include>> dependency notation ...56
<<extend>> dependency notation ..57
Generalization ...58

Contentsxvi

014910-3 FM.F 5/31/02 2:03 PM Page xvi

Session 6–Building the Use Case Diagram ..61
Building the Use Case Diagram for the Case Study61

Step 1: Set the context of the target system ...62
Step 2: Identify the actors ..62
Step 3: Identify the Use Cases ...63
Step 4: Define the associations between actors and Use Cases64
Step 5: Evaluate the actors and Use Cases to find opportunities for refinement ..65
Step 6: Evaluate the Use Cases for <<include>> dependencies66
Step 7: Evaluate the Use Cases for <<extend>> dependencies66
Step 8: Evaluate the actors and Use Cases for generalization67

Session 7–Building the Use Case Narrative ...69
Elements of a Use Case Narrative ..69

Assumptions ...70
Pre-conditions ...70
Use Case initiation ...71
Dialog ...71
Use Case termination ..72
Post-conditions ..72
Additional narrative elements ...73

Writing a Use Case Narrative for the Case Study ..74
Assumptions in the case study narrative ..75
Pre-conditions in the case study narrative ..75
Use Case initiation in the case study narrative ...75
Use Case dialog in the case study narrative ...76
Use Case termination in the case study narrative77
Post-conditions in the case study narrative ...77

Session 8–Identifying the Use Case Scenarios ..81
Describing Use Case Scenarios ...81

Why you should care about Use Case scenarios ...82
How to find Use Case scenarios ..83
Finding Use Case scenarios for the case study ..84
Applying Use Case scenarios ...90

Session 9–Modeling the Static View: The Class Diagram93
The Object Model ..93

The Class diagram ...94
The Object diagram ...95

Elements of the Class Definition ...95
Modeling an Attribute ...95

Attribute visibility ...96
Creating an attribute specification ...97

Modeling an Operation ..98
Elements of an operation specification ..98
Creating an operation specification ...99

Contents xvii

014910-3 FM.F 5/31/02 2:03 PM Page xvii

Modeling the Class Compartments ...100
Name compartment ...101
Attribute compartment ..101
Operation compartment ..102

Creating Different Views of a Class ..102
Session 10–The Class Diagram: Associations ...105

Modeling Basic Association Notations ...106
Association name ...106
Association multiplicity ...107
Association roles ..109
Association constraints ..109

Modeling Extended Association Notations ...110
Association class ..110
Reflexive association ...111
Qualified association ...111

Part III—Saturday Afternoon ...116
Session 11–The Class Diagram: Aggregation and Generalization117

Modeling Aggregation and Composition ..117
Elements of aggregation ...118
Elements of composition ...119
Creating aggregation and composition relationships120

Modeling Generalization ..121
Elements of generalization ..122
An illustration: How to model generalization ...124

Session 12–Applying the Class Diagram to the Case Study129
Modeling the Inventory Control System for the Case Study129

Problem statement: for the inventory control system129
Building the Class diagram ..130

Understanding UML Notation for Design Patterns133
Using Design Patterns in the Class Diagram ...135

Session 13–Modeling the Static View: The Object Diagram139
Understanding the Object Diagram ..139
Introducing Elements of the Object Diagram Notation140
Comparing the Object Diagram and the Class Diagram Notations140
Applying Object Diagrams to Test Class Diagrams142

Test case 1 ..143
Test case 2 ..143
Test case 3 ..145
Test case 4 ..145

Session 14–Modeling the Functional View: The Activity Diagram149
Introducing the Activity Diagram ..149

Modeling workflow and Use Cases ...149
Defining methods ...150

Contentsxviii

014910-3 FM.F 5/31/02 2:03 PM Page xviii

Taking a Look at Activity Diagram Notation ..151
Activities and transitions ..151
Guard condition ...151
Decisions ..152
Merge point ..153
Start and end ..154
Concurrency ..154

Session 15–Applying the Activity Diagram to the Case Study157
Building an Activity Diagram for the Case Study157

Session 16–Modeling the Dynamic View: The Sequence Diagram167
Understanding the Dynamic View ..167

Knowing the purpose of Sequence and Collaboration diagrams168
Mapping interactions to objects ..168
Defining the basic notation of the Sequence diagram169
Defining the extended notation for the Sequence diagram171

Part IV—Saturday Evening ..178
Session 17–Applying the Sequence Diagram to the Case Study179

Building a Sequence Diagram from a Scenario ...179
Session 18–Modeling the Dynamic View: The Collaboration Diagram187

The Collaboration Diagram ...187
Diagram similarities ..188
Diagram differences ...188

Collaboration Diagram Notation ..189
Session 19–Applying the Collaboration Diagram to the Case Study193

Building a Collaboration Diagram from a Scenario193
Mapping the Sequence and Collaboration Diagram
Elements to the Class Diagram ..200

Session 20–Modeling the Dynamic View: The Statechart Diagram203
Describing the Purpose and Function of the Statechart Diagram203
Defining the Fundamental Notation for a Statechart Diagram204
Building a Statechart Diagram ..206
Defining Internal Events and Activities ..210

SUNDAY...214
Part V—Sunday Morning ...216
Session 21–Applying the Basic Statechart to the Case Study217

Defining Entry and Exit Actions ..217
Defining Send Events ..219
Order of Events ..220
Applying the Basic Statechart
Diagram Notation to the Case Study ...221

Inventory control: Problem statement ..221
Constructing the Statechart diagram for the product object221

Contents xix

014910-3 FM.F 5/31/02 2:03 PM Page xix

Session 22–Modeling the Extended Features of the Statechart227
Modeling Transition Events ..227

Call event ...228
Time event ..229
Change event ...229
Making events conditional ..230
Send event ..231
Guard conditions as events ..231

Modeling Superstates and Substates ...231
Split of control ..232
Concurrency ..233

Session 23–Applying the Extended Statechart Features to the Case Study237
Deriving a Statechart from Sequence Diagrams ..237

Session 24–Modeling the Development Environment245
Describing the Purpose and Function of Packages245
Packages Provide a Namespace ..246
Defining the Notation for Packages and Package Diagrams247

Package stereotypes ..247
Package dependency ..247
Dependency stereotypes ...248
Model elements in a package ...249

Constructing a Package Diagram for the Case Study250
Sesssion 25–Modeling the Static View: The Component Diagram255

Explaining the Component Diagram ...255
Defining the Notation for Components and Component Dependencies256

Component stereotypes ..256
Component interfaces ..257
Component dependencies ..257

Building a Component Diagram for the Case Study258
Mapping the Logical Design to the Physical Implementation260

Session 26–Modeling the Static View: The Deployment Diagram263
Describing the Purpose and Function of the Deployment Diagram263
Defining the Notation for the Deployment Diagram264
Mapping Software Components to an Architecture266
Applying the Combined Diagrams to the Case Study266

Part VI—Sunday Afternoon ..276
Session 27–Introduction to Web Development with Java277

The Value of UML in Web Development ...277
Issues in Using the UML in Web Development ..278
Basic Web Architecture and Static Web Content ..278
Dynamic Web Content ..280

Java servlets ...281
Template pages ..283
JavaServer Pages ..283

Contentsxx

014910-3 FM.F 5/31/02 2:03 PM Page xx

Session 28–Analysis and Architectural Design of a Web Application287
The Friendly Reminder Case Study ...287
Requirements Gathering ..288

Creating the Use Case diagram ...289
Analysis ...290

Architectural Design ...291
Model View Controller ..291
JavaBeans ...292
MVC pattern in the case study ...294

Session 29–Design of a Web Application ..297
Model 2 Architecture ...297
Uploading Appointments and Contacts ...299
Detailed Design ..300

Querying appointments and contacts ...300
Web technologies on an implementation Class diagram302
XML ..302

UML modeling of XML ...303
Appointment XML in the case study ..303

Web Application Extension ...305
Session 30–UML Modeling Tools ..307

Explaining the Purpose and Function of Modeling Tools307
Explaining Evaluation Criteria for Modeling Tools308

The basics ...309
Type and version of the UML supported ...309
Platform support ...309
Printing ..309
HTML documentation ...309
Repository ...310
Code generation ..310
Integrated editor ..310
Version control ...310

Extended features ...311
Round-trip engineering ...311
Data modeling integration ...311
Customization ..312
XML Metadata Interchange ..312
Team development ...313

Evaluating UML Modeling Tools ...313
Appendix A–Answers to Part Reviews ...317
Appendix B–What’s on the CD-ROM? ...329
Glossary ...333
Index ...345
End-User License Agreement ..359

Contents xxi

014910-3 FM.F 5/31/02 2:03 PM Page xxi

014910-3 FM.F 5/31/02 2:03 PM Page xxii

UML
Weekend Crash Course™

014910-3 FM.F 5/31/02 2:03 PM Page 1

024910-3 DPOO1.F 5/31/02 2:03 PM Page 2

Part I — Friday Evening
Session 1
What Is the UML?

Session 2
UML and Development Methodologies

Session 3
How to Approach the UML

Session 4
Defining Requirements for the Case Study

024910-3 DPOO1.F 5/31/02 2:03 PM Page 3

P A R T

Friday
Evening

I

Session 1
What Is the UML?

Session 2
UML and Development Methodologies

Session 3
How to Approach the UML

Session 4
Defining Requirements for the Case Study

034910-3 Pt01.F 5/31/02 2:03 PM Page 4

Session Checklist
✔ Explaining why the UML was created
✔ Defining what is and is not included in the UML specification
✔ Explaining the four-layer metamodel architecture
✔ Explaining the built-in extension mechanisms
✔ Describing how the UML is being refined and extended

The Unified Modeling Language (UML) is a hot topic in an even hotter industry. The whole
software development industry has been explosive, partly due to the revolutionary nature
of software itself, which is driven by worldwide business growth and competition.

Establishing Standards
For those who are responsible for delivering these revolutionary business solutions, the
challenge is daunting. Every week new developments threaten to make our current skills
and experience obsolete. Furthermore, the software industry is relatively young and hasn’t
yet established itself as a formal discipline. Consequently, most study is focused on pro-
gramming rather than on engineering, with practitioners gravitating toward the tangible
implementation products and away from the abstract analysis and design artifacts. But it is
this very tendency that has led to many failed systems and disastrous problems.

This need for a more mature industry is behind the drive for the UML and other related
standards. Our industry needs a framework for measurable and proven engineering tech-
niques. The UML is one of the necessary steps in the right direction. This course helps you
understand what this step is and how the UML can help you deliver solutions in a way that
will help you and your clients reach a new level of systems development maturity.

S E S S I O N

What Is the UML?

1

044910-3 Ch01.F 5/31/02 2:03 PM Page 5

Friday Evening6

The UML is a standard for the creation of models that represent object-oriented software
and business systems. It combines the best diagramming practices applied by software devel-
opers over the past 40 years. The UML standardizes the notations but it does not dictate how
to apply the notations. This approach to the standard provides the greatest freedom for
developers’ own styles and techniques, while ensuring consistency in their work products.

Some History behind the UML
The UML is the current stop on the continuum of change in software development techniques.
The UML was created out of a storm of controversy over the best methodology to use to spec-
ify and to develop software systems. Dozens of methods were (and still are) in use, each with a
loyal following.

In 1994, Grady Booch and James Rumbaugh, the two market share leaders in object-
oriented (OO) software methods, formally joined forces to develop a notation standard. A
year later, they published the Unified Method version 0.8. Ivar Jacobson, yet another leader
in object-oriented development, joined the team. The team of Rumbaugh, Booch, and
Jacobson were soon after dubbed the “three amigos” within OO circles. At the same time
that the three amigos were working on their common notation, the Object Management
Group (OMG) was establishing the Object-Oriented Analysis and Design (OOA&D) Task Force.
The OMG is the same standards body that defined and still manages the CORBA standard. In
June 1996, the task force issued a request for proposal (RFP) for a standardized metamodel
to support the exchange of models among modeling tools. By October 1996, a number of the
leading application and modeling tool manufacturers, like IBM and i-Logix, had partnered
with the three amigos to sponsor the UML proposal to the task force.

What is and is not included in the UML Specification
The UML has a more limited scope than people may assume. The OMG’s RFP was primarily
concerned with the development of a metamodel for object-oriented modeling. A metamodel
is a cohesive set of definitions for concepts and their relationships. The metamodel was
expected to define an underlying language that could be transmitted between tools that
support visual modeling, without constraining the vendors to support a particular method-
ology for developing the models.

The UML metamodel
This metamodel, or set of definitions, describes in fairly precise syntax the underlying
meaning of each element used in visual modeling and the relationships among the elements.
For example, in the UML metamodel, you find a detailed definition of what a class is; its
component parts, attributes, and operations; and the relationships among them. You do
not, however, find a process for finding classes or for evaluating a “good” class versus a
“bad” class.

The UML standard actually defines four layers to the metamodel architecture: the user
object layer, the model layer, the metamodel (2M) layer, and the metametamodel (3M) layer,
shown in Table 1-1.

044910-3 Ch01.F 5/31/02 2:03 PM Page 6

Session 1—What Is the UML? 7

Table 1-1 The UML Four-layer Metamodel Architecture

Layer Description Example

metametamodel Defines the language for Defines the concepts MetaClass,
specifying metamodels. MetaAttribute, MetaOperation, and

so on.

metamodel Defines the language for Defines the concepts Class,
specifying a model. Attribute, Operation, Component,

and so on.

model Defines the language to use Defines the concepts Order,
to describe a subject domain. Shipment, Product, Product ID,

Buy(), and so on.

user objects Defines specific subject Defines Order #74653, Shipment
domain information. #87649, the product “CD-ROM

435”, the price $50.00, and so on.

Starting from the bottom and working up, the user object layer is where you find a diagram,
like a Sequence diagram or Object diagram, populated with the facts from the problem domain
like Order #74653 that contains a line item for “CD-ROM 435” with a price of $50.00. The dia-
gram is built following the rules defined by the next layer above it, the model layer.

The model layer fully explains the classes that describe the subject domain objects, for
example, classes like Order, Shipment, and Product. It tells you what an Order looks like, the
fields it contains, the operations it can perform, and so on, without ever telling you about
any particular Order. These class definitions conform to the rules specified in the next layer
above, the metamodel (2M) layer.

The metamodel (2M) layer defines what a class is so that the model layer knows how to
describe the Order class. It defines a class as a concept having attributes, operations, and
associations. It defines an attribute as having a name, a data type, a default value, and con-
straints. These definitions in turn conform to the specifications of the metametamodel (3M).

The metametamodel (3M) layer is the realm of the philosophers and practitioners of the
black arts who determine what makes up a language. Nearly all the definitions at this layer
are abstract, that is, they are more like templates that can be used to build a wide variety
of concrete concepts.

In case I managed to scare you just now, relax, all you really need to know is the meta-
model. That is what this entire course is about, defining the diagrams and the elements
used to construct them. Once you understand the diagrams defined by the metamodel layer,
you will get enough practice building the model and user object layers to become quite
comfortable.

The organization of the metamodel
The metamodel is a bit complex, so it helps to organize the elements into packages. A pack-
age is basically the UML version of a directory, a place to put things. At the first level you

044910-3 Ch01.F 5/31/02 2:03 PM Page 7

Friday Evening8

will find three packages called the Foundation, Model Management, and Behavioral Elements
packages, as shown in Figure 1-1.

Figure 1-1 Packages of the UML metamodel

Figure 1-1 shows that Behavioral Elements and Model Management depend on the
Foundation package. In other words, they won’t work properly if they don’t get help from
the contents of the Foundation package (more on the Foundation package in a moment).

The Behavioral Elements package contains everything you need to model behavior like
Use Cases, Collaborations, Statecharts, and more.

Model Management explains how to model packages, subsystems, and similar organiza-
tional structures.

Figure 1-2 represents the contents of the Foundation package. The Foundation package
contains four more packages, the CORE, Auxiliary Elements, Data Types, and Extension
Mechanisms packages.

Figure 1-2 The contents of the Foundation package

The Core package defines all the fundamental concepts used in the UML diagrams like
Class, Interface, Association, and Data Type. But it also defines some abstract concepts like
GeneralizableElement, a high level definition for anything that can implement inheritance,
like a class, a Use Case, an actor, and more.

The other three packages support the Core package with items like dependencies; primi-
tive data types like integer, string, and time; and some built-in extension mechanisms that
I’ll talk about next.

UML Extension Mechanisms
The UML also provides some built-in extensions to the diagram notations. One such tool is
called a stereotype. A stereotype appears inside of << >> (guillemets) and characterizes a
type of element like a class or relationship without specifying its implementation. For
example, you might stereotype a number of classes as <<user interface>> to convey that

Auxiliary Elements Core

Data Types

Extension Mechanisms

Behavioral Elements Foundation Model Management

044910-3 Ch01.F 5/31/02 2:03 PM Page 8

Session 1—What Is the UML? 9

they are all used in the construction of a user interface. But, as Figure 1-3 shows, the indi-
vidual classes could be as diverse as Frame, Button, and DropDownList.

Figure 1-3 A stereotype on a class

There are a number of stereotypes already defined in the UML, but you are free to
define and use your own. The existing stereotypes are specified in Appendix A of the UML
specification.

Because no notation can cover every possible type of information, the UML also supports
the use of comments. Figure 1-4 illustrates a sample comment icon. You may place as much
text as needed within the symbol. The symbol can be placed anywhere on any diagram.

Figure 1-4 Comment notation

Another extension, called a constraint, is used throughout the UML diagrams to limit the
use of a model element. You can always spot constraints by the use of { } braces around the
text that describes the limitation you want to impose. For example, you might want to limit
the values that can be used for the attribute “age” to between 21 and 120. The constraint
might look like this: {age > 20 and < 121}. I’ll cover the use of constraints with each dia-
gram in the subsequent sessions.

There are two more mechanisms that reach beyond the scope of an introductory book,
tagged values and profiles. A complete description is available in the UML specification.

Ten Diagrams
Ten diagrams are defined in the UML metamodel. Each is fully described using Class diagrams
and textual narrative. A key to the successful application of the UML is in understanding
that you can use the notation standard with any number of different development methods,
process controls, and quality controls.

In Session 2, I explain the difference between a process and the UML, how they comple-
ment one another, and four very different yet popular processes to apply the UML. Session 3
provides an overview of the diagrams. The rest of this course is devoted to explaining the
purpose and definition of each UML diagram and their relationships to one another. This
understanding should prepare you to apply the models successfully in your own unique
environment.

Place your comment
inside this figure

<<user interface>>

Frame

<<user interface>>

Button

<<user interface>>

DropDownList

044910-3 Ch01.F 5/31/02 2:03 PM Page 9

Friday Evening10

The Continuing Refinement and Expansion of the UML
From the outset, the UML was designed to be a public resource. It grew out of a long list of
competing notations and methods and continues to be extended and refined. The standard
is intended to be a reflection of best practices. Consequently, there is an ongoing need to
improve the standard as practices improve and the application of the standard is tested in
increasingly diverse and demanding applications.

For these very practical reasons, the UML standard is open for review and change by any-
one who wants to contribute to it. The OMG evaluates feedback and incorporates changes
into each new release. The OMG has established the UML Revision Task Force (RTF) as a
clearinghouse for suggested changes. The suggestions are reviewed for merit, and often
scheduled for incorporation into upcoming versions of the product.

The UML is currently in version 1.4. UML version 2.0 is not expected until about the
spring of 2003.You can investigate the work being done by the RTF at the UML Revision
Task Force Web site (www.celigent.com/omg/umlrtf). You may also access the UML specifi-
cations themselves and even download them for free from the OMG Web site: www.omg.org.
You will want to refer mostly to the Notation Guide and the Glossary. The Notation Guide
covers all the diagram notations and terminology covered in this course and more. It makes
a good reference, and it’s free. Regarding the Glossary, you may want to rely as well on the
glossary in this text. I found a number of the definitions in the UML Glossary to be circular
or simply too thin to be useful.

You can also try some online tutorials at www.celigent.com/omg/umlrtf/tutorials.htm.
They aren’t comprehensive, but for free it’s hard to justify a complaint.

REVIEW
� The UML is a major step toward the standardization of software development. The

UML standard has received widespread support from tool vendors and developers
alike.

� The UML specification describes a metamodel that defines the elements of each
diagram, how the diagrams may be assembled, and how they can be extended.

� The UML standard doesn’t prescribe a process for applying the diagramming nota-
tion. Nor does the standard define the proper use of the notation to create “good”
products, or guidelines to avoid bad products. The standard does not dictate how a
vendor implements the standard.

� The UML metamodel architecture defines four layers: the user object, model,
metamodel (2M), and metametamodel (3M) layers.

� UML extensions include stereotypes, comments, constraints, tagged values, and
profiles.

� The UML Revision Task Force (RTF) of the Object Management Group (OMG) is
responsible for coordinating and applying suggested changes to the standard.

044910-3 Ch01.F 5/31/02 2:03 PM Page 10

Session 1—What Is the UML? 11

QUIZ YOURSELF

1. Who sponsored the UML? (See “Some History behind the UML.”)
2. What part of systems development does the UML define? (See “What is and is not

included in the UML Specification.”)
3. What part of systems development is not defined by the UML? (See “What is and is

not included in the UML Specification.”)
4. What is a UML stereotype? (See “UML Extension Mechanisms.”)
5. What is a UML constraint? (See “UML Extension Mechanisms.”)
6. How are changes made to the UML standard? (See “The Continuing Refinement and

Expansion of the UML.”)

044910-3 Ch01.F 5/31/02 2:03 PM Page 11

044910-3 Ch01.F 5/31/02 2:03 PM Page 12

Session Checklist
✔ Explaining methodology
✔ Examining some popular methodologies

Amethodology consists of a process, a vocabulary, and a set of rules and guidelines.
The process defines a set of activities that together accomplish all the goals of the
methodology. The vocabulary of the methodology is used to describe the process and

the work products created during the application of the process. The rules and guidelines
define the quality of the process and the work products.

The part of all methodologies that can be standardized is the vocabulary, often expressed
in a notation. The UML standard is a common notation that may be applied to many differ-
ent types of software projects using very different methodologies. The variations appear in
the use of the UML extensions, like stereotypes, and the emphasis placed on different dia-
grams for different types of projects.

One of the challenges inherent in defining a methodology is that it is difficult, if not
impossible, to define a single process that works for all projects. For a software development
methodology, this would mean a process that works equally well on projects as diverse as
arcade games, device drivers, banking, rocket navigation, and life support.

Consequently, even though the UML standardizes the notations gathered from a number
of methodologies, the processes used to apply the UML notation are still as diverse as the
environments in which they are used.

Some Current Methodologies
The rest of this session is devoted to a brief summary of four of the current methodologies:
RUP, Shlaer-Mellor, CRC, and Extreme Programming. They represent the diversity of the cur-
rent set of methodologies. I provide a brief summary and then try to point out what I see to

S E S S I O N

UML and Development Methodologies

2

054910-3 Ch02.F 5/31/02 2:04 PM Page 13

Friday Evening14

be some strengths and weaknesses in each approach. This should give a fair idea of the
opportunities available to you and the factors that may influence your choices.

The list of all methodologies is far too long to cover here, so at the end of the session I’ll
point you to a resource where you can check out many of the others and dig a little deeper
into the methodologies presented here.

I have selected these four methodologies because they represent the diversity inherent
in system development. The Rational Unified Process works well in large projects where
quality artifacts and communication are critical. The Shlaer-Mellor Method was developed
primarily to address the unique needs of real-time systems long before the UML existed,
but has since adopted the UML notation. CRC is almost more of a technique than a method-
ology. It was designed as a tool to help people gain an understanding of objects and how
they work. Extreme Programming tries to reduce many of the existing development practices
to the bare essentials, attempting to optimize the relationship between developers and
clients.

The Rational Unified Process
One method that has received a lot of interest recently is the Rational Unified Process
(RUP). RUP is the latest version of a series of methodologies resulting from a blending of
methodologies. You may have heard the names Objectory Process, the Rational Approach,
the Rational Objectory Process, and the Unified Software Development Process. These were
all predecessors and have been synthesized into the RUP. Actually, it gets a bit confusing
because the Rational Unified Process was a proprietary process within Rational Software,
Inc. The merged method was published in 1999 as The Unified Software Development
Process. The method has since been made public and the name reverted to the Rational
Unified Process (RUP).

The hallmarks of RUP are the two terms incremental and iterative. These concepts are
part of most current methods, but RUP places particular emphasis on their value and
their associated artifacts. The goal of the methodology is to deliver an executable release
of a product, an increment of the product for every pass, or iteration, through the
process. The motivation for this approach is to keep delivery times short and deliveries
frequent. This prevents the historical problem of projects that run for months or even years
before they actually produce anything. It also supports early review and early problem
detection.

Note that in the very early increments, the concept of an executable release is a bit of a
stretch. Typically, you might produce prototypes or layouts without anything executable
until at least a few iterations into the project. The key is to produce some verifiable output
for the clients.

The process is built around the two concepts of project lifecycle phases and process work-
flow. Figure 2-1 shows a two-dimensional matrix. The horizontal axis represents the progress
of the project over time. The vertical axis represents the core process workflow. Using this
visualization, you can see that in each iteration, or small step through the life of the pro-
ject, the team is working through all the steps in the process workflow. In each subsequent
iteration, the team digs deeper into each activity in the process workflow.

The workflow consists of a set of activities, business modeling through defining the envi-
ronment. Each activity is associated with a set of artifacts or work products. In most cases,
the artifacts are UML diagrams, but they may also be items like requirements documents,
test plans, risk assessments, deployment plans, and much more.

054910-3 Ch02.F 5/31/02 2:04 PM Page 14

Session 2—UML and Development Methodologies 15

Figure 2-1 The Rational Unified Process, phases and workflows

For example, the case study presented in this book refers to an inventory control system.
The first iteration on this project might focus heavily on requirements and result in a risk
assessment, a glossary of inventory control terms, and some screen and forms layouts for
receiving and shipping to help the users visualize their requirements. The second iteration
might create the Use Case diagram and a set of one or more prototypes from the original
screen layouts. A few iterations later you might take one Use Case and actually build the
application to support a screen to set the standards for the screen look and feel and to test
the basic architecture of the application.

The iterative approach continues until all the requirements have been satisfied and the
system is fully implemented.

You may have the impression that the Rational Unified Process is a standard
like the Unified Modeling Language. The choice of the name might have been
a smart marketing ploy, but that does not make it a standard. There are many
other valuable methodologies to consider.

Strengths of the RUP
� The emphasis on iterative development and incremental deliveries is a time-tested

and valuable approach that prevents many common project problems. However, it
must be noted that this approach is common to most of the current methodologies.

� The process is well defined and supported by the Rational modeling tool.
� The artifacts and the roles of the project participants are also very well defined.
� The process combines many of the best practices from many successful methodologies.
� The process is comprehensive.

Note

Phases

Workflows

Business Modeling

Requirements

Analysis and Design

Implementation

Test

Deployment

Configuration and

Change Mgmt

Project Mgmt

Environment

Inception Elaboration Construction Transition

Iter
#1Initial

Iter
#2

Iter
#3

Iter
#4

Iter
#5

Iter
#6

054910-3 Ch02.F 5/31/02 2:04 PM Page 15

Friday Evening16

Weaknesses of the RUP
� In trying to be comprehensive, the RUP becomes very large and difficult, both to

learn and to manage.
� It is easy to get so caught up in the rules for using the RUP that you forget why you

are using it (to deliver software).
� A substantial amount of time is spent trying to customize the RUP for each project.

Here, too, you run the risk of becoming a slave to the process and losing sight of
the reason for the process.

� Tool support for the process is limited to Rational’s own products, which are at the
high end of the cost range. A few other vendors are now starting to provide limited
support.

Shlaer-Mellor Method
The Shlaer-Mellor Method is based on an integrated set of models that can be executed for
verification, and an innovative approach to design that produces a system design through a
translation of the analysis models. The method is built on a set of well-defined rules for the
construction of the diagrams and the translation of those diagrams from analysis to design
and finally to implementation. In fact, the most recent generation of modeling tools, like
BridgePoint (www.projtech.com/prods/bp/info.html), have created the ability to
generate 100 percent of the code.

This achievement is ahead of most other methodologies that generate the operation
declarations but cannot provide the method code, the implementation for the operation.
The rigorous set of rules also supports verification through simulation. The diagrams can
actually be executed to see if they work properly.

One of the primary concepts in Shlaer-Mellor is a domain. A domain is a subject area.
Shlaer-Mellor defines three basic types of domains: the application domain, the service
domains, and the architectural domain. Each domain has its own unique types of require-
ments and diagrams. Together they represent the entire specification for the system.

The Shlaer-Mellor process is broken down into the following steps:

1. Partition the system into domains.
2. Analyze the application domain using object information models, state models,

and action specifications (action data flow diagrams — a non-UML diagram).
3. Confirm the analysis through static verification and dynamic verification

(simulation).
4. Extract the requirements for the service domains.
5. Analyze the service domains.
6. Specify the components of the architectural domain.
7. Build the architectural components.
8. Translate the models of each domain using the architectural components.

054910-3 Ch02.F 5/31/02 2:04 PM Page 16

Session 2—UML and Development Methodologies 17

The progression from step to step follows a fairly strict set of rules to guide the transla-
tion from each version of the diagram to the next. The process sets up a rhythm of build a
little and test it, build a little more and test a little more, which helps prevent surprise
problems from cropping up deep into the process.

The Shlaer-Mellor Method also places a great emphasis on iterative and incremental
development. But this methodology reduces and controls iteration in analysis by confining
it to a single domain at a time. Iteration in design is similarly controlled: Modifications to
the design are made entirely in the architectural domain and propagated to the entire
system through the standardized diagrams.

Reuse is yet another high priority. Because domains are kept completely separate from
one another until the final construction steps, they can be transported intact to other sys-
tems. This applies particularly to the architectural domain: This domain is commonly reused
for other systems that have basically the same loading and performance characteristics.

Strengths of Shlaer-Mellor
� By far the greatest strength of the Shlaer-Mellor Method is the ability to test your

diagrams through simulation. You actually execute your diagrams.
� The process is extremely well defined in terms of rules that govern the construction

and testing of the diagrams.
� The movement from one step in the process to the next (for example, from analysis-

level diagrams to design-level diagrams) is also defined with enough precision to
allow the generation of design diagrams directly from the analysis diagrams. This is
a huge time saver and prevents mistakes in the translation. It also speeds up the
process of applying changes because they can be propagated through the diagrams
automatically.

� The method was developed for and maintains a strong emphasis on real-time sys-
tems design. As such, it provides support that is largely lacking in other methodolo-
gies that gloss over the unique demands of real time in favor of the more common
business functionality.

Weaknesses of Shlaer-Mellor
� The strengths of the methodology can also be its weaknesses. Like the RUP, the tool

support is limited to vendors directly associated with the methodologists. This is
changing, but don’t expect it to be quick.

� Learning the rules involves a definite learning curve and a serious investment of
time and effort. Steve Mellor is currently leading an enhancement to the UML,
called Action Semantics, to improve the definition of Statechart diagrams and build
much of this knowledge into the UML 1.5 standard. Tool support for this enhance-
ment should soon follow.

� The methodology was developed for real-time systems, so it places heavy emphasis
on state modeling. Many business applications simply do not warrant a lot of work
on state transitions.

054910-3 Ch02.F 5/31/02 2:04 PM Page 17

Friday Evening18

CRC
CRC stands for Class, Responsibilities, and Collaborators. The CRC methodology was originally
developed as a learning tool during the time when object-oriented programming was new; a
lot of procedural programmers needed help making the transition to OO thinking. The goal
was to provide the simplest possible conceptual introduction to OO modeling.

The heart of the method is the CRC card. A CRC card is a 3-x-5" or 4-x-6" lined index
card. The physical nature of the cards emphasizes the division of responsibility across
objects. The physical size of the cards also helps to establish limits for the size and com-
plexity of the classes. The CRC card technique does not use the UML. Instead it is used to
discover information about classes that is then placed into a UML Class diagram.

Figure 2-2 is a sample blank CRC card. The class name is written at the top of the card.
The next two lines are reserved for the listing of superclasses and subclasses. The body
of the card is divided in half. The left column or half lists the responsibilities of the class
and the right column or half lists the other objects that it works with, the collaborators,
to fulfill each responsibility.

Figure 2-2 A CRC card sample

The CRC process requires a team that includes people in two distinct roles: domain expert
and object-oriented technology facilitator. The domain experts provide knowledge of the
subject area, and the OO facilitator coaches the team through the development of the cards
and the eventual model.

The CRC process centers on working through scenarios. The process breaks down into four
stages:

class name
subclasses:
superclasses:

Responsibilities Collaborators

054910-3 Ch02.F 5/31/02 2:04 PM Page 18

Session 2—UML and Development Methodologies 19

1. Before the Scenario Execution
a. The Problem: Everyone agrees on the problem definition.
b. Brainstorming for Classes: Based on the problem statement, the team identi-

fies candidate classes using the vocabulary of the problem.
c. Filtering Classes: The team works on definitions for each class, eliminating

synonyms and conflicts.
d. Assigning Cards: Each team member is assigned responsibility for one or more

classes.
2. The Scenario Execution

a. Each scenario expresses something that the system is supposed to do. The
team walks through the scenario identifying the responsibilities of each class
in the scenario.

b. Each discovered responsibility is recorded on the card of the corresponding
class.

3. During the Scenario Execution
a. Grouping the Cards: The team identifies similar classes.
b. Scenario List: The team reviews the scenario coverage for completeness.
c. Collaboration Drawings: The cards are combined on a wall or white board

to show how they cooperate in the execution of the scenarios.
4. After the Scenario Execution

a. The team reviews the resulting model and plans the implementation.

Strengths of CRC
� The simplicity of the method has remained a major selling point and the method

has been incorporated into many different methodologies. It is still a valuable tool
for helping a programmer transition from procedural to OO concepts.

� It is extremely easy to use and very visual. It is difficult for any participant to claim
he didn’t know exactly what was going on.

� The technique is very responsibility-driven. It keeps the participants focused on the
value of an object based on what that object contributes to the proper operation of
the system. The result is a system with the minimum number of objects needed to
make it work.

� The technique helps the participants think like objects and to understand why
objects work well or work poorly. This understanding helps ensure a good design.

Weaknesses of CRC
� The most significant limitation, however, is also its simplicity. It only really

addresses the problem of finding and modeling classes. There is a lot more to com-
plete systems development. So the bulk of the work still rests on the programmers.

� The success of the process is very dependent upon the participants and especially
on the facilitator. The simplicity can be very deceptive.

054910-3 Ch02.F 5/31/02 2:04 PM Page 19

Friday Evening20

Extreme Programming
Extreme Programming (XP) shocked a lot of people, including myself, when it first showed
up. The goal of XP is much like that of CRC (that is, keep it simple). This is not surprising
when you learn that the originator, Kent Beck, was also instrumental in the CRC method. XP
does not advocate the UML. I present it here because the goal of this session is to provide
you with an understanding of the diversity of methodologies and the views or attitudes that
various methodologies hold toward the application of the UML standard.

XP strives to strip away anything that is not essential. XP requires a complete and unwa-
vering commitment from the clients to work side-by-side with the programmers. Working
through stories or scenarios of how the system should work, the teams eventually develop
the entire system. Every iteration of the project (typically one to four weeks each), the
teams deliver something functional. The minimum deliverable is a set of tests.

XP basically says that the code is everything, so there is a very heavy emphasis on cod-
ing standards and design principles. The process includes numerous standup meetings to
keep everyone on the same page. Furthermore, programmers work in pairs so that they can
learn from one another, provide insights, share design alternatives, and generally help each
other out.

Because XP is completely devoted to the code, there is very little use of up-front model-
ing. If modeling is used, it is usually thrown away when a decision is reached. XP does use
the CRC method because of its simplicity and utility. Instead of design up front, the method
encourages design through integration and refactoring. In other words, XP advocates believe
that as you learn more about the code, you are in a better position to make the design
decisions and update your code. In one sense, it could be seen as bottom-up design.

Strengths of XP
� XP is the first that I know of that truly cared about the programming environment

and its affects on the participants. The bibliography for Extreme Programming
Explained, Embrace Change, by Kent Beck, reads more like a sociology text than a
programming text. No one since Tom DeMarco, writing the book Peopleware, has
devoted as much time to finding ways to make the programming job livable.

� XP encourages an extremely close relationship between clients and developers.
� XP faces the fact that change is inevitable and often uncontrollable and builds that

fact into the development approach.
� Kent Beck has been brave enough to describe what it really takes to create a high-

caliber development environment instead of bowing to the status quo of impossible
deadlines, inadequate user involvement, ill-defined requirements, and programmer
isolation.

Weaknesses of XP
� XP relies heavily on setting up the ideal development environment. It starts from

several questionable assumptions:
� Highly committed clients will spend huge amounts of time working side by side

with programmers. In my experience, projects are lucky to get access to true sub-
ject matter experts because they are considered too valuable to release from their
current responsibilities.

054910-3 Ch02.F 5/31/02 2:04 PM Page 20

Session 2—UML and Development Methodologies 21

� Programmers work extremely well together. In every shop I’ve worked in for over 20
years, programmers tend to be extremely individualistic and resist input from other
programmers. I’ve mediated too many fights to be overly optimistic in this area.

� Experienced programmers work with new team members to maintain the system
(“Maintenance is the normal state of XP,” says Kent Beck). In every shop I know,
the experienced people move on to new projects and the new folks get stuck with
the maintenance. It’s almost like a rite of passage. Plus, in XP there is no docu-
mentation other than in-line comments (that is, no overview documentation
about how the design works or how the system fits together), which makes it
extremely difficult to know how to modify a system.

� Design is a skill that is common to every coder. Not so. Many programmers have
no concept of what good design is. Much of their coding is intuitive or simply
“how they learned to do it.”

Resources
The single best resource I’ve found to track down the various methodologies is www.cetus
links.org. On the first page of this site, you will find a link to OOAD Methodologies. Click
on it and you will be sent to a page with links to more than 50 different methodologies, lists
of books, articles, conferences, and organizations worldwide.

REVIEW

A methodology is made up of a predefined process, a vocabulary used to describe the process
and the work products, and a set of rules and guidelines that help define the quality of the
process and the work products. The UML specifies only the vocabulary, the notation that
describes the artifacts of the process. Each methodology decides if and how to apply the
UML notation.

This session presented four leading methodologies that illustrate the diversity and common-
ality of the current techniques available for software development.

� The Rational Unified Process (RUP) provides a comprehensive plan for the activities
and the artifacts required to complete the development process. The approach
strongly emphasizes iterative and incremental development. The RUP is best suited
for large projects.

� The Shlaer-Mellor Method emphasizes tight integration and simulation to verify the
accuracy of the product throughout development. The Shlaer-Mellor Method is best
suited for real-time systems.

� The CRC method emphasizes simplicity and role-playing to work out the class-level
requirements for the design of the system. The CRC method is best suited for help-
ing people learn about objects and object-oriented design.

� Extreme Programming (XP) attempts to address many of the personal issues involved
in team dynamics and to create the most positive work environment for both pro-
grammers and clients alike. It emphasizes continuous testing, consistent standards,
and a lot of communication throughout the process. XP tends to be best suited for
small, fast-moving projects with high management and client support.

054910-3 Ch02.F 5/31/02 2:04 PM Page 21

Friday Evening22

Each methodology has strengths and weaknesses. Choosing a method requires understanding
your own environment and matching those strengths and weaknesses to your specific needs.

QUIZ YOURSELF

1. What are the three key elements of a methodology? (See Session introduction.)
2. What are the two hallmarks of the RUP? (See “The Rational Unified Process.”)
3. Name the predominant strength of the Shlaer-Mellor methodology. (See “Shlaer-

Mellor Method.”)
4. What are the three key concepts that define the CRC methodology? (See “CRC.”)
5. Name the three driving factors behind the success of the XP approach. (See

“Extreme Programming.”)

054910-3 Ch02.F 5/31/02 2:04 PM Page 22

Session Checklist
✔ Explaining the types of UML diagrams
✔ Explaining the concepts of views
✔ Organizing the diagrams into views by function
✔ Explaining the basic Object-Oriented concepts that support modeling

The UML includes specifications for nine different diagrams used to document various
perspectives of a software solution from project inception to installation and mainte-
nance. In addition, Packages provides a means to organize your work. The Component

and Deployment diagrams describe an implementation. The remaining seven diagrams are
used to model requirements and design. This session presents a way to organize these last
seven diagrams to make them easier to remember and apply, and an overview of the princi-
ples that guide their development.

Views
One way to organize the UML diagrams is by using views. A view is a collection of diagrams
that describe a similar aspect of the project. I very often use a set of three distinct yet
complementary views that are called the Static View, Dynamic View, and Functional View.
Figure 3-1 illustrates the complementary nature of the three views and the diagrams that
make up each view.

S E S S I O N

How to Approach the UML

3

064910-3 Ch03.F 5/31/02 2:04 PM Page 23

Friday Evening24

Figure 3-1 Three complementary views or sets of diagrams

To understand this approach, consider the process of applying for a job. When you inter-
view for a job, you can find out what the job is about through a published description. A
typical job description begins with a title and a brief definition of the job, usually in para-
graph form. This would be the static part of the job description. It simply states what the
job is.

The job description is usually followed by a list of duties detailing what is expected of
you in the performance of this job. You could think of the listed items as demands placed
on you throughout the course of your job. This corresponds to the dynamic part of the job.

After you get the job, there are often specific instructions on how to do your job (for
example, policies and procedures to follow). These are the functional details of the job,
for example, how to perform the job rather than what to perform.

Together, the three views provide a complete and overlapping picture of the subject you
are modeling. I’ll explain each view and the diagrams they contain. Then I’ll explain the
benefits of using the overlapping views.

Functional View
In the Functional View, I include both the Use Case diagram and the Activity diagram. I
keep them together because they are used together so often and they both model how the
system is supposed to work. Figure 3-2 shows that the Use Case diagram defines the func-
tions that the system must provide. The functions are expressed first as goals. But then the
goals are fleshed out in a narrative to describe what each Use Case is expected to do to
achieve each goal.

Static View

Class diagram
Object diagram

Functional View

Use Case diagram
Activity diagram

Dynamic View

Sequence diagram
Collaboration diagram
State chart diagram

064910-3 Ch03.F 5/31/02 2:04 PM Page 24

Session 3—How to Approach the UML 25

Figure 3-2 Elements of the Functional View

This Use Case description can be written, but I often draw the logic with an Activity dia-
gram, a diagram that models logic very much like a flowchart. The Activity diagram is also
useful for modeling a workflow or a business process. It can be very useful when working
with clients to determine how things are or should be done. You can also use the Activity
diagram to assess the complexity of the application, and to verify the internal consistency
of your Use Case definitions. Later in the design, you need to specify the implementation
details for methods. When the details become complicated, being able to draw them out
using the Activity diagram makes the logic much easier to understand.

� The Use Case diagram describes the features that the users expect the system to
provide.

� The Activity diagram describes processes including sequential tasks, conditional
logic, and concurrency. This diagram is like a flowchart, but it has been enhanced
for use with object modeling.

Static View
The Static View includes those diagrams that provide a snapshot of the elements of the
system but don’t tell you how the elements will behave. It is very much like a blueprint.
Blueprints are comprehensive, but they only show what remains stationary, hence the term
Static View. Figure 3-3 illustrates the two diagrams that make up the Static View, the Class
diagram and the Object diagram. The Class diagram is the primary tool of the Static View. It
provides a fixed look at every resource (class) and its features. It is the one diagram nearly
always used for code generation and reverse engineering.

System

Use Case Diagram

Use Case Narrative

Name

Assumptions

Pre-conditions

Dialog

Post-conditions

Exceptions

Future Enhancements

Open Issues
Activity Diagram

064910-3 Ch03.F 5/31/02 2:04 PM Page 25

Friday Evening26

Figure 3-3 Class diagram (top) and Object diagram (bottom)

To support the Class diagram, you can employ the Object diagram. Consider: Have you
ever had difficulty understanding a concept that a client was trying to explain? If so, what
did you ask for to help you get a better handle on what she was saying? Typically, I ask for
examples. Often, a few good concrete examples (objects) reveal relationships and informa-
tion that were hidden in the more generalized description (classes).

The Object diagram is also used to test the Class diagram. Class diagrams are very easy to
draw, and even easier to draw badly. Logical processes create objects and their relationships.
Tracing the affects of a process on an Object diagram can reveal problems in the logic of the
process. Drawing Object diagrams for test data can be just as effective as drawing them for
examples. Hard facts will either confirm or deny the accuracy of your Class diagram. Session 7
provides a complete example of testing a Class diagram using an Object diagram.

� The Class diagram is the primary static diagram. It is the foundation for modeling
the rules about types of objects (classes), the source for code generation, and the
target for reverse engineering.

� The Object diagram illustrates facts in the form of objects to model examples and
test data. The Object diagram can be used to test or simply to understand a Class
diagram.

Dynamic View
I mentioned that the Static View was like a blueprint. In the blueprint of my house I can
see the front door, a thermostat on the wall, a furnace downstairs, and I can even expand it
to include my family members and pets that reside there. What I cannot see is how all these
pieces work together. For example, stare as I may at the blueprints, I will never know what
would happen if I left the front door open on a cold winter day.

If I could see a model of the interactions between all those things on the blueprint, I
would know that if I left the front door open on a cold winter day, my wife would yell at

Shipment
-date: Date=today
-destination: Address=null
-shipper: Vendor=null

+authorize(empl: Employee)
+seal(empl: Employee)
+ship(shipper: Vendor)

4321 : Shipment
date=01-27-02
destination=Portland, OR
shipper=Billy Bob's Trucking

Product
Class diagram

-desc: String=null
-serialnbr: String=systemassigned
-spec_handling: String=null

+reserve(order: Order)
+stock(loc: Location)

Object diagram

delivers

0..1 1..*

96 : Product
desc=Speaker Set SS420
serialnbr=234567
spec_handling=fragile

21 : Product
desc=CD Player XL 850
serialnbr=123456
spec_handling=

064910-3 Ch03.F 5/31/02 2:04 PM Page 26

Session 3—How to Approach the UML 27

me, the dog would run out the door, the thermostat would send a signal to the furnace, and
the furnace would turn on. Now that’s dynamic.

Figure 3-4 shows the three types of diagrams that make up the Dynamic View. The
Dynamic View includes the diagrams that reveal how objects interact with one another in
response to the environment. It includes the Sequence and Collaboration diagrams, which
collectively are referred to as interaction diagrams. They are specifically designed to
describe how objects talk to each other. It also includes the Statechart diagram, which
shows how and why an object changes over time in response to the environment.

Figure 3-4 Sequence, Collaboration, and Statechart diagrams

� For modeling object interactions, the Dynamic View includes the Sequence and
Collaboration diagrams.

� The Statechart diagram provides a look at how an object reacts to external stimuli
and manages internal changes.

Three views
The big question that usually crops up about now is “Why do I have to do all of these dia-
grams? Joe next door has always just drawn Class diagrams.” This question is valid. For small
projects, you may not need to create all these diagrams. But I suspect that one of the rea-
sons you’re reading this book is because you don’t work on small projects, and the projects
you do work on get pretty complicated.

When the work gets complicated, you often move from one piece of the project to another
in rapid succession. Coming back to something you worked on a few days ago often means
hours of getting your head back into a pile of notes and/or mountains of code, much of it
not your own. It also means that there is no realistic way to know how right you are until
you get enough code to run tests. By then you have eaten up a large part of the project
schedule, and justifying a lot of rewriting is difficult if you find problems. And let’s not
even talk about the challenge of dealing with user-requested changes.

So how do the three views help? Consider another example. Suppose you’re in an accident
at an intersection. A guy runs a red light and broadsides you. A police officer shows up,
walks over to one of the witnesses, takes his story (which says you ran the red light, not

Sequence Statechart

pack for shipping (Shipment)

Sold

: integer1: +getOrderNbr()

2: 12345678

: OrderFulfillmentClerk : System

Collaboration

2: return Order A

1: getOrderNbr()
: OrderFulfillmentClerk : System

Packaged

064910-3 Ch03.F 5/31/02 2:04 PM Page 27

Friday Evening28

the other guy), and leaves assuming he has the truth. How do you feel? Outraged, I imagine.
The officer talked to his “client” and captured the facts just like we typically gather our
requirements. So what’s the problem?

The problem is that the officer did nothing to verify his facts. He should have asked the
other witnesses for their perspectives. After he does that, he has a bunch of eyewitness
accounts. If he compares the stories, he’ll discover two things. First, some of the information
from different testimonies will agree. He can reasonably assume that those portions of the
account are true. Second, the portions that don’t line up can’t be trusted until he can find
corroborating evidence.

Working with multiple, different views works in the same way. The diagrams each look at
your problem in a different way, like different witnesses. The diagrams will overlap. If they
agree where they overlap, you can relax knowing you’ve probably got it right. If they don’t
agree, then you have some homework to do to reconcile the differences. Now here is the
other great benefit: When they disagree, you’ve pinpointed where you need to invest your
effort. When everything agrees, you know you’re done.

Object-Oriented Principles
Next I want to visit the principles that drive most of the UML modeling. All the UML diagrams
describe some form of object-oriented information. But what does the term object-oriented
mean? The term itself sheds some light on the answer. It has something to do with viewing
the things in the world as objects.

So what is an object? The simplest definition of an object is pretty much anything you
can talk about. Look around you. Almost without thinking you may begin to recognize
things you see and give them names: book, chair, lamp, room, and so on. An object can be
a physical entity, like the things you see, but an object may also be intangible, for example,
a concept like an illness, attendance, or a job. Even though a job is not something you can
touch, it is something you can describe, discuss, assign, and complete.

(By the way, if you aren’t already familiar with OO concepts, some of the language may
sound a little odd. Be prepared.)

So what do you need to know about an object?

Abstraction
A software object is an abstraction, a representation of something in the real world like this
book. An abstraction is a way to describe something where you only include the information
about it that is important to you. When I need to contact my friend Victor, for example, I
don’t need to know everything about him. I just need his phone number or e-mail address.
Thank heaven I don’t also need to know his anatomy, his genealogy, and his music prefer-
ences! All those things are valid, but they don’t help me contact him. Figure 3-5 shows
Victor on the left, hard at work, and an object icon, my abstraction of Victor, on the right.

064910-3 Ch03.F 5/31/02 2:04 PM Page 28

Session 3—How to Approach the UML 29

Figure 3-5 Victor on the left (hard at work); abstraction of Victor on the right
(an object icon)

Here’s the crux of the matter: An abstraction benefits you only in so far as it describes
the information you need in order to solve a problem. So when you create an abstraction,
you must first make certain that you know why you need it.

My own working definition for creating an abstraction is: representing something in the
real world in a useful manner to solve a specific problem. Usefulness is measured by how well
it helps you solve the problem you are trying to solve.

The representation is an object. The rules that define the representation make up a class.
For comparison, think of the word apple in a dictionary and an apple in your hand. In soft-
ware, the definition in the dictionary is a class, and the apple in your hand is an object. To
make objects from classes, you must use the class definition like a template or a mold.
Although each object may vary somewhat, all objects of the same class must conform to
the class definition. That’s why some people say that an object is an instance of a class.
An object is created, manufactured, or instantiated (made real) from the class definition.

What an object knows
To function properly, every object has to know two kinds of information and two types of
behavior.

Information
First, you can say that an object knows about itself. In other words, there is information
that describes the object. For example, the pencils on my desk have a length, hardness,
brand name, eraser, and so on. A book has pages, a cover, a title, an author, and so on. This
is some of the information that would eventually be captured and manipulated in files or
databases.

Second, you can say that an object knows its own current condition. This condition is
formally called the state of the object. Simply put, the state of an object is a description of
the properties of the object during a particular period of time. Consequently, when any of
the properties of the object change, the state of the object is said to change.

� An object can describe itself.
� An object knows its current condition (or state).

Victor : Person

name : Victor
phone : 555-555-5555

call(integer): boolean

064910-3 Ch03.F 5/31/02 2:04 PM Page 29

Friday Evening30

Behavior
What an object can do is pretty easy to see when you’re talking about animate objects. For
example, you might expect an Employee object, like Tom Pender, to work, ask for time off,
call in sick, complete a task, or accept an assignment. You would say that these are all
things Tom can do as an employee type of object, and you would include these abilities in
the object’s description, for example, the Employee class.

But the pencil in the jar on my desk poses a different problem. What can a pencil do? It
is tempting to say that a pencil can write, but is that really true? It isn’t the pencil that
writes, but a person who uses it to write.

You’ve discovered a second type of behavior. An object must know what can be done to it.
There are a lot of people who can write with the pencil, including students, teachers, program-
mers, designers, and analysts. To do so, every class of objects in this list would have to include
a description of the “write” behavior. There are a lot of problems with this approach, including
redundant maintenance, possible conflict between the different class definitions for how to
“write” resulting in possible misuse of the pencil, and the fact that all these objects would
need to be notified of any changes to the pencil that would affect their ability to use their
“write” behavior.

� An object knows what it can do
� An object knows what can be done to it

A better solution is to write one definition for the behavior in the pencil class. That way,
anyone who wants to use the pencil to write goes to the pencil to find out how. Everyone
gets the same implementation of the behavior, and there is only one place to make changes.

Encapsulation
The discussion so far leaves you with a lot of information and no way to organize it to use
it effectively. Encapsulation provides the means to organize this information so that you
can use it and maintain it efficiently. Here’s what this organization looks like.

First, encapsulation says you need to separate everything you know about the object into
two categories:

� What you need to know in order to use the object
� What you need to know in order to make the object work properly

To use the object
Two years ago, I taught my daughter how to drive. My first challenge was to identify for her
the minimum knowledge she had to have in order to use the car.

She needs to know about the ignition, the steering, the brake, the gas pedal, the
gearshift, the mirrors, the gauges, and so on.

Should I include the universal joints, the spark plugs, and the fuses on the list? No,
because she doesn’t need to know about those things in order to use the car. In fact, she has

064910-3 Ch03.F 5/31/02 2:04 PM Page 30

Session 3—How to Approach the UML 31

been driving for two years and still doesn’t know about them. The information that the car
exposes so that someone can use the car is called the car’s interface. The interface is how
you communicate to the car that you want to use one or more of the car’s behaviors. For
example, when you press on the gas pedal, you’re telling the car to go faster.

So in order to use an object, you need to expose the interface of the object, like the car
interface in Figure 3-6.

Figure 3-6 The interface for a car allows us to use the car.

To make the object work properly
I remember as a kid our neighbors had the old shell of a car in a field behind the house. It
had brake and gas pedals, a steering wheel, a gearshift, and so on. But wish as we might,
the car never responded. An interface without an implementation doesn’t do much. We could
communicate with the object, but the object didn’t have any way to respond.

In order to make the object work, you need to provide the mechanisms that respond to
the interface. Here is where it all starts to come together. Remember back to the part about
what an object knows? When you press the gas pedal, the behavior (the implementation
behind that interface) needs to know how the car is put together and the state of the car.
An object knows about itself, so the car would know how it is put together and its current
state.

More than that, the knowledge must not be altered inappropriately or the behavior won’t
work properly. Consequently, encapsulation tells you that the information has to be inside
the object with the behavior so that you can control access to it and protect its integrity.
This is why encapsulation is often called information hiding. You hide the information inside
the object, where the object has complete control. For example, Figure 3-7 illustrates the
hidden, internal mechanisms that make an engine work properly.

In order to make the object work properly, you need to place inside the object:

� The implementations for each interface
� The data that describes the structure of the object
� The data that describes the current state of the object

064910-3 Ch03.F 5/31/02 2:04 PM Page 31

Friday Evening32

Figure 3-7 Defining the internal design of an object so that it will work properly

Giving an object purpose
If you leave encapsulation with this description, you have a bit of a problem. Many objects can
have the same interface. Just think for a minute about all the objects you know of that share
the interfaces accelerate, decelerate, turn, start, and stop, such as those shown in Figure 3-8.

Figure 3-8 Purpose drives the design and use of an object.

The go-cart and luxury car in Figure 3-8 share all these interfaces. But you would never use
them both in the same way. If interface alone doesn’t adequately distinguish objects, then
what else do you need in order to define an object? Purpose. You need to know why that type
of object exists, what it was designed for. The interface is designed to satisfy the purpose.

Encapsulation summary
Encapsulation of an object requires you to expose:

� Its purpose, so you can select the proper object for the application you have in mind
� Its interface, so you know how to use the object

Fuel injection
system

Mounts

Alternator

Crankshaft pulleyBelt

Pulley

Oil filter

Exhaust
manifold

Alternator

Waterpump

064910-3 Ch03.F 5/31/02 2:04 PM Page 32

Session 3—How to Approach the UML 33

Encapsulation of an object requires you to hide:

� The implementation that provides the behavior requested through the interface
� The data within the object that provides the structure that supports its behavior,

and tracks the condition of the object, its state, at any given point in time

REVIEW

The UML includes specifications for nine different diagrams used to document different
perspectives of a software solution from project inception to installation and maintenance.
Packages provide a means to organize your work. The Component and Deployment diagrams
are specific to implementation. The remaining seven diagrams are used to model requirements
and the design. Views provide a means of organizing these seven UML diagrams by their fea-
tures and applications, thus making it easier to identify the right tool for the right job.

� The Functional View employs the Use Case and Activity diagrams to describe the
behavior of the system.

� The Static View includes the Class and Object diagrams to define all the resources of
the system.

� The Dynamic View includes the Sequence and Collaboration diagrams, also known as
interaction diagrams, to define how objects work together to respond to the envi-
ronment, and the Statechart diagram, which describes how and why an object
changes over time.

� An object is an abstraction, a representation of something in the real world.
� An object can describe its own structure and its current state.
� An object knows what it can do and what can be done to it.
� Encapsulation defines a way to organize an object definition (a class).

QUIZ YOURSELF

1. Why is the Static View called static? (See “Static View.”)
2. Describe the purpose of the Class diagram. (See “Static View.”)
3. What diagrams are used to represent the Dynamic View (See “Dynamic View.”)
4. What is illustrated in the Sequence diagram? (See “Dynamic View.”)
5. How can using multiple views help you? (See “Three views.”)
6. What is an abstraction? (See “Abstraction.”)
7. What does it mean to encapsulate an object? (See “Encapsulation.”)

064910-3 Ch03.F 5/31/02 2:04 PM Page 33

064910-3 Ch03.F 5/31/02 2:04 PM Page 34

Session Checklist
✔ Explaining the concept of a problem statement
✔ Identifying types of requirements
✔ Explaining the process of gathering requirements
✔ Identifying common pitfalls in requirements gathering

In this session, you begin work on the case study. The case study is a scaled down inven-
tory control system. In a software project, as with many other problem-solving endeav-
ors, the first step is to gather as much relevant information as possible. In most

projects, you call this gathering requirements. But what kind of requirements do you need to
build software?

The Case Study Problem Statement
To make all this talk of requirements and pitfalls a bit more realistic, I focus on a sample
problem, the case study. Your goal is to gather enough information about the system to
rewrite it by evaluating the problem statement. Typically, in order to start a project, there
has to be a perceived problem to solve (or an opportunity to exploit). Users and/or manage-
ment see something about the existing system as an obstacle to the goals of the company.
In the case of a new business, the “problem” may be the lack of a system to do a critical
function. The problem statement documents this perception.

The problem statement for your case study consists of the following four paragraphs
titled receiving, stocking, order fulfillment, and shipping. Refer back to these paragraphs as
you discover what kind of questions to ask to gather the requirements. For this chapter, you
simply gather the requirements in the form of textual descriptions, that is, answers to ques-
tions. In the remaining sessions, you find out how to formalize these requirements using
the UML diagrams.

S E S S I O N

Defining Requirements
for the Case Study

4

074910-3 Ch04.F 5/31/02 2:04 PM Page 35

Friday Evening36

Remember to pay close attention to the vocabulary.

Receiving
The receiving clerks receive incoming shipments by matching purchase orders against the
products in the shipment. The incoming shipment documents are delivered to the supervisor
for verification. The products may come from cancelled orders, returned orders, or received
shipments. The products are offloaded from the trucks and placed into a staging area.

Stocking
The stock clerk looks up the correct location for each product, places the product in that
location, and updates the inventory with the location and quantity. When the product is in
the right location, the stocking personnel inform the supervisor, who delivers the receiving
documents to the Accounts Payable Department.

Order fulfillment
Other staff members fill orders by locating the products required for the order. After they
have filled the order, they drop the order at the clerk’s desk. The clerk updates inventory to
reflect the fact that the product has been removed for an order. There can be a delay of up
to two days, causing significant problems with the reordering process and stock levels. They
also notify the Order Processing Department that the order has been filled.

Shipping
When the orders are filled, they are then packed and prepared for shipping. The shipping
folks contact the shippers to arrange delivery and give the paperwork to the clerk. The clerk
also notifies the Order Processing Department when the order has shipped and updates
inventory to reflect the fact that the products actually shipped.

Types of Requirements
In a software project, you’re most often supporting business processes. But you may also be
supporting automation of mechanical processes in a factory setting, or real-time processing
inside equipment like a heart monitor. Given that this is a crash course with a limited
amount of time, I focus in this section on business application requirements.

What types of requirements could you encounter in a business system? Much of what
you’ll discover falls into four categories of requirements: business process, constraints, rules,
and performance.

Tip

074910-3 Ch04.F 5/31/02 2:04 PM Page 36

Session 4—Defining Requirements for the Case Study 37

Business process
Most systems are built in order to do something: place orders, issue payments, launch rock-
ets, run a heart/lung machine, and so on. To use a system, you need to know how to inter-
act with it and why. Business processes describe your relationship with the system in terms
of interactions. You enter a shipment. The system validates the data about the shipment
and gives you a set of error messages. You fix the data about the shipment and try again.
The system validates the data again. Seeing that the data is valid, the system uses it to save
the shipment to the database and update the associated orders.

A common challenge with gathering business processes is that it is difficult to distin-
guish personal preference or legacy practice from actual current need. So how do you avoid
this trap? One technique is to look past the process to the reason for the process. Each
process had a justification at some point, even if that justification no longer exists. You
need to know the reason behind the process. For example,

� What result does logging the shipment produce?
� What would happen to the rest of the system if you didn’t have a record of the

shipment?
� Would another process fail (for example, would you be able to accurately maintain

the inventory and Accounts Receivable if you didn’t know what was shipped)?

Next, evaluate each process, both on its own and in its role in the system. Identify those
processes that no longer produce valuable outcomes. Keep only those that are essential to
the successful operation of the system. For example, evaluate the following interactions of
the Inventory Control processes for Receiving, Stocking, and Accounts Payable:

� The stock is offloaded from the trucks and placed into a staging area. Why?
Historically the same people offloaded the trucks and placed the products into
inventory. They couldn’t do both at the same time.

� When the product is in the right location, the stocking personnel inform the super-
visor, who delivers the documents to the Accounts Payable department. Why do they
wait to notify AP? Historically this was a manual process so the stock clerks waited
until they had all of their other work done.

Then come back and evaluate those processes that, even though they aren’t essential,
may add value. Prioritize these contributions and allocate resources proportional to their
value to the system and add them to the project plan. For example,

� The incoming shipment documents are delivered to the supervisor for verification.
Why? After a few interviews, you find out that this practice was instituted because
in years past the warehouse had serious theft problems. Is there still a problem that
would justify the added cost and delays?

The goal in this evaluation process is to make conscious choices about how to spend the
finite time and money available to the project to deliver the best possible system. The
lesson: Focus on results rather than processes; quantify the value of the results; allocate
resources proportional to the value of the results.

074910-3 Ch04.F 5/31/02 2:04 PM Page 37

Friday Evening38

Constraints
The second type of requirement is called a constraint. Constraints are limitations on or
boundaries around what you can do when you develop a solution for the system.
Constraints can apply to virtually any aspect of your project and the resulting system.

Why do you care about constraints? Because constraints limit the options you have at
virtually every phase of the development life cycle. Consider the constraints on each of
these four development phases:

� Requirements gathering: Limitations on client skills and experience drive the type
of solutions that you can offer. The application may need to offer substantially
more help features for less-skilled users, whereas extremely skilled or experienced
users might reject the same features as a hindrance.

� Analysis: Limitations imposed by policies and procedures, laws, contracts, and
industry standards restrict the models that you develop to document the problem
domain. You may not be able to be as creative as you’d like when the law or a con-
tract says that it has to be done a particular way. For example, the inventory system
must abide by generally accepted accounting principles. Failure to do so risks an
audit, fines, or worse.

� Design: Programming languages, databases, middleware, and just about every tech-
nology impose specific limitations. These technologies often dictate field data types
and sizes, data conversions, communication protocols, and more. This limits the
options available to you to when you try to satisfy the system requirements. You
might want to network the warehouse to the accounting office a few blocks away
only to find the phone lines are over 30 years old and are currently tied up in a
massive upgrade project that is running badly behind schedule.

� Implementation: Implementation technologies impose performance limitations
that often conflict directly with the performance requirements for the business. This
is, in fact, the motivation behind so much technological advancement (that is,
removing these bottlenecks so that technological constraints don’t sabotage busi-
ness constraints). The warehouse may want to transition to radio frequency data
entry, but the substation next door causes too much interference; the technology
may be ideal, but to overcome the interference problem would cost twice what has
been budgeted for the whole project.

Rules
Constraints are like mandates: It must be done this way! Rules are more like agreements:
We’ve talked about it and agreed that the invoice needs to include these items and have
these approvals. Rules need to be enforced, but if you find a better way to do it you can
always talk about it again and choose to change it. In the meantime, you agree to imple-
ment and follow the decision consistently. Rules can be anything from the look of a form or
screen, to a business process with checks and approvals, number of copies, and waiting peri-
ods. Constraining policies are typically upper-management decisions or directives from the
business environment (legislation, regulations, and so on) and tend to be separate from the
processes that implement them.

In the case study, the inventory control system requires you to complete the receiving
documentation with the prescribed details about the shipper, products, shipping company,

074910-3 Ch04.F 5/31/02 2:04 PM Page 38

Session 4—Defining Requirements for the Case Study 39

and time of arrival. Not all this information is necessarily essential to the business, but it
does help management make decisions about shipping companies and suppliers based on
their delivery performance.

During the analysis phase, rules are a major focus of discussion. They refocus your atten-
tion onto why the client is doing the job that particular way. For example, why do they
need the extra shipment information? When you use this line of questioning, you bring the
client back to that important question, “What is really needed to make this system work
correctly?” And, “What is essential?” versus “What do you do because you want to, or
because the old system didn’t work, or because you are used to doing it that way?”

The UML diagrams provide places for you to capture these rules. In Sessions 5 through 8,
you will use the Use Case model to describe how the users plan to use the system for filling
orders, stocking products, and so on. Sessions 9 through 13 use the Class and Object dia-
grams to model rules and constraints for the resources the system manipulates like ship-
ments, products, and orders. Sessions 14 and 15 model how the various processes are
supposed to work using the Activity diagram. Sessions 16 through 23 explain how to use
the Sequence, Collaboration, and Statechart diagrams to capture how objects behave when
they are used in these processes.

Performance
Performance requirements define how well the system solution should perform when you
use it. The challenge here is that the means to achieve the required performance may
require choices at any or all the project phases. For example, the speed at which the prod-
uct search window refreshes may reflect the volume of data being requested, bandwidth on
the network, server memory or speed, the efficiency of the code, and so on. If you can iden-
tify the performance requirements, then you can use them at each phase of the project to
evaluate how what you’re deciding in that phase could affect the ultimate outcome.

Consider the impact on these design phases if the requirement is a specific response time
threshold for all applications:

� Requirements gathering: Earlier, I said that the inventory control system users
wanted to network the warehouse to the accounting office so that they can do
inventory searches, but the phone lines would be so restrictive that this would
interfere with the performance of the system. Addressing this requirement could
require feasibility testing to determine exactly what performance levels could be
achieved given the current limitations of the phone lines.

� Analysis: In the inventory system, users have defined product searches that bring
the current system to its knees. You could restrict the allowed lookups to take
advantage of the database configuration and guarantee the required response time.

� Design: The database in use is two versions behind and the current version
promises to provide the speed that would satisfy the required performance level if
we also put the restricted lookups in place. Unfortunately, the upgrade adds three
months to the project and 15 percent to the project cost.

The most important point to remember here is that performance is not a concern to be
left to the implementation phase. Performance should be addressed throughout the project.

074910-3 Ch04.F 5/31/02 2:04 PM Page 39

Friday Evening40

An Inventory Control System
Now to the nitty-gritty part you’ve been waiting for! As a hands-on opportunity to explore
the diagramming techniques, you’ll work on modeling the inventory control system.
Although you won’t be able to build a complete model, you’ll have ample opportunity to try
the UML modeling notation in a reasonably realistic setting.

The goal of this course is to build at least one of each type of diagram to model the
inventory control system. This should provide a representative sampling of how each type of
diagram may be applied to understand and to solve a problem.

Beginning with user requirements and progressing through the logical modeling of
classes and objects and their interactions, you will move on to process modeling, and finally
implementation modeling. In each session, I explain the use of each diagram and the nota-
tion used to express the model fully.

Identifying requirements
There is a wealth of material in bookstores on gathering and documenting requirements.
The variety is a reflection of the diversity of applications under development. Some of the
techniques can be large and sophisticated. But because this book is intended as a crash
course, I don’t want you to get diverted from the focus, which is applying the UML modeling
language to describe systems. So I take a simplified approach.

One approach to gathering requirements is to look for them by examining the problem
statement and the supporting documents and interviews from different perspectives. Using
these different perspectives also helps to validate the requirements by giving you the
opportunity to compare and contrast what you find from three overlapping sources:

� Users: Users have expectations for the use of the system.
� Resources: Resources are represented as information that is created, used, and

deleted by the system to support the system behavior.
� Functionality: Functionality refers to the behavior supported by the system.

While you’re researching the problem from each unique perspective, be on the lookout
for the four different types of requirements discussed earlier.

Users
Someone or something (another system or device) is going to communicate with your sys-
tem. You need to know why and what they expect from their communication with the sys-
tem. Consequently, the questions you ask should focus on the users’ responsibilities that
make them dependent upon the system or that make them an essential source of informa-
tion for the system.

As you read through these questions, try to imagine the answers you may receive from
the actors in the case study. You’ll need that information to build the diagrams in the
remaining chapters.

074910-3 Ch04.F 5/31/02 2:04 PM Page 40

Session 4—Defining Requirements for the Case Study 41

Business process requirements
� What are your job responsibilities? Do many people share the same set of responsi-

bilities? If their jobs are different, then explain how and why.
� What does this system provide that ensures the success of your job or task? Is it

information? Is it approval? Is it a specific output, like a report or form? What
happens if you can’t get the information?

Constraints
� Are there any regulations, contracts, or laws that dictate how you do your job?
� What authority, if any, do you need to access the features you use?

Rules
� What policies and procedures determine how you have to do your job?

Performance
� How many people will need to use the system? How many will use it concurrently?
� How slow can the system be before it interferes with your job?

Resources
What do I mean by a resource when talking about software systems? Information. Data.
Typically, the sole purpose of a software system is to accumulate, manipulate, create, store,
destroy, and retrieve information.

So how do you find these resources? One simple and very effective method is to examine
the vocabulary of the users. Building a dictionary of the domain vocabulary is a good place
to start. The terminology usually requires a bit of cleanup, but that too can be a healthy
experience as you discuss the vocabulary with the users. Working from the vocabulary
focuses your interview questions and makes better use of the client’s time. In my experi-
ence, it also improves your relationship with the users when you seek to understand their
world through their own words.
Business process requirements

� What resources do you acquire or dispose of? What resources/information do you
rely on to do your job? What information are you responsible for (that is, what
resources do you approve or requisition)?

Constraints
� What restrictions influence the acquisition, use, and disposal of each resource? Are

there any legal or government regulations that dictate your use of this resource?

Rules
� What authority level is required to approve the acquisition, use, and disposal of

each resource (that is, how do you determine who is and is not allowed to use it)?
What policies govern the use of this resource within the company?

074910-3 Ch04.F 5/31/02 2:04 PM Page 41

Friday Evening42

Performance
� How much time is allowed for each transaction involving this resource? Does the

volume of resources affect your ability to process them effectively?

Functionality
Functionality simply means what you expect the system to do. The cleanest way I know to
find out is to go back to the questions you asked the users. If you can find out what their
jobs are, specifically what tasks they must perform, then you can identify the specific
objectives that the system must support. Focusing on objectives is critical. Avoid getting
caught up in how they achieve those objectives. Talking with users about their work with-
out talking about how they do it is almost impossible. Most people operate on the level of
process, how they do their job. That’s okay as long as you always remember to ask, “Why?”

These questions keep you focused on the purpose of the function and away from
processes that could be used to implement the function. This is a critical distinction when
you get to Use Cases in Session 5.

Business Process Requirements
� Why do you do that? What do you expect to happen when you do that?
� What happens when it doesn’t work? Is there more than one possible outcome?
� Do people with different jobs perform this same task? Do they do it for the same

reason?

Constraints
� What regulations or laws govern how you are allowed to perform the task?

Rules
� What guidelines or policies dictate the way you perform the task?
� Does this task depend on other tasks?

Performance
� What factors influence or even determine how quickly you can complete the task?
� How quickly does the task have to be performed?

Avoiding early pitfalls
The UML gives us a reasonably precise language to communicate very effectively about chal-
lenging concepts. But the job of the analyst still boils down to good communication. So let’s
take a look at a few of the common pitfalls that can sabotage good communication.

074910-3 Ch04.F 5/31/02 2:04 PM Page 42

Session 4—Defining Requirements for the Case Study 43

Pitfall #1: Making assumptions
Every piece of information encountered during problem definition or analysis is under sus-
picion. I can’t tell you how many shouting matches I’ve mediated between programmers and
clients because one or the other assumed something in a conversation. The programmer
assumed that the client spoke for everyone who does the same job, not realizing that nearly
everyone had his own peculiar way of doing it. The client assumed that the programmer
already knew most of the facts and only called the meeting to ask specific questions. So
the client didn’t volunteer any of the missing information and the programmer remained
ignorant.

Confirm everything! When possible and reasonable, confirm it in multiple ways. Here
again, the UML provides us the means to do exactly this type of verification. I’ll provide
examples of this cross checking as you learn about each of the UML diagrams.

Pitfall #2: Replicating existing implementations
This is probably the single most common and destructive pitfall. Most projects are under
serious time pressure. Managers constantly ask the programmers, “Where is the code?”
Analysis is all about critical thinking — asking why and challenging the status quo. What
brought the approving managers to the point that they were willing to spend the company’s
money on this project? Something was viewed as an obstacle to the company. How can you
remove the obstacle if you simply replace the existing system with a duplicate system in a
different technology?

Pitfall #3: Mistaking preferences for requirements
Users are people. People have opinions — and not often the same opinions. Beware of people
who have a vested interest in how things are done. One client may be the one who thought
up the current process. Another client is the dragon slayer, seeking out anything and every-
thing to change. Other clients simply refuse to reach a consensus.

Often, the most willing client to participate as the project liaison takes on one of
the first two roles, champion or dragon slayer. Both bring a strong bias to the project
requirements.

This situation challenges you to be the objective outsider. The modeling techniques I
cover in the rest of the course provide you with a set of tools that will help objectify the
issues and identify inconsistencies.

REVIEW

In this session, you began your evaluation of the problem statement, the description of the
problem you are supposed to solve, or to be fair, an opportunity you are supposed to
exploit. You identified four major types of requirements: business process, constraints, rules,
and performance. You then used three different perspectives to investigate these require-
ments: users, resources, and functionality. The different perspectives help to guarantee that
you don’t miss anything and that you can validate the requirements by cross-checking
them.

074910-3 Ch04.F 5/31/02 2:04 PM Page 43

Friday Evening44

In the effort to understand a problem statement, you were cautioned to watch out for some
common pitfalls:

� Avoid making assumptions of any kind. Always challenge and confirm.
� Be careful not to mistake user preferences for true requirements.
� Watch out for the possibility that you are simply replacing the old system with a

duplicate in new attire (that is, a new platform or technology).

QUIZ YOURSELF

1. What is a problem statement? (See “The Case Study Problem Statement.”)
2. What is a constraint? (See “Constraints.”)
3. What is a rule? (See “Rules.”)
4. When talking about requirements, what is a user? (See “Identifying

requirements.”)
5. When talking about requirements, what is functionality? (See “Identifying

requirements.”)
6. Why should you be skeptical of user preferences? (See “Avoiding early pitfalls.”)

074910-3 Ch04.F 5/31/02 2:04 PM Page 44

P A R T

#
P A R T

I
Friday Evening
Part Review

1. How would you describe the UML?
2. What was the source for the initial UML draft?
3. What did the Object-Oriented Analysis and Design Task Force RFP ask for?
4. How can the UML be extended?
5. What is included in the metamodel?
6. What are the three major elements of any methodology?
7. What key element of a methodology does the UML provide?
8. What are the hallmarks of the Rational Unified Process?
9. What are two of the most distinguishing features of the Shlaer-Mellor method?

10. What is a CRC card?
11. What resources make up the Use Case view?
12. Describe the static view.
13. What can be represented in the Activity diagram?
14. What is illustrated in the Collaboration diagram?
15. When would you use the Component diagram?
16. What should be your main focus when researching business processes?
17. Name three categories of requirements.
18. When talking about requirements, what is meant by a resource?
19. What are three common pitfalls in early analysis?
20. Give two examples of a dangerous assumption.
21. Why is replicating an existing system a pitfall?

084910-3 PR01.F 5/31/02 2:04 PM Page 45

094910-3 DPOO2.F 5/31/02 2:04 PM Page 46

Part II — Saturday Morning
Session 5
Understanding the Use Case Model

Session 6
Building the Use Case Diagram

Session 7
Building the Use Case Narrative

Session 8
Identifying the Use Case Scenarios

Session 9
Modeling the Static View: The Class Diagram

Session 10
The Class Diagram: Associations

Part III — Saturday Afternoon
Session 11
The Class Diagram: Aggregation and Generalization

Session 12
Applying the Class Diagram to the Case Study

Session 13
Modeling the Static View: The Object Diagram

Session 14
Modeling the Functional View: The Activity Diagram

Session 15
Applying the Activity Diagram to the Case Study

Session 16
Modeling the Dynamic View: The Sequence Diagram

Part IV — Saturday Evening
Session 17
Applying the Sequence Diagram to the Case Study

Session 18
Modeling the Dynamic View: The Collaboration Diagram

Session 19
Applying the Collaboration Diagram to the Case Study

Session 20
Modeling the Dynamic View: The Statechart Diagram

094910-3 DPOO2.F 5/31/02 2:04 PM Page 47

P A R T

Saturday
Morning

II
Session 5
Understanding the Use Case Model

Session 6
Building the Use Case Diagram

Session 7
Building the Use Case Narrative

Session 8
Identifying the Use Case Scenarios

Session 9
Modeling the Static View: The Class
Diagram

Session 10
The Class Diagram: Associations

104910-3 Pt02.F 5/31/02 2:04 PM Page 48

Session Checklist
✔ Explaining the purpose of the Use Case model
✔ Explaining the resources that make up the Use Case model
✔ Explaining the notation of the Use Case diagram

In 1992, Ivar Jacobson and his associates published a description of a process called
Objectory that was successful for large-scale object-oriented projects at Ericsson, HP,
and other telecommunications companies. They called the process a Use Case driven

approach because it views the system from the perspective of how external entities
(people and other systems) need to interact with the system.

The Use Case model is a collection of diagrams and text that together document how
users expect to interact with the system. Figure 5-1 illustrates the Use Case diagram, the
Use Case narrative, and the Use Case scenarios (using a flowchart or Activity diagram).

The Use Case model focuses on the critical success factors of the system, in terms of the
functionality or features that the users need to interact with. By focusing on the system’s
features, you create a set of conceptual slots into which all the widely varied requirements
can be placed.

Features can be tested, modeled, designed, and implemented. Users who require a particu-
lar feature become the audience for the modeling activities for that feature. By focusing on
features, you also define the scope of the project (that is, which features will and will not be
supported by the final solution and, typically, the list of features that will be implemented
in each incremental release). In Session 6, you’ll analyze the essential features of the case
study problem statement.

S E S S I O N

Understanding the Use Case Model

5

114910-3 Ch05.F 5/31/02 2:04 PM Page 49

Saturday Morning50

Figure 5-1 Resources of the Use Case model

The Purpose of the Use Case Model
The key difference between Use Cases and functional design is the focus. Functional design
documents a process, but a Use Case focuses on the goal of a process. This change in mind-
set is essential in keeping us from jumping to solutions without first understanding why.
Just think about how rapidly technology changes! A process that works today will likely
become obsolete or inadequate very quickly. Furthermore, focusing on the process often
leads to reproducing existing systems, rather than redesigning them, precisely because it
focuses on “how” rather than “why.”

Let me share a short story that I’m sure you can relate to. A husband was helping his
wife prepare dinner. He noticed that before placing the ham in the oven, she carefully cut
about three inches off the end of the ham. When he asked her why she did it, she simply
stated that her mother always did it, so she assumed it was the right thing to do. Weeks
later, they had occasion to ask his wife’s mother about the ham. She said the same thing.
Her mother had always done it, so she assumed it was correct. At a holiday dinner they
asked Grandma why she cut the end off the ham. With a shocked look on her face she
stated bluntly, “I never had a big enough pan!”

Goal-focused modeling keeps you focused on a target rather than the means of getting to
the target (Figure 5-2). This keeps you open to a variety of solutions, allowing and possibly
encouraging you to take advantage of technological advances.

System

Use Case Diagram

Use Case Narrative

Name

Assumptions

Pre-conditions

Dialog

Post-conditions

Exceptions

Future Enhancements

Open Issues
Use Case Scenario

114910-3 Ch05.F 5/31/02 2:04 PM Page 50

Session 5—Understanding the Use Case Model 51

Figure 5-2 Focus on the target, the goal of the process.

For example, in the case study, the Accounts Payable Department needs to be notified
when products have been received. For years this has meant that the paperwork for the
shipment was delivered to the warehouse supervisor who in turn delivered it to the
Accounts Payable Department. If you document this process as a requirement, you miss
the opportunity to automate the process and remove the physical problems and limitations
of hand delivering documents.

The Resources of the Use Case Model
The Use Case Model takes advantage of three different viewpoints to fully describe each
requirement. The first and simplest resource is the Use Case diagram. The Use Case narrative
and Use Case scenarios make up the remainder of the model.

Use Case diagram
The Use Case diagram consists of five very simple graphics that represent the system, actors,
Use Cases, associations, and dependencies of the project. The goal of the diagram is to provide
a high-level explanation of the relationship between the system and the outside world. It is a
very flat diagram (that is, it provides only a surface level, or black-box, view of the system).

The view represented by a Use Case diagram for an ATM application, for example, would
correspond to the main screen of an ATM and the menu options available at that level. The
ATM system offers the user a set of options such as withdraw, deposit, inquire on balance,
and transfer funds. Each option can be represented by a separate Use Case. The customer
(outside the system) is associated with each of the Use Cases (within the system) that he
plans to use.

Use Case narrative
On the Use Case diagram, a Use Case is simply an ellipse with a simple label like “Receive
Product.” Although this label may provide a meaningful interface, it doesn’t explain what
you can expect from this system feature. For that, you need a textual description. The Use
Case narrative provides a fairly standard (yet user-defined) set of information that is
required to guide the analysis, design, and coding of the feature.

114910-3 Ch05.F 5/31/02 2:04 PM Page 51

Saturday Morning52

Use Case scenarios
A Use Case scenario is one logical path through a Use Case, one possible sequence of steps
in the execution of the Use Case. A Use Case may include any number of scenarios. The set
of scenarios for one Use Case identifies everything that can happen when that Use Case is
used. Consequently, the set of scenarios becomes the basis for your test plan for the Use
Case. As the application design deepens, the test plans are expanded to keep the tests
focused on the original expectations for the Use Case expressed in the scenarios.

These three elements — the Use Case diagram, narrative, and scenarios — comprise the
Use Case Model. The remainder of this session is devoted to the Use Case diagram. Session 7
covers the Use Case narrative, and Session 8 covers the Use Case scenarios.

Defining the Elements of the Use Case Diagram
Of the three elements that comprise the Use Case Model, the only one actually defined by
the UML is the Use Case diagram (Figure 5-3).

Figure 5-3 Elements of a Use Case diagram

Six modeling elements make up the Use Case diagram: systems, actors, Use Cases, associa-
tions, dependencies, and generalizations.

� System: Sets the boundary of the system in relation to the actors who use it (outside
the system) and the features it must provide (inside the system).

� Actor: A role played by a person, system, or device that has a stake in the successful
operation of the system.

� Use Case: Identifies a key feature of the system. Without these features, the system
will not fulfill the user/actor requirements. Each Use Case expresses a goal that the
system must achieve.

� Association: Identifies an interaction between actors and Use Cases. Each association
becomes a dialog that must be explained in a Use Case narrative. Each narrative in
turn provides a set of scenarios that function as test cases when evaluating the
analysis, design, and implementation of the Use Case.

2. System
3. Use Case

5. Dependency

6. Generalization4. Association1. Actor

114910-3 Ch05.F 5/31/02 2:04 PM Page 52

Session 5—Understanding the Use Case Model 53

� Dependency: Identifies a communication relationship between two Use Cases.
� Generalization: Defines a relationship between two actors or two Use Cases where

one Use Case inherits and adds to or overrides the properties of the other.

Now comes the fun part. It’s finally time to learn the notation that will allow you to
begin developing diagrams.

Use Case system
One of the first tasks in a project is to set the context and scope of the proposed applica-
tion. You need to answer questions such as how much to include in the system, how this
system relates to other systems in your architecture, and who plans to use this system.

All this could be described in a lengthy document. But, as the saying goes, a picture is
worth a thousand words. This conviction helps explain the simplicity of the system notation,
a mere rectangle with a name (Figure 5-4). The system icon simply provides a context into
and around which you place all the elements that influence the construction of the system.

Having said that, I must tell you that the system icon is rarely used. It tends
to be too restrictive and doesn’t add substantial information to the diagram.
Consequently, in most tools, you will only see Use Cases, actors, and their
relationships.

Figure 5-4 System icon for the Use Case diagram

Think of the system in terms of encapsulation, which asserts that to use an object, you
need know only its interfaces, not its internal implementation. A system is like an object,
in that each has a purpose and an interface. The internal implementations of the object or
system may be replaced or enhanced without affecting other entities as long as the purpose
and the interfaces remain unchanged.

So, the priority in defining the system is to define its purpose and the required interfaces.
The purpose is the target of the project justification. The interfaces are the channels of com-
munication between the actors outside the system and the features of the system itself, the
Use Cases. Working inward from this fundamental requirement, you set the context for all
subsequent modeling of the system’s internal behavior.

Use Case actors
Systems always have users. Users in the classic sense are people who use the system. But
users can also be other systems or devices that trade information.

System Name

OR

System Name

Note

114910-3 Ch05.F 5/31/02 2:04 PM Page 53

Saturday Morning54

In Use Case diagrams, people, systems, and devices are all referred to as actors. The icons
to model them may vary, but the concept remains the same. An actor is a role that an exter-
nal entity plays in relation to the system. To reiterate, an actor is a role, not necessarily a
particular person or a specific system. Figure 5-5 shows some actor icons.

Figure 5-5 Actor icons for the Use Case diagram

For example, an actor may be the role of a stock clerk placing products into inventory.
Later that day the same person might work receiving products from a delivery truck. The
same person played two roles. Likewise, many people can function in the same role. For
example, warehouses have many stock clerks.

Using roles helps keep you focused on how the system is being used rather than on the
current organization of the company into job titles and responsibilities. The things that
people do must be separated from their current job titles for the system to be able to cope
with the changes that are inevitable in any system.

How do you identify actors? Listen to descriptions of the system. Listen for the roles
people perform when using the system. When multiple people perform the same function,
try to name the role they all share when performing the particular function.

Throughout the modeling effort, the vocabulary of the user will reveal most
of the key elements of the model. Watch for how parts of speech translate
into model elements; actors typically show up as the subject in sentences
describing how people use the systems.

Use Cases
Use Cases define the required features of the system. Without these features, the system
cannot be used successfully.

Each Use Case is named using a verb phrase that expresses a goal the system must
accomplish, for example, deposit money, withdraw money, and adjust account (see Figure
5-6). Although each Use Case implies a supporting process, the focus is on the goal, not
the process.

Tip

Venue Manager

person example system example device example

<<actor>>

HR System

<<actor>>

Satellite Feed

114910-3 Ch05.F 5/31/02 2:04 PM Page 54

Session 5—Understanding the Use Case Model 55

Figure 5-6 Use Case notation for the Use Case diagram

By defining Use Cases in this manner, the system is defined as a set of requirements rather
than a solution. You do not describe how the system must work. You describe what the sys-
tem must be able to do. The Use Cases describe only those features visible and meaningful to
the actors who use the system. Keeping this in mind will help you avoid functional decompo-
sition, the breaking down of procedures and tasks into smaller and smaller processes until
you have described all the internal workings of the system. One of the pitfalls of systems
development is going over budget, which happens when you don’t limit the scope of each
task or you make a model too inclusive. The UML provides seven diagrams, in addition to the
Use Case Model, for fully describing the solution for the system, so remember that you can
save some work for later.

One very common question about Use Cases is, “What requirements belong
on the Use Case diagram and what requirements should be explained else-
where?” The simplest answer I’ve found is, “Model only the features of the
system that can be seen by an actor.”

For example, the system must save data to a database, but the actor can’t
actually see this happening. The most they typically see is a message indi-
cating that it did. In this situation, the Use Case level requirement is a
message indicating success or failure on the save function, not the save
function itself.

Use Case relationships
So far, I’ve defined the system, actors, and Use Cases, but now you need to associate each
user with the system features they need to perform their jobs.

Tip

Withdraw Cash Update Account

Withdraw Cash
with Overdraft

Protection
Protect Overdraft

114910-3 Ch05.F 5/31/02 2:04 PM Page 55

Saturday Morning56

Association notation
A line connecting an actor to a Use Case represents an association, as shown in Figure 5-7.
The association represents the fact that the actor communicates with the Use Case. In fact,
in earlier versions of the UML spec, this was called a Communicates With relationship. This
is the only relationship that exists between an actor and a Use Case. According to the UML
spec, you may specify a directionality arrow on either end of the association line to denote
the direction of the communication. Some associations are unidirectional (for example, the
actor specifies information to the Use Case). Most associations are bidirectional (that is, the
actor accesses the Use Case, and the Use Case provides functionality to the actor). For bidi-
rectional associations, you may either place an arrowhead on both ends of the association
line, or simply show no arrowheads at all. For simplification, most users tend to show no
arrowheads at all. Most modeling tools provide the option to turn bidirectional arrows on or
off. Just remember that the key is to identify which Use Cases the actors need to access.
These connections will form the basis for the interfaces of the system and subsequent mod-
eling efforts.

Figure 5-7 Association notation for the Use Case diagram

Stereotype notation
The stereotype notation is used throughout the UML, very commonly on Use Case depen-
dencies, classes, and packages and other elements of the UML known as classifiers. The
standard notation is to enclose the word in guillemets << >> (French quote marks), as in
the <<include>> notation below. Stereotypes provide a means to extend the UML without
modifying it. A stereotype functions as a qualifier on a model element, providing more
information about the role of the element without dictating its implementation.

<<include>> dependency notation
Sometimes one Use Case may need to ask for help from another Use Case. For example, Use
Cases titled Deposit Money and Withdraw Money may not actually update a bank account.
They may delegate the changes to an existing Use Case called Update Account so that
changes are controlled through a single feature that guarantees that all changes are done
correctly.

Withdraw CashCustomer Update Account

Withdraw Cash
with Overdraft

Protection
Protect Overdraft

114910-3 Ch05.F 5/31/02 2:04 PM Page 56

Session 5—Understanding the Use Case Model 57

When one Use Case delegates to another, the dependency is drawn as a dashed arrow
from the “using” Use Case to the “used” Use Case and labeled with the <<include>> stereo-
type notation, as shown in figure 5-8. This conveys that executing the “using” (or calling)
Use Case will include or incorporate the functionality of the “used” Use Case. If you have a
programming background, you see right away the correlation with subroutine or function
calls.

Delegation may occur for one of two reasons. First, another Use Case may already exist to
perform the task that is needed. Second, a number of Use Cases may need to perform the
same task. Rather than write the same logic multiple times, the common task is isolated
into its own Use Case and reused by, or included into, each Use Case that needs it.

Figure 5-8 <<include>> dependency notation for the Use Case diagram

<<extend>> dependency notation
The <<extend>> dependency stereotype says that one Use Case might need help from
another Use Case. In contrast, the <<include>> dependency stereotype says that one Use
Case will always call the other Use Case. Somewhere in the logic of the Use Case that needs
the help is an extension point, a condition test that determines whether or not the call
should be made. There is no such condition in an include dependency.

The other contrast between the two dependency stereotypes is the direction of the
dependency arrow. The <<include>> dependency arrow points from the main Use Case (the
one currently executing) to the one that it needs help from. The <<extend>> dependency
arrow points from the extension Use Case (the one providing the extra help) to the main
Use Case that it is helping (see Figure 5-9).

If you read the basic definition of a dependency, the <<extend>> dependency arrow
seems to be backwards. That is one reason I often put an “s” on the end of these stereo-
types. For example, the Withdraw Cash Use Case <<includes>> Update Account (the
Withdraw Cash Use Case will always update the account). Likewise, the Protect Overdraft
Use Case <<extends>> Withdraw Cash (the Protect Overdraft Use Case will sometimes be
called by the Withdraw Cash Use Case).

The extend dependency can be confusing for Java programmers who use “extends” to
achieve inheritance. These two concepts have nothing in common. The UML provides a
separate notation for inheritance (or generalization).

Withdraw CashCustomer
<<include>>

Update Account

Withdraw Cash
with Overdraft

Protection
Protect Overdraft

114910-3 Ch05.F 5/31/02 2:04 PM Page 57

Saturday Morning58

Figure 5-9 <<extend>> dependency notation for the Use Case diagram

Generalization
Inheritance is a key concept in object-oriented programming, and OO analysis and design.
Inheritance tells us that one object has, at the time of its creation, access to all the proper-
ties of another class, besides its own class. Thus, the created object incorporates all those
properties into its own definition. In layman’s terms, we say things like, “A Ford Explorer is
a car.” A car is a well-defined general concept. When you create a Ford Explorer, rather than
redefine all the car properties, you simply “inherit” or assimilate all the existing car proper-
ties, then override and/or add any new properties to complete the definition of your new
Ford Explorer object.

The same idea, applied to actors and to Use Cases, is called generalization, and often goes
by the nickname, an “is a” relationship. A Senior Bank Teller is a Bank Teller with additional
authority and responsibilities. The “Withdraw Cash with Overdraft Protection” Use Case is a
more extensive requirement than the “Withdraw Cash” Use Case.

To model generalization, the UML uses a solid line with a hollow triangle. It looks a bit
like an arrow, but be careful not to confuse the two. The triangle is always on the end near
the item that is being inherited. In the examples mentioned earlier, the triangle would be
near “Bank Teller” and “Withdraw Cash,” as shown in Figure 5-10.

Figure 5-10 Generalization notation for the Use Case diagram

Withdraw CashCustomer
<<include>>

<<extend>>

Update Account

Withdraw Cash
with Overdraft

Protection
Protect Overdraft

Withdraw CashCustomer
<<include>>

<<extend>>

Update Account

Withdraw Cash
with Overdraft

Protection
Protect Overdraft

114910-3 Ch05.F 5/31/02 2:05 PM Page 58

Session 5—Understanding the Use Case Model 59

REVIEW

The Use Case model comprises a set of resources aimed at defining the goals of a system. The
concept came from the work of Ivar Jacobson on a methodology called Objectory. The pur-
pose of the model is to focus the development effort on the essential objectives of the system
without getting lost in or driven by particular implementations or practices.

� The Use Case model consists of three primary resources: the Use Case diagram, the
Use Case narrative, and Use Case scenarios.

� The Use Case diagram uses a system icon to define the boundaries of the system.
� Actors define entities outside the system that will use the system in some way.
� Associations indicate which actors will access which features (Use Cases) of the

system.
� Dependencies describe the nature of the relationships between Use Cases.
� Generalization is used to illustrate inheritance relationships between Use Cases and

between actors.

QUIZ YOURSELF

1. What is the relationship between people and roles in a Use Case diagram? (See
“Use Case actors.”)

2. Where do you use associations in a Use Case diagram? (See “Association notation.”)
3. Why would you use the dependency stereotype <<include>>? (See “<<include>>

dependency notation.”)
4. When would you use the <<extends>> dependency stereotype? (See “<<extend>>

dependency notation.”)
5. Where can you use the generalization relationship on a Use Case diagram? (See

“Generalization.”)

114910-3 Ch05.F 5/31/02 2:05 PM Page 59

114910-3 Ch05.F 5/31/02 2:05 PM Page 60

Session Checklist
✔ Understanding the steps used to build a Use Case diagram
✔ Building the Use Case diagram for the case study

S ession 5 introduced the notation for the Use Case diagram. In this session, you find
out how to build a Use Case diagram by concentrating on the case study.

Building the Use Case Diagram for the Case Study
The following text makes up the description of the case study. I refer to this as the problem
statement. Use this problem statement as your source for the information needed to build
the Use Case diagram.

You will see the problem statement change from session to session. This is
necessary within the book because I need to tailor the problem so that you
will have an opportunity to use as many of the new concepts as possible in
each session.

Receiving: The receiving clerks receive incoming shipments by matching purchase orders
against the stock in the shipment. They inform the Accounts Payable department when the
purchase order items have been received. The clients want the new system to handle the
notification automatically.

Stocking: The products may come from cancelled orders, returned orders, or vendor ship-
ments. The products are placed in the warehouse in predefined locations. The stock clerk looks
up the correct location for the new products, places the products in that location, and updates
the location inventory with the product quantity.

Note

S E S S I O N

Building the Use Case Diagram

6

124910-3 Ch06.F 5/31/02 2:05 PM Page 61

Saturday Morning62

Order Fulfillment: Other staff members fill orders by locating the products required for
the order. As they fill the order they update inventory to reflect the fact that they have
taken the products. They also notify the Order Processing department that the order has
been filled. The clients want the new system to handle the notification to Order Processing.

Shipping: When the orders are filled, they are then packed and prepared for shipping. The
shipping folks contact the shippers to arrange delivery. They then update inventory after
they ship the product. They also notify the Order Processing department that the order has
shipped. The clients want the new system to handle the notification to Order Processing.

I don’t for a second want to give the impression that this is the only way to build Use
Case diagrams. But to get you started, I’m offering these steps as a guide. When you become
comfortable with the Use Case concepts, you’ll undoubtedly develop your own preferences
and write me a wonderful letter full of ideas on how I can improve this book. I thank you in
advance. For now, this should give you a solid start.

Step 1: Set the context of the target system
Context always comes first. Context provides the frame of reference for the information
you’re evaluating. Context defines the placement of the system within the business, includ-
ing the work processes, business plans and objectives, other systems, people and their job
duties, and constraints imposed by external entities like government and contractual
agreements.

According to the problem statement, the participants:

� “. . . inform the Accounts Payable department”
� “. . . notify the Order Processing department”
� “. . . contact the shippers”

The context places the system within the warehouse operations, working closely with
Order Processing and Accounts Payable, and with shippers.

You can see also how establishing the context begs questions about the
scope (for example, where exactly is the boundary of responsibility between
Accounts Payable and Inventory Control?).

Step 2: Identify the actors
Find the people, systems, or devices that communicate with the system. The system-type
actors are often easiest to spot as interfaces and external communication, such as notifica-
tions to the Accounts Payable and Order Processing systems. The other actors will be partici-
pants in the operation of the Inventory Control system. All these users will become your
sources for finding and validating the required features of the system (that is, Use Cases).

The problem statement referred to two system-type actors, shown in Figure 6-1:

� “They inform the Accounts Payable department when the purchase order items have
been received.” The Accounts Payable System must know when the company has
incurred a liability for a shipment.

Tip

124910-3 Ch06.F 5/31/02 2:05 PM Page 62

Session 6—Building the Use Case Diagram 63

� “They also notify the Order Processing department that the order has been filled.”
“They also notify the Order Processing department that the order has shipped.” The
Order Processing System needs to keep the customer informed of the status of its
shipment.

Figure 6-1 System-type actors from the problem statement

From the problem statement, you also find four human actors (shown in Figure 6-2):

� “The receiving clerks receive incoming shipments by” People receive products
into inventory. I refer to this role as Receiving.

� “The shipping folks contact the shippers to” The people who ship the product,
retain shippers, pack the product, and complete the shipping documents are
referred to as Shipping.

� “Other staff members fill orders” The people responsible for filling orders,
whether for samples, customer orders, wholesale, or retail, are referred to as Order
Fulfillment.

� “The stock clerk looks up” The people responsible for putting the products
into inventory are referred to as Stock Clerk.

Figure 6-2 Human actors from the problem statement

It is no accident that the naming so closely parallels the user’s description
of the system. Your abstractions should parallel the user’s vocabulary. After
all, you and the user are both representing the same real-world concepts.

Step 3: Identify the Use Cases
Find the features or functionality that the system must provide by asking these and similar
questions:

� What does the system produce for the actor? This question helps identify work
products that the system must support, known as the critical outputs.

Tip

Receiving Stock Clerk Shipping OrderFulfillment

<<Actor>>

AccountsPayableSystem

<<Actor>>

OrderProcessingSystem

124910-3 Ch06.F 5/31/02 2:05 PM Page 63

Saturday Morning64

� What does the actor help the system do? This question helps us know the input
facilities that the system needs to support, known as the critical inputs.

� What does the system help the actor(s) do? This question helps identify the rules
that must be applied when the actors use the system.

The Use Cases identified in the problem statement text include:

� ReceiveProduct: “. . . receive incoming shipments”
The goal is to record products into inventory, regardless of source.

� ShipOrder: “. . . they ship the product.”
The goal is to record shipments and ensure that the products they contain have left
the premises.

� StockProduct: “The products are placed in the warehouse in predefined locations.”
The goal is to record that products have been placed into the designated locations
within the inventory.

� FillOrder: “Other staff members fill orders”
The goal is to allocate specific inventoried products exclusively to satisfy an order.

� LocateProduct: “The stock clerk looks up the correct location” “Other staff
members fill orders by locating”
The goal is to identify the location within the facility in which a specific product
resides.

Your definitions at this time probably won’t be final. A lot of information comes to light
during the rigors of the analysis phase. But these preliminary definitions give you a lot of
valuable research material to facilitate the analysis process.

Step 4: Define the associations between actors and Use Cases
Identify the actor(s) who need access to each Use Case/feature of the system. Each access
relationship is a UML association. These associations are important because they tell you who
the system stakeholders are (the people with a vested interest in the success of the system).
For example, will the person at the order desk be able to do his job if he can’t see the status
of an order? As a stakeholder, what does he have to say about how the Use Case should
work? You’ll use that information in Session 7 when you write the Use Case narrative to
explain what the stakeholders want the Use Case to do.

Watch how the vocabulary of the problem statement helps you identify the associations
(shown in Figure 6-3):

� An association between Receiving and ReceiveProduct. “The receiving clerks
receive incoming shipments”

� An association between ReceiveProduct and AccountsPayableSystem. “They
inform the Accounts Payable department when the purchase order items have been
received. The clients want the new system to handle the notification automatically.”

� An association between Shipping and ShipOrder. “When the orders are filled, they
are then packed and prepared for shipping. The shipping folks contact the shippers
to arrange delivery. They then update inventory once they ship the product.”

124910-3 Ch06.F 5/31/02 2:05 PM Page 64

Session 6—Building the Use Case Diagram 65

� An association between ShipOrder and OrderProcessingSystem. “They also notify
the Order Processing department that the order has shipped. The clients want the
new system to handle the notification to Order Processing.”

� An association between StockClerk and Stock Product. “The stock clerk looks up
the correct location for the new products, places the products in that location, and
updates the location inventory with the product quantity.”

� An association between FillOrder and OrderProcessingSystem. “They also notify
the Order Processing department that the order has been filled. The clients want the
new system to handle the notification to Order Processing.”

� An association between OrderFulfillment and LocateProduct. “Other staff members
fill orders by locating the products required for the order.”

Figure 6-3 Associations from the problem statement

Step 5: Evaluate the actors and Use Cases to find opportunities for refinement
Rename, merge, and split actors and Use Cases as needed. When you build your diagrams
based on interviews with users, it is easy to fall into the trap of replicating the current
system (see Session 4). From your first draft of the descriptions of the actors and Use
Cases, start asking critical questions, especially the simple but powerful question, “Why?”
For example, ask, “Why is this actor responsible for these particular duties?” or “Why do
these tasks have to be done together, separately, in this order, or done at all?” A system
rewrite or major revision provides a great opportunity to clean house and address a lot of
the legacy problems that have accumulated over time.

Receiving

ReceiveProduct

<<Actor>>

AccountsPayableSystem

Shipping

Stock Clerk OrderFulfillment

ShipOrder

FillOrder

StockProduct LocateProduct

<<Actor>>

OrderProcessingSystem

124910-3 Ch06.F 5/31/02 2:05 PM Page 65

Saturday Morning66

For example, the problem statement tells you that the receiving and stocking jobs are
independent. Years ago they were, but now the staff unloads the trucks and places the prod-
ucts into inventory right away. Although the tasks may remain distinct, there is no longer a
real distinction in the roles of the people doing the work. Perhaps the actor definitions
should be merged, as illustrated in Figure 6-4.

Figure 6-4 Merging two roles into one role

Step 6: Evaluate the Use Cases for <<include>> dependencies
Apply the <<include>> dependency stereotype between Use Cases when one Use Case
always calls on another Use Case to help it with a task that the calling Use Case cannot
handle. The included Use Case may already exist or it may recur in a number of Use Cases
and need to be isolated. For example, updating inventory is one of the requirements for
ShipOrder, StockProduct, and FillOrder. Figure 6-5 isolates the UpdateInventory require-
ment, defining it once rather than three times, and calls on it from the original three
Use Cases.

Figure 6-5 <<include>> dependencies from the problem statement

You can see right away that we place a high priority on reuse. Everything in a project
has the potential for reuse. Use Cases, classes, work flows, analysis procedures, work prod-
ucts, analysis documents, design documents, and code make up only a short list of possible
reusable resources.

Step 7: Evaluate the Use Cases for <<extend>> dependencies
One Use Case may or may not use another Use Case depending upon a stated condition.
When the condition is met, the call is made to the other Use Case. When the condition is
not met, the call is not made.

Ship Order
<<include>>

<<include>> <<include>>

Stock Product Fill Order

Update
Inventory

Receiving Receiving

=+

Stock Clerk

124910-3 Ch06.F 5/31/02 2:05 PM Page 66

Session 6—Building the Use Case Diagram 67

This example does not have a reason to use the <<extend>> stereotype. But suppose
that the users want the flexibility to add a product into inventory right off the truck,
without placing it into one of the predefined locations. In essence, they would bypass the
StockProduct Use Case. This bypass would only be used with manager-level authority. In this
situation, ReceiveProduct would only call the Update Inventory extension if the manager
approval were provided to do so. Figure 6-6 models the extend relationship.

Figure 6-6 An example of <<extend>> dependency

Watch out for the direction of the arrows; it is easy to get them reversed. Read the
dependency in Figure 6-6 as “UpdateInventory extend(s) (is used with) ReceiveProduct if
the extension point condition is met in ReceiveProduct.”

Step 8: Evaluate the actors and Use Cases for generalization
In Session 5, you saw that generalization is a tool for organizing similarities and differences
among a set of objects (like actors or Use Cases) that share the same purpose. Review the
diagram for opportunities to apply the generalization concept.

The problem statement told us that, “The products may come from cancelled orders,
returned orders, or vendor shipments.” If the stocking rules are significantly different for
the various types of incoming stock, you could use generalization on the StockProduct Use
Case, as shown in Figure 6-7.

Figure 6-7 Using generalization to identify differences within a type of Use Case

Figure 6-7 shows that StockNewProduct inherits all the rules from StockProduct and
then adds some variations unique to stocking new products. The same is true for
StockReturnedProduct and StockCancelledOrderProduct.

Stock Product

Stock New
Product

Stock Returned
Product

Stock Cancelled
Order Product

Receive Product Update Inventory
<<extend>>

124910-3 Ch06.F 5/31/02 2:05 PM Page 67

Saturday Morning68

REVIEW

The goal of the Use Case diagram is to define the expectations of the users. Those users may
be people, systems, or devices that need to interact with the system. Their interactions may
be to provide input, to receive output, or to dialog with the system in order to cooperate in
the completion of a task. All these interactions are focused through a set of specific features
of the system called Use Cases. Each Use Case defines one specific goal that the system can
achieve.

The construction of a Use Case diagram requires the following steps:

1. Identifying the context of the system
2. Identifying the actors and their responsibilities
3. Identifying the Use Cases, the features of the system, in terms of specific goals
4. Evaluating the actors and Use Cases to find opportunities for refinement
5. Evaluating the Use Cases to find <<include>> type dependencies
6. Evaluating the Use Cases to find <<extend>> type dependency
7. Evaluating the actors and Use Cases for generalization (shared properties)

QUIZ YOURSELF

1. What is an actor? (See “Step 2: Identify the actors.”)
2. How do you identify a Use Case? (See “Step 3: Identify the Use Cases.”)
3. What is the notation for an <<include>> dependency? (See “Step 6: Evaluate the

Use Cases for <<include>> dependencies.”)
4. What is another name for a Use Case? (See “Step 3: Identify the Use Cases.”)
5. What does it mean when you place the <<extend>> stereotype on a dependency?

(See “Step 7: Evaluate the Use Cases for <<extend>> dependencies.”)

124910-3 Ch06.F 5/31/02 2:05 PM Page 68

Session Checklist
✔ Explaining the purpose of a Use Case narrative
✔ Explaining the elements of a typical Use Case narrative
✔ Writing a Use Case narrative for the case study

A lthough the Use Case diagram provides a convenient view of the main features of a
system, it is too concise to completely describe what users are expecting. So, as with
most diagrams, it must be supported by a narrative, a textual description that takes

us to the next level of understanding.
There are many ways to write Use Case descriptions. Typically, each methodology will have

its own set of elements and preferences. What I offer here is a set of common elements that
you will find in most methodologies.

Elements of a Use Case Narrative
Describing a Use Case requires that you frame the context of the Use Case and describe the
communication between the Use Case and the user, which could be an actor or another Use
Case. With this in mind, most Use Case narratives include the following elements, or others
very similar in meaning:

� Assumptions
� Pre-conditions
� Use Case initiation
� Process or dialog
� Use Case termination
� Post-conditions

S E S S I O N

Building the Use Case Narrative

7

134910-3 ch07.F 5/31/02 2:05 PM Page 69

Saturday Morning70

Much of this language is borrowed from the “programming by contract” concept, developed
and implemented by Bertrand Meyer in the creation of the Eiffel programming language. One
chief goal of the programming by contract concept is to define each unit as autonomous,
whether the unit is an object or a Use Case. Each unit should remain as independent from
others as possible, also referred to as being loosely coupled. Unit independence allows each
unit to be maintained without requiring corresponding changes in other units. This reduces
the cost of development and maintenance of the system.

Assumptions
Typically, developers think of assumptions as bad, something to be avoided. Here, I’m apply-
ing the concept in a positive way. In order for the Use Case to work properly, certain condi-
tions must be true within the system.

You agree, or you contract, never to invoke this Use Case unless you know that all the
needed conditions have been met. In other words, assumptions describe a state of the sys-
tem that must be true before you can use the Use Case. These conditions are not tested by
the Use Case (contrast this later with the pre-conditions). For example, consider the tasks
of performing authentication and authorization. A standard security check feature typically
handles these functions. Each subsequent Use Case assumes that the user could not access
the Use Case had he not made it past the security check. Consequently, you would rarely if
ever include the security check in each Use Case.

So how does this help you with the design of the system? If one Use Case can’t work and
should not even be accessed unless another Use Case has first done its job, this condition
dictates the order of execution. The assumptions give you explicit clues about the sequence
of execution for Use Cases (that is, the workflow).

Place common Use Case assumptions into a system-level document instead
of including them in every Use Case narrative.

Pre-conditions
Pre-conditions are easily confused with assumptions. Like assumptions, pre-conditions
describe a state of the system that must be true before you can use the Use Case. But unlike
assumptions, these conditions are tested by the Use Case before doing anything else. If the
conditions are not true, the actor is refused entry.

Most programmers have coded pre-conditions nearly every time they write a method or
subroutine call that has parameters. When you write code, what are the first lines of code
that you write in a function or method that has parameters? You validate the parameters.
You test to make certain that the conditions are right to proceed with the rest of the code.
Failure in these tests would mean problems for the subsequent code, so the call is refused
and turned back to the requester. You established and tested the pre-conditions for execu-
tion of your method or function.

These rules or pre-conditions need to be published along with the interface to your Use
Case. For example, a typical interface can only tell the client to provide two integer values
and a character string. It can’t tell them the rules that say that the first integer must be a

Tip

134910-3 ch07.F 5/31/02 2:05 PM Page 70

Session 7—Building the Use Case Narrative 71

value between 1 and 10, the second must be an integer greater than 100, and the character
string can only be 30 characters in length. Without publishing these pre-conditions, anyone
who wants to use your Use Case is forced into relying on trial and error to find the correct
set of values.

Notice how rapidly we bring precision to the model from the simple beginnings
of the Use Case diagram. You’ll find the analysis process akin to pulling a
thread on an old sweater. If you keep pulling, eventually you’ll unravel the
whole complex problem (while your mother yells at you for destroying a per-
fectly good sweater). Using simple checklists to remind you of the questions
to ask can expedite the process and build a successful pattern of thought for
problem solving. As you gain experience, modify the list of questions and tasks
to improve the process and to make it your own.

The goal is not to become a disciple of a particular technique, but to find a
technique that works for you.

Use Case initiation
A Use Case has to start somehow, but how? Some Use Cases start because an actor says,
“Start.” For example, you can select an option on a menu. The action tells the system to
open the application. Time can also trigger a Use Case. Most software shops have scheduling
software that kicks off programs at a preset time. Other Use Cases are implemented as objects
themselves that watch for a point in time. A Use Case may be triggered by a system event
like an error condition, a lost connection, or a signal from a device.

Use Case initiation provides a place to think through all the possible triggers that could
launch the Use Case. This is critical when you start thinking about reusing Use Cases. If five
actors and/or Use Cases plan on using the same Use Case, then you need to know how each
user plans to kick it off. If each has different expectations, then you could be creating a
problem. Multiple triggering mechanisms lead to high coupling and low independence. In
other words, every time you change one of the triggers, you need to change the correspond-
ing Use Case and make certain that you haven’t created problems with the other triggering
mechanisms. More triggers mean more complicated and costly maintenance.

Dialog
The dialog refers to a step-by-step description of the conversation between the Use Case
(the system) and the user (an actor or another Use Case). Very often, it is helpful to model
this sequence of events using an Activity diagram just as you might model a procedure for
communication between two business units.

For example, you want to withdraw money, so you access the ATM at your local bank. The
following dialog ensues:

You get past the security check Use Case, and you’re presented with a menu of options.
You choose “Withdraw.”
The system immediately asks you which account you want to withdraw the money
from.

Tip

134910-3 ch07.F 5/31/02 2:05 PM Page 71

Saturday Morning72

You reply that you want to withdraw from your primary checking account.
The system then asks you how much you want to withdraw.
You say that you want $47.
The system gives you a nasty error message saying it can’t handle that number
(because it’s not a multiple of 20) and you need to try again.
Then you say you want $4,700.
The system again complains that you can’t take that much money out in a 48-hour
period.
“Okay, okay! Give me $100,” you tell the system.

Now the system is happy and it gives you the money and a receipt.

When goals remain separate from implementation, you can evolve systems whose interface
designs remain stable while their implementations take advantage of ever-improving user
interface technologies. This conversation could just as easily have happened with any manu-
facturer’s ATM even if it held different cash denominations (10’s versus 20’s), connected
directly to a bank, or connected via a nationwide network. Also, you begin to see that some
of the steps don’t necessarily have to happen in the sequence presented here. The goal of the
dialog is to uncover just what really needs to happen and what variations could be valid.

Even ATM interface designs vary. Have you ever seen an ATM designed for blind people?
It performs the exact same conversation but with a different user interface. My home bank-
ing software accomplishes essentially the same function, too, but with still a different
design for the interface. The system asks all the questions at once and I provide all the
answers at once. Same design, different interface.

Use Case termination
Although there is usually only one triggering event to start a Use Case, there are often
many ways to end one. You can pretty much count on some kind of normal termination
where everything goes as planned and you get the result you anticipated. But things do go
wrong. This could mean shutting down the Use Case with an error message, rolling back a
transaction, or simply canceling. Each termination mechanism has to be addressed in the
dialog.

The list of termination options is a bit redundant with the dialog, but just as was the
case with pre-conditions, this redundancy provides some good checks and balances.

Post-conditions
Post-conditions describe a state of the system that must be true when the Use Case ends. You
may never know what comes after the Use Case terminates, so you must guarantee that the
system is in a stable state when it does end. In fact, some people use the term guarantee for
just this reason. You guarantee certain things to be true when this Use Case completes its
job. You might, for instance, guarantee to give the user a receipt at the end of the trans-
action, whether it succeeded or failed. You might promise to notify the user of the result
of an attempted save to the database.

134910-3 ch07.F 5/31/02 2:05 PM Page 72

Session 7—Building the Use Case Narrative 73

You may have noticed that some of the post-conditions above, such as giving the user a
receipt at the end of the transaction, were already in the Use Case dialog and seem redun-
dant. This may be true, but separating out post-conditions has proven to be an excellent
check-and-balance mechanism. The added visibility has also proven to be very helpful in
reviews with clients who want to know immediately what the system will do.

Additional narrative elements
The narrative doesn’t have to stop with just these elements. Some other common elements
include future enhancements, unresolved issues, performance constraints, security require-
ments, shareholders, maintenance logs, and notes. And I’m certain that your compatriots
can suggest more.

Workflow Requirements

A common question about Use Cases is “How do I show workflow or screen
flow?” The short answer is that you don’t. A more appropriate question would
be, “How do I use the Use Case model to determine screen flow and workflow
requirements?”

Workflow is often a difficult problem in system design. Personal opinion, per-
sonal preferences, and legacy workflows often get included as requirements.
Remember the ham story from Session 5? Just like the cooks in the ham story,
business practices are prone to faulty assumptions and unquestioned repetition.
New systems often contain the same deficiencies that old ones had because
they were not critically evaluated in the light of genuine requirements analysis.

To determine workflow requirements with Use Cases, first check out the pre-
conditions and assumptions. If Use Case A requires the user to provide data
that is obtained by Use Case B, or do something that Use Case B is responsible
for, then logically Use Case B must come first.

These clues are a tremendous help when you recognize that many workflows
were designed based on user preferences or experience. Because of this
approach, they have not been checked against the rules and constraints that
define the successful operation of the system. Here you have one means to do
this verification.

Quite often, screen flow and workflows are far more flexible than you might
think. Let the Use Case assumptions and pre-conditions tell you what the flow
options are. Then design the workflows that are possible, letting the users
decide what works best for them.

134910-3 ch07.F 5/31/02 2:05 PM Page 73

Saturday Morning74

Writing a Use Case Narrative for the Case Study
To practice writing a narrative, you will use the Use Case Fill Order in the case study Use
Case diagram from Session 6 presented in Figure 7-1. Given the description in the next
paragraph, you can draft a narrative for the FillOrder Use Case. Use the narrative elements
discussed earlier as a guide for organizing the narrative.

(From Session 6:)
FillOrder: This is basically your reason for being in business. Authorized personnel take

Product from inventory according to the order specifications. They update the order and the
inventory. If there are any items that can’t be filled, they create a backorder.

Figure 7-1 Use Case diagram from Session 6

The following section explains each of the fields of the narrative. The narrative begins in
Table 7-1 with four common audit fields to track the narrative document: the name of the
Use Case, a unique number (in case you need to change the name), the author of the narra-
tive, and the last time it was updated. You typically want to keep track of who is changing
the document, what they have changed, and when they changed it, to make certain that
everyone is aware of the latest revisions and to prevent confusion and unnecessary delays
due to misunderstandings.

Table 7-1 The Fill Order Use Case Narrative: Audit Fields

Field Name Field Description

Name Fill Order

Number 11

Author Tom Pender

Last update 12/23/01

Your diagrams and documents will go through a lot of changes. Change
control software is a very worthwhile investment.

Tip

Ship Order
<<include>>

<<include>> <<include>>

Stock Product Fill Order

Update
Inventory

134910-3 ch07.F 5/31/02 2:05 PM Page 74

Session 7—Building the Use Case Narrative 75

Assumptions in the case study narrative
The FillOrder description says that only “authorized personnel” will use this Use Case. You
could check security in this Use Case. But that approach leads to redundancy and the result-
ing high cost of maintenance. Instead you establish the assumption that security will be
handled by another function, ValidateAccess. Furthermore, you’ll trust that the security
check was done correctly (see Table 7-2).

So what does that tell you about the relationship between the FillOrder and ValidateAccess
Use Cases? It tells you the precedence. ValidateAccess must precede FillOrder in the workflow.

Table 7-2 The Fill Order Use Case Narrative: Assumptions

Field Name Field Description

Assumptions Valid user and has permission to use this feature

Pre-conditions in the case study narrative
Next, you establish the pre-conditions, the conditions that you will test to be sure that it’s
okay to proceed with the Use Case dialog. The Fill Order description said that the personnel
“take Product from inventory according to the order specifications.” That implies that they
need to tell the system the Order that they plan to fill. Refer to the Pre-conditions row in
Table 7-3. If the actor doesn’t provide a valid order number, there isn’t much you can do for
him. If you look ahead to the dialog in Table 7-5, you’ll see that the first few steps ask for
the order number, get the order number, and try to find the order. Pre-conditions are always
the first things tested in the dialog.

Table 7-3 The Fill Order Use Case Narrative: Pre-conditions

Field Name Field Description

Pre-conditions Provide a valid order number

Use Case initiation in the case study narrative
Next, referring to the Use Case initiation row in Table 7-4, you describe how the Use Case
dialog is started. In this case, the actor simply asks to start the dialog, so you say that it’s
initiated on demand.

Table 7-4 The Fill Order Use Case Narrative: Initiation

Field Name Field Description

Use Case initiation This Use Case starts on demand

134910-3 ch07.F 5/31/02 2:05 PM Page 75

Saturday Morning76

Use Case dialog in the case study narrative
Next, you describe the dialog between the actor and the Use Case (see Table 7-5). You see
each action required by the actor and each response from the system. Some responses require
a choice based on the progress so far, so you see the decision statements included in the dia-
log. This way, you know why the system gave the response it did. Other decision points are
the result of an action, like attempting to find the order using the Find Order Use Case.

Table 7-5 The Fill Order Use Case Narrative: Dialog

Field Name Field Description

Use Case dialog The system asks the user for an order number

The user provides the order number

The system asks for the order (from FindOrder Use Case).

If the Order is not found, Error, stop

Else:

The system provides the order to the user

The user chooses an item

Until the user indicates that he is done or there are no unfilled
item quantities greater than 0:

The system asks for the location of the item and

unfilled quantity (from the LocateProduct Use Case)

If the item is found (available):

The user indicates the quantity of the item filled

If there are any unfilled item quantities greater than 0:

Create a backorder (using the CreateBackorder Use Case)

Based on the Use Case dialog, see if you can find an error or something missing from the
Use Case diagram in Figure 7-1. Very often, taking a closer look at one aspect of the problem
(like the narrative) will reveal new insights to update existing diagrams. This is a normal and
desirable part of the modeling process.

134910-3 ch07.F 5/31/02 2:05 PM Page 76

Session 7—Building the Use Case Narrative 77

Did you find the error in the Use Case diagram? In Table 7-5, the dialog said, “The system
asks for the location of the item and unfilled quantity (from the LocateProduct Use Case).”
You need to add an <<include>> dependency from the FillOrder Use Case to the
LocateProduct Use Case.

Use Case termination in the case study narrative
In the termination row in Table 7-6, you list all the ways that this Use Case could end. Use
Cases are not good at showing concurrency and interrupts, so this is often the only place to
identify things such as a cancel event and timeouts. You’ll need to use the Activity diagram
or even the Sequence diagram a bit later to flesh out the concurrency and interrupt require-
ments. The termination section also provides you with a list of actions to consider when
writing the post-conditions.

No one diagram can show everything. This is why it is so important to under-
stand the purpose and features of each diagram. The diagrams are like tools
in a toolbox. You have to know which one to use for each task.

Most business applications like FillOrder will let you cancel the session at specific points
in the process. It is also usually wise to handle the condition where a user gets interrupted
and leaves a session open. The timeout termination could watch for a specified period of
inactivity before closing the transaction. And of course the user can actually complete the
process of filling the order or simply indicate that he is done.

Table 7-6 The Fill Order Use Case Narrative: Termination

Field Name Field Description

Use Case termination The user may cancel

The Use Case may timeout

The user can indicate that he is done

The user can fill all items on the Order

Post-conditions in the case study narrative
Finally, in the Post-conditions row in Table 7-7, you list the conditions that must be true
when the Use Case ends. These conditions are especially important in that they reveal pro-
cessing steps that may need to be added to the dialog to ensure that the system is stable
when this Use Case is completed.

Tip

134910-3 ch07.F 5/31/02 2:05 PM Page 77

Saturday Morning78

Table 7-7 The Fill Order Use Case Narrative: Post-conditions

Field Name Field Description

Post-conditions Normal termination:
The changes to the Order must be saved
(The backorder is handled by the CreateBackorder Use Case)

Cancel:
The Order must be saved unchanged
If a backorder was being created, it must be cancelled

Note that the post-conditions include some items that go a bit beyond the scope of a Use
Case, like saving the Order. A rule of thumb with Use Cases is that you include only what
the user can see, and what can be inferred by what they can see. In this case, if the user
gets a message indicating that the Order was updated, then you would include the messages
in the Use Case dialog. You would not include the actual steps for updating the Order in the
database. If your team feels that information is really needed, first make certain that users
agree that your understanding, as documented in the narrative, was correct. Then you could
take the Use Case description down a level to address the requirements you know have to be
supported by the design. This rule is a little bit gray, but it comes with the territory.

REVIEW

The Use Case narrative describes, in user-level terms, what the users expect from the Use
Case. The Use Case is a feature of the system with a beginning, a middle, and an end. As
such, it needs to be explained in terms plain enough for the users to understand and verify,
but precise enough for analysts and designers to rely on in order to build the system.

The features of a Use Case narrative aren’t standardized, but this session provides a set of
common elements in wide use:

� Use Case initiation describes how to start a Use Case.
� Assumptions define conditions that must be true, but are not tested in this Use

Case.
� Pre-conditions define conditions that must be true, and are tested in this Use Case.
� The Use Case dialog explains how the user (whether an actor or another Use Case)

interacts with the system during the execution of the Use Case.
� Use Case terminations define the different mechanisms that can cause the Use Case

to stop execution.
� Post-conditions define the state of the system that must be true when the Use Case

ends. This helps prevent Use Cases from leaving the system in an unstable condition
for other Use Cases that follow.

134910-3 ch07.F 5/31/02 2:05 PM Page 78

Session 7—Building the Use Case Narrative 79

Although these elements are valuable, they are by no means exclusive. Definitely look into
other books and online resources on Use Cases, and augment the narrative to support your
own method of development.

QUIZ YOURSELF

1. What is an assumption? (See “Assumptions.”)
2. What is a pre-condition? (See “Pre-conditions.”)
3. Who are the participants in the Use Case dialog? (See “Dialog.”)
4. What is a Use Case termination? (See “Use Case termination.”)
5. What are post-conditions? (See “Post-conditions.”)

134910-3 ch07.F 5/31/02 2:05 PM Page 79

134910-3 ch07.F 5/31/02 2:05 PM Page 80

Session Checklist
✔ Explaining the purpose and function of Use Case scenarios
✔ Finding Use Case scenarios for the case study
✔ Modeling the Use Case scenarios

AUse Case identifies a primary goal of the system. When an actor attempts to accomplish
a goal using the system, there are usually decisions and rules that could influence the
outcome. Exception conditions may also hinder the accomplishment of the goal.

Describing Use Case Scenarios
Each possible outcome of an attempt to accomplish a Use Case goal is called a scenario. A
scenario is a single logical path through a Use Case. You could call a scenario an instance of
a Use Case in that a scenario is one realization, or execution, of the conceptual Use Case. In
other words, a Use Case defines what could happen, whereas a scenario defines what does
happen under a given set of conditions.

The word scenario is used a number of ways. In the context of UML Use
Cases, scenarios have a very specific meaning. Be careful not to confuse the
more general usage of the term scenario, as an example or situation, with
the explicit definition used here.

There are many ways to work with scenarios. You can simply read the narrative and extract
each logic path from the text. Or you can draw out the logic with an Activity diagram so that
the flow of logic can be visualized and more easily segmented. But whatever the means, the
scenarios start to reveal the inner workings of the system and the expectations of the users in

Tip

S E S S I O N

Identifying the Use Case Scenarios

8

144910-3 Ch08.F 5/31/02 2:05 PM Page 81

Saturday Morning82

a way that the Use Case alone could not. This closer look will, as you’ll see in subsequent ses-
sions, open doors to further analysis of the system and ultimately to the design.

Probably the key lesson to learn here is the necessity of tackling the important questions
and issues early, when you have the best chance to come up with the best possible solution.
All too often, developers leave these questions until they’re working on the code, when
many of the big issues are easily lost in the mountain of details and the requirements are
expressed in a form that is alien to most users.

Why you should care about Use Case scenarios
In some situations, a Use Case is simple enough that the narrative is more than ample to
explain all the issues that define its proper execution. But in many other Use Cases, the
logic can become troublesome. Many of the applications we work on are complex and require
significant scrutiny. That is one reason why the UML provides a whole set of tools rather
than just one.

In addition to addressing complexity, you need some way to test the accuracy and com-
pleteness of the Use Cases. Unfortunately, for many projects, developers often hold off test-
ing until the end of the project, when they’re short on time and focused on the solution
rather than the requirements. Or worse yet, there is no time for testing at all, so final
tweaking happens in production.

Speaking of requirements, did you know that the overwhelming majority of litigation
regarding software projects is based on misunderstandings over requirements? In a recent
abstract regarding his participation in litigation over software projects, Capers Jones of
Software Productivity Research had this to say:

“The clients charge that the development group has failed to meet the terms of the con-
tract and failed to deliver the software on time, fully operational, or with acceptable qual-
ity. The vendors charge that the clients have changed the terms of the agreement and
expanded the original work requirements.”

Furthermore, the problems that Mr. Jones refers to here are on projects where there is a
contract. Consider how much worse the situation can become where the requirements
process is less formal!

If you’ve ever worked in a quality-assurance group, or even worked with one, you know
how frustrating the tester’s role can be. Think about how the tester’s challenge changes
when she’s able to create a test plan at the beginning of the project instead of waiting until
the end. Then testing can take place in small increments throughout the project, instead of
in a massive, difficult, and frustrating process at the end (if there is time to test at all).

This is why scenarios have taken on an increasingly important role in the requirements
phase. But what happened to other tools like screen layouts and prototypes? They are still
valuable, and in some cases provide a great way for users to visualize what you are trying to
express in words and diagrams. The challenge is that the layouts themselves don’t explain
how they’ll be used and why.

Another liability with prototypes is that they give the false impression that the applica-
tion is nearly complete. This makes sense because the user only works with the interface. To
users, the interface is the application. But you know that there is a lot more to it, including

144910-3 Ch08.F 5/31/02 2:05 PM Page 82

Session 8—Identifying the Use Case Scenarios 83

the logic expressed in the Use Case narrative and the scenarios; the places where you grap-
ple with business objectives; and your plans to cope with all these issues to ensure the suc-
cess of the system.

Having said this, I want to voice a caution: You can dissect Use Cases endlessly looking
for anything and everything possible. But you want to avoid analysis paralysis by recogniz-
ing that you won’t get everything right the first time through. It just isn’t possible. Allow
for a number of passes through the problem with limited time frames. Move on to other dia-
grams and revisit the Use Cases and scenarios after looking at the problem from the unique
perspectives that the other diagrams provide. Let the diagrams reveal information and
inconsistencies, or prove you right. Above all, allow time for practice. Trial and error can be
excellent teachers.

How to find Use Case scenarios
So how do you find these scenarios? Reading a narrative and following every possible path
can be difficult sometimes. One very simple and practical tool to use to find the scenarios
visually is an Activity diagram. I almost always draw Activity diagrams rather than rely
solely on text. Visual models provide a valuable complement to text. Together, the two per-
spectives can reveal insights not visible from only one perspective. Given that people learn
in different ways, having different tools to explain the problem can help everyone grasp the
important issues more easily.

One major benefit of an Activity diagram is its ability to quickly reveal dead-end seg-
ments and incomplete paths. The Activity diagram is still grounded in textual description
for each activity, so there is significant overlap that helps ensure that your information is
consistent.

If you aren’t comfortable with flowcharts or Activity diagrams, you may want
to skip ahead to Sessions 14 and 15 before finishing this chapter.

To find a scenario, start at the beginning. It usually works best to follow the path of the
successful scenario first since it will usually be the most comprehensive. Trace the steps
until you come to a decision, represented by a diamond. Now you have to make a choice.
Select one of the possible paths leading out of the diamond, preferably the path that leads
to the successful completion of the scenario, and continue to trace the steps. Continue the
process until you reach an end point. That is Scenario 1. Now return to the top and retrace
the first scenario to the first branching point (decision). Start the second scenario at the
branch, but follow a different path leading out of the decision. Continue tracing the steps
as before. If you loop back to a place you have already been, then stop. Avoid creating
redundant segments.

Repeat the process until you have traced a path through every segment of the diagram.
You should now have a set of segments that together account for every element of the
Activity diagram.

Cross-Ref

144910-3 Ch08.F 5/31/02 2:05 PM Page 83

Saturday Morning84

Finding Use Case scenarios for the case study
Now that you have an understanding of what a scenario is and how to find one, I want to
walk you through the case study Use Case “FillOrder.” Table 8-1 contains the dialog portion
of the Use Case narrative for FillOrder (created in Session 7) that will be the basis for the
Activity diagram to follow.

Table 8-1 Use Case Narrative for FillOrder

Field Name Field Description

Use Case dialog The system asks the user for an order number.
The user provides the order number.
The system asks for the order (from LocateOrder Use
Case).
If the Order is not found, Error, stop.
Else:

The system provides the order to the user.
The user chooses an item.

Until the user indicates that she is done or there are no
unfilled item quantities greater than 0:

The system asks for the location of the item and
unfilled quantity (from the LocateProduct Use Case).

If the item is found (available):
The user indicates the quantity of the item filled.

If there are any unfilled item quantities greater than 0:
Create a backorder (using the CreateBackorder Use

Case).

144910-3 Ch08.F 5/31/02 2:05 PM Page 84

Session 8—Identifying the Use Case Scenarios 85

For the FillOrder Use Case, I have drawn an Activity diagram (Figure 8-1) so that you can
more easily see the logical steps involved in the execution of the Use Case.

Figure 8-1 Activity diagram for Fill Order Use Case

Get Order #

Provide Error
Message

Get Order
(Find Order
Use Case)

Find Item
(Locate Product)
Use Case

Display Order

Choose Item

[True]

[False]

Order
Found?

Item
Found?

[Yes]

[Yes]

 [Yes]

[No]

[No]

[No]

Create Back
Order

Find Item
Quantity

Reduce
Inventory

Any unfilled
quantities?

Done or
no unfilled

items?

144910-3 Ch08.F 5/31/02 2:05 PM Page 85

Saturday Morning86

In Figure 8-2, trace the logic for the successful scenario first. Trace each step until you
reach a decision point where the logic splits into multiple paths. Now you are faced with a
choice.

Figure 8-2 Trace the scenario to the first decision point.

Get Order #

Get Order
(Find Order
Use Case)

Order
Found?

Scenario 1

[Yes]

[No]

144910-3 Ch08.F 5/31/02 2:05 PM Page 86

Session 8—Identifying the Use Case Scenarios 87

In Figure 8-3, you select the [Yes] path out of the “Order found?” decision and follow it
to the next decision point, “Done or no unfilled items?” Continue to the end of the success-
ful scenario by choosing one path to follow at each decision.

Figure 8-3 Complete Scenario 1.

Get Order #

Provide Error
Message

Get Order
(Find Order
Use Case)

Display Order

Choose Item

[False]

Order
Found?

[Yes]

[Yes]

[Yes]

[No]

[No]

[No]

Create Back
Order

Find Item
Quantity

Reduce
Inventory

Any unfilled
quantities?

Scenario 1

Done or
no unfilled

items? [True]

Item
Found?

Find Item
(Locate Product)
Use Case

144910-3 Ch08.F 5/31/02 2:05 PM Page 87

Saturday Morning88

In Figure 8-4, you start identifying alternative scenarios. Start at the first decision point
of the first scenario. Select one of the other paths out of the decision. In this case, you take
the [False] path and continue to the end point. This marks the second scenario segment.

Figure 8-4 Scenario 2

Get Order #

Provide Error
Message

Get Order
(Find Order
Use Case)

Order
Found?

[Yes]

[No]

Scenario 1

Scenario 2

144910-3 Ch08.F 5/31/02 2:05 PM Page 88

Session 8—Identifying the Use Case Scenarios 89

In Figure 8-5, you identify the third scenario by continuing from the “Item Found?” deci-
sion of Scenario 1 (near the bottom of Figure 8-5). But this time choose the path where the
item was not found. Following this path leads you back to the top of the loop at the deci-
sion “Done or no unfilled items?” Both of the paths out of this decision are already handled
by Scenario 1, so you stop. This segment is Scenario 3.

Figure 8-5 Scenario 3

Choose Item

[False]

[Yes]

[No]

Scenario 1

Done or
no unfilled

items? [True]

Item
Found?

Scenario 3

Find Item
(Locate Product)
Use Case

144910-3 Ch08.F 5/31/02 2:05 PM Page 89

Saturday Morning90

In Figure 8-6, you identify the fourth scenario by continuing from the “Any unfilled
quantities?” decision of Scenario 1. But this time choose the path where there are unfilled
quantities. Following this path tells you to create a backorder before the scenario ends. This
segment is Scenario 4.

Figure 8-6 Scenario 4

The goal of developing scenarios is to account for every logical possibility in the flow of
the Use Case. Every segment identifies a unique line of logic within the total Use Case.

But you’re not done yet.

Applying Use Case scenarios
Technically, the definition of a Use Case scenario says that each scenario describes a single
logical path through a Use Case. Using the Activity diagram, you can visually identify each
path simply by following the connecting lines in the diagram. But in the Fill Order Use Case
example, each individual arrow traces a separate logical segment, not necessarily a complete
logical path, from the beginning of the Use Case to the end of the Use Case. For example,
alternative Scenario 3 only identified the steps that were unique from those already identi-
fied by Scenario 1.

I did not show repeated segments of paths already singled out by a previous scenario.
This convention is a common one employed to avoid redundancy and extra work. When I
write the formal scenarios, or test cases, I simply build the test case from the scenario seg-
ments. By doing a little mixing and matching, I can provide comprehensive coverage of
every combination. For example, to fully specify Scenario 2, I would include the first two
steps and the decision from Scenario 1 plus the unique steps of Scenario 2.

Note too that, whenever you encounter a loop, the scenario maps out only a single pass
through the loop. To test the loop thoroughly, run the scenario segment multiple times,
remembering to test the boundary conditions.

[Yes]
[No]

Create Back
Order

Any unfilled
quantities?

Scenario 1

Scenario 4

[True]

144910-3 Ch08.F 5/31/02 2:05 PM Page 90

Session 8—Identifying the Use Case Scenarios 91

The result of completing the description of all the scenarios should be a reasonably com-
plete test plan for each Use Case. Remember, though, that you have only modeled the sys-
tem at the Use Case level. That means that the test plan you have so far is really only
acceptance-level testing, not full system or integration testing. But the Use Case level test
plan provides the framework for all the test plans for successive phases in the project.

REVIEW

Use Cases express what the users expect the system to provide.

� Use Case narratives explain in detail how the users expect to interact with the sys-
tem when they invoke the Use Case.

� Scenarios break down the narrative explanation to provide a detailed examination
of every possible outcome of the Use Case, why each outcome happens, and how the
system is supposed to respond.

� The Activity diagram provides a visual evaluation of the Use Case narrative.
Although it isn’t necessary to use an Activity diagram, it can be very helpful, espe-
cially for complex Use Cases.

� A scenario is a single logical path through a Use Case, expressing one possible out-
come. Finding Use Case scenarios requires you to follow each unique series of activi-
ties and decisions from the beginning of the Use Case to a single end point.
Together, the scenarios should account for every possible way that a Use Case could
execute.

� When the scenarios have been identified, they may be used to develop a compre-
hensive acceptance-level test plan. They may also be used to test the results of sub-
sequent analysis and design efforts.

QUIZ YOURSELF

1. What is a Use Case scenario? (See “Describing Use Case Scenarios.”)
2. How many scenarios are in a Use Case? (See “Describing Use Case Scenarios.”)
3. What two methods can you use to describe the logical flow of a Use Case? (See

“Describing Use Case Scenarios” and “How to find Use Case scenarios.”)
4. If a scenario is a single logical path, how do you handle looping logic? (See

“Applying Use Case scenarios.”)
5. How will the scenarios be used later in the project? (See “Applying Use Case

scenarios.”)

144910-3 Ch08.F 5/31/02 2:05 PM Page 91

144910-3 Ch08.F 5/31/02 2:05 PM Page 92

Session Checklist
✔ Explaining the two diagrams in the Object Model
✔ Explaining and illustrating the Class diagram notation
✔ Explaining and illustrating attribute specifications
✔ Explaining and illustrating operation specifications
✔ Explaining and illustrating the different ways to represent a class

The Class diagram is by far the most used and best known of the object-oriented dia-
grams. It is the source for generating code and the target for reverse engineering code.
Because the Class diagram is the primary source for code generation, the other dia-

grams tend to serve as tools of discovery that add to your knowledge about how to build the
Class diagram. Use Cases identify the need for the objects as resources used by the system to
achieve its goals. The Sequence and Collaboration diagrams are excellent tools for discover-
ing object interactions and, by inference, defining interfaces. The Activity diagram is very
good for discovering the behavior implemented by objects and so helps to define the logic of
operations on the objects.

The Object Model
The phrase object model has been the source of some confusion. Object Model is often used
as a synonym for Class diagram. In this book, object model is used to mean the set of dia-
grams used to model objects, namely the Class and Object diagrams. The Class diagram is the
more recognized and used of the two diagrams. The Object diagram is often implemented
within the Class diagram, not as a separate diagram. In fact, the UML specification does not
actually define the Object diagram. It is simply a Class diagram that contains only objects.

S E S S I O N

Modeling the Static View:
The Class Diagram

9

154910-3 Ch09.F 5/31/02 2:05 PM Page 93

Saturday Morning94

The Class diagram
The Class diagram represents classes, their component parts, and the way in which classes of
objects are related to one another. A class is a definition for a type of object. It’s really not
much different from what you find in a dictionary. If you want to find out what a widget is,
you look up the word widget. You would find a description of what a widget looks like, its
purpose, and any other pertinent information for understanding widgets. There are no
actual widgets in the dictionary, only descriptions. There are no real objects in a class, only
descriptions of what a particular type of object looks like, what it can do, and what other
objects it may be related to in some way.

To document this information, the Class diagram includes attributes, operations, stereo-
types, properties, associations, and inheritance.

� Attributes describe the appearance and knowledge of a class of objects.
� Operations define the behavior that a class of objects can manifest.
� Stereotypes help you understand this type of object in the context of other classes

of objects with similar roles within the system’s design.
� Properties provide a way to track the maintenance and status of the class definition.
� Association is just a formal term for a type of relationship that this type of object

may participate in. Associations may come in many variations, including simple,
aggregate and composite, qualified, and reflexive.

� Inheritance allows you to organize the class definitions to simplify and facilitate
their implementation.

Together, these elements provide a rich set of tools for modeling business problems and
software. However, the Class diagram is still limited in what it can show you. Generally
speaking, it is a static view of the elements that make up the business or software. It’s like
a blueprint for a building or a piece of machinery. You can see the parts used to make it and
how they are assembled, but you cannot see how the parts will behave when you set them
into motion. This is why we need other diagrams to model behavior and interactions over
time (that is, modeling the objects in motion). Figure 9-1 shows how all the other diagrams
support the Class diagram.

Figure 9-1 All diagrams support the Class diagram.

Use Case
Model

Object
Diagram

Sequence
Diagram

Collaboration
Diagram

Activity
Diagram

Statechart
Diagram

Class
Diagram

154910-3 Ch09.F 5/31/02 2:05 PM Page 94

Session 9—Modeling the Static View: The Class Diagram 95

Although other diagrams are necessary, remember that their primary purpose is to sup-
port the construction and testing of the Class diagram. Whenever another diagram reveals
new or modified information about a class, the Class diagram must be updated to include
the new information. If this new information is not passed on to the Class diagram, it will
not be reflected in your code.

The Object diagram

� The class defines the rules; the objects express the facts.
� The class defines what can be; the object describes what is.

If the Class diagram says, “This is the way things should be,” but the Object diagram graphi-
cally demonstrates that “it just ain’t so,” then you have a very specific problem to track
down. The reverse is true, too. The Object diagram can confirm that everything is working
as it should. Session 13 walks you through an example of applying the Object diagram for
just this purpose.

Elements of the Class Definition
The class symbol is comprised of three compartments (rectangular spaces) that contain dis-
tinct information needed to describe the properties of a single type of object.

� The name compartment uniquely defines a class (a type of object) within a package.
Consequently, classes may have the same name if they reside in different packages.

� The attribute compartment contains all the data definitions.
� The operations compartment contains a definition for each behavior supported by

this type of object.

Technically, the UML allows for user-defined compartments as well as the
three standard ones, but I’ll leave that as an advanced topic for another book
or for your own personal study of the UML specification.

Sessions 10 and 11 present the rest of the notations that make up the Class diagram.

Modeling an Attribute
An attribute describes a piece of information that an object owns or knows about itself. To
use that information, you must assign a name and then specify the kind of information, or
data type. Data types may be primitive data types supplied by a language, or abstract data
types (types defined by the developer). In addition, each attribute may have rules con-
straining the values assigned to it. Often a default value helps to ensure that the attribute
always contains valid, meaningful data.

Tip

154910-3 Ch09.F 5/31/02 2:05 PM Page 95

Saturday Morning96

Attribute visibility
Each attribute definition must also specify what other objects are allowed to see the
attribute — that is its visibility. Visibility is defined as follows:

� Public (+) visibility allows access to objects of all other classes.
� Private (-) visibility limits access to within the class itself. For example, only

operations of the class have access to a private attribute.
� Protected (#) visibility allows access by subclasses. In the case of generalizations

(inheritance), subclasses must have access to the attributes and operations of the
superclass or they cannot be inherited.

� Package (~) visibility allows access to other objects in the same package.

Note the symbols for each type of visibility. The symbols provide a convenient shorthand
and tend to be used instead of the full name.

The rules for protected visibility vary a little among programming languages.
Check the rules for your particular implementation environment. For exam-
ple, protected in Java allows objects of classes within the same package to
see the value as well.

Given these requirements, the following notation is a common way of defining an
attribute:

visibility / attribute name : data type = default value {constraints}
Writing this down as a kind of cheat sheet isn’t a bad idea. It will help you remember all

the issues you need to address when defining data. Here’s the run-down on each element in
this expression.

� Visibility (+, -, #, ~): Required before code generation. The programming language
will typically specify the valid options. The minus sign represents the visibility “pri-
vate” meaning only members of the class that defines the attribute may see the
attribute.

� Slash (/): The derived attribute indicator is optional. Derived values may be com-
puted or figured out using other data and a set of rules or formulas. Consequently,
there are more design decisions that need to be addressed regarding the handling
of this data. Often this flag is used as a placeholder until the design decisions
resolve the handling of the data.

� Attribute name: Required. Must be unique within the class.
� Data type: Required. This is a big subject. During analysis, the data type should

reflect how the client sees the data. You could think of this as the external view.
During design, the data type will need to represent the programming language data
type for the environment in which the class will be coded. These two pieces of
information can give the programmer some very specific insights for the coding
of get and set methods to support access to the attribute value.

� Assignment operator and default value: Optional. Default values serve two valu-
able purposes. First, default values can provide significant ease-of-use improvements
for the client. Second and more importantly, they protect the integrity of the sys-
tem from being corrupted by missing or invalid values. A common example is the

Tip

154910-3 Ch09.F 5/31/02 2:05 PM Page 96

Session 9—Modeling the Static View: The Class Diagram 97

tendency to let numeric attributes default to zero. If the application ever attempts
to divide using this value, you will have to handle resulting errors that could have
been avoided easily with the use of a default.

� Constraints: Constraints express all the rules required to guarantee the integrity of
this piece of information. Any time another object tries to alter the attribute value,
it must pass the rules established in the constraints. The constraints are typically
implemented/enforced in any method that attempts to set the attribute value.

The constraint notation brackets appear throughout UML diagrams to iden-
tify any and all additional information that helps clarify the intent of the
modeling element. Place any text in the constraint brackets that is required
to explain the limitations to be imposed on the implementation of the mod-
eling element.

� Class level attribute (underlined attribute declaration): Optional. Denotes that
all objects of the class share a single value for the attribute. (This is called a static
value in Java.)

Creating an attribute specification
Table 9-1 shows you how to create a sample attribute definition for a company name. The
field has to handle characters and punctuation marks commonly found in company names,
but you’re limited to 30 positions. There is a no default value, but you want valid display
data, so you must initialize the field to spaces.

Table 9-1 Creating an Attribute Specification

Attribute Element Description Attribute Element Example

Create an attribute name company

Add the attribute data type company:character

Add the attribute’s default value, if any company:character = spaces

Set the constraints on the attribute value. For company:character = spaces {1 to 30
this example, first identify the field length. characters}

Next identify the types of data that can be used company:character = spaces {1 to 30
in the attribute. Add this information within characters including alphabetic,
the brackets. spaces, and punctuation characters;

no special characters allowed}

Set the attribute visibility (designate private - company:character = spaces {1 to 30
visibility with a minus (-) sign in front of characters including alphabetic, spaces,
the attribute). and punctuation characters; no special

characters allowed}

Note

154910-3 Ch09.F 5/31/02 2:05 PM Page 97

Saturday Morning98

In a modeling tool, an attribute definition may appear as a set of fields on a specifica-
tion window, or the single line format, or a combination of the two. Regardless of the tool
interface, this set of fields can be a good tool for remembering the types of questions you
need to answer for each piece of information in your model. This data forms the foundation
for your databases, your user interfaces, reporting, and nearly every aspect of your design.
Thoroughness here pays big dividends later.

Modeling an Operation
Objects have behaviors, things they can do and things that can be done to them. These
behaviors are modeled as operations. By way of clarification, the UML distinguishes between
operation and method, whereas many people use them interchangeably. In the UML, an
operation is the declaration of the signature or interface, the minimum information
required to invoke the behavior on an object. A method is the implementation of an opera-
tion and must conform to the signature of the operation that it implements.

Elements of an operation specification
Operations require a name, arguments, and sometimes a return. Arguments, or input para-
meters, are simply attributes, so they are specified using the attribute notation (name, data
type, constraints, and default), although it is very common to use the abbreviated form of
name and data type only.

Note that if you use constraints on an argument, you are constraining the input value,
not the value of the attribute as it resides in the source object. The value in the source
object was constrained in the attribute definition within the class.

The return is an attribute data type. You can specify the visibility of the operation:
private (-) limits access to objects of the same class, public (+) allows access by any object,
protected (#) limits access to objects of subclasses within the inheritance hierarchy (and
sometimes the same package), and package (~) limits access to objects within the same
package. Given these requirements, the following notation is used to define an operation:

visibility operationName (argname : data type {constraints}, ...) :
 return data type {constraints}
Once again, writing this down as a kind of cheat sheet isn’t a bad idea. It will help you

remember all the issues you need to address when defining operations. Here’s the run-down
on each element in this expression.

� Operation name: Required. Does not have to be unique, but the combination of
name and parameters does need to be unique within a class.

� Arguments/parameters: Any number of arguments is allowed. Each argument
requires an identifier and a data type. Constraints may be used to define the valid
set of values that may be passed in the argument. But constraints are not supported
in many tools and will not be reflected in the code for the operation, at least not at
this point.

154910-3 Ch09.F 5/31/02 2:05 PM Page 98

Session 9—Modeling the Static View: The Class Diagram 99

� Return data type: Required for a return value, but return values are optional. The
UML only allows for the type, not the name, which is consistent with most program-
ming languages. There may only be one return data type, which again is consistent
with most programming languages.

� Visibility (+, -, #, ~): Required before code generation. The visibility values are
defined by the programming language, but typically include public (+), private (-),
protected (#), and package (~).

� Class level operation (underlined operation declaration): Optional. Denoted as
an operation accessible at the class level; requires an instance (object) reference.

� Argument name: Required for each parameter, but parameters are optional. Any
number of arguments is allowed.

� Argument data type: Required for each parameter, but parameters are optional.
� Constraints: Optional. In general, constraints express rules that must be enforced

in the execution of the operation. In the case of parameters, they express criteria
that the values must satisfy before they may be used by the operation. You can
think of them as operation level pre-conditions.

Creating an operation specification
Table 9-2 shows you how to create a sample operation to determine the total amount due on
an order. The total is the sum of all line items less the volume discount. Each line item
amount is the product of the unit price and discount. You need the answer back as a dollar
amount.

Table 9-2 Creating an Operation Specification

Operation Element Description Operation Element Example

Name the operation. totalOrderAmount

Define the arguments/parameters:
All the input information is on the Order object, totalOrderAmount (order : Order)
so an instance of Order is the only argument.
Name the argument and data type and separate
them with a colon. Try to use argument names
that match the argument type; this makes
referring to the value within the method
easier. The data type in this example is the
user-defined class “Order.” Enclose the
arguments in parentheses.

Continued

154910-3 Ch09.F 5/31/02 2:05 PM Page 99

Saturday Morning100

Table 9-2 Continued

Define the return data type:
The result returned by the operation must totalOrderAmount (order : Order) :
be a dollar amount, simply a number with Dollar
two decimal positions. Often we create a user-
defined data type (or abstract data type) to
contain dollar values. Place a colon and the
return data type after the arguments.

Identify and describe any constraints: totalOrderAmount (order : Order) :
You can use the all-purpose constraint Dollar {The total is the sum of all line
notation {} to hold the text that describes items less the volume discount. Each
the computation. line item is the product of the unit
As an alternative, you can put the rule in price and quantity.}
the data dictionary under the derived
attribute “total_order_amount.”

Set the visibility of the operation:
The UML notation for public is a plus (+) sign. + totalOrderAmount (order : Order) :

Dollar {The total is the sum of all line
items less the volume discount. Each
line item is the product of the unit price
and quantity.}

Modeling the Class Compartments
Now you need to put all this together in a class symbol. The class notation consists of the
three compartments mentioned earlier. You’ve just seen the contents of the second and
third compartments for attributes and operations, respectively. The first compartment —
the name compartment — gives the class its identity.

Figure 9-2 shows a UML class symbol with all three compartments and all the elements
needed to define a class with UML notation. The text addresses each compartment of the
class and refers back to Figure 9-2.

154910-3 Ch09.F 5/31/02 2:05 PM Page 100

Session 9—Modeling the Static View: The Class Diagram 101

Figure 9-2 Complete class specification with all three compartments

Name compartment
In Figure 9-2, the name compartment occupies the top section of the class box. The name
compartment holds the class name, an optional stereotype, and optional properties. The
name is located in the center of the compartment. The stereotype (<< >>) may be used to
limit the role of the class in the model and is placed at the top of the compartment.
Common examples of class stereotypes include <<Factory>>, based on the Factory design
pattern, and <<Interface>>, for Java interfaces or for user interfaces.

Properties use the constraint notation { } and are placed in the bottom-right corner of
the compartment. Properties are basically constraints used to clarify the intent in defining
the model element. Properties can be used to document the status of a class under develop-
ment or for designations such as abstract and concrete.

Attribute compartment
In Figure 9-2, the attribute compartment occupies the middle section of the class box.
The attribute compartment simply lists the attribute specifications for the class using the
notation presented earlier in “Modeling an Attribute.” The order of the attributes does not
matter.

<<User>>
Customer

- name: String = blank
- mailingaddress: Address = null
- /accountbalance: Dollar = 0
- customerid: integer = none {assigned by system}

+ getName (): String
+ setName (name: String)
+ setAccountBalance (amount: Dollar)
+ getAccountBalance (): Dollar
+ setMailingAddress (street1: String, street2: String,
city: String, state: State, zipcode: integer)

{last updated 12-15-01}

154910-3 Ch09.F 5/31/02 2:05 PM Page 101

Saturday Morning102

Operation compartment
In Figure 9-2, the operations compartment occupies the bottom section of the class box.
Operations are simply listed in the operation compartment using the notation presented in
“Modeling an Operation.” The order does not matter. The operation compartment is placed
below the name compartment, and below the attribute compartment when all compartments
are visible.

Creating Different Views of a Class
The completed class definition can be shown with all three compartments visible or as just
the name compartment. This form is often used in the early stages of analysis when the
focus is on object definitions and relationships. As more information is discovered about the
attributes and operations, the other two compartments can be revealed as well.

Some tools also give the option to show some or all of the operation specifications. For
example, one view may show only the operation names. Another view may reveal the names
and the arguments, while yet another may show the entire signature with argument data
types and return data types. Figure 9-3 illustrates two ways of drawing the class symbol.
This facility helps focus evaluation of the diagram to the interests of the audience.

Figure 9-3 Alternative views of a class symbol for different audiences and purposes

REVIEW

The Class diagram is the primary diagram for code generation and for reverse engineering.
Consequently, it tends to be the focus of most modeling efforts, with all the other diagrams
playing a supporting role. The term object model is actually a reference to two diagrams, the
Class diagram and the Object diagram, although when the term is used it most often refers
to a Class diagram.

� The Class diagram represents all the rules regarding the construction and use of
objects. The Object diagram describes the facts about objects that actually exist.
Consequently, the Object diagram provides a valuable testing tool to verify the Class
diagram.

<<User>>
Customer

- name: String = blank
- mailingaddress: Address = null
- /accountbalance: Dollar = 0
- customerid: integer = none {assigned by system}

+ getName (): String
+ setName (name: String)
+ setAccountBalance (amount: Dollar)
+ getAccountBalance (): Dollar
+ setMailingAddress(street1: String, street2: String,
city: String, state: State, zipcode: integer)

{last updated 12-15-01}

<<User>>
Customer

{last updated 12-15-01}

<<User>>
Customer

{last updated 12-15-01}

154910-3 Ch09.F 5/31/02 2:05 PM Page 102

Session 9—Modeling the Static View: The Class Diagram 103

� The class symbol consists of three compartments: the name compartment, the
attribute compartment, and the operations compartment. The UML supports the defi-
nition of additional compartments. The UML also supports a number of views of the
class that allow the analyst to focus attention on particular features of the class.

� Attributes must be specified with all the information needed to protect the
integrity of the data they describe. To do so, the attribute declaration includes visi-
bility, a unique name (within the class), a data type, possibly a default value, possi-
bly constraints, and, when appropriate, a class-level designation.

� Operations must be specified with all the information needed to guarantee the proper
use and execution of the behavior. To do so, the operation declaration includes visibil-
ity, a name, the list of arguments/parameters and their required data types, a return
data type when needed, and, when appropriate, a class-level designation.

QUIZ YOURSELF

1. What diagram is used to generate code? (See “The Object Model.”)
2. What are the three parts of a class in a UML class symbol? (See “Elements of the

Class Definition.”)
3. How do you fully define an attribute? (See “Modeling an Attribute.”)
4. Name two ways to use the Object diagram. (See “The Object diagram.”)
5. What element defines the level of access that is required by an operation? (See

“Elements of an operation specification.”)

154910-3 Ch09.F 5/31/02 2:05 PM Page 103

154910-3 Ch09.F 5/31/02 2:05 PM Page 104

Session Checklist
✔ Explaining and illustrating the basic notation for all associations
✔ Explaining and illustrating the notations for association classes,

reflexive associations, and qualified associations

A ssociations between objects are similar to associations between people. In order for
me to work with you, I need to communicate with you. This requires that I have
some way to contact you, such as a phone number or an e-mail address. Further, it is

often necessary to identify why we are associated in order to clarify why we do and do not
participate in certain kinds of communication. For example, if we are associated because
you are a programmer and I am a database administrator, we probably will not discuss
employee benefits as part of our duties.

There would also probably be some limitations placed on our interactions:

� We would want to limit the number of participants in the relationship to ensure
efficiency.

� We would want to check the qualifications of the participants to ensure we have the
right participants.

� We would want to define the roles of the participants so that everyone knows how
to behave.

All these requirements apply equally to objects. The UML provides notations to address
them all. I’ll start with the basics and then add a few twists.

S E S S I O N

The Class Diagram: Associations

10

16910-3 Ch10.F 5/31/02 2:05 PM Page 105

Saturday Morning106

Modeling Basic Association Notations
The following notations appear on almost every association you will model. Most of these
elements are similar to those you find in data modeling or database design. In fact, most of
the concepts come from these fields. The concepts worked well in data modeling, so they
were simply brought forward into object modeling as a form of “best practices.” I suggest
you memorize them because you will spend a lot of time working with them.

Association name
The purpose of the association can be expressed in a name, a verb or verb phrase that
describes how objects of one type (class) relate to objects of another type (class). For exam-
ple, a person owns a car, a person drives a car, and a person rents a car. Even though the
participants are the same in each association, the purpose of each association is unique,
and as such they imply different rules and interactions.

To draw the UML associations for these three examples, you need to start with four basic
elements.

� The participating classes, Person and Car. In this session I show only the name com-
partment so that your attention remains focused on the classes and their associations.

� The association, represented by a line between the two classes (pretty technical
huh?).

� The name of the association, represented by a verb or verb phrase on the associa-
tion line. Don’t worry about the exact position of the name. As long as the name
appears somewhere in the middle of the line, you’re okay. Just leave room at both
ends of the association for all the other things you’ll learn about later in this
session.

� The direction to read the name (indicating the direction is optional).

The first two examples in Figure 10-1 read pretty much the way I described them in the
text — Person owns Car and Person drives Car. Note that if these two statements are true,
then the reverse would be equally true — Car is owned by Person and Car is driven by
Person. Associations may be read in both directions as long as you remember to reverse the
meaning of the association name from active to passive.

But in the third example in Figure 10-1, the association name would not make sense if you
read it in the typical left to right fashion— Car rents Person. This is a case where the direc-
tion indicator is particularly appropriate, even required, to make sense of the association by
reversing the normal reading order so that it reads from right to left—Person rents Car.

16910-3 Ch10.F 5/31/02 2:05 PM Page 106

Session 10—The Class Diagram: Associations 107

Figure 10-1 Directional notation for association names

Remember the direction indicator when you’re making a lot of changes to a
diagram where you have to rearrange the classes. It is easy for classes to
reverse position on the diagram, resulting in nonsensical association names.
The indicators can prevent unnecessary confusion.

Association multiplicity
The UML allows you to handle some other important questions about associations: “How
many Cars may a Person own?” “How many can they rent?” “How many people can drive a
given Car?” Associations define the rules for how objects in each class may be related. So
how do you specify exactly how many objects may participate in the relationship?

Multiplicity is the UML term for the rule that defines the number of participating objects.
A multiplicity value must be assigned to each of the participating classes in an association.
As illustrated in Figure 10-2, you need to ask two separate questions.

Figure 10-2 Assigning multiplicity to each end of an association

Person

How many
People own
each Car?

How many Cars
are owned

by each Person?

Owns Car

Tip

Person Owns Car

Person Drives Car

Car Rents Person

16910-3 Ch10.F 5/31/02 2:05 PM Page 107

Saturday Morning108

The answer to each question goes next to the class that describes the objects that the
question is counting. The answer to “How many People . . .” goes on the end of the associa-
tion near the Person class. The answer to “How many Cars . . .” goes on the end of the asso-
ciation next to the Car class.

Multiplicity is expressed in a couple of ways. The most common is a range defining the
minimum number of objects allowed and the maximum number of objects allowed in the
format

Minimum . . Maximum
You must use integer values for the minimum and maximum. But, as you have probably

found in your own applications, sometimes you don’t know the upper limit or there is no
actual upper limit. The UML suggests the use of an asterisk to mean no upper limit. Used by
itself, the asterisk can also mean the minimum is zero and there is no upper limit, or zero
or more.

You may also encounter a situation when a range is not appropriate. If you had to define
how many cylinders are in the engines you service, you might want to say, “I only work on
4–, 6–, and 8-cylinder engines.” For these situations, the UML suggests a comma-separated
list (for example, 4,6,8).

You can simplify the notation when the minimum and maximum values are the same by
using a single value. So instead of writing 4..4, you can just write 4. This is a nice shortcut,
but beware! The most common place to use this shortcut is when the multiplicity is 1..1.
Unfortunately, the shortcut encourages people to overlook or ignore the possibility that the
minimum is zero, that is, the relationship is optional.

I’ll use the example of a car and an engine. That’s easy! Each car has one engine, right?
Well, what about cars on an assembly line? During the first n stages of assembly, there is no
engine in the car. In this case, the multiplicity should be 0..1 to allow the car to exist
before it has an engine installed. Frankly, I have found very few instances when the mini-
mum multiplicity should be 1. My rule of thumb is to set the minimum to 0 until I have
positive proof that the one object cannot exist with the other object.

Most software failures are because of small, difficult-to-find errors like the
difference between 0 and 1. Most of those errors are caused by assumptions
or failures to think critically about the details. I once witnessed an explo-
sion in a power plant caused by a one-character mistake in a program. Like
they say, “The devil is in the details.”

Here’s a summary list of the options for specifying multiplicity followed by some
examples.

� Values separated by two periods (..) mean a range. For example, 1..3 means between
1 and 3 inclusively; 5..10 means between 5 and 10 inclusively.

� Values separated by commas mean an enumerated list of possibilities. For example,
4,6,8 means you may have 4 objects or 6 objects or 8 objects of this type in the
association.

� Asterisk (*) when used alone means zero or more, no lower or upper limit.
� Asterisk (*) when used in a range (1..*) means no upper limit — you must have at

least one but you can have as many more as you want.

Tip

16910-3 Ch10.F 5/31/02 2:05 PM Page 108

Session 10—The Class Diagram: Associations 109

Association roles
Sometimes the association name is a bit hard to determine. For example, what English word
could you use for the association name between parents and children? The UML provides an
alternative that may be used in place of the name or along with it to help make the reason
for the association as clear as possible. This alternative is called a role because it describes
how an object participates in the association.

For example, many employees contribute to a project. But you know from experience that
they participate in different ways. Figure 10-3 shows how you can draw multiple associa-
tions and label them to differentiate the types of participation. Each role is placed at the
end of the association next to the type of object that plays the role. You may use them on
one, both, or neither end of each association.

Figure 10-3 Role names on an association

There is one other thing worth noting about roles and names. Role names generate code.
Association names do not generate code. The role name can be used to name the attribute
that holds the reference to the object that plays the role. In Figure 10-3, the Project
object could have an attribute named programmer that holds a reference to an Employee
object that plays the role of programmer, and another attribute called projectlead that
holds reference to another Employee object that plays the role of project lead.

Association constraints
Constraints appear throughout the UML notation. You used them in Session 9 when you
declared attributes and operations. Constraints fulfill much the same function for associa-
tions. First take a look at Figure 10-4, in which no constraints are specified.

Figure 10-4 An association without constraints

DrivesPerson

1..1

0..* Car

participates in

participates in

participates in

Employee

programmer

Project

projectlead

uidesigner

16910-3 Ch10.F 5/31/02 2:05 PM Page 109

Saturday Morning110

Is it really true that any Person object can drive a Car? Legally, only people with valid
driver’s licenses are allowed to drive. You can add this information to the model using a pair
of curly braces {} containing the text that describes the rule you want to enforce (for exam-
ple, {must have a valid driver’s license}). In Figure 10-5, you place the constraint at the end
of the association near Person, the type of object that must conform to the rule before it
can participate in the relationship.

Figure 10-5 An association with a constraint on the Person objects’ participation

Constraints may appear on both ends, either ends, or neither end of the association. It
really depends on the problem you’re trying to describe. Don’t worry too much about place-
ment. You can place the constraint anywhere near the end of the association.

But what if there is more than one constraint? Simple. Just add more text between the
braces. Don’t create more braces.

The UML also defines a constraint language for a more rigorous constraint
specification. For more information, check out UML 1.4 chapter 6 Object
Constraint Language (OCL) Specification.

Modeling Extended Association Notations
Now that you have the basics down, you’re ready for a few, more-exotic concepts. Actually,
some or all of these concepts may be familiar to you from database design or personal pro-
gramming experience.

Association class
An association class encapsulates information about an association. Let me say that again,
because this one often proves difficult to understand. An association class encapsulates
information about an association.

In Figure 10-6, you know that Customers order Products. But when customers order prod-
ucts there is usually more that you need to know, like when did they order the products?
How many did they order? What were the terms of the sale? All the answers to these ques-
tions are simply data. All data in an object-oriented system must be contained in (encapsu-
lated in) an object. There must be a class to define each type of object. So, define all this
data in a class. Then to show that the data describes the association, attach the new class
to the association with a dashed line.

Tip

DrivesPerson

{must have valid driver's license}

1..1 0..* Car

16910-3 Ch10.F 5/31/02 2:05 PM Page 110

Session 10—The Class Diagram: Associations 111

Figure 10-6 Association class notation

Be on the lookout for association classes when you see a multiplicity of
more than one on both ends of the association. You don’t always need an
association class on these many-to-many associations, but it is a common
place to find them.

Reflexive association
Reflexive association is a fancy expression that says objects in the same class can be related
to one another. The entire association notation you’ve learned so far remains exactly the
same, except that both ends of the association line point to the same class. This is where
the reflexive association gets its name. The association line leaves a class and reflects back
onto the same class.

Both examples in Figure 10-7 are equivalent expressions. The only difference is that one
uses roles and the other uses an association name.

Figure 10-7 Two ways to model a reflexive association

A reflexive association is a very common way to express hierarchies. The example in
Figure 10-7 models a hierarchical reporting structure. I could use the same technique for
companies owned by other companies.

Qualified association
Qualified associations provide approximately the same functionality as indexes, but the
notation has a bit of a twist. To indicate that a customer can look up an order using the
order’s ordernumber attribute, place the ordernumber attribute name and data type in a rec-
tangular box on the Customer end of the association. The rest of the association notation
remains intact but is pushed out to the edge of the rectangle.

Employee
0..1

0..*

Using role names

supervisor

subordinate

Employee
0..1

0..*

Using an association name

supervises

Tip

orders
Customer

0..*0..*
Product

Order

- quantity: integer = 0
- orderdate: Date = today
- terms: Terms = null

16910-3 Ch10.F 5/31/02 2:05 PM Page 111

Saturday Morning112

The placement of the qualifier is sometimes confusing. The best way I have found to
remember it is to think of it like this (refer to Figure 10-8):

“The Customer uses the ordernbr to look up an Order.”
or

“One type of object uses the qualifier to access the other (qualified) type of
object.”

The qualifier goes next to the class of objects that will use the value to do the look up. It
is not exactly intuitive but it works.

Figure 10-8 Qualified association

Typically the qualifier is an attribute of the class on the opposite end of the
association, so make certain that the two names and data types agree.

Use qualifiers to reduce the multiplicity in the same way you would use indexes in a
database to reduce the search time for a specific row or subset of rows. For example, in
Figure 10-8, note how the multiplicity for the Order end of the association changed from
0..* to 1..1. This is because the qualifier provided a unique key for Order objects. Before the
qualifier was established, navigation across the association would result in a list of all
orders associated with that Customer, because the Customer relationship was the only refer-
ence available to select the Orders.

REVIEW

Associations define how objects will be allowed to work together.

� An association is named to describe the purpose of the relationship.
� Role names may be used with or in place of the association name to describe how

the objects participate in the relationship.

Tip

places
Customer

0..*1..1
Order

Without a qualifier

places
Customer

1..1 1..1

Order
- ordernbr: integer
- quantity: integer = 0
- orderdate: Date = today

With a qualifier

ordernbr: integer

16910-3 Ch10.F 5/31/02 2:05 PM Page 112

Session 10—The Class Diagram: Associations 113

� Multiplicity defines the number of objects that may participate. Ranges are specified
as minimum value..maximum value. When the minimum and maximum are the same,
you may simplify the range to a single value (but watch out!). A comma-separated
list represents an enumeration of options. An asterisk may be used to indicate that
there is no defined upper limit to the number of objects. By itself, an asterisk
means zero or more objects.

� Constraints are rules that must be enforced to ensure the integrity of the relation-
ship. The constraints may be placed on each end of the association. Constraints are
always enclosed in a single pair of curly braces {}.

� An association class encapsulates information about an association. The most com-
mon types of data include when the relationship began, when it ended, and the
current state of the relationship. But there can be any number of data items. Apart
from its origin, an association class is a class like any other class.

� The phrase reflexive association describes an association in which all the participat-
ing objects are of the same type (class). The association line goes out of a class and
turns right back to the same class so that both ends of the association touch the
same class. All the other notations and rules for defining associations apply to
reflexive associations. One of the most common uses for reflexive associations is for
defining hierarchies.

� Qualified associations simplify the navigation across complex associations by provid-
ing keys to narrow the selection of objects.

� All these notations may appear on the same diagram.

QUIZ YOURSELF

1. What should the association name describe? (See “Association name.”)
2. When would you want to use role names and where do you place them?

(See “Association roles.”)
3. What is a constraint? (See “Association constraints.”)
4. Where do you most often find opportunities to use an association class?

(See “Association class.”)
5. Why would you use a qualified association? (See “Qualified association.”)

16910-3 Ch10.F 5/31/02 2:05 PM Page 113

P A R T

#
P A R T

Saturday Morning
Part Review

II

1. What is the relationship between people and roles in a Use Case diagram?
2. Where do you use associations in a Use Case diagram?
3. Why would you use the <<include>> dependency stereotype?
4. When would you use the <<extend>> dependency stereotype?
5. Where can you use the generalization relationship on a Use Case diagram?
6. Why is it so important to set the context of the system first?
7. How do you find associations?
8. How do you model the fact that one Use Case always uses the help of another Use

Case?
9. How do you model the fact that one Use Case sometimes uses the help of another

Use Case, but only under a specified condition?
10. How do you know that you can use generalization?
11. What is the purpose of defining the Use Case initiation?
12. What is the fundamental difference between assumptions and pre-conditions?
13. What is the Use Case dialog?
14. Why do we define the termination options separately from the dialog?
15. How do you know how detailed the dialog should be?
16. What is the relationship between a Use Case and a scenario?
17. Why are scenarios important to a project?
18. What two sources can you use to find scenarios?
19. How should you handle segments of logic that are repeated, as in loops?
20. How can you apply scenarios to aid in the quality of your project?
21. What is the primary difference between the Class diagram and the Object diagram?
22. What does a constraint mean in an attribute specification?
23. What does a constraint mean in an operation specification?

174910-3 PR02.F 5/31/02 2:05 PM Page 114

24. What appears in the name compartment of a class?
25. Do you always have to display all the information about a class?
26. What should the association name describe?
27. When would you want to use role names and where do you place them?
28. What is a constraint?
29. Where do you most often find opportunities to use an association class?
30. Why would you use a qualified association?

Part II — Saturday Morning Part Review 115

174910-3 PR02.F 5/31/02 2:05 PM Page 115

P A R T

Saturday
Afternoon

III

Session 11
The Class Diagram: Aggregation and
Generalization

Session 12
Applying the Class Diagram to the Case
Study

Session 13
Modeling the Static View: The Object
Diagram

Session 14
Modeling the Functional View: The
Activity Diagram

Session 15
Applying the Activity Diagram to the Case
Study

Session 16
Modeling the Dynamic View: The
Sequence Diagram

184910-3 Pt03.F 5/31/02 2:05 PM Page 116

Session Checklist
✔ Explaining the concepts of aggregation and composition
✔ Illustrating the use of the notation for aggregation and composition
✔ Explaining the concepts of generalization and inheritance
✔ Illustrating the use of generalization

In Session 10, you learned about associations. An association describes a set of rules
regarding how objects may be related to one another. But associations can be a bit
more restrictive. In this session, I describe two common subtypes of association, called

aggregation and composition. Then I explain how you can refactor your design using gen-
eralization (inheritance).

Modeling Aggregation and Composition
Figure 11-1 outlines the relationships among the concepts of association, aggregation, and
composition.

Later in this session, I explain the contents of this graphic more fully. But right now I
want to make two points as clear and strong as possible:

� Every aggregation relationship is a type of association. So every aggregation relation-
ship has all the properties of an association relationship, plus some rules of its own.

� Every composition relationship is a form of aggregation. So every composition
relationship has all the properties of an aggregation, plus some rules of its own.

S E S S I O N

The Class Diagram: Aggregation
and Generalization

11

194910-3 Ch11.F 5/31/02 2:05 PM Page 117

Saturday Afternoon118

Figure 11-1 The relationship between association, aggregation, and
composition

Elements of aggregation
Aggregation is a special type of association used to indicate that the participating objects
are not just independent objects that know about each other. Instead, they are assembled or
configured together to create a new, more complex object. For example, a number of differ-
ent parts are assembled to create a car, a boat, or a plane. You could even create a logical
assembly like a team where the parts are not physically connected to one another but they
still operate as a unit.

To model aggregation on a Class diagram:

1. Draw an association (a line) between the class that represents the member and the
class that represents the assembly or aggregation. In Figure 11-2, that would mean
a line between the Team class and the Player class.

2. Draw a diamond on the end of the association that is attached to the assembly or
aggregate class. In Figure 11-2, the diamond is next to the Team class that repre-
sents a group of players.

3. Assign the appropriate multiplicities to each end of the association, and add any
roles and/or constraints that may be needed to define the rules for the relation-
ship. Figure 11-2 shows that a Player may be a member of no more than one Team,
but a Player does not have to be on a Team all the time (0..1). The Team is always
comprised of exactly nine Players (9..9 or just 9). A Player is considered a member
(role name) of a Team. Every Player is constrained by the fact that she must have a
current contract in order to be a member of a Team.

Figure 11-2 How to represent an aggregation relationship in the UML

Team

0..1 9..9

Playermember

{must have a
current contract}

Association
Objects are aware of one another so they can work together

Aggregation
1. Protects the integrity of the configuration
2. Functions as a single unit
3. Control through one object – propagation downward

Composition
Each part may only be a member of one aggregate object

194910-3 Ch11.F 5/31/02 2:05 PM Page 118

Session 11—The Class Diagram: Aggregation and Generalization 119

What makes aggregation unique? More importantly, what makes aggregation beneficial?
Aggregation describes a group of objects in a way that changes how you interact with them.
The concept is aimed at protecting the integrity of a configuration of objects in two specific
ways.

First, aggregation defines a single point of control in the object that represents the
assembly. This ensures that no matter what others might want to do to the members of the
assembly, the control object has the final word on whether the actions are allowed. This
assignment of control may be at many levels within the aggregation hierarchy. For example,
an engine might be the controller of its parts, but the car is the controller of the engine.

Second, when an instruction is given that might effect the entire collection of objects,
the control object dictates how the members will respond. So for all intentions, the assem-
bly appears to function like a single object. When I push the gas pedal, telling the car I
want to accelerate, the entire car assembly (with its thousands of parts) accelerates, not
just the gas pedal.

Elements of composition
Composition is used for aggregations where the life span of the part depends on the life
span of the aggregate. The aggregate has control over the creation and destruction of the
part. In other words, the member object cannot exist apart from the aggregation. Draw this
stronger form of aggregation simply by making the aggregation diamond solid (black).

In Figure 11-3, the team example uses aggregation, the hollow diamond. Players are
assembled into a team. But if the Team is disbanded, the players live on (depending of
course on how well they performed). The Book example uses composition, the solid dia-
mond. A Book is composed of Chapters. The Chapters would not continue to exist elsewhere
on their own. They would cease to exist along with the Book.

Figure 11-3 How to represent a composition relationship in the UML

Note how the multiplicity provides some clues on the distinction between aggregation
and composition. On the Team example in Figure 11-3, each Player may or may not be a
member of a Team (0..1). This tells me that a Player may exist independent from the Team.
The Book example says that a Chapter must be associated with one and only one Book
(1..1). This tells me that a Chapter cannot exist independent of the Book, so it must be a
composition relationship.

Team

0..1 9..9

Player

Aggregation

Book

1..1 1..*

Chapter

Composition

194910-3 Ch11.F 5/31/02 2:05 PM Page 119

Saturday Afternoon120

Composition does have a coding equivalent in Java using the inner class con-
struct. Although the UML and Java implementations differ slightly, they are
close enough to perhaps help you understand the concept if you are already
familiar with Java.

Creating aggregation and composition relationships
Problem statement: “Our Company maintains a group of race cars. Our cars use some of our
new 8-cylinder engines and new transmissions. Once the engines are assembled, the pistons,
carburetor, and plugs cannot be swapped between engines due to changes caused by the
high temperatures.

“We want to keep records of the performance achieved by each engine in each car and each
transmission in combination with each engine. Our drivers evaluate each car to give us their
assessment of the handling. We need a system to track the configurations and the drivers’
assessments.”

Figure 11-4 shows that each car can be configured with different engine and transmission
combinations. The configuration is built using an engine and a transmission (aggregation).
The drivers test the car configurations. The association class ConfigurationAssessment con-
tains the details of the drivers’ evaluations for each configuration.

Figure 11-4 Using aggregation and composition together to model racecar
performance

< Tests 0..*0..*

0..*

0..*

0..*

1..*

1..1

1..1

1..1 1..1
1..1

1..1

8..8 8..8

DriverCarConfiguration

Transmission
Engine

ConfigurationAssessmentCar

Piston PlugCarburetor

Tip

194910-3 Ch11.F 5/31/02 2:05 PM Page 120

Session 11—The Class Diagram: Aggregation and Generalization 121

The engine is composed of the carburetor, pistons, and plugs (along with other unnamed
parts). However, these parts become permanent parts of the engine once installed, so they
are modeled with composition instead of aggregation.

It is common practice not to show the multiplicity on the composite end of
the associations whenever it is 1..1. There are rare exceptions when the
multiplicity could be different or you simply want to show it for clarity or
consistency.

Modeling Generalization
Generalization is the process of organizing the properties of a set of objects that share the
same purpose. People use this process routinely to organize large amounts of information.
Walk through a grocery store and you will find foods located in areas of the store depending
upon their properties. Dry goods are located in one area, fruits and vegetables in another,
meat in yet another. All these items are foods, but they are different kinds of foods or types
of foods. Words such as kind of or type of are often used to describe a generalization rela-
tionship between classes (for example, an apple is a type of fruit that is in turn a kind of
food and so on).

You might also hear this type of relationship called inheritance. Many times the terms
generalization and inheritance are used synonymously. If an apple is a kind of fruit, then it
inherits all the properties of fruit. Likewise, an apple is a specialization of fruit because it
inherits all the generalized properties of fruit and adds some unique properties that only
apply to apples. In the reverse, I could say that the concept fruit is a generalization of the
facts that are true for watermelons, apples, peaches, and all types of objects in the group.

A generalization is not an association. I’ll repeat that so you won’t forget it. A generaliza-
tion is not an association. In fact, association and generalization are treated as separate model
elements in the UML metamodel. Associations define the rules for how objects may relate to
one another. Generalization relates classes together where each class contains a subset of the
elements needed to define a type of object. Instantiating all the element subsets from each of
the classes in a single inheritance path of the generalization results in one object. In the Fruit
illustration in Figure 11-5, to create a Red Delicious Apple, I would need to combine the
RedDelicious class, the Apple class, and the Fruit class to get all the attributes and operations
that define a Red Delicious Apple. From the combined class I could create (instantiate) an
object of type RedDelicious (apple).

Note

194910-3 Ch11.F 5/31/02 2:05 PM Page 121

Saturday Afternoon122

Figure 11-5 Modeling generalization

To express the same thing in words, I might say, “A ‘Red Delicious’ is a type of apple, and
an apple is a type of fruit.” For this reason, you sometimes hear generalization called the
“is a” relationship (that is, every red delicious object “is an” apple object and every apple
object “is a” fruit object).

This unique relationship between classes in a generalization raises an interesting problem.
In Session 9, I described the concept of visibility. Visibility determines which other objects
can see the attribute or operation. Normally, attributes are set to private so that only objects
of the same class may see them. But what would happen to the RedDelicious class in Fig-
ure 11-5 if the attributes of the Apple class were set as private? RedDelicious would not have
access to them so inheritance is in essence short-circuited. Another visibility, called protected
visibility, is defined to handle just this situation. The protected visibility allows only objects
of the same class or subclasses to see the element.

There are variations in the implementation of the protected visibility
between programming languages. Be sure to check the language manual for
the correct interpretation.

Elements of generalization
Because the generalization (also called an inheritance) relationship is not a form of associa-
tion, there is no need for multiplicity, roles, and constraints. These elements are simply
irrelevant.

To draw a generalization relationship, we first need to define superclass, subclass,
abstract class, concrete class, and discriminator. A superclass is a class that contains some
combination of attributes, operations, and associations that are common to two or more
types of objects that share the same purpose. Fruit and Apple are examples of superclasses.
The term superclass reflects the concept of superset. The superset or superclass in this case
contains the traits that are common to every object in the set.

Note

RedDelicious GrannySmith

Apple Watermelon Orange

Fruit

194910-3 Ch11.F 5/31/02 2:05 PM Page 122

Session 11—The Class Diagram: Aggregation and Generalization 123

A subclass is a class that contains some combination of attributes, operations, and asso-
ciations that are unique to a type of object that is partially defined by a superclass. In
Figure 11-5, Apple, Watermelon, Orange, RedDelicious and GrannySmith are all examples
of subclasses. Note that a class may be both a superclass and a subclass.

The term subclass reflects the concept of subset. The subset, or subclass, contains a
unique set of properties for only certain objects within the set. The GrannySmith class in
Figure 11-5 would only contain the properties that are unique to GrannySmith apples. A
GrannySmith object would get the rest of the information about the properties it shares
with all apples from the Apple superclass, and all the properties it has in common with all
fruits from the Fruit superclass. In other words, it actually takes three classes to generate a
single object representing a GrannySmith apple.

An abstract class is a class that cannot create objects (cannot be instantiated). Any
superclass that defines at least one operation that does not have a method is said to be
abstract, or lacking a complete definition. Only a superclass can be abstract.

A concrete class is a class that has a method for every operation, so it can create objects.
The methods may be defined in the class or inherited from a superclass. All classes at the
bottom of a generalization hierarchy must be concrete. Any superclass may be concrete.

A discriminator is an attribute or rule that describes how I choose to identify the set of
subclasses for a superclass. If I wanted to organize the information about types of cars, I
could discriminate based on price range, manufacturer, engine size, fuel type, usage, or any
number of other criteria. The discriminator I choose depends on the problem I am trying to
solve. In Figure 11-6, I use a very common practice. I identify a set of predefined types
(that is, type of fruit and varieties within types). Other times I might use a property of
the objects themselves like size, price range, capacity, or age.

Figure 11-6 Modeling generalization with discriminators

The composition of a class reveals the possible discriminating properties. Classes define
properties of objects such as attributes, operations, and association. These are the first
three possible discriminating properties. If objects of the class share the same attributes,

RedDelicious GrannySmith

Apple Watermelon Orange

Fruit

Fruit Variety

Fruit Type

Discriminator

Discriminator

194910-3 Ch11.F 5/31/02 2:05 PM Page 123

Saturday Afternoon124

like age and address, they might be in the same subgroup. However, objects might have the
same attribute (like age), but the values allowed for age in some of the objects are different
from those allowed in others. For example, every Person has an age value assigned. However,
minors would have age values less than 21 (in some states) and adults would have ages
greater than 20.

The same concept applies to operations. Objects might have the same operation, that is,
the same interface, like “accelerate.” But different objects might implement that interface in
very different ways. A car accelerates very differently from a rocket. Even different cars
accelerate using different combinations of parts and fuels.

In summary, there are at least five objective criteria I can use to discriminate between
objects within the same class (superclass):

� Attribute type
� Attribute values allowed
� Operation (interface)
� Method (implementation)
� Associations

Proper use of the discriminator facilitates the use of design patterns such as
abstract factory and state.

There are actually two ways to draw a generalization. Figure 11-5 showed separate lines
from each subclass to its superclass. Figure 11-6 merged the lines from all the subclasses of
a superclass. In either form, draw a triangle at the superclass end of the generalization line
(pointing to the superclass). (Note that you draw a triangle, not an arrow.) Connect the
other end of the generalization to the subclass. Add the discriminator on the generalization
line in simple text.

An illustration: How to model generalization
Building a generalization hierarchy can work in two directions, from the most general class
down to the most specialized classes (specialization), and from the most specialized classes
to the most generalized class (generalization).

The following example builds from general concept down to specifics, using the class
Dog. I need to keep track of various breeds in a dog obedience school in order to understand
and anticipate their unique training requirements.

Step 1: Draw the starting superclass, as in Figure 11-7. It is a class like any other
class. The only thing that makes it a superclass is the fact that I plan to break it
down.

Tip

194910-3 Ch11.F 5/31/02 2:05 PM Page 124

Session 11—The Class Diagram: Aggregation and Generalization 125

Figure 11-7 Steps 1 and 2: Draw the starting superclass and the first set of special-
ized classes (subclasses).

Step 2: Identify the discriminator for the first level of differentiation or specialization.
In this example I chose breed. List the possible values for the discriminator. Identify
what distinguishes the values from one another using the five objective criteria I
described earlier in “Elements of generalization.” Then create a class for each value.
In Figure 11-7, I broke Dog down into the breeds (discriminator) Collie, Spaniel, and
Setter.
Step 3: Connect all the Breed subclasses to the Dog superclass using the generaliza-
tion relationship, a line with the triangle at the superclass end of the line (see Figure
11-8). Place the discriminator label on the line. It doesn’t really matter where exactly,
as long as it is between the superclass and subclasses. Other analysts are going to
look at my diagram and wonder why I chose this set of subclasses. In any given
problem there might be quite a few different ways to organize the information.

Figure 11-8 Step 3: Draw the generalization relationship.

Step 4: The process continues by repeating the steps for each new subclass I create.
In Figure 11-9, I have expanded only the Spaniel subclass.

Collie Spaniel Setter

Dog

BreedDiscriminator

Collie Spaniel Setter

Dog

194910-3 Ch11.F 5/31/02 2:05 PM Page 125

Saturday Afternoon126

Figure 11-9 Step 4: Further specialization — subclassing a subclass

REVIEW

Associations identify the fact that types of objects can work together. Two specialized forms
of association, aggregation and composition, tighten the rules about how the objects work
together.

� Aggregation models assemblies or configurations of objects. You identify an aggre-
gation association with a hollow diamond on the end of the association.

� Composition is a form of aggregation. Composition says that the member objects
may not exist outside of the assembly. You identify a composition association with
a solid diamond on the end of the association.

� Generalization is not a form of association. It is often called the “is a” relationship.
Generalization allows you to break apart a class definition according to the similari-
ties and differences in the objects that the class represents. You identify an inheri-
tance or generalization relationship with a hollow triangle at the superclass end of
the relationship.

� A superclass contains shared properties, common to many types of objects within
the same class. A subclass contains only the properties unique to one type of object
within the class.

� Abstract classes cannot create objects because their definition is missing a method
for at least one operation. Concrete classes can create objects because they have
access to a method for every operation.

� The discriminator describes the attribute(s) or rule that you used to choose the sub-
classes. You place the discriminator on the relationship line between the superclass
and the subclasses.

English Springer
Spaniel

Dwarf
Spaniel

Japanese
Spaniel

Cocker
Spaniel

Collie Spaniel Setter

Dog

Sub-breed

Breed

Discriminator

Discriminator

194910-3 Ch11.F 5/31/02 2:05 PM Page 126

Session 11—The Class Diagram: Aggregation and Generalization 127

QUIZ YOURSELF

1. What is the relationship between association and aggregation? (See “Modeling
Aggregation and Composition.”)

2. What is the relationship between composition and aggregation? (See “Modeling
Aggregation and Composition.”)

3. What symbol should you use to draw an aggregation association? (See “Modeling
Aggregation and Composition.”)

4. What symbol should you use to draw a composition association? (See “Modeling
Aggregation and Composition.”)

5. What is a superclass? (See “Elements of generalization.”)
6. What is a subclass? (See “Elements of generalization.”)
7. What is a discriminator? (See “Elements of generalization.”)

194910-3 Ch11.F 5/31/02 2:05 PM Page 127

194910-3 Ch11.F 5/31/02 2:05 PM Page 128

Session Checklist
✔ Applying the Class diagram notation to the case study
✔ Introducing the UML notation for design patterns
✔ Applying design patterns

S essions 9 through 11 covered the most commonly used elements of the Class diagram.
Now that you know the individual elements of the Class diagram, it’s time to put it all
together in relation to the case study.

Modeling the Inventory Control System for the Case Study
I have taken a portion of the problem statement and expanded it so that you’ll have the
opportunity to use most of the notations that you’ve learned so far. This portion of the
problem description will be your source for the modeling effort.

In a real project, you would also use the Use Case narratives. But for the
narrow scope of this course (to learn the UML notation), I chose to use this
abbreviated text.

Problem statement: for the inventory control system
“Our system is designed to inventory and ship uniquely identified products. These products
may be purchased directly from vendors and resold as is, or we can package vendor products
together to make our own custom product. Customers place orders for one or more items,
but we acknowledge interested customers in the system whether they have purchased yet

Note

S E S S I O N

Applying the Class Diagram
to the Case Study

12

204910-3 Ch12.F 5/31/02 2:06 PM Page 129

Saturday Afternoon130

or not. Each item corresponds to a product. We identify each product using a unique serial
number. The Customer may inquire on the status of his Orders using the order number.”

“Shipments of products from vendors are received and placed into inventory. Each prod-
uct is assigned to a location so that we can easily find it later when filling orders. Each
location has a unique location identifier. Customer orders are shipped as the products
become available, so there may be more than one shipment to satisfy a single customer
order. But a single shipment may contain products from multiple orders. Any items that
have not been shipped are placed on a backorder with a reference to the original order.”

Building the Class diagram
To build the Class diagram, follow the steps described in Sessions 9 through 11:

1. Identify the classes, name them, and define them so you know why they are part
of the model. Turn to Session 9 for a reminder if you get stuck.

2. Identify, name, and define the associations between pairs of classes. Watch out for
reflexive associations as well. Assign multiplicity and constraints where needed. If
naming an association is difficult, try role names. Session 10 provides an explana-
tion of each of these model elements.

3. Evaluate each association to determine whether it should be defined as aggregation.
If it is aggregation, then could it be composition? If you need help remembering the
distinction between aggregation and composition, turn to Session 11.

4. Evaluate the classes for possible specialization or generalization. Check out
Session 11 if you get stuck.

Figure 12-1 illustrates the completed Class diagram. You can try building the diagram on
your own, then compare your results with Figure 12-1, or you can go ahead and examine
the diagram. In the numbered list that accompanies the figure, I explain each of the model
elements.

1. “Customers place orders for one or more items, but we acknowledge interested
customers in the system whether they have purchased yet or not.”

On the “places” association between Customer and Order, the multiplicity of
1..1 means that every Order must be placed by a Customer. An Order cannot
exist on its own.

This sounds kind of like composition, doesn’t it? But it can’t be composition
if it doesn’t first satisfy the rules for aggregation. That is, the order would
have to be part of the customer. Because the order is not part of the
customer, the relationship is a simple association.

Note

204910-3 Ch12.F 5/31/02 2:06 PM Page 130

Session 12—Applying the Class Diagram to the Case Study 131

Figure 12-1 Case study Class diagram

2. “Customers place orders for one or more items, but we acknowledge interested cus-
tomers in the system whether they have purchased yet or not. The Customer may
inquire on the status of his Orders using the order number.”

On the “places” association between Customer and Order, some customers may
not yet have placed any orders while others may have been doing business
with us for a long time. The Order multiplicity should be 0..*. But a Customer
can use the order number as a qualifier to look up a specific Order (qualified
association), so the multiplicity with the qualifier is 1..1.

3. “Customers place orders for one or more items. . . .”
An Order is constructed using one or more Line Items. Each Line Item includes
information like a price and any applicable discount. But every Line Item
exists only as part of an Order represented by composition and a multiplicity
of 1..1 on the Order. There must be at least one item on the Order so the
LineItem multiplicity is 1..*.

4. “Each item corresponds to a product. We identify each product using a unique serial
number.”

Each Line Item is associated with a specific Product (1..1). The Line Item
refers to the Product using a serial number as a qualifier (qualified associa-
tion). A Product might not ever be ordered, so the multiplicity on the Line
Item end is zero to one (0..1). In other words, a Product might not yet be
associated with a Line Item.

places >

1..1 1..1 1..1

1..1

1..*

1..*
0..1

1..10..1

0..*

Customer
ordernbr: int

serialnbr: String

CustomProduct VendorProduct

Order LineItem

Product 0..* 1..1 Product

generates >1 2

9

7

5

delivers >

0..1 2..*

VendorShipment CustomerShipment

Shipment

10

6

3

8

4

204910-3 Ch12.F 5/31/02 2:06 PM Page 131

Saturday Afternoon132

5. “Any items that have not been shipped are placed on a backorder with a reference to
the original order.”

An Order that is not filled completely will generate another Order that it
refers to as a backorder (role name) and that backorder is associated with the
Order that generated it (reflexive composition). Each backorder refers to
exactly one other Order, its source (1..1). But each Order may or may not
generate backorders (0..*).

6. “Customer orders are shipped as the products become available, so there may be
more than one shipment to satisfy a single customer order. But a single shipment
may contain products from multiple orders.”

The Order is shipped to the Customer via a Customer Shipment. When the
Order has not yet been shipped, the multiplicity on the Customer Shipment is
zero (that is, there is no Shipment associated with the Order). When more
than one Shipment is needed to fill the Order (for example, the items are
being shipped from multiple locations or are restricted by shipping require-
ments), the multiplicity is “many.” Hence the complete multiplicity range is
0..*. A shipment may contain products from many orders, resulting in an
Order multiplicity of 1..*.

7. “Shipments of products from vendors are received and placed into stock. . . .
Customer orders are shipped as the products become available.”

Customer Shipment is just one type of Shipment (generalization). Another
type of Shipment is the incoming Vendor Shipment referred to in the receiv-
ing process. CustomerShipment and VendorShipment are specializations of
Shipment and so inherit all the properties of Shipment.

8. “Each product is assigned to a location so that we can easily find it later when
filling orders. Each location has a unique location identifier.”

Many Products or no Products may be in a given Location (0..*). But in order
for you to record a Product into inventory, you have to assign it to a Location.
So there will never be a Product that is not associated with a Location. This
requires a multiplicity of 1..1 on the Location end of the association.

9. “These products may be purchased directly from vendors and resold as is, or we can
package vendor products together to make our own custom product.”

VendorProduct and CustomProduct are both types of Product (generalization),
specializations of the class Product. Both can be ordered and shipped. But
CustomProducts are configurations of VendorProducts and VendorProducts are
standalone items that are ordered and shipped independently, not in a con-
figuration of other Products.

10. “. . . we can package vendor products together to make our own custom product.”

We can create custom products using VendorProducts; for example, a home
entertainment system might consist of a receiver, CD player, speakers, TV, and
so on (aggregation). Why is it aggregation and not composition? Because the
VendorProducts, like the CD player, may exist and be sold separately from the
entertainment system. The multiplicity on VendorProduct is 2..* because a
CustomProduct is only a logic entity made up of a combination of at least two
VendorProducts. A VendorProduct may be sold individually and does not have
to be part of any CustomProduct configuration (0..1).

204910-3 Ch12.F 5/31/02 2:06 PM Page 132

Session 12—Applying the Class Diagram to the Case Study 133

Remember to pay close attention to the vocabulary of the problem description. The peo-
ple who work every day with this information have already created and refined their own
verbal abstractions to describe their environment. When you write software, you’re only
copying their abstractions into another form (software) by applying the rigor and precision
of a disciplined analytical approach.

Understanding UML Notation for Design Patterns
After a short time working with Class diagrams you will begin to see the same structures
appear in many of your diagrams. You will see patterns in the way a problem or a solution
is defined. The UML provides a notation to represent common software patterns in your
Class diagram to make creating your diagrams easier and to make the diagrams easier to
understand.

Software design patterns have created a lot of interest in the past few years. They have
also generated some misconceptions. So what exactly is a software design pattern? The
software version of the pattern concept was actually borrowed from other disciplines like
building architecture where patterns help architects work more easily with complex struc-
tures. In fact, you use patterns all the time. For example, when I say the word kitchen,
what comes to mind? You probably envision counters, cupboards, a refrigerator, a stove,
maybe a microwave, and various types of food. Now, if everyone knows what a kitchen is,
does that mean that all kitchens are identical? No, the concept of kitchen can be imple-
mented in literally thousands of different ways.

Kitchen is only a pattern, an idea that allows people to share a common vision without
limiting how they each want to implement that vision. So how do you define a pattern?
Table 12-1 identifies and describes four basic elements for defining a pattern.

Table 12-1 Elements of a Pattern Definition for Kitchen

Pattern Element Element Example for Kitchen

A problem to solve We need a place to store and prepare food.

The resources to solve it We can use appliances, counters and cupboards, food,
utensils, and so on.

The set of rules about how the The refrigerator stores perishable items prior to
resources could be used to solve preparation, the oven is used to heat food, and so on.
the problem

Guidelines to know when the It works well within the context of a house. It does
pattern works well and when it not work well outside the house (for example, while
does not camping or picnicking).

Formal definitions for software patterns include a bit more, but for an introduction this
is more than adequate.

One important thing to remember about patterns is that they define a concept, not code.
You can find books that provide code examples for patterns so that you can see how you
might apply the pattern in your own code. But a pattern is not the code. It is a concept

204910-3 Ch12.F 5/31/02 2:06 PM Page 133

Saturday Afternoon134

designed to help developers communicate common solutions to common problems. In fact,
because communication and problem solving are parts of nearly every occupation, you can
find patterns in almost every discipline of software development. There are analysis level
patterns, business patterns, architectural patterns, and many more, all developed to facili-
tate communication about solutions that are used consistently to solve similar recurring
problems in each area of endeavor.

One software design pattern, called the observer design pattern, addresses the problem
where one object needs to know when something happens to another object so that it
can respond immediately to the change. The example in Table 12-2 uses the Order and the
Shipment from the Inventory Control case study to illustrate the pattern. Using the four
elements from Table 12-1 as a guide, Table 12-2 describes how the observer design pattern
allows you to immediately update the Order when the Shipment leaves the building.

Table 12-2 The Observer Design Pattern Example

Pattern Element Element Description for Observer Pattern

A problem to solve The Order needs to be updated to a status of “shipped” when
the Shipment has left the premises. The “shipped” status is the
condition that kicks off the Accounts Receivable and tracking
processes.

The resources to solve it The observer pattern identifies two resources, an observer
object and an observable (observed) object. The observable
object is responsible for notifying the observers. This elimi-
nates the need for the observer to constantly ask the observ-
able (observed) object what is happening.

The set of rules about how The rules for the observer pattern dictate two roles: The
the resources could be Shipment object that is being observed assumes the role of
used to solve the problem the observable object, and the Order takes on the role of the

observer. The Order tells the Shipment object that it wants to
be notified when something happens. The Shipment places the
Order on its list of observers to be notified. When the
Shipment is shipped, the Shipment sends a standard notifica-
tion to all the observers in the list. When the Order receives
the notification, it can then respond as it needs to.

Guidelines to know when The observer pattern can be overused, causing performance
the pattern works well problems that result from the volume of notifications sent to
and when it does not all observers for every change in the observable object. It

works best when a few very specific immediate responses are
essential to the application, as in a user interface, embedded
application, or automation.

204910-3 Ch12.F 5/31/02 2:06 PM Page 134

Session 12—Applying the Class Diagram to the Case Study 135

The next question is how to model the use of a pattern in the UML. The UML refers to a
pattern as a collaboration (not to be confused with a Collaboration diagram). In Figure 12-2,
the collaboration is rendered as an oval shape containing the pattern name. The classes are
drawn around it. Then you draw dashed lines from the collaboration to the classes that
implement the pattern. At the end of the dashed lines next to the classes, you place the
role that the class plays in the implementation of the pattern. In Figure 12-2, the Shipment
plays the role of observable and the Order plays the role of observer.

Figure 12-2 Observer pattern example in a Class diagram

Using Design Patterns in the Class Diagram
Another common problem in applications is managing complex state-specific behavior. If you
haven’t worked much with states, that may sound complicated. But you may have worked
around this problem without realizing it. Have you ever written a method in which you
found you had to use a lot of conditional logic like if statements or case statements? You
couldn’t determine how the method should work until you first checked on the condition of
various attributes in the object. Well, an object’s state is nothing more than the current val-
ues of its attributes. So when you checked the attribute values in the conditional logic, you
were actually checking the object’s state.

When the implementation of the methods depends on changes in the attribute values
(state changes), the code can quickly become very complicated to write and difficult to
maintain. The state design pattern offers a solution that both makes the initial writing
easier and substantially reduces the maintenance costs.

Table 12-3 describes the state design pattern.

is observed by

observable observer

Observer
Pattern

0..* 1..1
Shipment Order

204910-3 Ch12.F 5/31/02 2:06 PM Page 135

Saturday Afternoon136

Table 12-3 The State Design Pattern Example

Pattern Element Element Description for State Pattern

A problem to solve You need to create a Product class for the Inventory Control
System. The Product will be used in a number of different
steps within the system. Depending on where a Product is in
the workflow, each method on the Product may or may not be
valid. Also, some methods might need to behave differently
during different steps in the workflow.

The resources to solve it The state design pattern has two resources, in this example
they are the Product, which provides the context, and the
Product State (state), which defines the state-specific imple-
mentations for each method. Figure 12-3 illustrates the Class
diagram for this relationship.

The set of rules about how The rules for the state design pattern dictate two roles: the
the resources could be context, which is provided by the Product class, and the state,
used to solve the problem which is provided by the Product State class. The Product State

is actually a generalization of classes that define the individ-
ual states for Product and their state-specific implementations
for each operation.

The Product receives requests in the course of normal business.
But rather than implement the requested operations, it dele-
gates or forwards each request to an instance of a ProductState
subclass that represents the current state of the Product. The
ProductState instance performs the implementation that it
owns for the operation and returns control to the Product. As
the state of the Product changes, each new request is actually
forwarded to an instance of a different ProductState subclass
that represents the current condition of the Product.

Guidelines to know when Many objects simply don’t have a significant number of states,
the pattern works well or their behavior doesn’t vary significantly from state to state.
and when it does not

Figure 12-3 shows the association “delegates to” between Product and ProductState. If
that were all the Class diagram showed you, then you wouldn’t really be able to tell why
they were associated. After all, Products are also associated with LineItems and Locations.
The association name may give you a clue, but when you add the pattern notation, you
immediately bring in all the information about how the pattern tells you to use these two
classes in this relationship. The pattern notation explains their communication, the meth-
ods they need to support, and the attributes they will need in order to support the relation-
ship and the communication.

204910-3 Ch12.F 5/31/02 2:06 PM Page 136

Session 12—Applying the Class Diagram to the Case Study 137

Figure 12-3 The State design pattern in a Class diagram using the Product example

Using the design pattern notation in the Class diagram can streamline the review process.
If all the reviewers know that portions of your design have been addressed using proven tech-
niques, then the trust level can rise above the level associated with a homegrown design that
has never been tried. Although all the design needs to be tested, the creation and review of
the design can be streamlined.

There are many more documented patterns, and more are being developed all the time. To
learn patterns, you may want to keep in mind the four elements listed in this session. First,
learn to identify the problems that the patterns are designed to address. If you know the
problems, then as you go to work on your next project you’ll recognize the problem when it
appears. You’ll see objects that transition through many states and say, “Ah ha! Maybe I can
use the state pattern to make this easier to work with.” Now you have a handle to an exist-
ing, proven resource (a pattern), and you can find out how it works and apply it to your
design. Second, know when not to use a pattern. Think back to the kitchen example. A
kitchen pattern was designed to address the need to store and prepare food. But do you
really want a kitchen implementation when you go backpacking?

I want to share one parting caution about patterns. Patterns are helpful insofar as they
improve your ability to share common solutions with your teammates. But that implies that
you and your teammates know, understand, and use the same patterns consistently. If you
throw lots of new patterns into your design and your teammates have no idea what you’re
doing, then what have you gained? You still have to explain every detail of your design. In
fact, some patterns are refined so much that they aren’t very easy to understand. You may
actually make your application more abstract and difficult to test and maintain, because
the testers and maintenance programmers can’t figure out your code.

delegates to

context state

State
Pattern

0..* 1..1
Product

Received InStock Held Sold

ProductState

204910-3 Ch12.F 5/31/02 2:06 PM Page 137

Saturday Afternoon138

REVIEW

The Class diagram models the resources of the problem domain. Associations represent the
rules that govern the relationships between the resources. Multiplicity defines the allowable
combinations of objects in a relationship. Qualified associations provide a means to access
one or more objects with an identifier, thus reducing search time and complexity.

� To build the Class diagram, follow the steps described in Sessions 9 through 11:
1. Identify the classes, name them, and define them so you know why they are

part of the model.
2. Identify, name, and define the associations between pairs of classes. Watch

out for reflexive associations as well. Assign multiplicity and constraints
where needed. If naming an association is difficult, try role names.

3. Evaluate each association to determine whether it should be defined as
aggregation. If it is aggregation, then could it be composition?

4. Evaluate the classes for possible specialization or generalization.
� Patterns define a common solution to a common problem. Patterns identify the

problem needing a solution, the resources to solve the problem, the rules for how
the resources should be used to solve the problem, and when it is and is not appro-
priate to apply the pattern. Patterns are not code.

� The notation for applying patterns to a Class diagram is an oval collaboration icon
with the pattern name. Dashed lines connect the pattern to the participating
classes. The role names are placed at the ends of the dashed lines near the class
that plays the role.

QUIZ YOURSELF

1. How would you use multiplicity to say that a Shipment must contain at least
one Product but can contain as many Products as you like? (See “Modeling the
Inventory Control System for the Case Study.”)

2. What notation would you use to indicate that there are two different types of
Shipments? (See “Modeling the Inventory Control System for the Case Study.”)

3. What is a pattern? (See “Understanding UML Notation for Design Patterns.”)
4. What is the notation for a pattern? (See “Understanding UML Notation for

Design Patterns.”)
5. How do you indicate the way in which a class participates in a pattern?

(See “Understanding UML Notation for Design Patterns.”)

204910-3 Ch12.F 5/31/02 2:06 PM Page 138

Session Checklist
✔ Explaining the purpose and notation of the Object diagram
✔ Comparing and contrasting the Object and Class diagrams
✔ Explaining how to use the Object diagram to test a Class diagram

The Object diagram is primarily a tool for research and testing. It can be used to under-
stand a problem by documenting examples from the problem domain. It can also be
used during analysis and design to verify the accuracy of Class diagrams.

Understanding the Object Diagram
The Object diagram models facts about specific entities, whereas the Class diagram models
the rules for types of entities. Objects are real things, like you and me, this book, and the
chair you’re sitting in. So an Object diagram would represent, for example, the fact that you
own this copy of UML Weekend Crash Course. In contrast, a Class diagram would describe the
rule that people can own books.

To come up with a set of rules that describe objects and their relationships, you must
have real things on which to base the rules. The qualities of each real object are compared
to identify common properties that support a common description. If an object is encoun-
tered that does not fit the description, either the current description must change or a new
description must be created to support the new facts.

Earlier in this book, you started with a problem domain that you described using the Use
Case view. Use Cases described interactions between the actors and the system. From those
Use Cases, you found scenarios. Now scenarios become your source for test cases to verify
every behavior that your system needs to support. Scenarios are also the source for the facts
you’ll use to build your Object diagrams.

S E S S I O N

Modeling the Static View:
The Object Diagram

13

214910-3 Ch13.F 5/31/02 2:06 PM Page 139

Saturday Afternoon140

Introducing Elements of the Object Diagram Notation
The Object diagram consists of just two elements: objects and links. You know already that
an object is a real entity created from a class, a definition of a type of object. In the same
way, a link is created from an association, the definition of a type of relationship. A link
represents a relationship between two objects. An association defines a type of relationship
and the rules that govern it.

Figure 13-1 shows an object called Tom. Like the Class notation, the Object notation has a
name compartment at the top of the box. The name includes the name of the object and the
name of the class to which the object conforms: “Customer.” This helps distinguish the object
Tom of type Customer from the object Tom of type Employee. This notation also allows you to
model an example or test case in which many objects of the same class participate (for exam-
ple, one employee supervises another employee).

Figure 13-1 UML Object notation

Use the format object name : class name to fully define the object name. Then the entire
expression is underlined. You may also use the abbreviated form, : class name, without the
object name. This form is called an anonymous object. It is used when you want to draw an
example where it doesn’t really matter which specific object participates in the example
because any object of the named class would behave in exactly the same way.

The second compartment in the object box contains facts about the attributes. Each
attribute is named and assigned a value. In Figure 13-1, you see name = Tom Pender. An
object is real. It exists. So it can have values assigned to each attribute. Even a value of
blank or null is a value that distinguishes the condition of the object from other possibili-
ties. Note how different this is from the class attribute compartment. The class contained
definitions for each attribute and contained no values. Again, the class is a set of rules
where the object is a set of facts. The class says that an Employee object may have a name
attribute that contains a String value 20 characters long. The object says that the name
attribute does contain the value “Tom Pender.”

Comparing the Object Diagram and the Class Diagram Notations
Figure 13-2 contains a Class diagram showing the rules regarding Shipment and Product
and the relationship between the two objects. The Class diagram defines the attributes that
must be used to define each type of object and the behaviors that each type of object must
support.

Tom: Customer

custID = 123456
name = Tom Pender
address = 1234 UML Ave

214910-3 Ch13.F 5/31/02 2:06 PM Page 140

Session 13—Modeling the Static View: The Object Diagram 141

Figure 13-2 UML Class notation for the Shipment and Product

The Object diagram in Figure 13-3 shows that the object 4321 of type Shipment has two
Products. Each attribute for the three objects is assigned a value. Note that the special han-
dling attribute on one Product is blank. This can be a valid value. It is the class definition
for the attribute that determines the valid values that may be assigned to the attribute
when it appears within an object.

Figure 13-3 UML Object notation for a Shipment with two Products

Note what is missing from the object notation that was required in every class. The third
compartment, containing the operations, was omitted. But why leave it out of the object if
the class sets the rules that an object must follow? When you included the attributes, it was
because each object potentially possessed different values for the attributes defined by the
class. But the class defines an operation that does not have multiple interpretations or val-
ues. Every object of the same class possesses the same operations. To model the operations
again on the Object diagram would add redundancy without adding new information. So you
leave the operations off of the Object diagram.

Having seen examples of the differences between the Class and Object diagrams, you can
now refer to Table 13-1 for a side-by-side comparison of their features. A working knowledge
of the relationship between these two types of diagrams will help you understand how to use
them both to facilitate analysis and test the results of your analysis and design efforts.

4321 : Shipment

-date= 01-27-02
-destination= Portland, OR
-shipper= Billy Bob's Trucking

21 : Product

-desc= CD Player XL 850
-serialnbr= 123456
-spec_handling = 96 : Product

-desc= Speaker Set SS420
-serialnbr= 234567
-spec_handling = fragile

Shipment

-date: Date = today
-destination: Address = null
-shipper: Vendor = null

+authorize(empl: Employee)
+seal(empl: Employee)
+ship(shipper: Vendor)

Product

-desc: String = null
-serialnbr: String = system assigned
-spec_handling: String = null

delivers

0..1 1..*
+reserve(order: Order)
+stock(loc: Location)

214910-3 Ch13.F 5/31/02 2:06 PM Page 141

Saturday Afternoon142

Table 13-1 Comparison of the Class and Object Diagrams

Class Diagram Object Diagram

The class has three compartments: The object has only two compartments: name
name, attribute, and operation. and attribute.

The class name stands alone in the The format for an object name is object-name,
class name compartment. colon, class-name (1234:Order), with the entire

expression underlined. You will encounter this
notation in other diagrams that model objects
rather than classes. Sometimes the object name
is left off and only the colon and class-name are
used. This is referred to as an anonymous object.

The class attribute compartment defines The object defines only the current value of each
the properties of the attributes. attribute for the test or example being modeled.

Operations are listed in the class. Operations are not included in the object because
they would be identical for every object of the
same class.

The classes are connected with an The objects are connected with a link that has a
association with a name, multiplicity, name and no multiplicity. Objects represent sin-
constraints, and roles. Classes represent gle entities. All links are one-to-one, so multi-
a “classification” of objects, so it is plicity is irrelevant. Roles may be used on links.
necessary to specify how many may
participate in the association.

Applying Object Diagrams to Test Class Diagrams
Drawing a Class diagram and incorrectly assuming that it’s correct is very easy to do. That’s
why you need to use additional diagrams to test the Class diagram. For example, if I brought
you the Class diagram in Figure 13-4, which models the products for the Inventory Control
application (sure that it’s too simple to be wrong), you could test my diagram with an
Object diagram. If you did, you would find four different problems and be able to provide
objective proof that the Class diagram needs to be changed.

If errors can be made on such a simple model, think of how valuable such a
testing method is for very complex models.

Tip

214910-3 Ch13.F 5/31/02 2:06 PM Page 142

Session 13—Modeling the Static View: The Object Diagram 143

Figure 13-4 Initial Class diagram modeling products

Figure 13-4 tells you that each Shipment may have zero or more VendorProducts and zero
or more CustomProducts. Each type of Product may or may not have been shipped.

The rest of this session steps through the construction of an Object diagram that models
the set of test cases for the Product Class diagram in Figure 13-4. The construction process
demonstrates the model elements of the Object diagram and how the Object diagram illus-
trates test cases.

I’m going to go through this one step at a time. You may spot more problems with the
original Class diagram than the current test case reveals. By the time I cover all the test
cases, we should have found all the problems. If we don’t, just send me a nice letter with
the corrections.

Test case 1
A CustomProduct is created by assembling VendorProducts. VendorProducts 28, 38, and 72
create CustomProduct 425.

Figure 13-5 shows how the Class diagram is changed to include the aggregation relation-
ship between CustomProduct and VendorProduct.

The change shows that a CustomProduct is created from one or more VendorProducts. But
a VendorProduct doesn’t have to be used in a CustomProduct.

Test case 2
What is the minimum number of objects that make up a CustomProduct configuration? After
reviewing all the test data, we find that a CustomProduct must consist of at least
two VendorProducts. Otherwise, there is no way to distinguish a CustomProduct from a
VendorProduct.

CustomProduct

VendorProduct0..*

0..1

0..1

0..*

Shipment

214910-3 Ch13.F 5/31/02 2:06 PM Page 143

Saturday Afternoon144

Figure 13-5 The Object diagram (top) for Test Case 1 and the resulting updated
Class diagram (bottom)

Figure 13-6 shows that the test case revealed the need to alter the minimum multiplicity
for VendorProducts used to assemble a CustomProduct from 1 to 2.

Figure 13-6 The Object diagram (top) and the resulting updated Class
diagram (bottom)

2..*
0..1

0..1

0..*

0..*

CustomProduct

VendorProduct

0..1

Shipment

38: VendorProduct4322: Shipment

47: VendorProduct

426: CustomProduct

0..1

0..1

0..*

0..*

28: VendorProduct

CustomProduct

VendorProduct

Shipment

38: VendorProduct4321: Shipment

72: VendorProduct

425: CustomProduct

1..*

0..1

214910-3 Ch13.F 5/31/02 2:06 PM Page 144

Session 13—Modeling the Static View: The Object Diagram 145

Test case 3
Is there evidence that a CustomProduct may be configured into another CustomProduct?

Figure 13-7 shows that the test case revealed the need to support aggregation between
one CustomProduct and other CustomProducts. For example, a component stereo system,
consisting of five VendorProducts, could become part of a home entertainment center.

Figure 13-7 The Object diagram (top) and the resulting updated Class diagram
(bottom)

Test case 4
Are there any common characteristics among the objects used to configure CustomProduct?

Figure 13-8 shows that both CustomProducts and VendorProducts can be part of a
CustomProduct. This common property can be generalized. That is, you can create a general-
ized class to contain what the two types of products have in common. The new aggregation
association says that any type of Product (VendorProduct or CustomProduct) may participate
in the assembly of a CustomProduct.

Both classes also define the same type of association with Shipment. This too can be
moved up to the generalized class. A single association from Shipment to Product says that
any type of Product (VendorProduct or CustomProduct) may be shipped.

2..*

0..*

0..1

0..1

0..*

0..*

802: CustomProduct

VendorProduct

0..1

0..1

Shipment

456: CustomProduct5467: Shipment

312: CustomProduct

775: CustomProduct

CustomProduct

214910-3 Ch13.F 5/31/02 2:06 PM Page 145

Saturday Afternoon146

Figure 13-8 Identifying common properties to create a generalization

By the way, the Product generalization combined with the aggregation
between the subclass CustomProduct and the superclass Product is an
example of the software design pattern called the Composite design pattern
(not to be confused with composition).

Use the Object diagram on an as-needed basis to model specific examples or test cases.
Compare the representation of the facts against the representation of the rules set forth in
the Class diagram. Adjust the Class diagram to address errors and missed requirements.

REVIEW

In this session, you learned the notation for the Object diagram.

� The Object diagram is used to analyze the objects in the problem domain to deter-
mine the class definition requirements.

� After the Class diagram has been developed, the Object diagram is used to test the
Class diagram.

� Objects are identified with a name in the form object-name: class-name. The object
name can be left off to indicate an anonymous object.

� The object icon consists of two compartments, one for the name and one for the
attributes. Attributes are described with a name and the current value.

Tip

2..*

0..*

0..1

0..1

0..1 1..*

2..*

0..*

0..*

VendorProduct CustomProduct

0..1

0..1

0..1

Shipment

Shipment delivers > Product

CustomProduct

VendorProduct

214910-3 Ch13.F 5/31/02 2:06 PM Page 146

Session 13—Modeling the Static View: The Object Diagram 147

� Operations are not defined on objects because every object of the same class would
have identical operations, creating redundancy in the model.

� Objects are connected using links. Classes are connected using associations. Links
are defined with a name and optional roles. Multiplicity and constraints are not
relevant with a link.

QUIZ YOURSELF

1. Name two reasons for using an Object diagram. (See “Understanding the Object
Diagram.”)

2. Name the two elements of the Object diagram. (See “Introducing Elements of the
Object Diagram Notation.”)

3. How do you write the name of an object? (See “Introducing Elements of the Object
Diagram Notation.”)

4. What is a link? (See “Introducing Elements of the Object Diagram Notation.”)
5. Why don’t you represent operations in an object? (See “Introducing Elements of

the Object Diagram Notation.”)

214910-3 Ch13.F 5/31/02 2:06 PM Page 147

214910-3 Ch13.F 5/31/02 2:06 PM Page 148

Session Checklist
✔ Explaining the purpose and use of the Activity diagram
✔ Explaining the Activity diagram notation

The Activity diagram is part of the Functional view because it describes logical
processes, or functions, implemented using code. Each process describes a sequence of
tasks and the decisions that govern when and how they are done. You must understand

these processes in order to write correct code.
Functional modeling has acquired a poor reputation with the onset of object-oriented

(OO) modeling. But both functional modeling and data modeling provide valuable insight
into software development. OO development methods simply bring the two concepts
together. Functional modeling is still a very basic part of any application design.

Introducing the Activity Diagram
In the past, you used flowcharts, a simple technique with a wide range of applications. The
UML offers an enhanced version of flowcharts in the form of the Activity diagram, the focus
of this session.

Where might you use the Activity diagram? There are at least three places in the UML
where an Activity diagram provides valuable insight: workflow, Use Cases, and operations.

Modeling workflow and Use Cases
When modeling a Use Case, you’re attempting to understand the goal that the system must
achieve in order to be successful. Use the Activity diagram to follow the user through a pro-
cedure, noting the decisions made and tasks performed at each step. The procedure may
incorporate many Use Cases (workflow), a single Use Case, or only part of a Use Case as you

S E S S I O N

Modeling the Functional View:
The Activity Diagram

14

224910-3 Ch14.F 5/31/02 2:06 PM Page 149

Saturday Afternoon150

have currently modeled it. It’s all part of the validation process. Each diagram lends a new
perspective to the information about the system.

A workflow-level Activity diagram represents the order in which a set of Use Cases is exe-
cuted. An Activity diagram for one Use Case would explain how the actor interacts with the
system to accomplish the goal of the Use Case, including rules, information exchanged,
decisions made, and work products created.

Modeling the user’s work this way does not bind you to that particular version of the
process. Remember that for each goal (Use Case), there may be any number of valid
processes. But creating such a model will likely reveal the essential elements of the process
in a way that is familiar to the users. The new presentation then facilitates the interview to
clarify the tasks and the reasons behind them. This is your opportunity to ask those all-
important “why” questions to get at the goal of the process and each task used to perform
the process.

Defining methods
The Activity diagram can also be used to model the implementation of complex methods.
When defining the implementation for an operation, you need to model the sequence of
data manipulation, looping, and decision logic. Modeling complex functions can prevent
problems later when you write the code by revealing all the requirements explicitly in the
diagram. Models make most, if not all, of your assumptions visible and consequently easier
to review and correct.

That last statement is worth emphasizing. It is very tempting to shortcut the
modeling process, but the true value of modeling is in revealing what you
know so that it can be challenged and verified. Making assumptions sabo-
tages this very valuable benefit of modeling.

The Activity diagram contains all the logical constructs you find in most programming
languages. In fact, it can translate quite well into pseudo-code or even native code.

I should offer one clarification here regarding the vocabulary of the UML. The word oper-
ation in the UML refers to the declaration portion of a behavior defined by a class. This typ-
ically means the name, parameters, and possibly the return type. This is also often called
the interface, the information you use to tell the object what you want it to do.

In contrast, the word method is used to refer to the implementation of an operation, the
code that is executed when you invoke the interface. The Activity diagram may be used to
design the requirements for a method. Because the UML does not provide a place to model
the methods in a Class diagram, or anywhere else, the Activity diagram can fill in this miss-
ing piece.

Not everyone has accepted or uses the definitions for operation and method
as they are used in the UML.

To be sure, not every operation is complicated enough to warrant drawing an Activity
diagram. The point is that the Activity diagram is well suited to the task when it is needed.

Tip

Tip

224910-3 Ch14.F 5/31/02 2:06 PM Page 150

Session 14—Modeling the Functional View: The Activity Diagram 151

Taking a Look at Activity Diagram Notation
In this section, I give you a quick tour of the notation. A lot of this may be familiar if
you’ve used flowcharts, so feel free to skim over the session until you spot something that
looks new.

Activities and transitions
An activity is a step in a process where some work is getting done. It can be a calculation,
finding some data, manipulating information, or verifying data. The activity is represented
by a rounded rectangle containing freeform text. An Activity diagram is a series of activities
linked by transitions, arrows connecting each activity. Typically, the transition takes place
because the activity is completed. For example, you’re currently in the activity “reading a
page.” When you finish this activity, you switch to the activity “turning page.” When you are
done turning the page . . . well, you get the idea. Figure 14-1 shows this idea graphically.

Figure 14-1 Activities and transitions

This notation starts to show the overlap between the Activity diagram and the Statechart
diagram. In fact, the Activity diagram is a subset of the Statechart diagram. Each Activity is
an action state where the object is busy doing something (as opposed to waiting). Each tran-
sition is a change in state, a change from one activity or active state to the next. So as you
learn the Activity diagram, you are well on your way toward understanding the Statechart
diagram as well. You’ll see and use the Statechart diagram in Sessions 20 through 23.

You may sometimes see the word “Do:” preceding the name of an activity.
This is a common and valid notation to distinguish an activity from other
state-related behaviors defined by the UML.

Guard condition
Sometimes the transition should only be used when certain things have happened. A guard
condition can be assigned to a transition to restrict use of the transition. Place the condi-
tion within square brackets somewhere near the transition arrow. The condition must test
true before you may follow the associated transition to the next activity. The Activity dia-
gram segment in Figure 14-2 tells you that you can’t leave the table when you’ve finished
your dinner unless you have finished your vegetables.

Tip

Read a page Turn a page

224910-3 Ch14.F 5/31/02 2:06 PM Page 151

Saturday Afternoon152

Figure 14-2 A guard condition on a transition

Decisions
The Activity diagram diamond is a decision icon, just as it is in flowcharts. In either dia-
gram, one arrow exits the diamond for each possible value of the tested condition. The deci-
sion may be as simple as a true/false test (for example, the left-hand illustration in Fig-
ure 14-3 asks, “Are there sufficient funds in the customer’s account to cover the with-
drawal?”). The decision may involve a choice between a set of options. For example, the
right-hand illustration in Figure 14-3 asks, “Would you like chocolate, vanilla, strawberry, or
rocky road ice cream?”

Each option is identified using a guard condition. Each guard condition must be mutually
exclusive so that only one option is possible at any decision point. The guard is placed on
the transition that shows the direction that the logic follows if that condition is true. If
you write code, then you have probably used a case statement to handle this same type of
problem.

Figure 14-3 Making a decision

Because every choice at a decision point is modeled with a guard condition, it is possible
to use the conditional logic on transitions leaving an activity as well. For example, in Fig-
ure 14-4 the activity of computing the new account balance reveals whether the account is
overdrawn. All the information needed to make the choice is provided by the activity. To
show the choices resulting from an activity, simply model the transitions exiting the activ-
ity, each with a different guard condition.

Give the
customer the

money

Shake your
finger at the

customer

Serve up
chocolate
ice cream

Serve up
vanilla

ice cream

Serve up
strawberry
ice cream

Serve up
rocky road
ice cream

[insufficient
funds]

[sufficient
funds]

[chose
chocolate]

[chose
vanilla]

[chose
strawberry]

[chose
rocky road]

[Finished your vegetables]
Eat your dinner Leave the table

224910-3 Ch14.F 5/31/02 2:06 PM Page 152

Session 14—Modeling the Functional View: The Activity Diagram 153

Figure 14-4 Making a decision in an activity

Use the decision diamond form from Figure 14-3 when no processing is included in the
step. This usually means that the needed information has been accumulated from a number
of previous steps or the decision is an explicit choice by an actor. Use the form in Figure 14-4
when the completion of the activity provides all the required information to support the
decision.

Merge point
The diamond icon is also used to model a merge point, the place where two alternative paths
come together and continue as one. The two paths in this case are mutually exclusive
routes. For example, you and I might each walk from your house to the store. I choose to
walk down the left side of the street while you walk down the right. But two blocks before
the store we both have to turn right and walk on the right side of that street to the store’s
front door. Neither of us could take both routes at the same time. But whichever route we
take we have to walk the last two blocks in exactly the same manner.

You can also think of the merge point as a labor-saving device. The alternative would be
to model the same sequence of steps for each of the paths that share them.

Figure 14-5 shows alternative paths merging and continuing along a single path. The
diamond represents the point at which the paths converge.

Figure 14-5 The diamond as a merge point

Compute
new balance

[balance > 0] [balance not > 0]

224910-3 Ch14.F 5/31/02 2:06 PM Page 153

Saturday Afternoon154

Start and end
The UML also provides icons to begin and end an Activity diagram (see Figure 14-6). A solid
dot indicates the beginning of the flow of activity. A bull’s-eye indicates the end point.
There may be more than one end point in an Activity diagram. Even the simplest Activity
diagram typically has some decision logic that would result in alternative paths, each with
its own unique outcome. If you really want to, you can draw all your arrows to the same
end point, but there is no need to do so. Every end point means the same thing: Stop here.

Figure 14-6 Begin and end notation for the Activity diagram

Concurrency
The UML notation for the Activity diagram also supports concurrency. This allows you to
model the features of languages that have been introduced since the flowchart was
invented, like Java, C++, and even Smalltalk, on hardware capable of true concurrency. To
show that a single process starts multiple concurrent threads or processes, the UML uses a
simple bar called a fork. In the examples in Figure 14-7, you see one transition pointing at
the bar and multiple transitions pointing away from the bar. Each outgoing transition is a
new thread or process.

Figure 14-7 Split of control using a fork: initiating multiple threads or processes

Synchronization or merging of the concurrent threads or processes is shown in much the
same way. Figure 14-8 shows multiple transitions pointing at the bar, this time called a syn-
chronization bar, and one pointing out of the bar. This indicates that the concurrent pro-
cessing has ended and the process continues as a single thread or process.

Fork

Fork

Starting point Ending point

224910-3 Ch14.F 5/31/02 2:06 PM Page 154

Session 14—Modeling the Functional View: The Activity Diagram 155

Figure 14-8 Merging control using the synchronization bar

I should point out that identifying a concurrency opportunity does not necessarily dic-
tate a concurrency requirement. It simply models the fact that sequential processing is not
required, and if the implementation environment supports it, there may be a chance to
optimize the performance of the application by exploiting the concurrency opportunity.

REVIEW

The Activity diagram is the UML version of the classic flowchart. It may be applied to any
process, large or small. Three common applications of flowcharts are to explain workflow (a
series of Use Cases), to explain a single Use Case, and to explain a method.

� The Activity diagram represents a task as an activity drawn as a rounded rectangle
containing a freeform text description of the task. The transition from one activity
to the next is shown as an arrow. The notation provides for start and end points,
using a dot and a bull’s-eye, respectively.

� Model decisions with a diamond. Each transition exiting the decision must be
labeled with a guard condition and the conditions must be mutually exclusive. The
diamond may also be used to represent a merge point, joining two alternative paths
in the sequence.

� Guard conditions may also be used on transitions leaving an activity, where the result
of the activity provides all the information needed to meet one of the conditions.

� Concurrency allows multiple threads or processes to execute simultaneously. The
fork bar shows one transition initiating multiple transitions. The synchronization
bar shows multiple transitions coming to an end and one new transition taking over.

QUIZ YOURSELF

1. Name two situations in which the Activity diagram is typically applied. (See
“Introducing the Activity Diagram.”)

2. What notations indicate the start and end points in an Activity diagram? (See
“Start and end.”)

3. What symbol is used to show the start of concurrent processes? (See “Concurrency.”)
4. How do you indicate the direction to follow out of a decision point? (See “Decisions.”)
5. What is a transition? (See “Activities and transitions.”)

Synchronization

Synchronization

224910-3 Ch14.F 5/31/02 2:06 PM Page 155

224910-3 Ch14.F 5/31/02 2:06 PM Page 156

Session Checklist
✔ Explaining the steps for building an Activity diagram
✔ Building an Activity diagram for the case study

The narrative for the Use Case tells you the rules and the logic required to accomplish
that goal. But text can be difficult to test, so you may want to draw the logic in an
Activity diagram.

Building an Activity Diagram for the Case Study
The problem statement for the Inventory Control system included the Use Case Receive
Product. You can use the text from the Use Case narrative (Table 15-1) as a guide while we
build the Activity diagram for the case study.

If you are struggling with this new notation, you might try drawing the
old-style flowchart first and then add the new concurrency features of the
Activity diagram as needed.Tip

S E S S I O N

Applying the Activity
Diagram to the Case Study

15

234910-3 Ch15.F 5/31/02 2:06 PM Page 157

Saturday Afternoon158

Table 15-1 The Use Case Narrative for Receive Product

Field Name Field Description

Name Receive Product

Number 2.0

Author Joe Analyst

Last update 12/31/01 (working over New Year’s Day to make points
with the boss)

Assumptions The user has authority to use this transaction

Pre-conditions Shipment is from a valid Shipping company

Use Case initiation This Use Case starts on demand

Use Case dialog The user enters the Shipper identification number
(ShipperID)

If not found, display the “Shipper not found” error
message

Prompt to re-enter or cancel

Else (found) proceed

Display the Shipper details

Enter the Shipment details (date, sender, number of
pieces)

For each product in the Shipment
Find the Purchase Order using the PO_nbr
If not found, display “invalid P.O.” error message

and set the item aside
Else (P.O. found)

Match the product to an item on the Purchase
Order

If not matched, display “invalid item” error mes-
sage and set the item aside

Else check off the item and qty on the Purchase
Order

Notify Accounts Payable of the updated Purchase Order

Display the “Accounts Payable notified” message

And

Update inventory for the items Products received

234910-3 Ch15.F 5/31/02 2:06 PM Page 158

Session 15—Applying the Activity Diagram to the Case Study 159

Field Name Field Description

Display “inventory updated successfully” message

Print the receiving confirmation

Use Case termination This Use Case ends when:

The system displays the message that it could not find
the Shipping company and the user cancels

Accounts Payable has been notified and the inventory
has been updated

The user cancels the transaction

Post-conditions Upon successful completion of the transaction:
Update inventory
Notify Accounts Payable
Print a confirmation to go with the receiving

documents

Upon receiving the Cancel option:
Return to its initial state prior to this Use Case

One way to proceed with the Activity diagram is to follow the Use Case narrative. First,
identify the pre-conditions. The pre-conditions must be tested before you allow the Use Case
to execute. Table 15-1 identifies a pre-condition that the “Shipment is from a valid Shipping
company.” Figure 15-1 shows the start symbol followed by the activities to enter the
Shipper_ID and find the Shipper in your system. The result of the find is either successful
or not. The two possible results give you the guard conditions to direct the flow to either of
the next two activities, prompt to re-enter or cancel, and display Shipper details.

Figure 15-1 Modeling the pre-conditions

[Shipper found]

start

[Shipper not found]

Enter Shipper_ID

Find Shipper
Prompt to
re-enter or

cancel

Display
Shipper details

234910-3 Ch15.F 5/31/02 2:06 PM Page 159

Saturday Afternoon160

Figure 15-1 implies that you would let them try again or cancel. To do that, you need to
loop back to the beginning and offer them a choice. Figure 15-2 illustrates the needed
changes. To loop back to a previous place in the logic, use a merge point diamond. To pro-
vide a choice, use the decision diamond. Then each path out of the decision diamond must
be labeled with a guard condition. In this case, you offer them two choices: proceed to
Enter Shipper_ID or cancel.

Figure 15-2 Modeling a looping condition and merge point

Next identify the post-conditions and terminations. (I do these together because there is
often a great deal of overlap.) The narrative told you that the Use Case terminates when:

� The system displays the message that it could not find the Shipping company and
the user cancels

� Accounts Payable has been notified and the inventory has been updated
� The user cancels the transaction

[Shipper found]

[proceed]

[cancel]

proceed or cancel?

merge point

start

[Shipper not found]

Enter Shipper_ID

cancelled

Find Shipper
Prompt to
re-enter or

cancel

Display
Shipper details

234910-3 Ch15.F 5/31/02 2:06 PM Page 160

Session 15—Applying the Activity Diagram to the Case Study 161

The narrative also told you that the system must:

� Update inventory
� Notify Accounts Payable
� Print a confirmation to go with the receiving documents
� Return to its initial state (prior to this Use Case) upon receiving the Cancel option

Figure 15-3 shows the activities to notify accounts payable, update inventory, and print
the confirmation. I added an activity to display a message for each action so that the user
knows that his requirement was met. Right now it looks like you just have fragments, but
you’ll tie all these pieces together further into the session.

Figure 15-3 Modeling the post-conditions and terminations

Next, you need to model the processing for each piece in the shipment. Figure 15-4 sets
up the loop “for each product” with a decision diamond that asks whether there are “more
pieces to receive.”

For each product in the Shipment:

1. Find the Purchase Order using the PO_nbr
2. If not found, display “invalid P.O.” error message and set the item aside
3. Else (P.O. found)

Notify Accounts
Payable of the

updated Purchase
Order

Display the
"Accounts notified"

message

Update inventory
for the Products

received

Display "inventory
updated

successfully"
message

Print the receiving
confirmation

done

234910-3 Ch15.F 5/31/02 2:06 PM Page 161

Saturday Afternoon162

Figure 15-4 Modeling the Use Case dialog, “For each piece find the Purchase
Order”

Figure 15-5 continues the flow for items where the P.O. was found.

4. Match the product to an item on the Purchase Order
5. If not matched, display “invalid item” error message and set the item aside
6. Else check off the item and qty on the Purchase Order

After these steps are completed, they loop back to the “more products to receive” decision.

Figure 15-5 Modeling the Use Case dialog, “matching the items to the P.O.”

Match the product
to an item on the

Purchase Order

Check off the
item and quantity on
the Purchase Order

Display "invalid
item" error
message

[no match]

[match found]

[P.O. found]

Set the item
aside

Find the
Purchase Order
for the product

Display "invalid
P.O." error
message

[P.O. not found]

More products to receive?

[P.O. found]

[yes]

[no]

Set the item
aside

234910-3 Ch15.F 5/31/02 2:06 PM Page 162

Session 15—Applying the Activity Diagram to the Case Study 163

Now you have all the pieces you need to do a bit of organizing. One opportunity to
watch for is concurrency. Identify tasks that may be done at the same time because they
don’t depend on one another. For example, Figure 15-6 shows that notifying accounts
payable and updating inventory don’t overlap or depend on one another so they can be
modeled as concurrent activities. Use the fork bar to show that you want to follow both
logical paths at the same time. Use the synchronization bar to show that you’re done with
the concurrent tasks and want to continue on a single logical path. In this example, after
all the updates and notifications are done, you can print the confirmation.

Figure 15-6 Modeling the concurrency opportunity

Figure 15-7 puts all the segments together. Notice in the bottom left below the activity
labeled “Display “invalid item” error message” I added another merge point to bring
together the segments from Figures 15-4 and 15-5.

Notify Accounts
Payable of the

updated
Purchase Order

Display the
"Accounts

Payable notified"
message

Update
inventory for the
Products received

Print the
receiving

confirmation
done

Display "inventory
updated

successfully"
message

234910-3 Ch15.F 5/31/02 2:06 PM Page 163

Saturday Afternoon164

Figure 15-7 The complete Activity diagram

As you can see from the example, all the old flowchart elements are still there. UML has
added concurrency to keep pace with technology.

REVIEW

Often, text can be a bit too ambiguous for defining a complex process. The Activity diagram
offers a visual alternative that also supports common programming constructs. As such, it
bridges the gap nicely between user requirements and programming requirements.

� To translate the user description into an Activity diagram, isolate each task as an
activity. Indicate the sequence of the tasks by drawing the transition arrow from
one activity to the next activity in the sequence.

Notify Accounts
Payable of the

updated
Purchase Order

Display the
"Accounts

Payable notified"
message

Find the
Purchase Order
for the product

Display
Shipper
Details

Enter
Shipper_ID

Prompt to reenter
or cancel Find Shipper

Match the product
to an item on the

Purchase Order

Display "invalid
P.O." error
message

Check off the item
and quantity on

the Purchase Order

Update
inventory for
the Products

received

Print the
receiving

confirmation
done

[match found]

(merge point)

(merge point)

start

(merge point)

[P.O. found]

[Shipper found]

[Shipper not found]

[proceed]

[cancel]

[yes]

[no]More products to receive?

[P.O. not found]

[no match]

Display "inventory
updated

successfully"
message

cancelled

proceed or cancel?

Display "invalid
item" error

message

Set the item
aside

234910-3 Ch15.F 5/31/02 2:06 PM Page 164

Session 15—Applying the Activity Diagram to the Case Study 165

� Multiple processes may take place at the same time. Model them using the fork bar
and the synchronization bar. The fork initiates multiple processes and the synchro-
nization bar shows the completion of the multiple processes and the continuation of
activity as a single process.

� To model decisions in the process, you have two options. A decision that results
from the completion of an activity is drawn using guard conditions. Each transition
out of the activity is labeled with a unique (mutually exclusive) conditional expres-
sion enclosed in square brackets []. For a decision that is not the result of one spe-
cific activity, use the diamond icon. Each transition out of the diamond decision
point is also labeled with a unique conditional expression enclosed in square
brackets [].

� When the logical flow of the process needs to return to a previous point in the flow,
use the diamond icon as a merge point diamond. There may be two or more arrows
entering the merge point, but only one exiting the merge point.

� End points are drawn using a bull’s-eye symbol. There may be as many end points as
the logic requires. In practice, there should be one transition to an end point for
each Use Case termination option.

QUIZ YOURSELF

1. What part of the Use Case narrative provides the start for your Activity diagram?
(See “Building an Activity Diagram for the Case Study.”)

2. What notation do you use to return to a previous place in the Activity diagram?
(See “Building an Activity Diagram for the Case Study.”)

3. The Activity diagram offers two ways to handle decisions. When do you use the
diamond symbol for a decision? (See “Building an Activity Diagram for the Case
Study.”)

4. What notation do you use to show that a transition triggers multiple processes?
(See “Building an Activity Diagram for the Case Study.”)

5. What notation do you use to show that multiple, concurrent paths end and become
one logical path? (See “Building an Activity Diagram for the Case Study.”)

234910-3 Ch15.F 5/31/02 2:06 PM Page 165

234910-3 Ch15.F 5/31/02 2:06 PM Page 166

Session Checklist
✔ Reviewing the dynamic view
✔ Defining the purpose of the Sequence and Collaboration diagrams
✔ Modeling the Sequence diagram notation

The static view (Class and Object diagrams) represents how the objects are defined and
arranged into a structure. It does not tell you how the objects behave when you put
them to work. In contrast, the dynamic view represents the interactions of the objects

in a system. The dynamic view contains diagrams specifically designed to model how the
objects work together. It can represent how the system will respond to actions from the
users, how it maintains internal integrity, how data is moved from storage to a user view,
and how objects are created and manipulated.

Understanding the Dynamic View
Because system behaviors can be complex, the dynamic view tends to look at small, discrete
pieces of the system like individual scenarios or operations. You may not see the dynamic
view used as extensively as the Class diagram, simply because not all behaviors are compli-
cated enough to warrant the extra work involved. Even so, the Class diagram and the dia-
grams of the dynamic view are the most often used diagrams in projects because they most
directly reveal the specific features required in the final code.

S E S S I O N

Modeling the Dynamic View:
The Sequence Diagram

16

244910-3 Ch16.F 5/31/02 2:06 PM Page 167

Saturday Afternoon168

Knowing the purpose of Sequence and Collaboration diagrams
There are actually three UML diagrams in the dynamic view: the Sequence diagram, the
Collaboration diagram, and the Statechart diagram. Sessions 16 through 19 cover the
Sequence and Collaboration diagrams, their notation and usage, and their similarities and
differences. Sessions 20 through 23 deal with the Statechart diagram.

The Sequence and Collaboration diagrams both illustrate the interactions between objects.
Interactions show us how objects talk to each other. Each time that one object talks to
another it talks to an interface (that is, it invokes an operation). So if you can model the
interactions, you can find the interfaces/operations that the object requires.

You may think it’s odd that the UML has two diagrams that do the same
thing. In a way, you’re right. The reason is that they came from two different
methodologies and they each offer a slightly different perspective that can
be quite valuable. (You can find more on this in Session 18.)

In the Use Case view, you modeled the features of the system and developed scenarios
describing how the system should behave when those features are used. The Sequence
diagram provides a path from the textual descriptions of behaviors in the scenarios to
operations/interfaces in the Class diagram.

Mapping interactions to objects
Everything in an object-oriented system is accomplished by objects. Objects take on the
responsibility for things like managing data, moving data around in the system, responding
to inquiries, and protecting the system. Objects work together by communicating or inter-
acting with one another. Figure 16-1 shows a Sequence diagram with three participating
objects: Bill the Customer, Bill’s Order, and the Inventory. Without even knowing the nota-
tion formally, you can probably get a pretty good idea of what is going on.

Steps 1 and 2: Bill creates an order.
Step 3: Bill tries to add items to the order.
Step 4 and 5: Each item is checked for availability in inventory.
Step 6 and 7: If the product is available, it is added to the order.
Step 8: He finds out that everything worked.

Building the Sequence diagram is easier if you have completed at least a first draft
of the Use Case model and the Class diagram. From these two resources, you get sets of
interactions (scenarios) and a pool of candidate objects to take responsibility for the
interactions.

Tip

244910-3 Ch16.F 5/31/02 2:06 PM Page 168

Session 16—Modeling the Dynamic View: The Sequence Diagram 169

Figure 16-1 A basic Sequence diagram

Defining the basic notation of the Sequence diagram
All Sequence diagrams are modeled at the object level rather than the class level to allow for
scenarios that use more than one instance of the same class and to work at the level of
facts, test data, and examples. The Sequence diagram uses three fundamental notation ele-
ments: objects, messages/stimuli, and object lifeline.

In the Sequence diagram, the objects use the same notation as in the Object diagram. In
Figure 16-1, you see the three participating objects lined up across the top of the diagram.
The object lifeline (identified by reference #1 in Figure 16-2) is a vertical dashed line below
each object. The object lifeline always runs from the beginning at the top to the end at the
bottom. The amount of time represented depends on the scenario or other behavior you’re
modeling.

1: Order()

2: return order

4: productAvailable(product)

5: return yes

7: return done

8: return done

Bill : Customer : Inventory

3 [for each product] : additem(product)

6 [product available=yes] : addProduct(product)

There is more to this scenario
than shown here.

Bill's Order : Order

244910-3 Ch16.F 5/31/02 2:06 PM Page 169

Saturday Afternoon170

A message or stimulus is usually a call, a signal, or a response. A message is represented
by an arrow. The type of arrow visually describes the type of message. The solid line and
solid arrowhead style represent a message that requires a response. The dashed arrows are
the responses. (I cover more arrow types later in this session.) The messages are placed hor-
izontally onto the timelines in relative vertical position to one another to represent the
order in which they happen. This arrangement allows you to read the diagram from begin-
ning to end by reading the messages from top to bottom.

Figure 16-2 Elements of the Sequence diagram notation

The reference numbers on Figure 16-2 denote these items:

1. Object lifeline
2. Message/Stimulus
3. Iteration
4. Self-reference

1: Order()

2: return order

4: productAvailable(product)

5: return yes

7: return done

8: return done

Bill : Customer : Inventory

3 [for each product] : additem(product)

6 [product available=yes] : addProduct(product)

There is more to this scenario
than shown here.

1

2

3

4

5

6

7

8

9

10

Bill's Order : Order

244910-3 Ch16.F 5/31/02 2:06 PM Page 170

Session 16—Modeling the Dynamic View: The Sequence Diagram 171

5. Return
6. Anonymous object
7. Object name
8. Sequence number
9. Condition

10. Basic comment

The sequence numbers are optional but are very helpful when you need to discuss the
diagram and make changes. Each message arrow describes an interface/operation on the
object it is pointing to. Consequently, the message contains the operation signature, that is,
the name, arguments, and optionally the return, such as addItem(product):boolean.

The dashed return arrows pointed to by references #2 and #5 each contain only the
answer to a message. Some folks leave these off. But the purpose of modeling is to reveal
information, not make assumptions. Showing the returns can help ensure that what you’re
getting back is consistent with what you asked for in the message.

Figure 16-2, reference #3, shows how you can indicate that an operation should be per-
formed repeatedly. Use the square condition brackets to enclose either the number of times
or the condition that controls the repetitions, for example [for each product].

The same condition brackets may be used to control whether a message is even sent.
Reference #9 points to step 6, which uses the test [product available = yes] to make certain
that the previous step succeeded before performing the operation in step 6.

Reference #10 shows how you may use a UML comment to add information that is not
explicitly part of the notation.

Defining the extended notation for the Sequence diagram
Sequence diagrams can be enhanced to illustrate object activation and object termination
and to customize messages.

Figure 16-3 includes some changes to the original Sequence diagram in order to illustrate
these new features. To show that an object is active, the notation is to widen the vertical
object lifeline to a narrow rectangle, as shown in Figure 16-3. The narrow rectangle is called
an “activation bar” or “focus of control.” Reference #1 shows when the object becomes
active at the top of the rectangle. Note that the object becomes active when it begins to do
work. Reference #2 shows when the object is deactivated or finishes its work and waits for
the next request. Using this notation, we can see that the Inventory object is only active
while it is responding to the “productAvailable” inquiry, and the Order is activated more
than once: once to create the Order object and once each time it is asked by Bill to perform
“addItem.”

To show that an object is terminated, place an X at the point in the object lifeline when
the termination occurs. This is usually in response to a message such as delete or cancel.
See message 10: cancel() followed by the X at reference #5. The absence of the X on an
object lifeline means that the object lives on after this sequence of events is ended.

244910-3 Ch16.F 5/31/02 2:06 PM Page 171

Saturday Afternoon172

Figure 16-3 Extended elements of the Sequence diagram notation

Observe these notations in Figure 16-3:

1. Activation: The start of the vertical rectangle, the activation bar
2. Deactivation: The end of the vertical rectangle, the activation bar
3. Timeout event: Typically signified by a full arrowhead with a small clock face

or circle on the line
4. Asynchronous event: Typically signified by a stick arrowhead
5. Object termination symbolized by an X

Figure 16-3 also introduces some new types of messages. Reference #3 points to a mes-
sage with a circle on the line and the stereotype <<timeout>>. This is called a timed event.
Often there is also a condition or a constraint on the message that expresses the timing
parameters for the event, for example, {if we don’t get a response from inventory within
2 seconds we will bypass the item and check later}. The timeout is an example of a UML
extension. It is not a part of the core UML notation, but represents a valid usage.

1: Order()

2: return order

4: addProduct(product,qty)

6: return yes

8: return done

9: return done

10: cancel()

Bill : Customer : Inventory

3 *[for each product] : additem(product,qty)
1

2

3

4

5

X

5: productAvailable(product,qty)
<<timeout>>

7: reduceInventory(product,qty)

Bill's Order : Order

244910-3 Ch16.F 5/31/02 2:06 PM Page 172

Session 16—Modeling the Dynamic View: The Sequence Diagram 173

Reference #4 points to an asynchronous event. Typically, you see events that require some
type of response like addItem (did it work or not?) or productAvailable (is there any product
in stock?). But there are times when the event is simply a signal to another object to do
something. For example, just a moment ago my wife told me that dinner was ready. Knowing
my work habits, she knows better than to expect a response. In Figure 16-3, message 7, you
send a message to inventory to reduce the count on the product by the quantity supplied. It
is up to inventory to queue the request and take care of it. The place order process is not
going to wait. (This makes a good illustration but it is probably not very good design.)

Note the difference in the arrows. An asynchronous message uses a stick arrowhead
instead of the solid arrowhead used for simple or synchronous messages.

Now, take a look at messages 4 and 8. Message 4 starts the operation “addProduct” but
the return doesn’t come until message 8. All the messages between 4 and 8 are the messages
sent by the Order object while performing the operation “addProduct.” This is another good
reason to show the returns. Without the returns explicitly shown in Figure 16-3, it would be
possible to interpret the diagram to say that the system first adds the product before it
even checks to see if the product is available.

Finally, to model object creation, you have a few options. In Figure 16-3, message 1, you
see the message Order() pointing to the object lifeline. This is a common coding convention
for a constructor (an operation with the same name as the Class), an operation that creates
an object. But the Sequence diagram uses an object lifeline that should allow us to repre-
sent object creation visually. Figure 16-4 shows two variations using the object lifeline.

Figure 16-4 Two ways of modeling object creation

The example on the left is the form explicitly defined by the UML. The creation message
(constructor) points directly at the Object. This means that the object icon has to be placed
somewhere down the page where the creation actually happens instead of at the top. Using
this technique implies that objects at the top of the page already existed when the scenario
started.

The example on the right is a minor variation where the constructor points to the object
lifeline just below the object. But the object is still placed on the diagram at the point in
time when it is created, rather than at the top.

The goal is to represent the fact that the object did not exist prior to the creation mes-
sage. The object lifeline literally comes into existence when the creation message is sent, so
there is no object lifeline before (above) the creation message.

Not all tools support either of these techniques, so you may have to use the
approach in Figure 16-3.

Note

Bill : Customer Standard form

1: Order()

2: return order

Bill's Order : Order

Bill : Customer Also used in
modeling tools

1: Order()

2: return order

Bill's Order : Order

244910-3 Ch16.F 5/31/02 2:06 PM Page 173

Saturday Afternoon174

REVIEW

The dynamic view includes diagrams designed to illustrate how objects work together. The
Sequence and Collaboration diagrams specifically show how objects talk to one another to
accomplish a goal of the system, one scenario in a Use Case, or one operation.

� The Sequence diagram is built around three fundamental elements: the objects, mes-
sages, and the object lifeline. The objects represent the participants. The messages
represent the communication that they send to one another. The object lifelines
allow us to arrange the messages in the proper relative sequence.

� Messages may be synchronous (requiring a response) or asynchronous (not requiring
a response). A simple or synchronous message uses a solid line with a solid arrow-
head. The asynchronous message uses a solid line with a stick arrowhead. Both of
these message types represent the invocation of an operation on the object they are
pointing to. So the name of the message becomes an operation signature with the
name, arguments, and return type.

� The return from or answer to a message uses a dashed line and a line-style arrow-
head. The return is simply information, so it is written on the return arrow.

� A message may be conditional on some prior result. This can be shown using the
guard condition notation placed in front of the operation name.

� An object may be active or inactive at various times in the Sequence diagram. To
show that an object is busy, use a narrow vertical rectangle, called an activation bar,
on the object lifeline from the time the object becomes active to the time that it
stops. An object usually becomes active because it has been asked to do something.
It becomes inactive when it is finished with the current task.

� When an object is deleted or destroyed, the timeline ends and an X marks the
termination.

QUIZ YOURSELF

1. What does the dynamic view represent? (See “Knowing the purpose of Sequence
and Collaboration diagrams.”)

2. Where do you place the participating objects in a Sequence diagram? (See
“Defining the basic notation of the Sequence diagram.”)

3. How does the Sequence diagram show that one object tells another object to do
something? (See “Defining the basic notation of the Sequence diagram.”)

4. How does the Sequence diagram show that an object is busy? (See “Defining the
extended notation for the Sequence diagram.”)

5. How does the Sequence diagram show that an object no longer exists? (See
“Defining the extended notation for the Sequence diagram.”)

244910-3 Ch16.F 5/31/02 2:06 PM Page 174

244910-3 Ch16.F 5/31/02 2:06 PM Page 175

P A R T

#
P A R T

Saturday Afternoon
Part Review

III

1. Describe two key characteristics of aggregation.
2. Describe the distinguishing characteristic of composition.
3. How can multiplicity give you a clue as to whether the association should be

aggregation or composition?
4. What is the difference between specialization and generalization?
5. What is the effect on the application when you choose between 0..1 and

1..1 multiplicity?
6. What is the benefit of using qualified associations?
7. If a design pattern is not code, how does it help you solve a problem?
8. How would the pattern notation help in a development project?
9. How does the role notation aid in the description of the pattern in the Class

diagram?
10. If the Class diagram models all the rules for creating and using objects, why do you

need to use an Object diagram?
11. Why does the object name notation have both the object name and the class

name?
12. How do the attribute descriptions differ between the Class and Object diagrams,

and why?
13. How is a link different from an association?
14. Why aren’t the operations shown in an Object diagram?
15. The Activity diagram is used primarily for modeling logic. But when in the devel-

opment process would you encounter the need to model logic?
16. Two of the Activity diagram symbols are used for dual purposes. Can you describe

them?
17. How do you indicate that a transition may occur only if a condition has been

satisfied?

254910-3 PR03.F 5/31/02 2:06 PM Page 176

18. Is a diamond the only way to indicate a decision?
19. True or false: An Activity diagram may have only one start and one end.
20. How many end points should there be in an Activity diagram?
21. How do you decide whether to use a diamond or an activity as a decision point?
22. How do you model looping logic in an Activity diagram?
23. How do you model processes that do not need to be done sequentially?
24. How do you indicate the condition under which the logic should follow a specific

transition?
25. What are the three fundamental elements of the Sequence diagram?
26. How does the Sequence diagram describe an event where one object tells the other

to do something?
27. How does the Sequence diagram show that an object invokes one of its own

operations?
28. How do you know where to start the object activation bar symbol?
29. What is the difference between the solid line with a solid arrowhead and the

dashed line with a line style arrowhead?

Part III — Saturday Afternoon Part Review 177

254910-3 PR03.F 5/31/02 2:06 PM Page 177

P A R T

Saturday
Evening

IV

Session 17
Applying the Sequence Diagram
to the Case Study

Session 18
Modeling the Dynamic View:
The Collaboration Diagram

Session 19
Applying the Collaboration Diagram
to the Case Study

Session 20
Modeling the Dynamic View:
The Statechart Diagram

264910-3 Pt04.F 5/31/02 2:06 PM Page 178

Session Checklist
✔ Explaining the steps to build a Sequence diagram
✔ Reinforcing the Sequence diagram notation

In Session 16, you learned the notation for the Sequence diagram. In this session, you
use the notation to build a complete set of Sequence diagrams for a Use Case.

Building a Sequence Diagram from a Scenario
To build the Sequence diagram, you’ll use the Use Case from Session 8 called Fill Order. The
flowchart in Figure 17-1 identifies all the scenarios.

You’ll draw a total of four Sequence diagrams: one diagram for each scenario. When a
scenario includes steps already defined in a previous scenario/Sequence diagram, simply
refer to the other diagram in a comment and add the messages that are unique for the new
scenario/Sequence diagram. This approach saves a lot of time in the creation and mainte-
nance of the diagrams.

S E S S I O N

Applying the Sequence Diagram
to the Case Study

17

274910-3 Ch17.F 5/31/02 2:06 PM Page 179

Saturday Evening180

Figure 17-1 The Use Case scenarios from Session 8: Fill Order Use Case

Get Order #

Display
Order

Create Back
OrderChoose Item

Fill Item
Quantity

Any unfilled
Quantities?

Order
Found?

[No]
Scenario 2

Scenario 4

Scenario 1

[Yes]

[True]

[False]

Item Found?[No]

[Yes]

[Yes] [No]

Provide Error
Message

Get Order
(Find Order
Use Case)

Find Item
(Locate Product)

Use Case

Reduce
Inventory

Scenario 3

Done or no
unfilled
items?

274910-3 Ch17.F 5/31/02 2:06 PM Page 180

Session 17—Applying the Sequence Diagram to the Case Study 181

Begin by identifying all the participating objects. Each object is placed at the top of the
diagram, as in Figure 17-2. The order doesn’t really matter. However, when the diagram is
finished, it sometimes helps to move them around to improve the readability of the messages
on the diagram. This Use Case includes the Order Fulfillment Clerk, the System itself, the
Orders database, two Orders (the primary and the backorder), and the Inventory.

Figure 17-2 Sequence diagram with objects and timelines

The first Sequence diagram models Scenario 1. The first, or primary, scenario should be
the successful path. The success path is almost always the most comprehensive. The other
scenarios are then just deviations from the main scenario.

Each step of the flowchart becomes a message and/or a return on the Sequence diagram
(depending on how the step is described). The first step is “Get Order #.” On the Sequence
diagram (Figure 17-3) this appears as a procedure call (step 1) and a response (step 2).
Note the format of the procedure call (message):

� Sequence number (optional)
� A colon
� Condition (optional)
� Operation signature, which is made up of:

� Visibility, (+ means public, - private, # protected)
� Operation name (getOrderNbr)
� Arguments () – no arguments for this call
� A colon
� Return data type (int – meaning integer value).

Figure 17-3 Add steps 1 and 2; get the order number

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

1: getOrderNbr():int

2: return 12345678

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

274910-3 Ch17.F 5/31/02 2:06 PM Page 181

Saturday Evening182

The next step is “getOrder” from the database. In the flowchart, I stated that this was a
call to the Find Order Use Case. In order to keep the focus on the Sequence diagram construc-
tion, I model it here as a procedure call with a response. In Figure 17-4, steps 3 and 4 show
the call and response.

Figure 17-4 Add steps 3 and 4; get the Order using the order number

The return is simply the data (the Order) being sent back as a result of performing the
operation. Remember that the Sequence diagram is modeling a test case, so the return should
be a value. Sometimes you’ll model a rule, in which case you would show the return data type
rather than a specific value.

The next step is “display Order.” Because this message does not require a response,
Figure 17-5 shows the use of an asynchronous communication using a line-style arrow.
There is no corresponding return arrow.

Figure 17-5 Add an asynchronous message.

The rest of the steps are modeled in Figure 17-6. After the Order is displayed in step 5,
the system asks the user for the first item to look up (step 6, getItem():int). The system is
expecting to get an integer representing the number of the item on the Order to look up. It
gets the reply “item #1” in step 7. The system uses the item number in step 8 to ask the
Order for the corresponding product serial number. The Order returns the product serial
number in step 9.

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

1: getOrderNbr():int

3: getOrder(ordernbr:int):Order

4: return Order 12345678

5: displayOrder(Order):void

2: return 12345678

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

2: return12345678

1: getOrderNbr():int

3: getOrder(ordernbr:int):Order

4: return Order 12345678

274910-3 Ch17.F 5/31/02 2:06 PM Page 182

Session 17—Applying the Sequence Diagram to the Case Study 183

The system uses this item number to ask Inventory if the product is available in step 10.
Inventory replies that it is available (true) in step 11. Since the product is available, the
system tells the Order to mark the item “filled”, in step 12, and to return the actual Product
in step 13. The system uses the Product to tell Inventory to remove this Product from the
Inventory records because it has been allocated to the Order. The Inventory responds saying
that the operation succeeded (return true in step 15).

Figure 17-6 Complete the sequence of messages.

In Figure 17-6, you can also see the object activations, the narrow vertical rectangles on
the timelines. The object activations indicate when each object is busy. Typically the activa-
tion begins when a message hits the timeline and ends when the response is sent back. In
the case of the system object, the activation runs the entire length showing that the system
is overseeing the entire set of interactions. This is sometimes referred to as the focus of
control.

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

1: getOrderNbr():int

3: getOrder(ordernbr.int):Order

4: return Order 12345678

9: return prodserialnbr 27

11: return true

5: displayOrder(Order):void

6: getItem():int

7: return item #1

8: getProdSerialNbr(itemnbr:int):int

13: return Product 123

12: [product found] fillitem(itemnbr:int):Product

10: [item found] getProduct(prodserialnbr:int):boolean

15: return true

14: reduceinv(prod:Product):boolean

2: return 12345678

274910-3 Ch17.F 5/31/02 2:06 PM Page 183

Saturday Evening184

For Scenario 2, shown in Figure 17-7, insert a comment referring to steps 1 through 4 of
Scenario 1, and then add the new message for Scenario 2. The comment simply helps you
avoid having to repeat all the steps you’ve already documented in the previous Sequence dia-
gram. The comment is just a timesaving technique, not a part of the UML or any methodology.

The new message in this case is conditional. The condition “order not found” is placed in
square brackets [] before the message description. This indicates that the message will only
take place if the order is not found in a previous step.

Figure 17-7 Scenario 2

For Scenario 3, shown in Figure 17-8, again insert a comment for the repeated steps,
1 through 9 of Scenario 1. The only difference for this scenario is that it loops back to a
previous step. There is no additional processing. If I really fleshed this out I might add the
exception handling for items not found. For this course I simply indicate that the process
loops back to the test to see if the user is “Done” or there are “no unfilled items?”

Figure 17-8 Scenario 3

For Scenario 4, in Figure 17-9, continue from step 13 of Scenario 1. This time, the
process makes it all the way to the end but there are still unfilled items on the Order.

The system tells the Order object to create a backorder in step 1. The Order creates
another Order, passing itself as the reference so the backorder can track where it came from
(step 2). Note that the minus sign on the operation means that the operation is private
(that is, only objects of the same class may invoke it). Step 3 shows that the backorder was
successfully created. Step 4 shows the Order telling the System that it finished the task
requested in step 1.

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

Repeat steps 1 through 9 of Scenario 1, then
If [item not found] return to the test "Done or no unfilled items?"

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

Repeat steps 1 through 4 of Scenario 1, then

1: displayMsg(chars):void

274910-3 Ch17.F 5/31/02 2:06 PM Page 184

Session 17—Applying the Sequence Diagram to the Case Study 185

Figure 17-9 Scenario 4

The goal of the Sequence diagram is twofold: to discover the interfaces required for each
object and to validate that each interface is actually used. I don’t know about you, but I’ve
never worked on a project with extra time and money to spend designing, writing, and
maintaining unused code. Another major benefit is a much better understanding of the
design of the objects and the performance impact on the application as you visualize the
volume and complexity of the communication.

REVIEW

The Sequence diagram models interactions between objects. Because these interactions can
be very complex, you typically model a small set of interactions like a single scenario.

To construct the diagram, follow these steps:

1. Identify the participating objects.
2. Line them up across the top of the diagram.
3. Draw a vertical dashed line below each object, representing a timeline.
4. Each message in the sequence becomes at least one horizontal arrow from the

sending object’s timeline to the receiving object’s timeline. The type of arrow
depends on the type of message.

5. For a synchronous message or procedure call that requires a reply, draw a solid line
with a solid arrowhead. For the reply, place a second horizontal arrow below the
first. Use a dashed line-style arrow for replies.

6. Continue to represent each message as a horizontal arrow, placing each new mes-
sage below the previous one, until all the messages have been translated onto the
Sequence diagram.

:OrderFulfillment Clerk :System :OrdersDB 12345678:Order 23456789:Order :Inventory

Repeat steps 1 through 13 of Scenario until the user indicates they are done, then

1: [unfilled items > 0]backorder():Order

2: -Order(order:Order)

3:return Order 23456789

4:return Order 23456789

274910-3 Ch17.F 5/31/02 2:06 PM Page 185

Saturday Evening186

For subsequent scenarios that incorporate steps already documented on another Sequence
diagram, a common convention is to refer to these other messages in a comment, and then
add the new scenario’s messages.

QUIZ YOURSELF

1. Where do you place the objects on a Sequence diagram? (See “Building a Sequence
Diagram from a Scenario.”)

2. How do you represent a procedure call (synchronous message)? (See “Building a
Sequence Diagram from a Scenario.”)

3. What does a line-style arrow mean (versus a solid arrowhead or dashed arrow)?
(See “Building a Sequence Diagram from a Scenario.”)

4. How do you describe a message? (See “Building a Sequence Diagram from a
Scenario.”)

5. How do you show that a message may only happen if a condition is satisfied?
(See “Building a Sequence Diagram from a Scenario.”)

274910-3 Ch17.F 5/31/02 2:06 PM Page 186

Session Checklist
✔ Explaining the purpose of the Collaboration diagram
✔ Explaining and demonstrating the notation of the Collaboration diagram

The Collaboration diagram offers an alternative to the Sequence diagram. Instead of
modeling messages over time like the Sequence diagram, the Collaboration diagram
models the messages on top of an Object diagram. The Collaboration diagram uses this

approach in order to emphasize the effect of the object structures on the interactions.

The Collaboration Diagram
Figure 18-1 shows the same set of interactions modeled in Figure 16-1 using a Sequence
diagram. The scenario shows the customer Bill creating an order and adding items to it,
checking availability for each item as it is added. Just follow the numbered messages to
step through the scenario.

You can accomplish the same thing with both diagrams (that is, you can model the logi-
cal steps in a process like a Use Case scenario). In the following sections, I identify the simi-
larities and differences between these two diagrams so that you can know how to choose
the diagram that will help you the most with a particular problem in your project.

S E S S I O N

Modeling the Dynamic View:
The Collaboration Diagram

18

284910-3 Ch18.F 5/31/02 2:06 PM Page 187

Saturday Evening188

Figure 18-1 Collaboration diagram of Customer placing an Order

Diagram similarities
Sequence and Collaboration diagrams model the same two elements: messages and objects.
In fact, the two diagrams are so similar that some modeling tools, like System Architect and
Rational Rose, provide a toggle feature to switch back and forth between the two views.

Like the Sequence diagram, the Collaboration diagram provides a tool for visually assign-
ing responsibilities to objects for sending and receiving messages. By identifying an object
as the receiver of a message, you are in effect assigning an interface to that object. It is
kind of like receiving phone calls. You have to own the number the person is calling in
order to receive the call. The number is your interface. The message description becomes
an operation signature on the receiving object. The sending object invokes the operation.

Diagram differences
The Collaboration diagram places a priority on mapping the object interactions to the object
links (that is, drawing the participating objects in an Object diagram format and laying the
messages parallel to the object links). This perspective helps validate the Class diagram by
providing evidence of the need for each association as the means of passing messages. In
contrast, the Sequence diagram does not illustrate the links at all.

This highlights an advantage of the Collaboration diagram. Logically, you cannot place a
message where there is no link because there is no physical avenue to send the message

Bill:
Customer

Bill’s Order :
Order

1:Order()
3:addItem(characters)

6:addProduct(characters)

2:return
7:true

5:true 4:productAvailable(characters)

:Inventory

284910-3 Ch18.F 5/31/02 2:06 PM Page 188

Session 18—Modeling the Dynamic View: The Collaboration Diagram 189

across. On a Sequence diagram there is nothing stopping you from drawing an arrow
between two objects when there is no corresponding link. But doing so would model a logi-
cal interaction that cannot physically take place.

You can take the opposite view that drawing a message where there is no link reveals the
requirement for a new link. Just make certain that you actually update your Class diagram
or, as I said before, you won’t be able to implement the message illustrated on the diagram.

An advantage of the Sequence diagram is its ability to show the creation and destruc-
tion of objects. Newly created objects can be placed on the timeline at the point where
they are created. The large X at the end of a timeline shows that the object is no longer
available for use.

Sequence diagrams also have the advantage of showing object activation. Because the
Collaboration diagram does not illustrate time, it is impossible to indicate explicitly when
an object is active or inactive without interpreting the types of messages being passed.

Collaboration Diagram Notation
The Collaboration diagram uses an Object diagram as its foundation. First, determine which
objects will participate in the scenario. Draw the objects with only the name compartment,
not the attributes. Then draw the links between them. Because any pair of classes can have
more than one association, you need to use the Class diagram as your guide to identify the
valid types of links that apply to the current sequence of messages.

Figure 18-2 shows the objects and their links. You may leave the link names off of the
links when there is only one type of association between the related classes. Add the names
if there is more than one kind of link possible between the two objects and there is a need
to clarify which relationship supports the interaction.

Figure 18-2 Basic Collaboration diagram notation

For each step of the scenario, draw the message arrow from the sending object to the
receiving object. Place the message arrow parallel to the link between the sending and
receiving objects. Having many messages placed on the same link is valid and, in fact,
common as long as they really share the same message (arrow) type. Number the messages
in the order in which they occur.

The format for specifying a message is the same as on the Sequence diagram:

Sequence-number Iteration : [condition] operation or return
Figure 18-3 models the entire scenario for creating an order. I have added a few twists to

the original in Figure 18-1 so that I can demonstrate all the notations.

Bill:
Customer :Inventory

Bill’s Order :
Order

284910-3 Ch18.F 5/31/02 2:06 PM Page 189

Saturday Evening190

Figure 18-3 More detailed Collaboration diagram notation

The following descriptions refer to the numbered items in Figure 18-3 so that you can see
the notations used in context:

1. Object: This is a fully qualified object name, Bill, of the class Customer. The notation
is exactly the same as on the Sequence diagram.

2. Synchronous event or procedure call: A synchronous event is a message that
requires a reply, so you would expect to see a corresponding return message along
the same link sometime later in the sequence. Procedure calls are simply another
familiar way to describe this “ask and reply” form of interaction.

3. Return: Here is the return message for the message 1. Message 1 told the Order
class to create a new Order object, Bill’s Order. When the task of creating the
object is completed, it passes back a reference to the requestor, Bill.

4. Self-reference: A self-reference is simply an object talking to itself saying some-
thing like, “It’s time for me to get more coffee.” In Figure 18-3, the Order is telling
itself to use the item information from step 3 to add another product to its list of
items.

5. Sequence number: Because the Collaboration diagram has no way of showing the
passage of time, it uses sequence numbers, like (4:), to reveal the order of execution
for the messages. There are no standards for the numbering scheme, so common
sense and readability are your guides. The sequence numbers were optional on the
Sequence diagram. They are required on the Collaboration diagram.

6. Anonymous object: Reference 6 shows another example of valid object notation.
You do not have to name the instance if all you need to convey is that any object
of this type (Inventory) would behave in this manner.

Bill:
Customer

1:Order()
3:addItem(characters)

1

2

3

7:addProduct(characters)

2:return Order
8:return true

5:return product available

4:productAvailable(characters)
6:[product available]
reduceInventory(product #, qty)

:Inventory

*Repeat steps 3 through
7 for each item the
customer wants to add

4

5

6

7

Bill’s Order :
Order

284910-3 Ch18.F 5/31/02 2:06 PM Page 190

Session 18—Modeling the Dynamic View: The Collaboration Diagram 191

7. Comment: Reference 7 shows one way that you can reveal your intention to repeat
a set of messages. As with Sequence diagrams, comments can be very helpful for
explaining your intentions regarding iteration across a set of messages because the
iteration notation provided by the UML works only for a single event.

Now I’ll change a few items on the diagram so that you can see some new notations. The
following descriptions refer to the numbered items in Figure 18-4.

Figure 18-4 More Collaboration diagram notation

Note the following items on the diagram:

1. Timeout event: I haven’t labeled this message, mostly because a timeout would be
a bit unusual for this type of scenario. This way you get to see the notation any-
way. Actually, this is a common extension to the UML (that is, it isn’t explicitly
defined by the UML). The small circle represents a clock and sometimes even shows
the clock hands within the circle. A timeout would be used for something like
dialing into a network or polling a node on a network. If you don’t get a response
within a specified amount of time, you abandon the attempt and move on. In this
case, if the Order doesn’t respond within the specified time limit, the Order is can-
celled in step 10.

2. Asynchronous message: An asynchronous message does not require a reply. Step 6
has been altered to simply tell the Inventory, “I’ve taken some of your stock. You
might want to update your records. But I’m not going to wait around until you do.”

Bill:
Customer

1:Order()
3:addItem(characters)

10:cancel()

9:

1
7:addProduct(characters)

 2:return Order
 8:return
11:return

5:return product available

6:[product available]
reduceInventory(product #, qty)

:Inventory

2

Bill’s Order :
Order

4:productAvailable(characters)

284910-3 Ch18.F 5/31/02 2:07 PM Page 191

Saturday Evening192

REVIEW

The Collaboration diagram models pretty much the same information as a Sequence diagram,
interactions between objects. It is the perspective that is different. The Collaboration
diagram views interactions relative to the structure of the objects and their relationships
(links) with one another. The Sequence diagram focuses on timing. Consequently, the
advantage of the Collaboration diagram is that it can help you validate the associations
between classes or even discover the need for new associations.

The Collaboration diagram is built on top of an Object diagram.

1. Place the participating objects on the diagram.
2. Draw the links between the objects using the Class diagram as your guide.
3. Add each event. Place the message arrow parallel to the link between the two

objects. Position the arrow to point from the sender to the receiver.
4. Number the messages in order of execution.
5. Repeat steps 3 and 4 until the entire scenario has been modeled.

QUIZ YOURSELF

1. How are the participating objects represented in a Collaboration diagram? (See
“Collaboration Diagram Notation.”)

2. How do you know whether a message may be sent from one particular object to
another? (See “Diagram differences.”)

3. The Sequence diagram uses a timeline to show the order of messages. What do you
use on a Collaboration diagram? (See “Collaboration Diagram Notation.”)

4. What is a synchronous message? (See “Collaboration Diagram Notation.”)
5. What is an asynchronous message? (See “Collaboration Diagram Notation.”)

284910-3 Ch18.F 5/31/02 2:07 PM Page 192

Session Checklist
✔ Applying the Collaboration diagram notation to the case study
✔ Explaining the steps in building a Collaboration diagram
✔ Mapping the sequence and Collaboration diagrams to the Class diagram

The Sequence and Collaboration diagrams are both used to model object interactions. In
order to emphasize that point, this session takes the same Use Case, Fill Order, used for
the Sequence diagram in Session 17 and uses it to build a Collaboration diagram.

Building a Collaboration Diagram from a Scenario
Figure 19-1 provides the flowchart for the Use Case.

You will draw a total of five Collaboration diagrams: one Collaboration diagram for each
scenario. When a scenario includes steps already defined in a previous scenario, simply refer
to the other diagram and add the events that are unique for the new scenario.

S E S S I O N

Applying the Collaboration
Diagram to the Case Study

19

294910-3 Ch19.F 5/31/02 2:07 PM Page 193

Saturday Evening194

Figure 19-1 The flowchart and scenarios for the Use Case Fill Order

The first Collaboration diagram models Scenario 1. The first step in the construction is to
identify the objects that participate in the scenario. This scenario has five objects, namely
the OrderFulfillmentClerk, the System (the application you will write), the Order, the back-
order, and the Orders database. Figure 19-2 shows the object notation. Note that this time

Get Order #

Display
Order

Create Back
OrderChoose Item

Fill Item
Quantity

Any unfilled
Quantities?

Order
Found?

[No]
Scenario 2

Scenario 4

Scenario 1

[Yes]

[True]

[False]

Item Found?[No]

[Yes]

[Yes] [No]

Provide Error
Message

Get Order
(Find Order
Use Case)

Find Item
(Locate Product)

Use Case

Reduce
Inventory

Scenario 3

Done or no
unfilled
items?

294910-3 Ch19.F 5/31/02 2:07 PM Page 194

Session 19—Applying the Collaboration Diagram to the Case Study 195

you can place the objects anywhere you like. As you add the other information, you will
very likely want to rearrange the objects anyway to make the diagram easier to read.

Figure 19-2 The objects participating in Scenario 1

Next, add the links between the objects (see Figure 19-3). Be sure to follow the rules
established by the Class diagram associations. The links provide the paths over which the
interactions take place.

Figure 19-3 The links between the objects participating in Scenario 1

Next, each step of the flowchart becomes an event and/or a return on the Collaboration
diagram. Start with “Get Order #.” The system asks the OrderFulfillmentClerk for the Order
#. Imagine this as a screen that is waiting for an entry. The message is from the System
object to the OrderFulfillmentClerk object. It is a synchronous type because the System
will wait for a reply. Lay the event arrow parallel to the link between the two objects and

:OrderFullfillment Clerk :OrdersDB

:System 12345678:Order

:Inventory

:OrderFullfillment Clerk 23456789:Order:OrdersDB

:System 12345678:Order:Inventory

294910-3 Ch19.F 5/31/02 2:07 PM Page 195

Saturday Evening196

pointing toward the receiver, in this case the OrderFulfillmentClerk. Label the event arrow
with the sequence number and operation. Figure 19-4 shows both the message sent in
step 1 and the answer received in step 2. The return arrow uses a dashed line style arrow.
Label the return with the sequence number and the data being returned.

Figure 19-4 Modeling a synchronous event and the reply

In the second step of the flowchart, the System tries to find the Order in the Orders
database. In Figure 19-5, sequence # 3 from System to OrdersDB is a synchronous message
because the System will wait for the answer to the find request. The return in sequence #4
is an Order object, the same Order object that you put on the diagram at the start.

Figure 19-5 Modeling the second step in the flowchart: Find the Order

:OrderFullfillment Clerk :OrdersDB

:System

2 : return 12345678

4 : return 12345678

1 : getOrderNbr():int

3 : getOrder(ordernbr.int) : Order

:OrderFullfillment Clerk

:System

2 : return 12345678

1 : getOrderNbr():int

294910-3 Ch19.F 5/31/02 2:07 PM Page 196

Session 19—Applying the Collaboration Diagram to the Case Study 197

The next step in the flowchart says that the System tells the OrderFulfillmentClerk to
display the Order it just found in the database. This sounds a bit odd until you realize that
the OrderFulfillmentClerk represents the interface that the Order Fulfillment Clerk will use for
this Use Case. So in reality, the System is telling the screen to display the data. Figure 19-6
adds the asynchronous message and line style arrow alongside sequence #1, going in the
same direction between the same two objects.

Figure 19-6 Modeling the next step in the flowchart: Display the Order

Figure 19-7 shows the completed Collaboration diagram for the first scenario.

In every synchronous message, I chose to show the return as well. Many peo-
ple say that you should only show the return if it isn’t obvious. Personally,
I believe that strategy leaves a lot of room for mistaken assumptions. I also
firmly believe that the purpose for modeling is to get the information out
where everyone can see it. Using shortcuts hides information.

For the second scenario, insert a comment referring to steps 1 through 4 of Scenario 1,
and then add the new event for Scenario 2. This time the message from the System to the
OrderFulfillmentClerk is an asynchronous event. The System merely sends the message and
goes about its job without waiting for any reply. Figure 19-8 shows the use of the asynchro-
nous solid line style arrow for the displayMsg(char) message.

Note

:OrderFullfillment Clerk :OrdersDB

:System

2 : return 12345678

4 : return 123456781 : getOrderNbr():int

3 : getOrder(ordernbr.int) : Order

5 : displayOrder(Order): void

294910-3 Ch19.F 5/31/02 2:07 PM Page 197

Saturday Evening198

Figure 19-7 The finished Collaboration diagram for Scenario 1

Figure 19-8 Scenario 2 with an asynchronous event

:OrderFullfillment Clerk :OrdersDB

:System

1 : displayMsg(String):void

Repeat steps 1 through 4 of Scenario 1, then

:OrderFullfillment Clerk :OrdersDB

:System 12345678:Order

:Inventory

2 : return 12345678

4 : return 123456781 : getOrderNbr():int

3 : getOrder(ordernbr.int) : Order

9: return prodserialnbr 27 15: return true

13: reduceInv(prod:Product):boolean

14: return true

11: return true

10: [item found]getProduct(prodserialnbr.int):boolean

8: getProdSerialNbr(itemnbr.int): int
12: [product found]: fillItem(itemnbr.int): Product

5 : displayOrder(Order): void

294910-3 Ch19.F 5/31/02 2:07 PM Page 198

Session 19—Applying the Collaboration Diagram to the Case Study 199

The use of comments in this way is not a UML standard. It is merely a useful
convention to avoid creating redundant diagrams and increasing the time and
cost of maintenance. The goal of the Sequence and Collaboration diagrams is
to discover the interfaces required by each object. Once the need for the
interface is discovered and justified on one diagram, there is little to gain
by repeating it on another diagram.

For Scenario 3, in Figure 19-9, again insert a comment for the repeated steps, 1 through 5
of Scenario 1. Also note that this scenario introduces a new participant, the Inventory
object. Add the events for selecting an item and looking up the product availability. These
two steps are repeated for every item, so you need a comment to indicate the iteration.
Finally, add a comment referring to steps 6 through 10 of Scenario 5.

Figure 19-9 Scenario 3: Look up each product and check availability

For Scenario 4, in Figure 19-10, continue from step 3 of Scenario 3 and add the new
events. Again, complete the scenario with a reference to the steps from Scenario 5.

Figure 19-10 Scenario 4: Mark the order items filled and reduce inventory

:System 12345678:Order12345678:Order

4: return Order 23456789

1:[unfilled items>0] backOrder():Order

3: return Order 23456789

2:-Order(order:Order)

Repeat steps 1 through 13 of Scenario 1, then

:OrderFullfillment Clerk :OrdersDB

:System

Repeat steps 1 through 9 of Scenario 1, then
If [item not found] return to the test "Done or no unfilled items?"

Note

294910-3 Ch19.F 5/31/02 2:07 PM Page 199

Saturday Evening200

Scenario 5, in Figure 19-11, is the same as steps 1 through 6 of Scenario 1, but the final
condition is different. When no unfilled items remain, the Use Case terminates.

Figure 19-11 Scenario 5: No more items

Mapping the Sequence and Collaboration Diagram
Elements to the Class Diagram
Because the Class diagram is the source for code generation in object-oriented development,
you need to map what you find in the interaction diagrams back to the Class diagram.

Each event becomes an operation on the class of the receiving object. In the classes in
Figure 19-12, you can see each of the events declared as an operation on the receiving
objects.

Figure 19-12 Updated class operations

The first event modeled in Figure 19-4 was sent from the System to
OrderFulfillmentClerk. The event name was getOrderNbr(). The operation is assigned to the
OrderFulfillment class, the class of the receiving object.

The return, sequence #2 in Figure 19-4, shows up as the return on the operation signa-
ture. It is important to remember that there is no reference to the return on the sending
class. Any object may invoke the operation getOrderNbr(). Whichever object invokes the
operation at runtime will receive the return. In this scenario, the invoking object in this
case happens to be System.

Order

-Order(order:Order)
+getProdSerialNbr(itemnbr:int):int
+fillItem(itemnbr:int):Product
+backorder():Order

+getItemNbr():int
+getOrderNbr():int
+displayOrder(Order):void
+displayMsg(String):void

OrderFulfillmentClerk

+reduceInv(prod:Product):boolean
+getProduct(prodserialnbr:int):boolean

Inventory

+getOrder(ordernbr:int):Order

OrdersDB

See scenario #1, steps 1 through 6

[no unfilled items remain]

294910-3 Ch19.F 5/31/02 2:07 PM Page 200

Session 19—Applying the Collaboration Diagram to the Case Study 201

The self-references also become operations. They may be private operations invoked only
by the owning object, or they may appear as public, called by other objects in other scenarios.
Examine all the scenarios to determine the most appropriate implementation.

Conditions from the Sequence and Collaboration diagrams are placed in the
implementation logic of the operation’s method.

REVIEW

The Collaboration diagram models interactions between objects in much the same way that
the Sequence diagram does. However, the Collaboration diagram uses the Object diagram
as the framework for modeling the events. To construct the Object diagram,

1. Identify the participating objects.
2. Lay them out to provide enough room to arrange the events between them.
3. Draw the links between the objects based on the rules set by the Class diagram

associations.
4. Each event in the sequence becomes at least one horizontal arrow from the send-

ing object to the receiving object. The type of arrow depends on the type of event.
Regardless of the type, the arrow is placed parallel to the link.

5. For a synchronous event, or procedure call, that requires a reply, place a second
arrow parallel to the link running in the opposite direction. Replies use a dashed
line style arrow.

6. Continue to represent each event as an arrow running parallel to the links, adding
a sequence number to each event to indicate the order of execution, until all the
events have been translated onto the Collaboration diagram.

QUIZ YOURSELF

1. What arrangement do you use for the objects in a Collaboration diagram? (See
“Building a Collaboration Diagram from a Scenario.”)

2. How do you indicate the order of execution in a Collaboration diagram? (See
“Building a Collaboration Diagram from a Scenario.”)

3. How do you handle the fact that some sets of events need to be repeated? (See
“Building a Collaboration Diagram from a Scenario.”)

4. Each event becomes an operation. How does the Collaboration diagram help you
know what class to add them to? (See “Mapping the Sequence and Collaboration
Diagram Elements to the Class Diagram.”)

5. How do the return values effect the operations? (See “Mapping the Sequence and
Collaboration Diagram Elements to the Class Diagram.”)

Tip

294910-3 Ch19.F 5/31/02 2:07 PM Page 201

294910-3 Ch19.F 5/31/02 2:07 PM Page 202

Session Checklist
✔ Explaining the purpose of the Statechart diagram
✔ Defining the basic notation for the Statechart diagram
✔ Demonstrating the construction of the Statechart diagram
✔ Defining the Statechart diagram notation for activities, internal events,

and deferred events

S o far you have seen the dynamic view represented by the Sequence and Collaboration
diagrams. Both of these diagrams model the interactions between objects. Now you will
see the Statechart diagram that models the effect that these interactions have on the

internal makeup of the object. (In fact, in Session 23, I show you how to derive a Statechart
from the interactions on a Sequence diagram.)

Describing the Purpose and Function of the Statechart Diagram
The Statechart describes the life of an object in terms of the events that trigger changes
in the object’s state. It identifies both the external events and internal events that can
change the object’s state. But what does that mean? The state of the object is simply its
current condition. That condition is reflected in the values of the attributes that describe
that object. There are behaviors in the system that alter those attribute values.

Earlier, I suggested that you notice how parts of speech reflect model elements. A state
describes an object, so it typically appears as an adjective in the problem description; for
example, an account is open (an open account) or an account is overdrawn (an overdrawn
account).

S E S S I O N

Modeling the Dynamic View:
The Statechart Diagram

20

304910-3 Ch20.F 5/31/02 2:07 PM Page 203

Saturday Evening204

When the current condition, or state, of the account is overdrawn, the account will
respond differently than when the account is in the open condition — checks will be
rejected rather than paid or the bank will cover the check and charge you an exorbitant
fee for its kindness.

The Statechart has been around a long time. You may know it by the name
state diagram, state machines, or state transition diagram.

Next, contrast the scope of the Statechart with that of the Sequence diagram. The scope
of the Statechart is the entire life of an object. The scope of the Sequence diagram is a sin-
gle scenario. Consequently, it is possible to derive a Statechart from the set of Sequence
diagrams that use the object.

The Statechart models the events that trigger a transition (change) from one state to
another state. Each event may have a corresponding action that makes the changes in the
object (that is, alters the attribute values). While an object is in a state, it may also perform
work associated with that state. Such work is called an activity.

The Statechart can also be used to model concurrent activities within a state by creating
parallel substates within a superstate. Using the substate and superstate notation, you can
explicitly identify split and merge of control for concurrency.

Defining the Fundamental Notation for a Statechart Diagram
The foundation for the Statechart is the relationship between states and events. The follow-
ing examples illustrate the Statechart notation using the Order object. A state is modeled as
a rounded rectangle with the state name inside, as in Figure 20-1, much like the short form
of the class icon, where only the name compartment is visible.

Figure 20-1 State symbol with only name compartment shown (minimum
configuration)

The initial state of an object has its own unique notation, a solid dot with an arrow
pointing to the first state. The initial state indicates the state in which an object is created
or constructed. You would read Figure 20-2 to say, “An Order begins in the ‘Placed’ state.” In
other words, the Order comes into existence when a customer places it.

Figure 20-2 The initial state notation

Placed

Filled

Tip

304910-3 Ch20.F 5/31/02 2:07 PM Page 204

Session 20—Modeling the Dynamic View: The Statechart Diagram 205

Note that the initial state is the entire image in Figure 20-2. It includes the dot, the
arrow, and the state icon. In effect, the dot and arrow point to the first state.

The Statechart event notation is a line style arrow connecting one state to another state.
The arrow is actually the transition associated with the event. The direction of the arrow
shows the direction of the change from one state to another. Figure 20-3 shows the event
“products available” that causes the transition (the arrow) from the state “Placed” to the
state “Filled.”

Figure 20-3 The state transition from “Placed” to “Filled”

An action is associated with an event. An action is the behavior that is triggered by the
event and it is the behavior that actually changes the attributes that define the state of the
object. To model the action, place a forward slash after the event name followed by the name
of the action or actions you want performed, as in Figure 20-4 where the “products available”
event triggers the fillOrder() action. The act of filling the Order alters its contents and rede-
fines its state.

An action is an atomic task, and as such it cannot be broken into component tasks, nor
can it be interrupted. There are no break points within it and, furthermore, stopping it
midway would leave the object state undefined.

Figure 20-4 Event/action pair

An object may reach a final state from which it may not return to an active state. In
other words, you would never see an arrow going out of this state. A common usage is
shown in Figure 20-5. The Order may be archived from either state. But after it is archived,
you may never change it. You may still see it and it may still exist, but you can no longer
alter its state. The final state may also mean that the object has actually been deleted.

Figure 20-5 The final state notation

Filled

Archived

Cancelled

Placed
products available/fillOrder()

Filled

Placed
products available

Filled

304910-3 Ch20.F 5/31/02 2:07 PM Page 205

Saturday Evening206

Because we tend to be cautious with our data, it is fairly rare that we literally delete
data, so it is equally rare to see the final state. Often, even if an object is flagged for dele-
tion or archive, you leave open the option to undo the deletion or archive to recover from
an error or simply change your mind. In this situation, the deleted or archived state would
be a normal state (the rounded rectangle).

Building a Statechart Diagram
Now that you know the basic notation, you can step through the construction of a
Statechart diagram. In Session 23, I’ll show you a way to derive the Statechart from
Sequence diagrams. For now, you’ll just build a Statechart with the notation you know so
far and a simple problem description. The problem statement describes your customers and
how you view them for business purposes.

Problem Statement
We track current customer status to help avoid uncollectable receivables and identify
customers worthy of preferred treatment. All customers are initially set up as
prospects, but when they place their first order, they are considered to be active.
If a customer doesn’t pay an invoice on time, he is placed on probation. If he does
pay on time and has ordered more than $10,000 in the previous six months, he war-
rants preferred status. Preferred status may be changed only if the customer is late
on two or more payments. Then he returns to active status rather than probation,
giving him the benefit of the doubt based on his preferred history.

The first step is to identify the initial state of the customer. The problem statement told
you “All customers are initially set up as prospects.” To draw the initial state, you need three
elements: the starting dot, the transition arrow, and the first state (Prospect). Figure 20-6
illustrates all three elements together.

Figure 20-6 The initial state of the Customer: Prospect

The next step is to identify an event that could change the prospect state to another
state. The problem statement tells you, “ . . . when they place their first order, they are
considered to be active.” To model the change you need at least the event that triggers the
change, the transition arrow to show the direction of the change, and the new state that
the object transitions to. Figure 20-7 shows all three elements added to the initial diagram.

Prospect

304910-3 Ch20.F 5/31/02 2:07 PM Page 206

Session 20—Modeling the Dynamic View: The Statechart Diagram 207

Figure 20-7 The transition from Prospect to Active

Now examine the event and determine what, if any, corresponding action needs to occur.
Figure 20-8 shows the action addOrder(Order). This operation associates the newly placed
order with the customer. According to the client’s rules, this makes him an active customer.

Figure 20-8 Associating an action with an event

The second event, payment past due, triggers the transition to On Probation. Figure 20-9
illustrates the new state, the event, the transition from active to on probation, and the
action that actually makes the change to the object, setProbation(True).

Figure 20-9 Adding the second transition

Prospect

Active On Probation

[payment past due]/
setProbation(true)

order placed/ addOrder(Order)

Prospect

Active

order placed/ addOrder(Order)

Prospect

Active

order placed/

304910-3 Ch20.F 5/31/02 2:07 PM Page 207

Saturday Evening208

Watching the customer’s performance generates the next event. “If he does pay on time
and has ordered more than $10,000 in the previous six months, he warrants preferred status.”
The event is actually a condition that is met. The resulting action is to set the preferred status
to true, setPreferred(True). Figure 20-10 adds the new state, the event, the transition, and the
action.

Figure 20-10 Adding the third transition

Here is a good place to show how there may be more than one transition between the
same two states. Although the example doesn’t show it, you could add a second transition
from active to preferred with the event, “The boss says give him preferred status so he will
let the boss win at golf.” You would have to draw a second transition and label it with the
new event and the same action.

The last event addresses how a customer can fall out of preferred status. “Preferred status
may be changed only if the customer is late on two or more payments.” Again, the event is
a condition and the response is an action that alters the state back to active. Figure 20-11
shows the transition back from Preferred to Active.

Prospect

Active On Probation

[payment past due]/
setProbation(true)

order placed/ addOrder(Order)

Preferred

[6 months' orders > $10,000]/setPreferred(true)

304910-3 Ch20.F 5/31/02 2:07 PM Page 208

Session 20—Modeling the Dynamic View: The Statechart Diagram 209

Figure 20-11 Adding the fourth transition

This Statechart did not have a final state because within the scope of the problem state-
ment there is no time when a customer object can no longer change. “On Probation” might
be a final state because there are no arrows coming out of it, but this happened only
because of the limited size of the example.

There is one more very important observation about events on a Statechart diagram. The
absence of an event is almost as informative as the presence of an event. In Figure 20-11,
the only events that cause a Customer to change from the active state are the conditions
6 months’ orders > $10,000, and payment past due. Even though you modeled the event
order placed in another location, it has no effect when it happens to the Customer while he
is in the active state. It simply is not recognized by the active state. You know this because
there is no arrow leaving the active state in response to the order placed event. So the dia-
gram reveals both the events that an object will respond to while in a state and the events
it will not respond to.

Prospect

Active On Probation

[payment past due]/
setProbation(true)

order placed/ addOrder(Order)

Preferred

[6 months' orders > $10,000]/setPreferred(true)

[payment past due > 1]/setPreferred(false)

304910-3 Ch20.F 5/31/02 2:07 PM Page 209

Saturday Evening210

Defining Internal Events and Activities
The state icon can also be expanded. The purpose of the expanded form is to reveal what
the object can do while it is in a given state. The notation simply splits the state icon into
two compartments: the name compartment and the internal transitions compartment, as
illustrated in Figure 20-12.

Figure 20-12 The expanded state icon

The internal transitions compartment contains information about actions and activities
specific to that state. You’ve seen actions associated with events. Here I’m talking about the
same actions, only documented as entry and exit actions within a state. But I’m going to
hold off until Session 21 to explain entry and exit actions so that I have room to explain
them with some illustrations. For now I want to focus on activities.

Activities are processes performed within a state. An activity tends not to be atomic, that
is, an activity may be a group of tasks. Activities may be interrupted because they do not
affect the state of the object. Contrast this with the earlier definition of an action, which
said that you must not interrupt actions because they alter the state. Stopping an action
midway could leave the object in an undefined state. Activities just do work. They do not
change the state of the object.

For example, Figure 20-13 models the active state of the Customer object. While in that
state, the customer object generates a monthly invoice for the customer’s purchasing activ-
ity and generates monthly promotions tailored to the Customer. To model activities within a
state, use the keyword Do: followed by one or more activities.

Figure 20-13 The expanded state icon with activities

These activities will be performed from the time the object enters the state until the
object leaves the state or the activity finishes.

Active

Do : generate monthly invoice
Do : generate monthly customer promotion

State name compartment

Internal transitions compartment

304910-3 Ch20.F 5/31/02 2:07 PM Page 210

Session 20—Modeling the Dynamic View: The Statechart Diagram 211

REVIEW

The Statechart diagram models the life of a single object. The fundamental elements of a
Statechart are states and events. A state represents the condition of the object. The state is
recorded in the values of one or more of the attributes of the object. An event triggers a
change in state, a transition. An action is a behavior triggered by an event, the behavior
that actually makes the changes to the attribute values that redefine the state of the
object.

The process for building a Statechart is as follows:

1. Identify the state that the object is in when it is first created. Model the initial
state.

2. Identify the event(s) that change the object from the initial state to some other
state.

3. Name the new state.
4. Draw the transition from the first state to the second. Label the transition arrow

with the event that triggers the transition.
5. Identify the action(s) associated with the event and that actually change the

object attributes. Add the action after the event name and preceded by a forward
slash.

6. Continue the process with each new event until all events have been accounted
for.

7. If there is a state from which the object can never leave, convert this state to the
final state notation.

QUIZ YOURSELF

1. What does a Statechart illustrate? (See “Describing the Purpose and Function of
the Statechart Diagram.”)

2. How do you model a transition from one state to another state? (See “Defining the
Fundamental Notation for a Statechart Diagram.”)

3. How do you model the state an object is in when it is first created? (See “Defining
the Fundamental Notation for a Statechart Diagram.”)

4. How do you model the behavior initiated by an event and that actually makes the
changes in the object’s state? (See “Building a Statechart Diagram.”)

5. How do you model work that an object performs while it is a state? (See “Defining
Internal Events and Activities.”)

304910-3 Ch20.F 5/31/02 2:07 PM Page 211

304910-3 Ch20.F 5/31/02 2:07 PM Page 212

1. What do you typically use for the basis of a Sequence diagram?
2. How would you show the data returned by an operation?
3. If a scenario covers interactions that are already modeled in another scenario,

do you have to repeat them?
4. How do you know where to place an activation bar?
5. What information describes a synchronous event?
6. The Collaboration diagram uses the Object diagram as the basis for modeling

events. Why is this advantageous?
7. How does the Collaboration diagram model the order of events?
8. What cannot be seen on the Collaboration diagram that can be seen on the

Sequence diagram?
9. On a Collaboration diagram, how do you show that an object refers to one of its

own operations?
10. How do you model iteration on a Collaboration diagram?
11. What is the first step in constructing a Collaboration diagram?
12. What is the second step in the construction of the Collaboration diagram?
13. What is the third step in the construction of the Collaboration diagram?
14. What is the fourth step in the construction of the Collaboration diagram?
15. When you encounter a synchronous event, what else can appear on the diagram?
16. How do you start the construction of a Statechart diagram?
17. How is the state of the object actually recorded?
18. What are the elements that make up a state transition?
19. What is a final state? Does every Statechart have to have one?
20. Can there be more than one transition between the same two states?

P A R T

#
P A R T

Saturday Evening
Part Review

IV

314910-3 PR04.F 5/31/02 2:17 PM Page 213

324910-3 DPOO3.F 5/31/02 2:17 PM Page 214

Part V — Sunday Morning
Session 21
Applying the Basic Statechart to the Case Study

Session 22
Modeling the Extended Features of the Statechart

Session 23
Applying the Extended Statechart Features to the Case Study

Session 24
Modeling the Development Environment

Session 25
Modeling the Static View: The Component Diagram

Session 26
Modeling the Static View: The Deployment Diagram

Part VI — Sunday Afternoon
Session 27
Introduction to Web Development with Java

Session 28
Analysis and Architectural Design of a Web Application

Session 29
Design of a Web Application

Session 30
UML Modeling Tools

324910-3 DPOO3.F 5/31/02 2:18 PM Page 215

P A R T

Sunday
Morning

V

Session 21
Applying the Basic Statechart
to the Case Study

Session 22
Modeling the Extended Features
of the Statechart

Session 23
Applying the Extended Statechart
Features to the Case Study

Session 24
Modeling the Development Environment

Session 25
Modeling the Static View:
The Component Diagram

Session 26
Modeling the Static View:
The Deployment Diagram

334910-3 Pt05.F 5/31/02 2:18 PM Page 216

Session Checklist
✔ Explaining entry and exit actions
✔ Explaining send events
✔ Explaining the order of event execution
✔ Applying the basic Statechart notation to the case study

The Statechart diagram can become very busy. The UML offers two simplifications called
entry and exit actions, along with the ability to send work to other objects. In this ses-
sion I show you how to take advantage of these features to simplify your diagram for

the Order object. I also show you how to construct the complete Statechart diagram for the
Order object using the problem statement.

Defining Entry and Exit Actions
Modeling state transitions often results in more than one event that changes the object to
the same state. Each of those events may have a corresponding action. For example, in
Figure 21-1 the Statechart for the Order object says that you can transition the Order from
Tentative to Placed by either receiving the payment for the order or getting an override
authorization. But both events require the same action: issue an order confirmation
(issueConf()).

S E S S I O N

Applying the Basic
Statechart to the Case Study

21

344910-3 Ch21.F 5/31/02 2:18 PM Page 217

Sunday Morning218

Figure 21-1 Redundant actions entering and exiting the Placed state of the Order

In Session 20, you discovered that the state icon could be expanded to reveal the inter-
nal transitions compartment. In that compartment you can model something called entry
actions. Entry actions provide a means to eliminate the redundancy in Figure 21-1.

Whenever you discover an action that must take place with every event that transitions
to the same state, you can write the action(s) once as an entry action. Figure 21-2 shows
the entry action notation, entry/action(s). When the redundant action is replaced by the
entry action, you can remove it from the individual event arrows. This simplifies the dia-
gram while preserving the same meaning. You would read the diagram to say, “Every time
you enter this state issue an order confirmation.”

Figure 21-2 Consolidating the entry actions

Tentative

authorize override

receive pmt

cancel /
issueCustomerStmt()

Order is filled /
issueCustomerStmt()

Filled

Cancelled

Placed
entry/issueConf()

Tentative

authorize override / issueConf()

receive pmt / issueConf()

cancel /
issueCustomerStmt()

Order is filled /
issueCustomerStmt()

Filled

Cancelled

Placed

344910-3 Ch21.F 5/31/02 2:18 PM Page 218

Session 21—Applying the Basic Statechart to the Case Study 219

The same simplification may be used for actions associated with events that leave a state.
These are called exit actions and are modeled in the same manner as entry actions. If you refer
back to Figure 21-1, you will see two events leaving the Placed state. Both events have the
same associated action, issueCustomerStmt(). Figure 21-3 shows the exit/action(s) notation
added to the internal transitions compartment of the Placed state and the actions removed
from the event arrows. Compare Figure 21-1 with 21-3 to appreciate the simplification.

Figure 21-3 Consolidating the exit actions

Entry and exit action notations provide a nice simplification for the Statechart diagram.
Just remember that they may only be used when the action takes place every time you
enter (for entry actions) or every time you exit (for exit actions) the state. If there is even
one exception, the notation may not be used for that action.

Defining Send Events
Figure 21-4 introduces the send event. A send event is used when the object in the
Statechart diagram needs to communicate with another object. On a Statechart diagram,
the source of the incoming events is not shown because the same event may come from any
number of other objects and the response must be the same. But an outgoing event must
define the receiving object whether it is only one object or a broadcast to many objects. It
works in the same way you use your phone. You can receive calls without knowing who is
calling. But you cannot place a call without the number you want to call.

Tentative

authorize override

receive pmt

cancel

Order is filled

Filled

Cancelled

Placed
entry/issueConf()
exit/issueCustomerStmt()

344910-3 Ch21.F 5/31/02 2:18 PM Page 219

Sunday Morning220

Figure 21-4 Modeling an action invoked on another object

In the example in Figure 21-3, when the Order is cancelled, the Order is supposed to
issue a customer statement. But the customer statement is another object that takes care of
issuing itself. The Order just needs to tell it that it’s time to do so. All the actions modeled
so far were actions on the same object. To show that the action is invoked on a different
object, simply provide the object name followed by a period before the action expression.
This is often referred to as the dot notation. See the exit action notation in Figure 21-4
where the issue() action is now being sent to the CustomerStmt object.

Order of Events
With all these events, you could end up with a tangled mess of event actions, entry actions,
exit actions, and activities. So how do you process all this behavior in a sane fashion? When
an event occurs, the order of execution runs like this:

1. If an activity is in progress in the current state, interrupt it (gracefully if possible).
2. Execute the exit: action(s).
3. Execute the actions associated with the event that started it all.
4. Execute the entry: action(s) of the new state.
5. Execute the activity or activities of the new state.

Tentative

authorize override

receive pmt

cancel

Order is filled

Filled

Cancelled

Placed
entry/issueConf()
exit/CustomerStmt.issue()

344910-3 Ch21.F 5/31/02 2:18 PM Page 220

Session 21—Applying the Basic Statechart to the Case Study 221

Applying the Basic Statechart Diagram Notation
to the Case Study
Now it’s time to bring all these concepts together to construct the Statechart for one of the
case study objects. This time I use the Product. The problem statement below adds a little
more information so that you can exercise the Statechart notation you’ve learned so far.

Inventory control: Problem statement
Products are first entered into our system when they are ordered using a purchase order
(P.O.). Each product keeps a record of the originating P.O. When the product is received, it is
placed into inventory by recording the location where it is placed. When the product is
received, you have to update the P.O. to indicate that you have received the product.

When a product is sold, the product tracks the order to which it belongs. When a product
is sold, it is also packed for shipping and the associated shipment is recorded. When the
product is shipped, you need to record the shipper and the date it was picked up.
Occasionally, a product is returned. In that case, you put the product back into inventory
and record the location.

Constructing the Statechart diagram for the product object
“Products are first entered into our system when they are ordered using a purchase order
(P.O.). Each product keeps a record of the originating P.O.” The initial state is On Order. The
action is to record the purchase order. Notice in Figure 21-5 that an action may be associ-
ated with the creation of the object.

Figure 21-5 Model the initial state of the product.

On Order

/ setPO(PO)

344910-3 Ch21.F 5/31/02 2:18 PM Page 221

Sunday Morning222

“When the product is received, it is placed into inventory by recording the location
where it is placed. When the product is received, you have to update the P.O. to indicate
that you have received the product.” Figure 21-6 shows that the transition from On Order to
Inventoried is triggered by the receive event. The associated actions are to update the pur-
chase order object with the product and quantity received and update the product with the
inventory location.

Figure 21-6 Inventory the product and update the P.O.

“When a product is sold, the product tracks the order to which it belongs.” Figure 21-7
shows the sell event triggering the transition to the sold state and the action to record the
Order that now holds the product.

Figure 21-7 Sell the product and record the order.

Sold

Inventoried

sell/
setOrder(Order)

On Order

entry:setPO(PO)

Inventoried

receive /
PO.receiveProduct(Product, qty)
inventory(location).

344910-3 Ch21.F 5/31/02 2:18 PM Page 222

Session 21—Applying the Basic Statechart to the Case Study 223

“When a product is sold, it is also packed for shipping and the associated shipment is
recorded.” Figure 21-8 shows the event pack for shipping triggering the transition from sold
to packaged. The pack for shipping event also triggers the action to record the shipment.

Figure 21-8 Pack the product for shipping.

“When the product is shipped, you need to record the shipper and the date it was picked
up.” Figure 21-9 models the transition from packaged to shipped. The ship event is the trig-
ger. The action is setShipped with the date and the carrier.

Figure 21-9 Ship the product.

“Occasionally, a product is returned. In that case, you put the product back into inven-
tory and record the location.” The completed Statechart diagram for the Product object is
shown in Figure 21-10. I have added the transition from shipped back to the previous state
inventoried. The return event requires us to record the inventory location. If you look back
to Figure 21-6 you see that the other incoming event also logs the inventory location.
Because all incoming events require the same action, you can simplify the diagram using an
entry action.

Shipped

Packaged

ship/
setShipped(date, carrier)

Sold

Packaged

pack for shipping/
setShipment(Shipment)

344910-3 Ch21.F 5/31/02 2:18 PM Page 223

Sunday Morning224

Figure 21-10 The completed Statechart diagram for the Product object

REVIEW

The Statechart allows many events to transition to the same state. Each event may trigger
an action. When all the actions associated with the transitions into a state are the same,
you can model them as a single entry action. Place the entry action description in the inter-
nal transitions compartment of the state.

Inventoried

entry:inventory(location)

Shipped

Sold

receive/
PO.receiveProduct(Product, qty)

sell/
setOrder(Order)

Packaged

pack for shipping/
setShipment(Shipment)

ship/
setShipped(date, carrier)

return

On Order

entry:setPO(PO)

344910-3 Ch21.F 5/31/02 2:18 PM Page 224

Session 21—Applying the Basic Statechart to the Case Study 225

Likewise, the Statechart allows many events to transition out of the same state. Each event
may trigger an action. When all the actions associated with the transitions out of a state
are the same, you can model them as a single exit action. Place the exit action description
in the internal transition compartment of the state.

� When an action is directed at an object other than one modeled by the Statechart
diagram, use the dot notation to qualify the action. Place the object name and a
period in front of the action expression.

� When an event takes place it sets off a series of responses in the form of actions and
activities. The order of execution for the actions and activities is:

1. If an activity is in progress in the current state, interrupt it.
2. Execute the exit: action(s).
3. Execute the actions associated with the event that started it all.
4. Execute the entry: action(s) of the new state.
5. Execute the activity or activities.

QUIZ YOURSELF

1. What is an entry action? (See “Defining Entry and Exit Actions.”)
2. What is an exit action? (See “Defining Entry and Exit Actions.”)
3. How do you indicate that an action should be performed on another object?

(See “Defining Send Events.”)
4. What is the first thing that happens when an event takes place? (See “Order of

Events.”)
5. When an event takes place, which happens first, the exit actions or the actions

associated with the triggering event? (See “Order of Events.”)

344910-3 Ch21.F 5/31/02 2:18 PM Page 225

344910-3 Ch21.F 5/31/02 2:18 PM Page 226

Session Checklist
✔ Explaining the various transition event types
✔ Explaining superstates and substates

S o far you’ve learned that events trigger transitions between states. Events come in a
variety of forms, however. Clarifying at least five different event types, so that you
know what to look for when you evaluate the problem statement, will be worth the

time. In this section, I cover call events, time events, change events, send events, and guard
conditions. I also explain how you can make these events conditional.

Modeling Transition Events
Figure 22-1 illustrates the Statechart diagram for an Order object. The Order is created in
the initial state of Tentative. Two events could cause it to change to the Placed state. From
Placed it may either be cancelled, or packed and made ready for shipping. After it is packed,
it may be shipped. Then, whether it was cancelled or shipped, the Order is archived after
90 days.

S E S S I O N

Modeling the Extended
Features of the Statechart

22

354910-3 Ch22.F 5/31/02 2:18 PM Page 227

Sunday Morning228

Figure 22-1 The Statechart for a typical Order object

Call event
A call event is the most common event type. It is basically the invocation of an operation
on the receiving object. This type of event is the merge of an event and an event action.
The event itself is an instruction to perform an operation. However, this doesn’t prevent you
from adding other actions. Figure 22-2 shows the transition from Placed to Cancelled. The
transition is triggered by the cancel(datetime) event. “cancel(datetime)” is actually the
operation signature on the Order.

Tentative authorizeOverride(mgr)/
placeOrder()

packed(packer)/
setPacked()

cancel(datetime)

shipped(carrier, datetime)/
setShipped(),

Customer.notify(Shipment, Order)

when today <
(last update +90 days)/

setArchived()

receivePmt(amt)[amt not < amt_due]/
placeOrder()

when today < (last update + 90 days)/
setArchived()

Placed

On entry/issueConf()

Packaged

after 3 days/upgradeShippingPriority()

Cancelled

Shipped

354910-3 Ch22.F 5/31/02 2:18 PM Page 228

Session 22—Modeling the Extended Features of the Statechart 229

Figure 22-2 Call event “cancel(datetime)”

Time event
A time event evaluates the passage of time as a trigger. It implies that the object supports
some mechanism to monitor the passage of time. This might be implemented in a number of
ways. The mechanism could be a batch program that runs at intervals to update a time
attribute. The event could use a polling type of implementation where the object constantly
checks to see what time it is.

Use the keyword after to specify the time increment to be evaluated. For example, while
the Order is in the packaged state, it is waiting to be shipped. But if it has not been
shipped within three days, the priority needs to be increased to ensure that it leaves in a
timely manner. Figure 22-3 models an internal event within the packaged state called “after
3 days.” This implies that there will be code within the object that watches the passage of
time to know when to initiate the action “upgrade ShippingPriority().”

Figure 22-3 Time event “after 3 days”

Change event
A change event tests for a change in the object or a point in time. Use the keyword when
with the required test. For example, you might need to know when to run a reporting job or
cut invoices so you might say “when 12:00 AM the last day of the month.” Or you might
watch for a specific condition such as a change in temperature. Then you might say, “when
temp > 75 degrees.”

Packaged

after 3 days/upgradeShippingPriority()

cancel(datetime)

Placed

On entry/issueConf()

Cancelled

354910-3 Ch22.F 5/31/02 2:18 PM Page 229

Sunday Morning230

Figure 22-4 represents the change events that cause the Order to be archived. In both
cases, the Order is waiting until there has been no activity on the Order for 90 days.

Figure 22-4 Change event “when today > (last update +90 days)”

As a reminder, note that this event is only evaluated while the Order is either Cancelled
or Shipped. The fact that the event is not drawn from the other states to archived means
that the object will not test for that condition while in those states. Remember that what
does not show on a Statechart tells you almost as much as what is shown on the diagram.

Making events conditional
A guard condition controls the response to an event. When an event occurs, the condition is
tested. If the condition tests true, the corresponding transition takes place along with any
and all associated actions; otherwise, the event is ignored.

Figure 22-5 models one of the transitions from the Tentative state to the Placed state.
The triggering event is “receivePmt(amt).” But receiving the payment will not upgrade the
Order to Placed unless it was actually enough to pay for the Order. The net effect of the
event is that the object acknowledges the event, evaluates the effectiveness of the event,
and either accepts or rejects it based on the guard condition. If the event is rejected, the
object remains unchanged.

Figure 22-5 Guard condition [amt not <amt_due]

Tentative

receivePmt(amt)[amt not < amt_due]/
placeOrder()

Placed

On entry/issueConf()

when today >
(last update +90 days)/

setArchived()

when today > (last update + 90 days)/
setArchived()

Cancelled

Shipped

354910-3 Ch22.F 5/31/02 2:18 PM Page 230

Session 22—Modeling the Extended Features of the Statechart 231

Send event
You learned the send event in Session 21. But send events are common enough that it is
worth presenting them again briefly in this context. Objects interact to get work done. In
the Statechart diagram, you’re modeling why and when an object would perform such inter-
actions. A send event models the fact that an object tells another object what to do. A send
event may be a response to a transition event or an internal event.

Figure 22-6 models a send event as part of the action required by a transition event.
When the shipped(carrier, datetime) event occurs, two actions are triggered with the transi-
tion: setShipped() to change the state; and a message to the Customer object to generate a
notification to the real customer that her Order has been shipped.

Figure 22-6 Send event Customer.notify(Shipment, Order)

Guard conditions as events
A guard condition may actually be used by itself as a triggering event. It simply implies
that the object is watching for a condition to be satisfied. For example, your bank account
monitors its balance as the deposits and withdrawals are computed. If, at any time, the bal-
ance drops below zero, the account jumps at the opportunity to fire off an overdraft charge.

Modeling Superstates and Substates
Modeling often requires different views of a problem. High-level views simplify the model.
Low-level views focus on details of a problem. The UML Statechart diagram supports the con-
cept of nested states, allowing both high- and low-level views of object behavior and states.

A superstate is simply a state that is expanded to show more detail. The state rounded
rectangle icon is expanded and the details are represented as one or more Statecharts
within the superstate. The name of the state is placed at the top. Superstates represent a
high-level view of a complex situation. They allow you to focus on the bigger, more general
problem without getting lost in the details. The substates are placed within the expanded
superstate.

shipped(carrier, datetime)/
setShipped(),

Customer.notify(Shipment, Order)

Packaged

after 3 days/upgradeShippingPriority()

Shipped

354910-3 Ch22.F 5/31/02 2:18 PM Page 231

Sunday Morning232

A substate is a state within a state, a lower level of detail within a state. For example, a
car can be in the state of moving forward. Within the moving forward superstate are sub-
states of moving forward in first gear, moving forward in second gear, and so on. The sub-
states provide a low-level view of a model element so that you can address specific issues
individually and in terms of their interactions and interdependencies. This detailed view
also allows you to highlight concurrent states and focus on how to control the splitting and
merging of concurrent states.

To illustrate these concepts, I’m going to use what I hope is a familiar example, a ther-
mostat. I’m going to simplify it even further and only look at the cooling side of its respon-
sibilities. The thermostat is a typical control-type object. Its job is to direct the work of
other objects, much like an application directs the behavior of the screen and the access to
the database.

Figure 22-7 models the superstate Cooling with two concurrent substates. In this exam-
ple, the two substates are both initial states. The diagram says that when the Thermostat
enters the Cooling state, it splits into two concurrent substates, that is, it is now doing two
things at the same time: It is monitoring the progress of the cooling process, and it is moni-
toring the cooling device for any problems. The two substates start immediately upon enter-
ing the Cooling state.

Figure 22-7 Superstate Cooling with two substates, Monitor Cooling and Monitor
Device

It is also possible to trigger the substates by transition events like a call or time event.
In this case, the transition event would extend all the way into the superstate and point
directly to the substate. This often involves split of control, which I cover next.

Split of control
Split of control means that, based on a single transition, you want to proceed with multiple
tasks. This is exactly the same concept you learned in the Activity diagram session. Split of

Monitor Device

Monitor Cooling

Cooling

354910-3 Ch22.F 5/31/02 2:18 PM Page 232

Session 22—Modeling the Extended Features of the Statechart 233

control is shown by a single transition divided into multiple arrows pointing to multiple
states or substates. The divide is accomplished with the fork bar you used in the Activity
diagram and is illustrated in Figure 22-8.

Merge of control can be modeled as multiple transition arrows pointing to a synchroniza-
tion bar, as you saw earlier in learning about the Activity diagram. Synchronization is not
shown in Figure 22-8.

Figure 22-8 Split of control

Concurrency
By allowing multiple Statecharts within a state, the UML supports concurrency within a
state. To model concurrency, simply split the superstate internal transition compartment
into as many separate compartments as needed, one for each sub-Statechart. In the thermo-
stat example, the Thermostat is doing two jobs at the same time: monitoring the cooling
device and watching for problems with the device. So the Cooling state internal transition
compartment is split in two by a line.

Note that in this particular example each substate provides a different transition out of
the superstate. The Monitor Cooling substate is watching for the event “when temperature
received(temperature) [temperature < 70].” If it receives this event, it takes the Thermostat
out of the Cooling state and back to monitoring the temperature. So what happens to the
other substate? Well, this hits on the definition of substate. A substate is a state within a
state — in this case, Monitor Device within Cooling. If the Thermostat leaves the Cooling
state, by definition it also leaves the Monitor Device state. This is illustrated in Figure 22-9.

The same is true if the Monitor Device state receives the event it is waiting for.

Monitor Device

Monitor Cooling

Cooling

Exit:^AirConditioner.turnOff()

after tempdelay(seconds)
^Thermometer.getTemperature()

when temperature received(temperature)
[temperature>76F]/

^AirConditioner.turnOn()

354910-3 Ch22.F 5/31/02 2:18 PM Page 233

Sunday Morning234

Figure 22-9 Multiple transitions out of a superstate

REVIEW

Different types of events can trigger a transformation in an object:

� Call events are basically messages from other objects telling the modeled object
what to do. They are explicit calls to an operation on the object.

� The time event indicates that the object needs to support code that will monitor the
passage of time to know when to trigger a change in the object.

� Change events monitor the object and/or its environment for some change.
� Send events describe a message sent by the modeled object to another object. In

some respects, this should be called a send action because it happens in response to
an event.

� Guard conditions may also act as events. The object watches for the condition to be
satisfied. As soon as the condition is met, the object transitions to the next state.

� The UML supports the ability to open up a state and break it into smaller pieces.
The smaller pieces are substates, states within a state. The larger containing state is
referred to as the superstate.

� The substates are modeled as a Statechart within a state. All the normal notation of
a Statechart is available within a state. When there is more than one concurrent
substate, simply split the superstate icon with a line to allow for each independent
Statechart.

� Split and merge of control use the fork and synchronization bars, the same bars
used in the Activity diagram.

Monitor Device
after devicedelay(minutes)

Monitor Cooling

Monitor

Cooling

Exit:^AirConditioner.turnOff()

after tempdelay(seconds)
^Thermometer.getTemperature()

when temperature received(temperature)
[temperature>76F]/

^AirConditioner.turnOn()

when temperature received(temperature)
[temperature<70]

354910-3 Ch22.F 5/31/02 2:18 PM Page 234

Session 22—Modeling the Extended Features of the Statechart 235

QUIZ YOURSELF

1. What is a call event? (See “Call event.”)
2. What is a time event? (See “Time event.”)
3. What is a change event? (See “Change event.”)
4. What is a superstate? (See “Modeling Superstates and Substates.”)
5. What is a substate? (See “Concurrency.”)

354910-3 Ch22.F 5/31/02 2:18 PM Page 235

354910-3 Ch22.F 5/31/02 2:18 PM Page 236

Session Checklist
✔ Deriving a Statechart diagram from a Sequence diagram
✔ Building a Statechart diagram for the case study

Those who use the UML diagrams often miss the benefit of building and comparing the
different diagrams. Each diagram provides a unique view of the same problem.
Comparing and contrasting these views can function much like reconciling your check-

book. Given multiple sources of the same information, it is much easier to find and correct
errors.

Deriving a Statechart from Sequence Diagrams
The dynamic model provides two diagrams that model changes over time: the Statechart dia-
gram and the Sequence diagram. The key to understanding the relationship between these
diagrams is in understanding states and events. Events trigger transitions between states.
States capture the condition of an object during the period of time between transitions.

Using this understanding, look at the Sequence diagram shown in Figure 23-1.
In Figure 23-1, each vertical column represents the lifeline for one object. Each event

directed at a lifeline represents an event that may trigger a change in that object. The space
between events on the lifeline represents a period of time when the object remains in the
same condition or state. Because not every event causes a state transition, these periods are
referred to as candidate states until it’s proven that a change, in fact, occurs.

The events pointing outward from the object lifeline represent either return values sent
to other objects or send events.

S E S S I O N

Applying the Extended Statechart
Features to the Case Study

23

364910-3 Ch23.F 5/31/02 2:18 PM Page 237

Sunday Morning238

Figure 23-1 A basic Sequence diagram with events and transitions

The challenging part of mapping the Sequence diagram to the Statechart diagram is to
determine the condition of the object between the events and name it as accurately as pos-
sible. The same state may appear in many Sequence diagrams. Accurate naming can prevent
confusion when you merge the states from the many Sequence diagrams. To choose an accu-
rate name, remember that the state of an object is defined by its attribute values. Describe
the object in terms of its attributes (for example, open, closed, open and overdrawn, or
filled and not shipped). Adjectives make very good state names, but you might need more
than one adjective to fully describe the current condition of the object.

Figure 23-2 shows how to map the events and corresponding gaps on the lifeline of the
Sequence diagram to candidate states and events on the Statechart diagram.

Figure 23-2 Mapping a Sequence diagram to a Statechart diagram

message 1

message 2

Candidate State #1

:A :B :C

Candidate State #2

Candidate State #3

message 1

message 2

:A :B :C

364910-3 Ch23.F 5/31/02 2:18 PM Page 238

Session 23—Applying the Extended Statechart Features to the Case Study 239

Understanding these concepts is a lot easier when you can see an example, so I’m going
to derive a Statechart diagram for the Product object and do it a step at a time so you can
see the progression. I’ll work through the same series of steps for each scenario:

1. Identify the events directed at the lifeline of the Product object.
2. Identify candidate states by isolating the gaps of the lifeline between the incom-

ing events.
3. Name the candidate states using adjectives that describe the condition of the

object during the period of time represented by the gap.
4. Add the new states and events to the Product Statechart.

The first scenario is modeled in Figure 23-3. There is one incoming event called
Product(PO). This is the constructor operation that creates the object. Before this event,
this particular Product object didn’t exist, so you have discovered the initial state. I’ll name
it “On Order” to show that a record of the Product object is created when the Product is first
ordered.

The self-transition event setPO(PO) does not change the state of the Product. It only
updates a reference that it’s tracking, so I didn’t identify a state change.

Figure 23-3 Finding the transition events and candidate states for Scenario 1

does not exist yet

Initial state
On Order

:PurchasingClerk :PurchaseOrder :Product

1:PO()

2:PurchaseOrder

4:setPO(PO)

7:return true

3:Product(PO)

5:Product

6:addProduct(Product)

On Order

Draft Statechart
Diagram

364910-3 Ch23.F 5/31/02 2:18 PM Page 239

Sunday Morning240

The second scenario, modeled in Figure 23-4, shows the receiving event. There is only
one event hitting the Product lifeline, so I identify two candidate states: the one before the
event and the one after. The event receive(location) becomes the reason for the transition
from On Order to Inventoried.

Figure 23-4 Finding the transition events and candidate states for Scenario 2

If you’re struggling with a name for the state, try to identify the attributes
that change in the transition and use them and their values as the descrip-
tors. For example, if the cancelled date is set, then call it Cancelled; if the
product was placed into inventory by entering a location value in the loca-
tion attribute, call it Inventoried.

The third scenario, in Figure 23-5, shows the Product being sold. Before the sell event,
the Product was sitting in inventory. In fact, if it were not in inventory, I could not sell it.
So again, I identify two states and use the incoming event sell as the transition event
between the two states.

Tip

On Order

Inventoried

:ReceivingClerk :Shipment :Product

1:getNextProduct()

2:return Product

3:receive(location)

4:return true

On Order

Inventoried

receive(location)

364910-3 Ch23.F 5/31/02 2:18 PM Page 240

Session 23—Applying the Extended Statechart Features to the Case Study 241

Figure 23-5 Finding the transition events and candidate states for Scenario 3

In the fourth scenario, shown in Figure 23-6, the product is packed for shipment. But
before the product may be packed for shipping it must have been sold. The pack event
requires the shipment to update the product with the Shipment information so that we can
track it. To show the change, I model a transition from the sold state to a new state labeled
Packaged.

Figure 23-6 Finding the transition events and candidate states for Scenario 4

Sold

Packaged

:ShippingClerk :Shipment :Product

1:Shipment()

2:return Shipment

6:return true

3:pack(Shipment)

4:return true

Sold

Packaged

pack(Shipment)

5:addProduct(Product)

Sold

Inventoried

:Order
ProcessingClerk :Order :Product

1:Order()

2:return Order

6:return true

3:sell(Order)

4:return true

Inventoried

Sold

sell(Order)

5:addProduct(Product)

364910-3 Ch23.F 5/31/02 2:18 PM Page 241

Sunday Morning242

In Figure 23-7, the fifth scenario tells me to ship the product. But before the product
may be shipped it must have been packaged for shipment. The ship event requires me to
update the product with the carrier and ship date. Based on this information, I modeled a
transition from the Packaged state to a new state labeled Shipped.

Figure 23-7 Finding the transition events and candidate states for Scenario 5

The sixth scenario, in Figure 23-8, illustrates bringing a return back into inventory. But
before the product may be returned, it must have been shipped. The return event requires
the location in inventory where the Product will be placed. When the product is returned to
a stock location, it is returned to the previous state called Inventoried.

Figure 23-8 Finding the transition events and candidate states for Scenario 6

When you put all the little Statechart diagrams together, you get a Statechart diagram
that looks like Figure 23-9.

Shipped

Inventoried

:Customer :ShippingClerk :Product

3:return

2:return(location)

4:return true

Inventoried

Shipped

return(location)

1:returnProduct(Product)

Packaged

Shipped

:ShippingClerk :Shipment :Product

1:ship()

3:return

2:ship(carrier,date)

4:return true

Packaged

Shipped

ship(carrier,date)

364910-3 Ch23.F 5/31/02 2:18 PM Page 242

Session 23—Applying the Extended Statechart Features to the Case Study 243

Figure 23-9 The merged Statechart diagram

This is just one simple technique for taking advantage of the Sequence diagram to help
you build a Statechart. You will very likely encounter a few others. In fact, there are more-
formal methods for mapping the two diagrams in a manner that is supported by software.
Some modeling tools allow you to work on a Statechart and then automatically generate or
update your Sequence diagrams. Likewise, you can create Sequence diagrams and generate
the Statechart.

The Statechart and Sequence diagrams can help you a great deal when you’re trying to
design the behavior of your objects, especially those few objects that are at the heart of
your application.

Inventoried

Shipped

Sold

receive(location)

sell(Order)

Packaged

pack(Shipment)

ship(carrier, date)

return(location)

On Order

364910-3 Ch23.F 5/31/02 2:18 PM Page 243

Sunday Morning244

REVIEW

The Sequence diagram provides the events that can affect an object’s condition. It also
helps to identify the periods of time between the changes caused by the events. These
periods of time when the object remains unchanged may represent states on the Statechart
diagram.

To derive the Statechart from the Sequence diagrams, use the following steps:

1. Identify the events directed at the lifeline of the object you’re modeling.
2. Identify candidate states by isolating the portions of the lifeline between the

incoming events.
3. Name the candidate states using adjectives that describe the condition of the

object during the period of time represented by the gap.
4. Add the new states and events to the Statechart diagram.

Remember that the scope of the Sequence diagram is only one scenario. The scope of the
Statechart diagram is the entire life of the object, so it may take many Sequence diagrams
to build one Statechart.

QUIZ YOURSELF

1. On a Sequence diagram, which events may change an object? (See “Deriving a
Statechart from Sequence Diagrams.”)

2. How do you identify a candidate state on a Sequence diagram? (See “Deriving a
Statechart from Sequence Diagrams.”)

3. If an event on the Sequence diagram causes a change to the object, how do you
model it on the Statechart diagram? (See “Deriving a Statechart from Sequence
Diagrams.”)

4. What do you do if an event does not cause a change in the object it is directed at?
(See “Deriving a Statechart from Sequence Diagrams.”)

5. What kind of word is good for naming a state? (See “Deriving a Statechart from
Sequence Diagrams.”)

364910-3 Ch23.F 5/31/02 2:18 PM Page 244

Session Checklist
✔ Explaining the purpose and function of packages
✔ Defining the package notation
✔ Creating a Package diagram for the case study

Throughout the development process, you create a wide variety of diagrams to gather
requirements, research those requirements, and ultimately describe the software you
want to generate. Without a tool to organize all those work products, the job can

quickly become confusing and overwhelming. Packages are the UML tool for organizing the
diagrams and other work products of the project.

Describing the Purpose and Function of Packages
A package is modeled with a folder icon like the three packages in Figure 24-1. Also illus-
trated in Figure 24-1 is the fact that packages may be used for three distinct purposes. In
one role, they may be used to organize any and all of the diagrams that you create during
the project. You can place the diagrams into various packages just like you would place files
into various directories on your computer. You name the directories and packages to indi-
cate the purpose of the contained files. Figure 24-1 illustrates this role with the package on
the left, a package of deliverables for Project A7, Phase 1.

Packages may contain any of the logical model elements you’ve learned so far, such as
Use Case diagrams, Sequence diagrams, Class diagrams, and even other packages. In fact,
most modeling tools provide a navigation mechanism based on packages that look and func-
tion exactly like a directory structure. Because this use of packages is so general, you may
use virtually any stereotype with it to explain how you are using the particular package.

S E S S I O N

Modeling the Development
Environment

24

374910-3 Ch24.F 5/31/02 2:18 PM Page 245

Sunday Morning246

Figure 24-1 Three uses for packages: directories, subsystems, and models

In the second role, the package can represent a subsystem, like the Receiving subsystem
in Figure 24-1. A subsystem is a UML-defined stereotype that identifies a cohesive subset of
the total system. For example, the Inventory Control System might be organized into a
Receiving subsystem and a Shipping subsystem, among others.

Elements placed in a subsystem type of package are, by default, visible only within the
package. However, the visibility of individual model elements within the package may be
defined as public, private, or protected. Every subsystem package must have at least one
public interface (that is, at least one class with a public interface).

The third use of packages is called a model. A model is also a UML-defined stereotype,
similar to a subsystem in that it contains a cohesive set of elements of the system. The dif-
ference is that the model focuses on a topic or type of behavior within the system. For
example, information about the Order Tracking topic of the third package in Figure 24-1 will
very likely appear in most of the Inventory Control subsystems. Also, because the model is
focused on one topic, it will not contain any system elements that do not help explain the
topic.

Packages Provide a Namespace
All these package types provide a separate namespace for the model elements contained
within them, including other packages. Naming elements within a package requires two
pieces of information: the element name and the element type. For example, a package may
contain something called Product of type Class and something called Product of type
Statechart diagram. Names must be unique across elements of the same type within a pack-
age but do not have to be unique across different types. A package could not contain two
items called Product that are both of type Class.

Model elements in different packages may have the same name. But whenever the two
elements are used together, they must be qualified with the owning package name. A fully
qualified element name uses the notation package :: element, for example Receiving ::
Product and Shipping :: Product.

<<deliverables>>
 Project A7
 Phase 1

role 1
directory

role 2
subsystem

<<subsystem>>
 Receiving

role 3
model

<<model>>
 Order

tracking

Alternative notations

Receiving
Order

tracking

374910-3 Ch24.F 5/31/02 2:18 PM Page 246

Session 24—Modeling the Development Environment 247

Defining the Notation for Packages and Package Diagrams
The package icon looks like a tabbed folder. Packages reference one another using the
dependency notation, a dashed arrow. Read the example in Figure 24-2 as “the Receiving
subsystem depends on, or needs help from, the Purchasing subsystem package.”

Figure 24-2 Package icon and dependency notation

Package stereotypes
In Figures 24-1 and 24-2, each package icon contains a stereotype like <<subsystem>> or
<<deliverables>>. You can put almost anything you want in a package, so the package
description often requires a bit of clarification. The stereotype allows you to characterize
the contents of the package and still provide specific naming of its contents. For example,
the Receiving package is characterized as a subsystem. This prevents us from interpreting it
as the directory containing the receiving documents, or some other resources besides the
subsystem classes.

Be careful though. Stereotypes are not part of the package name, so they do not help
make it unique. Two packages at the same level called <<documentation>> Receiving and
<<subsystem>> Receiving would be in conflict and probably would not be allowed by most
modeling tools. On the other hand, if the packages themselves are contained within other
packages, then they are qualified by their containers, making them unique. However, you
need to check how your modeling tool implements these rules.

Package dependency
Figure 24-2 also shows a dashed dependency arrow from Receiving to Purchasing. The
dependency relationship means that at least one class in a package has to communicate
with at least one class in the other package. The dependency in Figure 24-2 could mean
that the Receipt class in the Receiving package (Receiving :: Receipt) needs to be able to
get the details of the PurchaseOrder class in the Purchasing package (Purchasing ::
PurchaseOrder) in order to validate incoming products.

It is entirely valid for a dependency to run both directions, indicated by an arrowhead on
both ends of the dashed line. Figure 24-3 shows an example where Shipping might need to
update an Order in the Order Processing subsystem. But Order Processing might also need to
check the status of a Shipment containing the Products on an Order.

<<subsystem>>
 Purchasing

<<subsystem>>
 Receiving

374910-3 Ch24.F 5/31/02 2:18 PM Page 247

Sunday Morning248

Figure 24-3 A bi-directional dependency

For simplicity’s sake, all the other dependencies illustrated in this session go only one
direction.

Dependency stereotypes
The package dependency may be labeled with a stereotype to describe the nature of the
dependency. The UML defines two dependency stereotypes, <<import>> and <<access>>.
The <<import>> stereotype in Figure 24-4 means that the Receiving package adds a
Purchasing class (in this case the PurchaseOrder class) to itself at run time, allowing inter-
nal references (references within the package) to the class without specifying the source
package name.

Figure 24-4 The <<import>> stereotype on a dependency

For Java programmers, the <<import>> stereotype has the same effect as the
import statement in Java.

The <<access>> stereotype in Figure 24-5 says that the Shipping subsystem will want to
communicate with the Receiving subsystem but will not actually pull the classes from
Receiving into Shipping at run time. At run time, you would then expect to see some object
from the Shipping subsystem making calls in the interface of the Receiving subsystem.

Figure 24-5 The <<access>> stereotype on a dependency

There are a number of other stereotypes described in the UML specification
in the file 01-09-78 UML 1.4 Appendix A UML Standard Elements.pdf.

Tip

<<subsystem>>
Receiving

<<subsystem>>
Shipping

<<access>>

Tip

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<import>>

<<subsystem>>
Shipping

<<subsystem>>
Order

Processing

374910-3 Ch24.F 5/31/02 2:18 PM Page 248

Session 24—Modeling the Development Environment 249

Model elements in a package
One of the most common uses for the package is to hold your diagrams. In most modeling
tools, packages provide a nesting mechanism (that is, a package may contain other pack-
ages, which in turn contain diagrams). The packages in this scheme refer to systems, sub-
systems, and diagrams, respectively. The scheme can contain as many levels as the problem
requires. Figure 24-6 shows an example of the package Shipping that holds the Class dia-
gram that supports the functions of the Shipping subsystem.

Figure 24-6 A package containing a Class diagram

Actually, the more common way to represent this in a modeling tool is to open a package
and get a diagram in a new window or canvas. Conceptually, the diagram resides in the
package as I have represented in Figure 24-6. But the tool does not represent it that way.

Figure 24-6 also shows two examples of the import relationship. The Order and Product
classes use the qualifying notation package :: element. This notation tells you that the two
classes came from the named package (that is, Order is imported from the OrderProcessing
package and Product is imported from Purchasing). This clearly identifies the fact that the
class is defined in another package but is referenced in this package.

<<subsystem>>

Shipping Clerk

Shipping

Purchasing::Product

0..*0..*

0..*

0..10..1

1..1

1..1

1..1

1..*

1..*

Shipment ship OrderProcessing::Order

packsships

374910-3 Ch24.F 5/31/02 2:18 PM Page 249

Sunday Morning250

Constructing a Package Diagram for the Case Study
Next I’ll step through the creation of a Package diagram using the subsystem stereotype to
organize the Inventory Control System elements that we have discovered so far. Note the
use of the package icon, the package stereotype, dependencies, and dependency stereo-
types.

1. Add a package to represent the Purchasing subsystem. Draw the package icon (a
folder). Add the name “Purchasing.” Add the stereotype <<subsystem>> to clarify
what you want to represent in the package. Figure 24-7 illustrates this first pack-
age.

Figure 24-7 Step 1: A package containing a Class diagram

2. Add the Shipping and Receiving subsystems. Figure 24-8 shows the new additions.

Figure 24-8 Step 2: Adding the new subsystems

3. Create a dependency between Receiving and Purchasing to show that Receiving
needs help from classes in the Purchasing package. Figure 24-9 shows a dashed
arrow from Receiving to Purchasing. Receiving needs the help. Purchasing is the
place that Receiving looks to get the help.

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<subsystem>>
Shipping

<<subsystem>>
Purchasing

374910-3 Ch24.F 5/31/02 2:18 PM Page 250

Session 24—Modeling the Development Environment 251

Figure 24-9 Step 3: Adding a dependency

4. Stereotype the dependency between Receiving and Purchasing as <<import>> to
show that Receiving makes references to classes within Purchasing by adding them
into its own set of classes at run time. Figure 24-10 shows the addition of the
<<import>> stereotype.

Figure 24-10 Step 4: Adding the <<import>> dependency stereotype

5. Add the <<access>> stereotype to the dependency between Shipping and
Receiving to show that Shipping needs to communicate with classes within
Receiving without actually making them part of the Shipping subsystem at run
time. Instead, the classes in the Shipping subsystem will make calls to one or more
classes in Receiving. Figure 24-11 places the <<access>> stereotype on the dashed
dependency arrow between Shipping and Receiving.

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<import>>

<<subsystem>>
Shipping

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<subsystem>>
Shipping

374910-3 Ch24.F 5/31/02 2:18 PM Page 251

Sunday Morning252

Figure 24-11 Step 5: Adding the <<access>> dependency stereotype

6. Add a package to handle the order processing requirements of the system. The new
package, Order Processing, is modeled as a folder icon just like the other packages.
The name is placed inside the icon. The package should be recognizable as a sub-
system, so the stereotype <<subsystem>> is placed above the name. The Order
Processing package needs to use the Inventory class in the Receiving package, so it
pulls the class into itself to work with it. This requirement is implemented in
Figure 24-12 with a dashed dependency arrow from Order Processing to Receiving
using the <<import>> dependency stereotype.

Figure 24-12 Step 6: Adding Order Processing and the <<import>> dependency
stereotype

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<import>>

<<subsystem>>
Shipping

<<subsystem>>
Order

Processing

<<access>><<import>>

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<import>>

<<subsystem>>
Shipping

<<access>>

374910-3 Ch24.F 5/31/02 2:18 PM Page 252

Session 24—Modeling the Development Environment 253

7. The Shipping package needs to use the Order class in the Order Processing package
but will simply communicate with it rather than add it to itself. Figure 24-13 mod-
els this change with a dashed dependency arrow from Shipping to Order Processing
using the <<access>> dependency stereotype. Figure 24-13 models the addition of
the dependency.

Figure 24-13 Step 7: Adding the <<access>> dependency stereotype

REVIEW

The package notation provides a versatile tool for storing work products of the software
development process. The package notation may be used just like a directory structure to
store artifacts, documentation, and just about anything you can put in a file.

� The package notation may also be used to represent a breakdown of the system into
subsystems and finally to diagrams that represent the subsystems. This is by far the
most common use of the packages in modeling tools.

� Packages provide separate namespaces for the elements contained in them. This
results in the UML naming standard package :: name to fully qualify each element.

� The package is modeled with a folder icon, a name, and often a stereotype to distin-
guish how the package is being used. The UML defined stereotypes include <<sub-
system>> and <<model>>.

� Packages contain elements that may need to interact. This need is expressed as a
dependency, a dashed arrow between the two packages. The type of dependency is
described using a stereotype like <<import>> or << access>> placed on the depen-
dency arrow. The dependency may be uni-directional or bi-directional.

<<subsystem>>
Purchasing

<<subsystem>>
Receiving

<<import>>

<<subsystem>>
Shipping

<<subsystem>>
Order

Processing

<<access>>

<<access>><<import>>

374910-3 Ch24.F 5/31/02 2:18 PM Page 253

Sunday Morning254

QUIZ YOURSELF

1. How do you model a package in the UML? (See “Describing the Purpose and
Function of Packages.”)

2. What is a package stereotype? (See “Defining the Notation for Packages and
Package Diagrams.”)

3. What is a dependency? (See “Defining the Notation for Packages and Package
Diagrams.”)

4. What is a dependency stereotype? (See “Defining the Notation for Packages and
Package Diagrams.”)

5. What does the <<import>> stereotype mean? (See “Defining the Notation for
Packages and Package Diagrams.”)

374910-3 Ch24.F 5/31/02 2:18 PM Page 254

Session Checklist
✔ Describing the purpose and function of the Component diagram
✔ Defining the notation for Component diagrams
✔ Creating a Component diagram for the case study

Once the logical design is completed, the next step is to define the physical implemen-
tation of your design. The physical implementation must address three different prob-
lems: the software, the hardware, and the integration of the two.

Explaining the Component Diagram
The Component diagram models the physical implementation of the software. The
Deployment diagram models the physical architecture of the hardware (the Deployment dia-
gram is covered in Session 26). Combined, they model the integration and distribution of
your application software across the hardware implementation.

Just as Class diagrams describe the organization and intent of your software design, com-
ponents represent the physical implementations of your software design. The purpose of the
Component diagram is to define software modules and their relationships to one another.
Each component is a chunk of code that resides in memory on a piece of hardware. Each
component must define an interface, which allows other components to communicate with
that component. The interface and the internal implementation of the component are
encapsulated in the classes that make up the component.

The UML groups components into three broad categories:

� Deployment components, which are required to run the system
� Work product components including models, source code, and data files used to cre-

ate deployment components
� Execution components, which are components created while running the application

S E S S I O N

Modeling the Static View:
The Component Diagram

25

384910-3 Ch25.F 5/31/02 2:18 PM Page 255

Sunday Morning256

Components may depend on one another. For example, an executable (.exe) may require
access to a dynamic link library (.dll), or a client application may depend on a server side
application, which in turn depends on a database interface.

Components may be dependent on classes. For example, to compile an executable file,
you may need to supply the source classes.

Given the key elements, component, component interface, and dependencies, you can
describe the physical implementation of your system in terms of the software modules and
the relationships among them.

Defining the Notation for Components
and Component Dependencies
A component icon is modeled as a rectangle with two small rectangles centered on the left
edge. The name is placed inside the icon, as in Figure 25-1.

Figure 25-1 Component icon and name

The two small rectangles are left over from an old notation that used to put
the component interfaces in the rectangles.

Component stereotypes
Component stereotypes provide visual clues to the role that the component plays in the
implementation. Some common component stereotypes include:

� <<executable>>: A component that runs on a processor
� <<library>>: A set of resources referenced by an executable during runtime
� <<table>>: A database component accessed by an executable
� <<file>>: Typically represents data or source code
� <<document>>: A document such as a page inserted into a Web page

These stereotypes refer to classifiers (implementations of the classes defined earlier in
the process) and artifacts of the implementation of the classifiers, such as the source code,
binary files, and databases.

Note

OrderEntry.exe

384910-3 Ch25.F 5/31/02 2:18 PM Page 256

Session 25—Modeling the Static View: The Component Diagram 257

Component interfaces
A component interface may be modeled in either of two ways. One way is to use a class with
the stereotype <<interface>> attached to the component with a realization arrow, as
shown in Figure 25-2. The realization arrow looks like the generalization symbol with a
dashed line. To realize the interface means to apply it to something real like the executable.

Figure 25-2 Interface notation using a class and stereotype

A second, more common, technique is to use a “lollipop” attached to the component
with a solid line, as shown in Figure 25-3. If you look into the UML specification examples,
the circle on the end of the lollipop is very small. This is a bit distorted from the typical
notation employed by modeling tools.

Figure 25-3 Interface notation using the lollipop

The interface implemented by a component is actually implemented by the classes within
the component, so the interface should already have been defined in your Class diagrams.
Also, a component may implement as many interfaces as it requires. The number and exact
type of interfaces are dictated by the classes implemented by the component.

Component dependencies
Dependencies between components are drawn with the dashed arrow from the dependent
component to the component it needs help from. In Session 24, you learned that package
dependencies could be stereotyped to clarify the nature of the dependency. The same is true
for component dependencies. In Figure 25-4, the OrderEntry depends on the OrderEntry.exe
component. The UML stereotype <<becomes>> means that the OrderEntry file literally
becomes the OrderEntry executable at runtime. OrderEntry would be the code sitting on a
storage device. At runtime it is loaded into memory and possibly even compiled. Then dur-
ing execution the OrderEntry.exe component would depend on the three other components:
orders.dll, inventory.dll, and orders.tbl.

<<executable>>
OrderEntry.exe

OrderInt

<<executable>>
OrderEntry.exe

<<interface>>
Order

384910-3 Ch25.F 5/31/02 2:18 PM Page 257

Sunday Morning258

Figure 25-4 Components dependencies and dependency stereotypes

Building a Component Diagram for the Case Study
To review the notation for the Component diagram, I’ll show you how to build one using
each of the new model elements you just learned.

The diagram will model the Receiving application. The application consists of two exe-
cutable components, a shared interface, and three library components. The Receiving appli-
cation consists of the classes that implement the Use Case ReceiveProduct, the server side
application, and the client application (the UI). The other components represent the imple-
mentations of the classes used by receiving, Product, PurchaseOrder, and Inventory.

1. In Figure 25-5, create the Receiving.exe component. Name it and add the
<<executable>> stereotype.

Figure 25-5 Step 1: Creating the Receiving.exe component

2. Figure 25-6 adds the purchaseorder.dll library component so that the Receiving
component can validate incoming products against the purchase orders. The pur-
chaseorder.dll component is the implementation of the PurchaseOrder class. It
then draws a dependency from Receiving.exe to the purchaseorder.dll to show that
the Receiving.exe needs help from the purchaseorder.dll to check the received
products against the purchase order.

<<executable>>
receiving.exe

<<executable>>
OrderEntry.exe

<<file>>
OrderEntry

<<becomes>>

<<library>>
orders.dll

<<table>>
inventory.tbl

<<table>>
orders.tbl

384910-3 Ch25.F 5/31/02 2:18 PM Page 258

Session 25—Modeling the Static View: The Component Diagram 259

Figure 25-6 Step 2: Adding a library component and drawing the dependency

3. Figure 25-7 adds two more resource components. The product.dll component allows
the Receiving application to update the product status to received. The inven-
tory.dll component supports checks on the availability of locations where they can
put the new product. It then adds the dependency from the Receiving.exe to the
product.dll to show that the Receiving.exe needs access to the product.dll, and the
dependency from the Receiving.exe to the inventory.dll to show that the
Receiving.exe needs access to the inventory.dll in order to update inventory.

Figure 25-7 Step 3: Adding two more resource components and the dependencies

4. Figure 25-8 adds the client application that manages the user interface. The
Receiving application provides the PO (or Purchase Order) interface. Figure 25-8
models the interface using the lollipop notation. The user interface application
(ui.exe) accesses the Receiving application using the PO interface. This access is
modeled as a dependency from ui.exe to the PO lollipop style interface to illustrate
that the ui.exe will not work properly unless it can access the receiving applica-
tion through the PO interface.

<<executable>>
receiving.exe

<<library>>
purchaseorder.dll

<<library>>
product.dll

<<library>>
inventory.dll

<<executable>>
receiving.exe

<<library>>
purchaseorder.dll

384910-3 Ch25.F 5/31/02 2:18 PM Page 259

Sunday Morning260

Figure 25-8 Step 4: Adding the user interface application and the shared interface

Mapping the Logical Design to the Physical Implementation
Making components from classes involves choices about how to assemble these classes into
cohesive units. The interfaces of the classes in the component make up the interface to the
component. Figure 25-9 shows a database table component, orders.tbl, which implements
the classes that define an order, namely Order, LineItem, and Product, and their association.

Figure 25-9 A component is created from classes.

In like manner, the main program in an application may implement some or all of the
key classes in the logical model. To create the executable in Figure 25-10, you compile the
classes together into a single executable.

<<table>>
orders.tbl

OrderProcessing::LineItem

OrderProcessing::Order

1..1

0..1

1..1

1..*
Purchasing:Product

<<implement>>

<<implement>>

<<implement>>

<<executable>>
receiving.exe

<<executable>>
ui.exe

PO

<<library>>
purchaseorder.dll

<<library>>
product.dll

<<library>>
inventory.dll

384910-3 Ch25.F 5/31/02 2:18 PM Page 260

Session 25—Modeling the Static View: The Component Diagram 261

Figure 25-10 The OrderEntry.exe is created from multiple source classes.

Quite often, however, a component consists of a single class implemented as an exe-
cutable, file, library, table, or document. In Figure 25-11, the order entry executable refer-
ences a set of library components for the individual classes rather than compiling the
classes into one component. The user interface application is broken into two html compo-
nents. The result is a more modular design.

Figure 25-11 One class equals one component.

Finally, components can be organized into packages just like other diagrams and model
elements. This can be very helpful when managing application distribution. The result is a
directory containing all the software elements needed to implement the system or sub-
system represented by the package.

index.html

orderentry.html

<<executable>>
OrderEntry.exe

OrderInterface

<<library>>
product.dll

<<library>>
order.dll

<<library>>
dbinterface.dll

<<implement>>

OrderProcessing::Order

<<interface>>
OrderProcessing::OrderInterface

OrderProcessing::LineItem

1..1

0..1

1..*

1..1

Purchasing::Product

<<executable>>
OrderEntry.exe

<<user interface>>
OrderEntryUI.exe

OrderInterface

<<implement>>

<<implement>>

384910-3 Ch25.F 5/31/02 2:18 PM Page 261

Sunday Morning262

REVIEW

The purpose of the Component diagram is to define software modules and their relationships
to one another. Each component is a chunk of code that resides in memory on a piece of
hardware.

� The UML groups components into three broad categories:
� Deployment components, which are required to run the system
� Work product components including models, source code, and data files used to

create deployment components
� Execution components, which are components created while running the

application

� The component icon is a rectangle with two small rectangles on the left edge. The
interface to the component may be modeled two different ways:
� The lollipop notation represents the interface as a small circle connected to the

component by a solid line and with the name of the interface near the circle.
� The second method uses a class with the stereotype <<interface>> with a real-

izes relationship drawn from the component to the interface class. A component
may realize (implement) as many interfaces as it requires.

QUIZ YOURSELF

1. What is a UML component? (See “Explaining the Component Diagram.”)
2. What is the icon for a UML component? (See “Defining the Notation for

Components and Component Dependencies.”)
3. What notation shows that one component needs access to another component?

(See “Defining the Notation for Components and Component Dependencies.”)
4. What notation is used to show that a component implements an interface? (See

“Defining the Notation for Components and Component Dependencies.”)
5. True or False: Each component implements a class. (See “Mapping the Logical

Design to the Physical Implementation.”)

384910-3 Ch25.F 5/31/02 2:18 PM Page 262

Session Checklist
✔ Describing the purpose and function of the Deployment diagram
✔ Defining the notation for Deployment diagrams
✔ Mapping software components to an architecture
✔ Applying the combined diagrams to the case study

When the logical design is completed, the next step is to define the physical imple-
mentation of your design. The physical implementation must address three differ-
ent problems: the software, the hardware, and the integration of the two. The

Component diagram, from Session 25, is used to model the physical implementation of the
software. The Deployment diagram is used to model the physical architecture of the hard-
ware. Combined, they model the distribution of your application software across the hard-
ware implementation.

Describing the Purpose and Function of the Deployment Diagram
The Deployment diagram describes the physical resources in much the way a Class diagram
describes logical resources. The focus of the Deployment diagram is the nodes on which your
software will run.

Each node is a physical object that represents a processing resource. Most often this
means a computer of some type, but it may mean a human resource for manual processes.
Each node contains, or is responsible for, one or more software components or objects. The
software components on different nodes can communicate across the physical associations
between the nodes.

S E S S I O N

Modeling the Static View:
The Deployment Diagram

26

394910-3 Ch26.F 5/31/02 2:18 PM Page 263

Sunday Morning264

The purpose of a Deployment diagram is to present a static view, or snapshot, of the
implementation environment. A complete description of the system will likely contain a
number of different Deployment diagrams, each focused on a different aspect of the system
management. For example:

� One diagram might focus on how software components are distributed, such as
where the source code resides and where it is shipped for implementation.

� Another diagram might model how the executable is loaded from one node to
another node where it actually runs.

� For a multi-tiered application, the Deployment diagram would model the distribu-
tion of the application layers, their physical connections, and their logical paths of
communication.

Remember that the Component and Deployment diagrams are relatively new
for most people and there are a lot of different ideas out there about how to
use them. These tools can be very helpful, but they will not make or break an
implementation. Use good judgment. Practice. Find out where the benefits lie
for your project. Exploit the tool for your success instead of just following a
standard.

Defining the Notation for the Deployment Diagram
By now, the pattern for these physical diagrams should be getting pretty familiar (that is,
resources and connections). Just like the Package and Component diagrams, the Deployment
diagram has two types of elements: nodes (resources) and associations (connections).

The node icon is drawn as a 3D box (the shading is not necessary). Figure 26-1 models four
types of nodes: Server, Client, Database Server, and Printer. The lines between the nodes are
physical associations that are represented as a solid line from one node to another. Use mul-
tiplicity notation to define the number of nodes on each end of the association. For example,
Figure 26-1 says that each Server is connected to one or more Client nodes, and each Client
node is connected to exactly one Server node.

Naming the node associations poses an interesting problem. Because all the associations
are physical connections, they could all end up with the same name, “connects to.” Instead,
you may want to use stereotypes to describe types of connections. Figure 26-1 says that the
Server node and Client nodes are connected by an Ethernet connection using the
<<Ethernet>> stereotype.

The node is a classifier (like classes, Use Cases, and components), so it can have attrib-
utes and specify behaviors in terms of the executables it deploys. Figure 26-2 shows an
object-level view of a Deployment diagram. The object-level diagram models instances of
each node just as an Object diagram models real entities. The name compartment on top
identifies the node name and type, as well as the optional stereotype. The attribute com-
partment in the middle defines the properties of the node. The operations compartment at
the bottom defines the components that run on the node.

Note

394910-3 Ch26.F 5/31/02 2:18 PM Page 264

Session 26—Modeling the Static View: The Deployment Diagram 265

Figure 26-1 Component diagram with four nodes and three associations

Figure 26-2 An object-level Deployment diagram

The object-level view is not supported by many modeling tools even though
it is supported by the UML Metamodel.

Draw the Deployment diagram as though each node on your physical architecture is a
class on a Class diagram. Each node fulfills a specific purpose. Each node has communica-
tion associations with other nodes that represent the physical connections that support
communication.

Note

<<Ethernet>>

<<processor>>
dept234:Server

ProcSpeed = 300Mhz
Memory = 256MB

Deploys
orderproc.exe

1..1 1..*

<<processor>>
orderdesk3:Client

ProcSpeed = 200Mhz
Memory = 128MB

Deploys
orderentry.exe

<<Ethernet>>
<<processor>>

Server
<<processor>>

Client

<<device>>
Printer

<<processor>>
Database

Server

<<Ethernet>> <<parallel>>

1..*

1..*

1..*
1..1

1..1

1..1

394910-3 Ch26.F 5/31/02 2:18 PM Page 265

Sunday Morning266

Deployment diagrams can also function like network diagrams to illustrate the make-up
of your network. The object-level Deployment diagram can function as a requirements speci-
fication for each node, defining the memory, processor, and storage requirements.

Mapping Software Components to an Architecture
The more common technique for modeling the components on a node is to combine the two
physical diagram notations for components and nodes. Model the component icons inside
the expanded node to show containment. To show the logical communication between the
components, draw a dashed dependency arrow just like you did on the Component diagram.

In Figure 26-3, the orderentry.exe resides on the server but is loaded onto the client at
runtime. The stereotype <<becomes>> specifies this runtime migration. After the executable
is loaded, it depends on the orderproc.exe for help. Note that I could have drawn this at the
class level just as easily. But here I am modeling the fact that the logical design represented
by the classes has, in fact, been implemented in this physical architecture.

Figure 26-3 Combined Component and Deployment diagrams

Applying the Combined Diagrams to the Case Study
In this section, you’ll build the combined Deployment and Component diagram for the case
study step by step.

1. The hardware architecture consists of three kinds of devices: the client PC, a
middle-tier server, and a database server. Draw three nodes, one for each kind of
hardware resource (see Figure 26-4).

<<Ethernet>>

<<becomes>>

<<executable>>
orderproc.exe

<<processor>>
dept234:Server

<<executable>>
orderentry.exe

<<runtime image>>
orderentry.exe

<<processor>>
orderdesk3:Client

394910-3 Ch26.F 5/31/02 2:18 PM Page 266

Session 26—Modeling the Static View: The Deployment Diagram 267

Figure 26-4 Modeling the three nodes on the Deployment diagram

2. Each client PC runs a client UI for receiving. Each client PC contains the receiving
components (see Figure 26-5).

Figure 26-5 Adding the executable component to the Client node

<<executable>>
UI.exe

<<processor>>
Client PC

<<processor>>
Client PC

<<processor>>
DatabaseServer

<<processor>>
MiddleTierServer

394910-3 Ch26.F 5/31/02 2:18 PM Page 267

Sunday Morning268

3. As shown in Figure 26-6, the client and server nodes are associated, one server to
many clients, using an Ethernet connection. The server and database servers are
associated, one to one, using an Ethernet connection. The client PC nodes are
connected to the server via Ethernet.

Figure 26-6 Supplying the node associations to represent the physical connections

4. The server application uses two resources: the purchase order library and the product
library. The server also uses the database access library to communicate with the
database server. The server contains three components: the purchase order library
component, the product library component, and the database access library compo-
nent (Figure 26-7).

<<processor>>
Client PC

<<processor>>
DatabaseServer

<<processor>>
MiddleTierServer

<<Ethernet>>

<<Ethernet>>

1..1

1..1

1..11..*

<<executable>>
UI.exe

394910-3 Ch26.F 5/31/02 2:19 PM Page 268

Session 26—Modeling the Static View: The Deployment Diagram 269

Figure 26-7 Adding the components (and their dependencies) that reside on the
MiddleTierServer node

5. The database server runs the database management system (DBMS) and the data-
base. The database server node, shown in Figure 26-8, contains the DBMS compo-
nent and the database component.

<<processor>>
MiddleTierServer

<<executable>>
receiving.exe

<<library>>
product.dll

<<library>>
purchaseorder.dll

<<library>>
dbaccess.dll

394910-3 Ch26.F 5/31/02 2:19 PM Page 269

Sunday Morning270

Figure 26-8 Adding the database management system and the database
components to the DatabaseServer node

6. Show the fact that the UI component needs help from the server-side application.
Draw a dashed dependency arrow from the client UI application to the server
application component, as in Figure 26-9.

Figure 26-9 Modeling the logical communication between the components as a
dependency from the UI.exe component to the receiving.exe component

7. Show the fact that the server dbaccess component needs help from the dbms on
the database server. There is a dashed dependency arrow from the server dbaccess
component to the database server dbms component (Figure 26-10).

<<processor>>
Client PC

<<processor>>
MiddleTierServer

<<Ethernet>>

1..11..*

<<executable>>
UI.exe

<<executable>>
receiving.exe

<<library>>
product.dll

<<processor>>
DatabaseServer

<<executable>>
dbms

<<table>>
database

394910-3 Ch26.F 5/31/02 2:19 PM Page 270

Session 26—Modeling the Static View: The Deployment Diagram 271

Figure 26-10 Adding the dependency from the dbaccess.dll component to the data-
base management system component

The completed Deployment diagram is presented in Figure 26-11.

Figure 26-11 The completed Deployment diagram

<<processor>>
Client PC

<<processor>>
MiddleTierServer

<<Ethernet>>

<<Ethernet>>

1..1

1..1

1..11..*

<<executable>>
UI.exe

<<executable>>
receiving.exe

<<library>>
product.dll

<<library>>
purchaseorder.dll

<<library>>
dbaccess.dll

<<processor>>
DatabaseServer

<<executable>>
dbms

<<table>>
database

<<Ethernet>>

1..1

1..1

<<library>>
purchaseorder.dll

<<library>>
dbaccess.dll

<<processor>>
DatabaseServer

<<executable>>
dbms

<<table>>
database

394910-3 Ch26.F 5/31/02 2:19 PM Page 271

Sunday Morning272

REVIEW

The Deployment diagram models the hardware architecture by identifying the processors.
Processors are typically computers but may also be people who perform manual processing.
Nodes, or processors, may contain and run software components. Node connections are
modeled as associations, complete with stereotypes for names and multiplicity.

� A node may be modeled like a class with attributes and behaviors. However, many
modeling tools do not support this view.

� Component and Deployment diagrams may be combined. Components reside on a
node. Component icons are placed inside the expanded node icon.

� Communication between components on the nodes is modeled as dependencies. The
dependencies model the logical communication requirements. The nodes model the
communication associations that represent the physical communication paths like
TCP or Ethernet.

QUIZ YOURSELF

1. What is a node? (See “Describing the Purpose and Function of the Deployment
Diagram.”)

2. How do you represent the connections between nodes? (See “Defining the
Notation for the Deployment Diagram.”)

3. What can a node contain? (See “Describing the Purpose and Function of the
Deployment Diagram.”)

4. What is the difference between an association between nodes and a dependency
between components? (See “Defining the Notation for the Deployment Diagram”
and “Mapping Software Components to an Architecture.”)

5. What elements do you use to define a communication association between nodes?
(See “Defining the Notation for the Deployment Diagram.”)

394910-3 Ch26.F 5/31/02 2:19 PM Page 272

P A R T

#
P A R T

Sunday Morning
Part Review

V

1. When are you allowed to use an entry action?
2. When are you allowed to use an exit action?
3. What change would cause you to remove an exit action?
4. How do you indicate that an action is to be performed on another object?
5. When an event impacts an object, what type of behavior is interrupted and why

doesn’t this damage the object?
6. What is a call event?
7. What is a time event?
8. What is a guard condition?
9. What is a change event?

10. How do you model a substate?
11. What is the state of an object? How is it expressed in the UML diagrams?
12. Where would you look to find candidate states on a Sequence diagram?
13. What events illustrated on a Sequence diagram can affect the state of an object?
14. What is the best way to name a state?
15. How many Sequence diagrams are required in order to create a Statechart diagram?
16. Describe two common uses for the Package diagram.
17. What is the purpose of a package stereotype? Give two examples.
18. What is the purpose of a dependency arrow? Give an example.
19. What is the purpose of a dependency stereotype? Give an example.
20. If a package is stereotyped as <<subsystem>>, what can it contain?
21. What is a component?
22. What types of components are defined by the UML?
23. How is an interface specified for a component?

404910-3 PR05.F 5/31/02 2:19 PM Page 273

24. How is the relationship modeled between components when one component needs
access to another component?

25. What is the relationship between classes and components?
26. What is a node?
27. How do you represent the connections between nodes?
28. What can a node contain?
29. What is the difference between an association between nodes and a dependency

between components?
30. How do you name a node?

Part V — Sunday Morning274

404910-3 PR05.F 5/31/02 2:19 PM Page 274

404910-3 PR05.F 5/31/02 2:19 PM Page 275

P A R T

Sunday
Afternoon

VI

Session 27
Introduction to Web Development
with Java

Session 28
Analysis and Architectural Design
of a Web Application

Session 29
Design of a Web Application

Session 30
UML Modeling Tools

414910-3 Pt06.F 5/31/02 2:19 PM Page 276

Session Checklist
✔ Explaining the challenges that Web development poses to traditional

UML modeling
✔ Explaining and illustrating the basic architectural model for Web

development
✔ Explaining the Java technologies that can be applied to Web development
✔ Explaining and illustrating Web architectures that lead to high cohesion

and maintainability
✔ Explaining how UML can be utilized to model Web systems

W eb application development has become one of the most prevalent forms of software
development. A whole new industry of Web-based e-commerce businesses (such as
Amazon.com) has emerged to utilize the ease and simplicity of the Web to sell

merchandise. Many companies that previously used heavy client GUIs for remote access to
their databases and other enterprise resources are now using lightweight Web clients to
access these resources.

The Value of UML in Web Development
Throughout the second half of the ’90s, the initial shortage of Web developers, coupled with
the high demand and visions of future wealth, fueled a gold-rush mentality of Web develop-
ment. In 2000 and 2001, that gold-rush mentality hit its first major crash as slews of dot-
com businesses struggled to survive and many traditional businesses reevaluated their
unsuccessful Web ventures. One key reason for the crash was the lack of appropriate analysis,

S E S S I O N

Introduction to Web
Development with Java

27

424910-3 Ch27.F 5/31/02 2:19 PM Page 277

Sunday Afternoon278

design, and modeling of the software. Without proper analysis, many of the Web projects did
not meet the business requirements they were designed to support. Without proper design,
many of the systems were difficult to adapt and rescale as the business requirements or num-
ber of users changed. Without a model of the system, such as a UML model, many of the Web
systems were difficult to trace and maintain.

The dot-com crash did not demonstrate that the Web was less useful than people thought;
instead it demonstrated that successful Web development necessitates better business plan-
ning and better software analysis and design. As a result, the importance of utilizing the
UML in Web development is clearer than ever. This session and the two sessions following
explore how the UML can be applied to Web development. This session presents an introduc-
tion to Web development concepts for those readers who are new to Web development.
Session 28 explores design and architectural issues of Web application development. Both of
these sessions will use UML diagrams to demonstrate the Web concepts. Session 29 will bring
the concepts together by modeling a Web application case study using the UML.

Issues in Using the UML in Web Development
The UML was developed primarily for traditional object-oriented application development.
Web applications have several differences from traditional object-oriented applications that
require adapting the UML to work with the Web architecture model.

Some of the key aspects of Web development that affect the use of the UML models
include

� Web applications almost always involve markup languages such as HTML and XML
that are not inherently object-oriented. Session 28 considers some mechanisms that
can be used to show an object representation of markup language documents using
a Class diagram.

� Web applications are inherently very network-dependent architectures.
Consequently, Deployment diagrams are very helpful for modeling Web applications.

� Web applications frequently involve a wide variety of different technologies inte-
grated together. Component diagrams can be very helpful for showing the relation-
ships between these architectures.

� Many Web technologies are not object-oriented, which may lead the reader to think
that Sequence diagrams, Collaboration diagrams, Object diagrams, and Class diagrams
would be of little use. Nonetheless, these modeling techniques can support the devel-
opment of highly modular designs that are more easily developed and maintained.

This session is designed to give readers with no Web development experience
a brief introduction to these technologies. If you already have done a lot of
Web development, you’ll probably want to skim over parts of this session. Take
note of how the UML is used in this chapter to show the Web architecture.

Basic Web Architecture and Static Web Content
For simplicity, first consider the static Web content, which is the Web content that never or
infrequently changes. Suppose that your company wants to have a Web site that has some

Tip

424910-3 Ch27.F 5/31/02 2:19 PM Page 278

Session 27—Introduction to Web Development with Java 279

fixed text, images, and hyperlinks to other pages. In this case, you would write an HTML
page with this content and place it on your Web server. A shell of the HTML page is shown
in Listing 27-1. (HTML is a markup language that is composed of plain text accompanied by
markup tags to specify how to format the text. HTML can be stored in a plain text file and
does not need to be compiled or processed in any way before it is placed on the Web server.)

Listing 27-1 HTML sample

<html>
<head>
<title>Next Step Education</title>

</head>
<body>
<h1>Next Step Education</h1>
(...more content...)

</body>
</html>

HTML is the most common form of Web content and is the form I focus on in
this session. However, this session’s discussion of generating and sending
HTML can also be applied to other forms of Web content, such as XML for
data interchange.

Usually, HTML files are stored on a Web server and loaded over a network such as the
Internet. This architecture is shown in the UML Deployment diagram in Figure 27-1. When
the user types a URL into a Web browser, the browser needs to communicate with a Web
server to get that document, in this case “index.html.” The HyperText Transfer Protocol
(HTTP) defines the communication protocol for that communication between the Web
browser and the Web server.

Figure 27-1 UML Deployment diagram, HTML on a Web server

The full sequence of events for retrieving a Web document is shown in the UML Sequence
diagram in Figure 27-2. When the user enters a URL, the Web browser creates an HTTP request,
which is a packet of information including the name of the Web server, the name of the docu-
ment, and other information about the request being made. The Web browser then sends that
HTTP request over the network to the Web server that was specified in the URL. The Web
Server then looks up the Web page “index.html” and returns it as part of the response.

Client

Web
Browser

Web Server

<<HTTP>>
Web

Server

index.html

Note

424910-3 Ch27.F 5/31/02 2:19 PM Page 279

Sunday Afternoon280

Figure 27-2 UML Sequence diagram, HTTP protocol

For example, if the URL entered is www.nextstepeducation.com/index.html, the
Web request will be sent to the Web server on the machine with a domain name of www.
nextstepeducation.com. When the Web server receives the request, it will create an HTTP
response, which is a packet of information that includes the requested document or error
message and other metadata about the response. The Web server will look for the file that
was specified in the URL. In the example in Figure 27-2, the Web server will load the
index.html file and place the contents of that file into the HTTP response. The Web server
will then send the HTTP response back across the network to the Web browser that made
the request. The Web browser will take the HTML out of the HTTP response, interpret it, and
display the content with the specified formatting.

Some people may question the choice of “objects” in the Sequence diagram
in Figure 27-2. In truth, a Web browser is simply a larger, more complex
object than a customer or an order. This approach is common practice when
modeling interaction between systems (that is, when modeling the systems
as objects).

Dynamic Web Content
The previous section showed how HTTP is used to send static HTML content to Web
browsers. Most Web applications require dynamically generated content. For example, when
you go to a weather forecast Web site, you don’t want it to give you the contents of an
HTML file that was saved a month ago; you want it to generate an up-to-date weather fore-
cast for you on the spot and return it to you. Furthermore, you want to be able to access
weather information for a certain city. Thus, there must be some programming logic that
can take your user input and adapt the result to your request. So a weather Web site would

Tip

<<Actor>>
:User

:Web Browser

create HTTP request

type URL

send HTTP request

:Web Server

interpret and display HTML

create HTTP response

send HTTP response

copy contents of requested
HTML file into HTTP response

424910-3 Ch27.F 5/31/02 2:19 PM Page 280

Session 27—Introduction to Web Development with Java 281

need to have some programming logic that generated the HTML for the HTTP response. The
same is true of any e-commerce site where you want to be able to do activities such as
search for items, place items in a shopping cart, or make purchases. All those activities
require some code on the Web server that reacts to the HTTP request by completing some
processing and then returning Web content such as HTML or XML. In reality, almost all
modern Web sites include at least a few pages of dynamically generated content.

Consider further how a weather Web site might be implemented. For a moment, if you
ignore the Web aspect of this system, imagine how you could write code in almost any pro-
gramming language to query a database or other information source to gather data on the
weather, calculate statistics, generate weather map images, and produce HTML of the
results. The only problems that need to be solved are to find a way to trigger that code with
an HTTP request arriving at the Web server, and then to have the HTML results placed in an
HTTP response and have the HTTP response sent to the Web browser. CGI scripts and Java
servlets are two technologies that solve this problem by hooking your code into the HTTP
Web protocol.

This general solution is shown in the UML Deployment diagram in Figure 27-3. The dia-
gram refers to your weather reporting code as the Web application code. This code that you
have written is just normal code that can do almost any of the normal things you can do in
that language, usually including talking to resources such as databases, making calcula-
tions, sending e-mails, and outputting HTML, which is included in the HTTP response. You
place this code on the Web server and map it to a particular URL. The HTTP protocol will be
used in the same way that it was for static content: The Web browser generates an HTTP
request object corresponding to the URL entered by the user, and sends that HTTP request
to the Web server. The Web server recognizes that this URL was mapped to your Web appli-
cation code and calls your code to go gather the data and output the Web content into the
HTTP response, which is sent back to the Web browser.

Figure 27-3 UML Deployment diagram for dynamic Web content

CGI Scripts were the original solution to the problem of generating dynamic Web content.
They allow you to write scripts in a wide variety of languages, including Perl and C. They then
provide the mechanism for hooking your script into the HTTP request/response mechanism.
CGI Scripts were very commonly used and are still used frequently, although they are gradu-
ally being used less in favor of a variety of newer solutions I discuss in the next section.

Java servlets
Java servlets provide the same basic functionality as CGI scripts. They allow you to write
a class in Java that will generate the dynamic Web content. Listing 27-2 shows how a
Web page that displays the current date could be created as a Java servlet. If you haven’t

Client

Web
Browser

Database Server

Database

Web Server

<<HTTP>>

Web
Server

Web
Application

Code

<<TCP>>

424910-3 Ch27.F 5/31/02 2:19 PM Page 281

Sunday Afternoon282

studied Java programming, this example may seem a bit confusing. But the important thing
to notice is not the syntax, but how the HTML is generated and placed into the HTTP
response (the HTML is the bold text in Listing 27-2). Notice that the servlet is a class and,
in this case, it only has one method, which is called doGet. The servlet container will call
this method to service the request whenever a Web browser sends an HTTP request for this
servlet. The doGet method always takes two parameters that represent the HTTP request
coming in and the HTTP response going out. The variable named out is a reference that
allows you to write content to the body of the HTTP response. Thus, all the HTML and other
content in the out.println method calls is placed into the HTTP response and sent by the
Web server back to the Web browser, which displays the HTML. In this case, the Web content
is almost all static content, except that it places “new java.util.Date()” into the output.
This puts the current date and time onto the Web page. Notice that all the handling of the
HTTP response and HTTP request is done behind the scenes. All you have to write is how
you want to service the request. Servicing the request could include querying or updating
databases, sending e-mails, calling legacy code in other languages using CORBA, or a wealth
of other activities that may be accomplished with Java.

Listing 27-2 Java Servlet

1 import javax.servlet.http.*;
2 import java.io.*;
3 import java.util.*;
4
5 public class DateServlet extends HttpServlet {
6 public void doGet(HttpServletRequest request,
7 HttpServletResponse response)
8 throws IOException {
9
10 response.setContentType(“text/html”);
11 PrintWriter out = response.getWriter();
12
13 out.println(“<html>”);
14 out.println(“<head>”);
15 out.println(“<title>Current Date and Time</title>”);
16 out.println(“</head>”);
17 out.println(“<body>”);
18 out.println(new Date());
19 out.println(“</body>”);
20 out.println(“</html>”);
21
22 out.close();
23 }
24}

Java servlets offer a powerful technology for developing dynamic Web content and
complete Web applications. Java servlets are simply regular Java classes that follow a few
special rules. As a result, servlets have all the traditional benefits of Java. These benefits
include cross-platform code that can run on any kind of computer with a Java Virtual
Machine (JVM), a fully object-oriented language, and massive libraries of pre-written code
to simplify tasks such as database access and remote method invocation.

424910-3 Ch27.F 5/31/02 2:19 PM Page 282

Session 27—Introduction to Web Development with Java 283

Despite frequent confusion, Java and JavaScript are very different technolo-
gies. JavaScript is a scripting language usually written alongside HTML and
executed in the Web browser. JavaScript can be useful for small tasks such as
validating form input before it is sent to the server. You could place JavaScript
inside of the out.println statements of the Java servlet, just as the HTML was
placed in those statements.

Template pages
There is one substantial problem with using servlets in the manner that I just showed.
When using servlets for producing Web content such as HTML, you have to place the HTML
inside the Java code. Whether you’re talking about HTML and Java, SQL and business logic
code, or almost any other combination of technologies, mixing different technologies
almost always leads to more complicated development and maintenance. It requires that the
developer and maintainer of that code be proficient in both technologies. It also means
that a change in one of the technologies impacts the other — a symptom of tight coupling,
which results in high maintenance costs. Thus, to achieve loose coupling and good main-
tainability, you should usually try to avoid mixing technologies.

This general principle is particularly true for HTML and Java. There are few people who
are both experienced programmers and talented Web content developers. Even if you hap-
pen to have both of these skills, developing Web content inside of programming code can
be difficult. In addition, maintenance is more difficult because changing the Web page lay-
out requires entering the Java files to change the HTML. CGI scripts have the same drawback
of mixing Web content with a programming language. So using servlets or CGI scripts to
generate Web content can be costly and awkward, and may lead to low cohesion.

Template pages are a major part of the solution to this development and maintenance
problem. Template page technologies such as JSP, ASP.NET, PHP, and Cold Fusion allow you
to mix code or special tags inside a markup language page, such as an HTML page.

JavaServer Pages
JavaServer Pages (JSPs) are Java’s version of template pages. Listing 27-3 shows a JSP that
will produce an identical Web page to the Java servlet in Listing 27-2.

Listing 27-3 JavaServer Page

<html>
<head>
<title>Current Date and Time</title>

</head>
<body>
<%=new java.util.Date()%>

</body>
</html>

If you glance too briefly at this JSP page, you may mistake it for an HTML page. In fact,
it is all HTML except for line 6, which is a line of Java code that inserts the current date

Note

424910-3 Ch27.F 5/31/02 2:19 PM Page 283

Sunday Afternoon284

and time. A JSP page is composed of your Web content, such as HTML, with Java code inter-
mixed to insert the dynamic content. Comparing the Java servlet in Listing 27-2 and the
JSP page in Listing 27-3, you can probably see why JSP code is usually far easier to write
and develop than a servlet for producing Web content. A JSP page generally has less compli-
cated Java logic, is usually easier to read, and is much easier to maintain. A JSP page also
doesn’t need to be compiled by the programmer and may be easier to deploy into the Web
server, which makes the development and maintenance process a bit simpler. Other template
page technologies like ASP, PHP, and Cold Fusion work in a similar way, although each has
its own specific features, advantages, and disadvantages.

It is worth noting that JavaServer Pages turn into servlets. The JSP container class auto-
matically writes a Java servlet much like the one in Listing 27-2 (although significantly
harder to read) that has the same functionality as the JSP page that you wrote. All requests
for your JSP page will actually be handled by the Java servlet that represents it. Thus, JSP
is simply an easy way to write a Java servlet without having to write as much Java code.
The UML state diagram in Figure 27-4 explains this. The programmer writes a JSP. At or
before the first request for that JSP, the JSP container automatically writes the servlet that
represents that JSP and compiles it. From this point on, the lifecycle of a JSP is the same as
a servlet. When a request comes in, the servlet will be instantiated and the same instance of
the servlet will be used for all requests until the JSP container decides that the servlet
should be unloaded, usually due to the container shutting down or a long period with no
requests for that JSP. If the programmer changes the JSP, that servlet will be permanently
unloaded and the lifecycle starts over with the new version of the JSP being translated.

Figure 27-4 UML state diagram, JSP Lifecycle

You may think that writing only JSPs, as opposed to writing servlets, would be easier,
but that isn’t actually the case. If you need to write a servlet or JSP that primarily gener-
ates Web content, then it will almost always be easier to write it as a JSP. If you need to
write a servlet or JSP that has a lot of logic and generates very little or no content, then it
will usually be easier to write it as a servlet.

JSP Page
JSP Container Translates JSP

Servlet Class
(Not Instantiated)

Servlet Class (Instantiated
and initialized)

JSP Container Unloads JSP

HTTP Request Received/Request Serviced

HTTP Request Received

JSP Written By Programmer

Final
State

JSP Removed Or Modified

424910-3 Ch27.F 5/31/02 2:19 PM Page 284

Session 27—Introduction to Web Development with Java 285

REVIEW

The UML is a useful tool for modeling Web systems. The UML was not designed for the
purpose of modeling Web systems, so some adaptations must be made.

� Non–object-oriented technologies are often viewed as objects in order to demonstrate
their characteristics and behaviors in Class, Sequence, and Collaboration diagrams.
Non–object-oriented hierarchies such as XML may be mapped to class hierarchies in a
Class diagram to represent their structure.

� Sequence or Collaboration diagrams can model the interactions of architecture ele-
ments like Web browsers, Web applications, and HTML pages. Component diagrams
are frequently used to show how mixed technologies are integrated.

� Component diagrams can model the relationships between the architecture elements.
� Deployment diagrams are frequently used to show the network aspects of a Web

system.
� The basic Web architecture is based on a request/response protocol called HyperText

Transfer Protocol (HTTP). Web browsers make HTTP requests to Web servers, which
generate or load Web content such as HTML and return it to the Web browser. This
communication is often modeled using a Sequence or Collaboration diagram.

� CGI scripts, Java servlets, and JavaServer Pages (JSP) are just a few of the wide vari-
ety of technologies that you can use to dynamically generate Web content. Both
Java servlets and JSPs provide the power and flexibility of the Java language for
dynamic Web development. JSPs are easier to code, debug, and maintain for pages
that are exclusively or primarily producing Web content. Java servlets are easier to
code, debug, and maintain when they are generating little or no Web content.

QUIZ YOURSELF

1. What makes modeling a Web application in UML different from modeling a non-
Web application? (See “Issues in Using the UML in Web Development.”)

2. What UML diagram could you use to model the communication between a Web
browser and a Web server? (See “Basic Web Architecture and Static Web Content.”)

3. What UML diagram would you use to model the lifecycle of a JSP? (See “JavaServer
Pages.”)

4. What UML diagram could you use to model how components of your system are
deployed on the client machine and on the Web server? (See “Dynamic Web
Content.”)

424910-3 Ch27.F 5/31/02 2:19 PM Page 285

424910-3 Ch27.F 5/31/02 2:19 PM Page 286

Session Checklist
✔ Explaining how requirements gathering and analysis are done

in a Web system
✔ Explaining the Model View Controller design principle
✔ Illustrating how the View and Controller can be separated

in a Java Web application
✔ Explaining and illustrating how UML can be used in the analysis and

architectural design of a Web system

Congratulations! You have almost completed your UML crash course. This weekend, you
have learned an incredible spectrum of techniques and strategies for using the UML to
model and develop applications. Sessions 28 and 29 will demonstrate how to model a

Web application from start to finish. You’ll see that the process of modeling a Web applica-
tion is primarily the same process used to model any application, but I will also point out
some special tricks and techniques that you can apply to Web modeling with the UML.

The Friendly Reminder Case Study
Sessions 28 and 29 will consider the development of a project that is a typical Web applica-
tion. In this project, your contracting firm is asked by a software company to develop a Web
component for its existing Visual Basic application, which is called Friendly Reminder. The
client’s initial project specification states that the current Friendly Reminder system allows
users to track their appointments and contacts by allowing them to

S E S S I O N

Analysis and Architectural
Design of a Web Application

28

434910-3 Ch28.F 5/31/02 2:19 PM Page 287

Sunday Afternoon288

� Enter contact data such as names, phone numbers, and addresses.
� Enter appointment data such as date, time, and description.
� Associate contacts with appointments.
� Search for specific contacts or appointments.
� Receive notification when an appointment is approaching.

The current system is a standalone application with no network component. Friendly
Reminder is a well-established product with a loyal customer base, but the company has
received many requests from users who would like to be able to view their appointments on
the World Wide Web. The customers complain that they have no way to check appointments
when they’re away from their own computer. The client’s initial project specification
requests that you develop a small application that will allow their users to

� Upload all their appointments and contacts to a server where they can be remotely
accessed.

� Query those appointments and contacts whenever and from wherever they wish.

Requirements Gathering
Regardless of whether you’re developing a Web or standalone application, the requirements-
gathering phase is a process of careful communication with the client to discover and
document the business requirements and to ensure that the development team knows what
it must create in order for the customer to be successful.

In the case study, the clients required that users be able to upload all their appointments
and contacts to a server where they can later access them remotely. Because the client is a
very conservative company and is a little bit apprehensive about moving onto the Web, it
specifies a constraint that the new system must pose the smallest possible risk to the relia-
bility of their current system. Because the current application has no network component,
all appointments are stored in a file on the user’s machine. Based on this experience, the
client adds a constraint that all appointments must still be saved on the local machine
while a copy of the appointment data can be uploaded to a server for remote access. Also
due to its apprehension, the company wants to limit users to entering appointments only in
the existing Visual Basic application and not on the Web.

In these discussions, we also find out that the users have been requesting access to their
appointments and contacts from traditional wired Web devices such as PCs, as well as from
wireless devices like cell phones. After some discussion, this is identified as a key functional
requirement that can be fulfilled and will be factored into the cost of the project.

In design, as you craft a solution to these requirements, the technological options are
more critical and more extensive in a Web system than a standalone system. Here are some
of the factors you should consider when evaluating technology in a Web system:

� Availability and reliability: Must the system be available 24/7 with virtually no
failures? It is possible to make a Web system that almost never fails or is never
unavailable, but that kind of reliability comes at a substantial cost. In the case
study, the client protects the reliability of the current system by specifying that the
Web system only keep a duplicate of the data and that nothing in the standalone
system should be dependent on the new Web system.

434910-3 Ch28.F 5/31/02 2:19 PM Page 288

Session 28—Analysis and Architectural Design of a Web Application 289

� Performance: How rapidly must the system reply to user requests? Web systems
sometimes have more performance limitations than standalone systems. The client
specifies constraints for the responsiveness of the system.

� Scalability: How many concurrent users must the system be able to support now and
in the future? Many Web systems can be bombarded with hundreds or thousands of
concurrent users. To keep the project cost lower, the clients decide that moderate
growth potential (scalability) is acceptable for now as long as the system is easily
adaptable to a more scalable solution in the future.

� Security: How much and what kind of security protection is required? Any kind of
networked system can potentially be very vulnerable to malicious attacks. As is true
with most requirements, the greater the security, the greater the cost of the soft-
ware and hardware. The client wants to ensure reasonable security and defines the
budget limitations accordingly.

� Adaptability: How easy should it be to modify the system to meet new require-
ments? A more adaptable system will generally be far less expensive to maintain in
the long run and may survive longer before it becomes obsolete. However, develop-
ing a system with high adaptability takes more time and money. The client has put
a very high priority on high adaptability because it expects that this is just the first
cautious step onto the Web and the company expects to add a lot more functionality
to this system later.

For a detailed description of the requirements gathering process and the
problem statement, see Session 4.

Creating the Use Case diagram
During the requirements-gathering phase for this project, you will again develop a Use Case
model. This model will not be fundamentally different for a Web system than it is for a non-
Web system. The Use Case model helps you to better understand who will use your system
and what features they will use. Figure 28-1 shows the Use Case diagram for the case study.
There is a Use Case for the user to create an account that will allow him to log in so that he
can store and query his appointments and contacts. The Upload Appointments and Contacts
Use Case will upload a copy of his appointment and contact data onto the Web server for
querying. The user has a general Use Case for querying his appointments and another for
querying his contacts.

Customers using wireless devices such as cell phones will require a different kind of
markup language and will require very different interfaces for the querying to make it
usable on these very limited devices. The requirements-gathering team decided that the
functional differences between traditional wired Web clients (like desktop and laptop
computers) and wireless Web clients (like cell phones) justified separate Use Cases.
However, because they are similar, you show a Use Case generalization to indicate that
the four specific querying Use Cases inherit from the two general querying Use Cases. All
the querying and uploading Use Cases are extended by the Log In Use Case, because the
user must be logged in to run any of these Use Cases.

Cross-Ref

434910-3 Ch28.F 5/31/02 2:19 PM Page 289

Sunday Afternoon290

Figure 28-1 UML Use Case diagram, Friendly Reminder system

The requirements-gathering team then develops the details behind each of these Use
Cases by developing Use Case narratives and possibly Activity diagrams. They also find all
the Use Case scenarios for each Use Case to provide the basis for the test plan.

The steps for developing Use Case narratives and finding Use Case scenarios
for a test plan are outlined in Sessions 7 and 8.

Analysis
In the requirements-gathering phase, you considered what the system must do to meet the
needs of the client. In the analysis phase, you expand your understanding of the business
problem and create a Class diagram that represents the business problem. Because the
analysis phase is more about the business problem than the technical solution to that
problem, this phase, like the previous one, will be essentially the same for Web and
non-Web applications.

In this case study, one of the areas you need to analyze is how appointments are repre-
sented in the system. Through an analysis of the existing system and the business problem,
the analysts create a conceptual Class diagram of The Friendly Reminder appointments and
contacts. This diagram is shown in Figure 28-2. A User makes zero to many Appointments
and tracks zero to many Contacts. Each Appointment has a date, time, description, priority,
notes, and Contacts related to that Appointment. A Contact is anybody about whom the

Cross-Ref

Query
Appointments From

Wireless Device

Query
Appointments

Query
Contacts From
Wired Device

Query
Contacts From
Wireless Device

Query
Contacts

Upload
Appointments
and Contacts

Create
User Account

User

Log In

<<extend>>

<<extend>>

Query
Appointments From

Wired Devices

<<extend>>

434910-3 Ch28.F 5/31/02 2:19 PM Page 290

Session 28—Analysis and Architectural Design of a Web Application 291

customer wants to store information such as name, home phone, work phone, e-mail, notes,
and addresses. A Contact has two associations to the Address class, one for a home address
and one for a work address.

Figure 28-2 UML Class diagram, Friendly Reminder appointments

Architectural Design
The design phase is the point at which the design team will see how to utilize the Web and
non-Web technologies to meet the customer’s requirements. The UML will help them to visu-
alize and specify their decisions.

During the initial design phase, some major architectural decisions need to be made. The
project architect decides to use Java servlets and JavaServer Pages for the Web implementa-
tion because of their flexibility and robustness, and because of the development team’s
extensive Java experience. In return for these advantages, the team pays a small performance
hit compared to some of the other Web technologies, but they believe they can easily com-
pensate for that with an efficient design and good hardware.

Model View Controller
In the last session, I explained that for high cohesion and ease of maintainability, it is
always advisable to keep the different technological aspects and functional aspects of your
system in different classes or segments of code. You can take this recommendation a step
further by considering the Model View Controller (MVC) design pattern. MVC recommends
that you keep three aspects of your code separate:

� Model: The code for dealing with the data model, database logic, and direct manipu-
lation of the data

� View: The user interface or presentation of the data viewed by the user

Appointment

lives at

set
s

scheduled to meet with
0..*

0..*

1

1

1..* 0..1

0..*

0..*

date
time
description
priority
notes

<<actor>>
User

Contact

name
homePhone
workPhone
eMail
notes

Address

street line1
street line2
city
state
postal code
country

records

works at

1..* 0..1

434910-3 Ch28.F 5/31/02 2:19 PM Page 291

Sunday Afternoon292

� Controller: The code that reacts to user requests, modifies the data, and controls
the flow of the application

This basic structure is shown in Figure 28-3. MVC may be applied to almost any application
you develop, whether it is Web based or not. For a non-Web application, your application may
have a set of classes for your data model that coordinate database access and data manipula-
tion, another set of classes for your GUI views, and a third set of classes for your controlling
event-handling code. One of the most important advantages of MVC is that it allows you to
more easily change one aspect of the system without affecting the other aspects, exemplifying
loose coupling. For example, you may want to offer different interfaces for the traditional
wired Web devices and the wireless devices without changing or duplicating the data model. If
you have intermixed your database access with your GUI code, then changing the GUI without
changing the data model will be much more difficult. Because the programmer who is good at
writing data model code is likely not the same programmer who is good at writing GUI view
code, another advantage of MVC is that it simplifies the independent development of these
components.

Figure 28-3 UML Component diagram, Model View Controller

In Web development, the view is the Web content such as HTML. The model is the busi-
ness logic for data manipulation and database access and is usually written in a program-
ming language like Java. The controller is the code for verifying the data coming in from
the HTTP request, interacting with the data model, and selecting the next view (Web page)
to be sent to the user. Just as in non-Web application development, separating these three
aspects will greatly simplify your maintenance and improve both cohesion and coupling. In
the remaining portion of this session, you separate the model from the view. In Session 29,
you separate out the controller.

JavaBeans
The JSP in Session 27 contained an unusually small amount of Java code because it had
extremely little dynamic content, but most JSPs will have to use a lot more Java code for
querying and updating databases, calculating data, and other operations. The result is that
you have a lot of Java code inside your Web content. With this usage, a JSP is really just a

Controller

Application
Flow Control /
Event Handlers

Model

Data
Classes

Business
Services

View

GUI
Classes

434910-3 Ch28.F 5/31/02 2:19 PM Page 292

Session 28—Analysis and Architectural Design of a Web Application 293

servlet turned inside out; instead of having HTML in your Java, you have Java in your
HTML. So simply switching from servlets to JSPs isn’t enough to successfully separate your
HTML view from your Java model and controller. Thus, there must be another way to get the
Java code out of the JSP pages.

A simple solution to this problem would be to move any large chunks of Java code from
your JSP page into regular Java classes and have your JSP page contain method calls to the
methods in those classes. This would remove a very large quantity of Java code from the
JSP, but the JSP page would still have Java syntax method calls in it. JavaBeans represent a
refinement of this solution. For this purpose, a JavaBean is just a regular Java class with
private attributes and public get/set methods for accessing the attributes. Figure 28-4
shows a UML Class diagram of a simple JavaBean for tracking a customer order. Creating a
JavaBean is as simple as it sounds; with proper encapsulation, you will probably meet the
requirements of JavaBeans without even trying.

Figure 28-4 UML Class diagram, JavaBean

JSP has special markup tags that can be used to call the get and set methods of the
JavaBean. Thus, the Java syntax method calls can be replaced with markup tags. For exam-
ple, the Java syntax and the JSP tag syntax shown here are equivalent method calls, but it
may be easier for a content developer to use the JSP tag syntax.

� Java Syntax: <% order.setItem(“UML Weekend Crash Course”); %>
� JSP Tag Syntax: <jsp:setProperty name=”order” property=”item” value=”UML

Weekend Crash Course”/>

Typically, the code that you move from the JSP pages into JavaBeans will include your
application data, database access code, and business services. What is left in your JSP is
largely the Web content, which is the view of that data. Thus, by using JavaBeans, you can
separate your view from your model and take the first step towards an MVC Web architecture.

This section addresses JavaBeans, not Enterprise JavaBeans (EJB). EJB is a
far-more-involved technology and is beyond the scope of this book.

Note

OrderBean

- item: String
- quantity: int
- costPerItem: double

+ setItem (i: String): void
+ getItem (): String
+ setQuantity (q : int): void
+ getQuantity () : int
+ setCostPerItem (c : double) : void
+ getCostPerItem () : double
+ getTotalCost () : double
+ submitOrder () : boolean

434910-3 Ch28.F 5/31/02 2:19 PM Page 293

Sunday Afternoon294

MVC pattern in the case study
The case study requirements specify that users must be able to query their appointments
and contacts from both traditional wired Web clients and wireless Web clients such as cell
phones. For the wired Web clients, customers will access the system via Web browsers such
as Internet Explorer or Netscape Navigator and the system will generate HTML for those Web
browsers to display.

Wireless devices such as cell phones usually have extremely limited display capabilities,
very limited input devices such as keypads, limited network bandwidth, and unreliable net-
work availability. As a result of these limitations, they have their own browsers, protocol,
and markup languages for their special requirements. In North America, most wireless Web
clients have a micro Web browser that communicates via the WAP protocol and interprets
Wireless Markup Language (WML). WML looks very similar to HTML, but it is more compact
and more limited to meet the needs of the restricted wireless devices. Because most of the
case study wireless users have devices that use WML, the architects decide to use that for
the wireless interface.

The system requires two views for interfaces to the querying parts of the application: an
HTML view for traditional wired Web clients and a WML view for wireless Web clients. In
addition, the layout and flow of those views are different because wireless Web clients must
be carefully designed to be easily usable on limited devices. On the other hand, the funda-
mental business logic and data business services are the same for both interfaces. The Model
View Controller design pattern principles make this a very simple problem to resolve.
Because your JSPs are the view of the system, there are two sets of JSPs: one with HTML
content, and one with WML content. Both sets of JSPs talk to the same JavaBeans for the
business logic and data manipulation. This is shown in the UML Component diagram in
Figure 28-5.

Figure 28-5 UML Component diagram, two views with MVC design

The next thing to consider is whether the system requires any special software or hard-
ware configuration to communicate with the wireless Web clients. Wireless Web clients com-
municate using the WAP protocol instead of the HTTP protocol. Because traditional Web
servers are designed to communicate using the HTTP protocol, you might reasonably think
that the system would need another Web server that uses a WAP protocol. In fact, it can
still use a regular HTTP Web server. The wireless network providers have systems called WAP

Traditional
Wired Web
Browser

Wireless Web
Browser

Model

JavaBeans

View

JSP pages
with WML
content

JSP pages
with HTML
content

434910-3 Ch28.F 5/31/02 2:19 PM Page 294

Session 28—Analysis and Architectural Design of a Web Application 295

Gateways that translate between WAP and HTTP. All you have to do is write JSP pages con-
taining WML, specify the MIME content type for WML, and place them on your normal Web
server. The WAP Gateway, which is usually provided by the wireless network provider, not by
you, automatically takes care of the rest. Figure 28-6 shows a Deployment diagram with the
hardware (traditional wired device, wireless device, WAP Gateway, and the Web Server). The
components from Figure 28-5 are placed onto the nodes of the Deployment diagram to show
where they will reside.

Figure 28-6 UML Deployment diagram, WAP Gateway

REVIEW
� Because requirements gathering and analysis are more about the business problem

than the technical solution to it, the process for these phases should not be any
different for a Web system than for a non-Web system. One exception to this general
rule is that the customer should consider additional technological factors such as
scalability, reliability, availability, performance, and security — considerations that
may not be as important when designing a standalone system.

� The Model View Controller (MVC) design pattern simplifies development and enhances
maintainability by separating the data model, user interface views, and controller
logic aspects of your system. MVC can be adapted to Java Web applications by sepa-
rating the model into JavaBeans and the view into JSP pages. Session 29 will show
you how to separate out the controller. MVC also makes it easier to have two views,
such as a WML view and an HTML view.

QUIZ YOURSELF

1. What additional kinds of technological factors should a customer consider with a
Web system? (See “Requirements Gathering.”)

2. Which UML diagram would you use to model a resource like a JavaBean? (See
“JavaBeans.”)

Traditional Wired
Device

Web
Browser

Wireless Device
like Cell Phone

Micro Web
Browser

WAP Gateway

Web Server

<<HTTP>>

JavaBeans

JSP pages
with HTML
content

JSP pages
with WML
content<<WAP>>

<<HTTP>>

434910-3 Ch28.F 5/31/02 2:19 PM Page 295

Sunday Afternoon296

3. How would you use the Component diagram in the development of a Web system?
(See “MVC pattern in the case study.”)

4. What is the purpose of the Model View Controller (MVC) pattern? (See “Model View
Controller.”)

434910-3 Ch28.F 5/31/02 2:19 PM Page 296

Session Checklist
✔ Explaining and illustrating the Model 2 Architecture
✔ Explaining and demonstrating how to use Sequence, Collaboration, and

Class diagrams in Web-application design
✔ Explaining the Java technologies that can be applied to Web development
✔ Explaining how to model XML and other markup languages with UML

object hierarchies

In the last session, you partially implemented a Web Model View Controller (MVC) design
by separating out the model into JavaBeans and the view into JSPs. This partial imple-
mentation of the MVC pattern provides significant advantages: independent develop-

ment, better cohesion, and easier maintainability. For a full MVC architecture, though, you
need to know how to separate out the controller elements as well.

Model 2 Architecture
The Model 2 Architecture was presented by Sun Microsystems in the early versions of the
servlet specification. It is now a popularly used and discussed Model View Controller
architecture for Java Web applications. The Model 2 Architecture is an MVC architecture
that will separate out the controller elements. This architecture is shown in the UML
Component diagram in Figure 29-1 and the UML Sequence diagram in Figure 29-2. The Model 2
Architecture separates the model (JavaBeans) and the view (JSPs) just as you did in the last
session. In addition, it has a single servlet used as the controller. All HTTP requests for any
part of the Web application will be directed to this controller servlet. The servlet will verify
the input data from the HTTP request and call methods on the JavaBeans to update the data
model. The servlet controller will then forward the request on to a JSP that will render the
view. The JSP will access the JavaBeans to get the data that should appear on the Web page.

S E S S I O N

Design of a Web Application

29

444910-3 Ch29.F 5/31/02 2:19 PM Page 297

Sunday Afternoon298

Figure 29-1 UML Component diagram, Model 2 Architecture

Figure 29-2 UML Sequence diagram, Model 2 Architecture

The controller servlet of the Model 2 Architecture offers some additional benefits beyond
the high cohesion and good maintainability of MVC. Because all requests for the Web appli-
cation come through one servlet, the developer can place generic security checks and audit
logging code in the servlet and that code will be run for any request for any part of the Web
application.

In the discussion of the case study in Session 28, the two JSP views were separated from
the model. For a full Model 2 Architecture, the development team now adds a single servlet
that will receive all requests that are sent by the Web browser for any part of the Web
application. In this case, the development team decides that having separate controllers for
the wired Web clients and wireless Web clients could enhance maintainability. Thus, they
use two servlet controllers instead of the usual one. Their new architecture is shown in
Figure 29-3.

Web Browser Servlet
Controller

verify HTTP request parameters

send HTTP request for servlet

fulfill business logic of the request

JSP pages JavaBeans Database

get data from JavaBeans

generate output

send HTTP response

forward HTTP request to the
appropriate view

update/query database

Web
Browser

Java
Servlet

Controller JavaBeans

Model

JSP pages
with HTML
content

View

444910-3 Ch29.F 5/31/02 2:19 PM Page 298

Session 29—Design of a Web Application 299

Figure 29-3 UML Deployment diagram, Model 2 Architecture

Uploading Appointments and Contacts
The case study architectural team has now completed the architecture for querying appoint-
ments and contacts. They now consider the architecture needed to allow the customers to
upload their appointments and contacts from the existing Visual Basic application to the
database on the server. Having the existing Visual Basic application communicate directly
to the database could decrease the security of the system. It could also decrease adaptabil-
ity, because changing the database logic would then require distributing a new version of
the client application to the users. Instead, the project designers decide to have the Visual
Basic application trigger a Java servlet that will insert the data in the database. You may
wonder how Microsoft Visual Basic can talk to a Java servlet. This is actually no problem;
any kind of system that can generate an HTTP request can talk to a servlet. Visual Basic,
like most programming environments, is perfectly capable of generating an HTTP request to
communicate to a Java servlet.

The designers could have the Visual Basic application communicate with one of the
controller servlets in the current architecture, but they decide it would be more cohesive
to create a new servlet for this purpose. This servlet will not use any JSP pages because it
will not be returning any HTML or other Web content to the Visual Basic client. The Visual
Basic client sends all the appointment and contact data to the Java servlet, the servlet
saves the data to the database, and it returns back to the Visual Basic application the
number of records saved. This is shown in the UML Deployment diagram in Figure 29-4.
The design team then considers what format to send the data in. They want a clear, verifi-
able, adaptable format. Because XML meets all these requirements and is an excellent way
to send data between systems, they decide to send the appointment and contact data in an
XML format.

Traditional Wired Device

Web
Browser

Web Server

Wired Web
Controller
Servlet

Wireless
Interface

Controller Servlet

JavaBeans

JSP pages
with HTML
content

JSP pages
with WML
content

Wireless Device
like Cell Phone

Micro Web
Browser

WAP Gateway

Database
Server

<<WAP>> <<HTTP>>

<<HTTP>>

444910-3 Ch29.F 5/31/02 2:19 PM Page 299

Sunday Afternoon300

Figure 29-4 UML Deployment diagram, Visual Basic client

Detailed Design
The design team has now completed the high-level architectural design of the system. They
have chosen the technologies that they will be using and the organization of those technolo-
gies required to solve the business problem. In the detailed design, they will specify how
each individual part of the system will be implemented. The Component and Deployment dia-
grams illustrate how the different Web technologies will be organized. In the detailed design,
the component and deployment diagrams will be used less and the Class, Object, Sequence,
and Collaboration diagrams will tend to be used more.

Querying appointments and contacts
In the detailed design phase, the designers want to create a roadmap for the programmers,
specifying how the browsers, servlets, JSP pages, JavaBeans, and databases will work
together to allow customers to query for appointments and contacts. Because there isn’t
space or time to explore the entire detailed design, we will focus on the design of appoint-
ment querying by customers using traditional wired Web clients.

The development team first makes the Collaboration diagram in Figure 29-5 to show
how the user will move from one Web page to another. This particular diagram is not
meant to show the inner workings of the system. Because it only shows what the user will
see, this diagram will only contain JSP pages. The diagram shows that the user must use
the Login JSP page to log in prior to accessing the AppointmentQueryForm JSP page. This
form will allow the user to enter criteria for the appointments he wants to search for.
When he submits the query form, if there are matching results, he will be sent to the
AppointmentQueryResults JSP page, which will display those results. If there are no
matching results, he will be sent to the No Appointments JSP page, which will inform
him that there were no matches to his query.

Traditional Wired Device

Visual
Basic Client

Web
Browser

Web Server

Upload
Appointments

Servlet

Wired Web
Controller
Servlet

Wireless
Interface

Controller Servlet

JavaBeans

JSP pages
with HTML
content

JSP pages
with WML
content

Wireless Device
like Cell Phone

Micro Web
Browser

WAP Gateway

Database
Server

<<WAP>> <<HTTP>>

<<HTTP>>

444910-3 Ch29.F 5/31/02 2:19 PM Page 300

Session 29—Design of a Web Application 301

Figure 29-5 UML Collaboration diagram, querying appointments page flow

The design team now wants to model how the appointment querying shown in the last
diagram will be implemented in the system. For this purpose, they develop the Sequence
diagram in Figure 29-6 that shows all the components involved. For simplicity, they chose
not to show the Login process, but instead to begin this Sequence diagram with the
request for the query form. All requests from the Web browser go to the controller servlet.
The initial request to the servlet is forwarded to the AppointmentQueryForm JSP page so the
user will be presented with the query form to make his request. When the user fills out and
submits that form, the servlet sends the query request to the JavaBeans to run the query
and return the results. If the query bean returns some appointments, then the request is
forwarded to the AppointmentQueryResults JSP page so that the user will see the matching
appointments. If there were no matching results, then the request is forwarded to the
NoAppointments JSP page.

Figure 29-6 UML Sequence diagram, appointment querying implementation

Web Browser
User

<<servlet>>
WiredWeb
Controller

<<jsp>>
Appointment
Query Form

<<javabeans>>
Appointment

Query

Database

<<javabean>>
Appointment

List <<javabean>>
Appointment

<<jsp>>
AppQuery
Results

<<jsp>>
No

Appointments

type URL

fill in Tom

submit to Tom

HTTP request

HTTP response

forward request

HTTP request setAllQueryParameters

returnAppointmentList

executeQuery
selectQuery

[No Appointments Match] forward request

[some Appointments Match] forward request with AppListBean added

HTTP response

create

create

getEachAppointment

returnAppointment

getAllAppData

return data

HTTP response

<<jsp>>
:Login

<<jsp>>
:AppointmentQueryForm

1.2 [successful login]

1.1 [unsuccessful login]

2.1 [query results found]

2.2 [no matching appointments]

<<jsp>>
:AppointmentQueryResults

<<jsp>>
:NoAppointments

444910-3 Ch29.F 5/31/02 2:19 PM Page 301

Sunday Afternoon302

Web technologies on an implementation Class diagram
Sometimes you may wish to show JSP pages, servlets, HTML content, JavaScript, and other
Web technologies on a Class diagram. Figure 29-7 shows some ways you can include these
technologies on a Class diagram. Servlets are regular classes in Java, so they can be shown
normally on the Class diagram. JSP pages are represented by servlets, so you could simply
represent the servlet class that is generated from the JSP page. In the Class diagram, I chose
to show the JSP page without detailing any attributes or methods. The servlets don’t have
an association with the JSP pages, but they have a dependency based on the fact that they
redirect the HTTP request to the JSP page. The diagram also shows that the JSP page builds
the HTML page and that the HTML page contains an HTML form and some JavaScript. Each
of the classes has a stereotype to show what kind of technology it is.

Figure 29-7 UML Class diagram with Web technologies

XML
Although only a few years old, XML has become extremely popular and is being used for
data transfer in more and more systems. XML is an excellent way to transfer data between
systems. An XML document holds data that is being stored or transferred. XML documents
can be validated with an XML schema or DTD. (For simplicity, I won’t go into the distinction
between the two; instead, I will just use schema.) The schema defines the rules for all
documents of a certain type. Thus, the relationship of schemas and documents is like the
relationship of a UML Class diagram and an Object diagram. An Object diagram shows a set
of objects that follow the rules and relationships defined on a Class diagram. Likewise, an
XML document has a set of data that follows the rules and relationships defined by the XML
schema. An XML schema can specify what data will be stored in the documents, the struc-
tural associations between the data, the multiplicities of how many of one type of data
entities are associated to another type, and the types of the data.

The advantages of using XML include:

� XML is a simple and effective way to store data.
� Validation tools can automatically validate an XML document against a schema.
� Parsing tools can automatically parse the data out of an XML document.
� Schemas allow you to standardize the structure of the data so that a whole industry

can agree to share data in one standard format.

<<servlet>> WiredWebController

<<build>><<redirect>>

<<redirect>>
<<redirect>>

doGet(request:
HttpServletRequest, response:
HttpServletResponse): void
doPost(request:
HttpServletRequest, response:
HttpServletResponse): void

<<form>> QueryForm

+ startDate: input-Textfield
+ endDate: input-Textfield
+ contact: input-Textfield
+ highPriority: input-checkbox

<<JSP>>
Appointment
QueryForm

<<JSP>>
No
Appointments

<<JSP>>
Appointment
QueryResults

<<HTML>>
Appointment
QueryForm

<<JavaScript>>
DataVerification

verify()

444910-3 Ch29.F 5/31/02 2:19 PM Page 302

Session 29—Design of a Web Application 303

� XML documents can be shared easily by virtually any combination of programming
environments.

UML modeling of XML
XML has a hierarchical structure that can be modeled as an object hierarchy in the UML
using generalization in a Class diagram. XML schemas can be generated from UML Class
diagrams, and XML documents can be generated from UML Object diagrams. The Object
Management Group (OMG), which maintains the UML Specification, also maintains the XML
MetaData Interchange (XMI) specification. This specification describes a standard for
mapping UML models into XML. The primary purpose of this specification is to create an
industry standard for UML modeling tools to share UML models.

Many UML tools now have an option to save your UML model as an XML file in accor-
dance with XMI. That means that you can start developing your UML model in one UML
modeling tool, save it in this standard format, and then load it in any other UML modeling
tool that supports the XMI specification. XMI functionality is also useful for the purpose of
generating XML schemas and documents for an application based on the application UML
model.

Appointment XML in the case study
The architecture team decided to use XML to transfer the appointment and contact data
from the existing Visual Basic application to the Java servlet that will save the data to the
database. Now the designers have to come up with the XML document structure and schema
that represents the format for how the data will be sent. The first thing they do is refine
their analysis Class diagram from Figure 28-2, which showed how appointments and contacts
were related. Figure 29-8 shows a simplified portion of that Class diagram. To prepare to
generate the XML, the designers ensure that no attributes or associations are missing, that
all attributes have data types, that the direction of traversal arrows is shown, and that role
names have been specified. The team also adds an enumeration called PriorityLevel, which
specifies the legal values for the priority attribute of the Appointment class.

Figure 29-8 UML Class diagram for XML modeling

0..*

User

sets

- appts.

1..1- name: String
- loginName: String
- password: String

Appointment

- dateAndTime: Date
- description: String
- priority: PriorityLevel

<<enumeration>>
PriorityLevel

+ high
+ medium
+ low

Contact

- name: String
- eMail: String
- notes: String

0..*
scheduled to
meet with

- meeting
with

0..*

444910-3 Ch29.F 5/31/02 2:19 PM Page 303

Sunday Afternoon304

As mentioned earlier, UML Class diagrams are comparable to XML schemas. Both define
the rules for how data is organized. The development team can use their modeling tool’s
XMI functionality to automatically generate an XML schema from the Class diagram, or they
can generate it by hand. I don’t show the XML schema here because reading XML schemas is
a large topic in and of itself. Instead, I show a sample XML document. The UML Object dia-
gram in Figure 29-9 is a valid instantiation of the Class diagram in Figure 29-8 and has the
same data and structure as this XML document.

Figure 29-9 UML Object diagram

The Object diagram in Figure 29-9 maps to the XML document in Listing 29-1. The User
object becomes the <user> element. That element contains one sub-element for each
attribute of the user class. Each attribute, like <User.name>, has the value of the attribute
followed by an end tag </User.name>. The link from User to Appointment is shown as a
sub-element of the <user> element and contains all the attributes in the Appointment
class. Notice that the dateAndTime (stored in Java milliseconds format) and priority are
attributes instead of being separate elements because they are simple values.

Listing 29-1 XML for the Appointments Object diagram

<User>
<User.name>Victor Peters</User.name>
<User.loginName>victorpeters</User.loginName>
<User.password>sreteprotciv</User.password>
<User.appt>
<Appointment dateAndTime=”1011384689352” priority=”medium”>

<Appointment.description>Meeting with business analyst and client
</Appointment.description>

<Appointment.meetingWith>
<Contact>
<Contact.name>Kermit T. Frog</Contact.name>
<Contact.eMail>frog@kermit.com</Contact.eMail>
<Contact.notes>Client wants pig detection system</Contact.notes>
</Contact>
</Appointment.meetingWith>
<Appointment.meetingWith>
<Contact>

:User

name="Victor Peters"
loginName="victorpeters"
password="sreteprotciv"

:Contact

name="Kermit T. Frog"
eMail="frog@kermit.com"
notes="Client wants pig detection system"

:Contact

name="Tom Pender"
eMail="tom@pender.com"
notes="Business Analyst and Designer"

:Appointment

dateAndTime="1011384689352"
description="Meeting with business..."
priority="medium"

444910-3 Ch29.F 5/31/02 2:19 PM Page 304

Session 29—Design of a Web Application 305

<Contact.name>Tom Pender</Contact.name>
<Contact.eMail>tom@pender.com</Contact.eMail>
<Contact.notes>Business Analyst and Designer</Contact.notes>
</Contact>
</Appointment.meetingWith>
</Appointment>
</User.appt>
</User>

Web Application Extension
Jim Conallen of Rational Software created an extension to the Unified Modeling Language to
facilitate Web modeling in UML. He devised a set of strategies, stereotypes, and icons for
UML Web modeling. This extension is called the Web Application Extension (WAE). These
three sessions do not explicitly use the WAE, because you may be using tools that do not
support WAE. On the other hand, the strategies recommended in these sessions are com-
pletely compatible with the WAE. Reading about the WAE may give you a few extra strate-
gies for enhancing your UML Web models. In addition, WAE recommends a set of icons that
can be used in UML diagrams instead of using textual stereotypes. For example, rather than
using the standard component with a <<servlet>> stereotype shown on the left in Fig-
ure 29-10, you could use the WAE servlet icon shown in Figure 29-10 on the right.

Figure 29-10 Standard UML component with <<servlet>> stereotype and WAE
servlet icon

Many tools, such as Rational Rose and Popkin’s System Architect, support WAE. Check the
Help file of your UML modeling tool to see if and how it supports WAE. You can also get
more information from Jim Conallen’s Web site at www.conallen.com/technologyCorner/
Webextension/welcome.html or do an Internet search on “WAE UML.”

<<servlet>>
WiredWebController

WiredWebController

444910-3 Ch29.F 5/31/02 2:19 PM Page 305

Sunday Afternoon306

REVIEW
� The Model 2 Architecture is an MVC architecture for Java Web development. JavaBeans

are used for the data model and business data services. JSP pages are used to display
the view of the data. A single Java servlet is used for the controller, which verifies
HTTP parameters, prompts the JavaBeans to do business processing, and selects a JSP
page view to be returned to the user. No matter what technologies you use to develop
Web applications, you can apply the goals and concepts of the Model 2 Architecture.
In particular, keep your Web content separate from your business logic and controller
code whenever possible.

� UML Deployment and Collaboration diagrams are very handy for showing the archi-
tecture of your Web application. UML Sequence, Collaboration, Class, and Object dia-
grams are useful for showing the details of your Web application design. Sometimes,
to get the most use out of these diagrams, you’ll need to be a bit liberal with the
definition of class or object when deciding what you can place on a diagram.
Remember: The goal of UML is to be useful, so although you shouldn’t recklessly
abuse the rules of UML, you can bend them to meet your individual needs.

� XML hierarchies can be shown in UML. An XML schema can be generated from an XML
Class diagram, and an XML document can be generated from a UML Object diagram.
XMI is an OMG specification for mapping UML to XML.

QUIZ YOURSELF

1. What does MVC stand for when describing the MVC pattern? (See “Model 2
Architecture.”)

2. What two diagrams can be used to show how the Web components talk to each other
during execution of the application? (See “Querying appointments and contacts.”)

3. How would you model the XML structure used in your Web application? (See
“Appointment XML in the case study.”)

4. What diagram could represent the instantiation of an XML document? (See
“Appointment XML in the case study.”)

5. Has anyone come up with a standard way of using the UML to model Web
applications? (See “Web Application Extension.”)

444910-3 Ch29.F 5/31/02 2:19 PM Page 306

Session Checklist
✔ Explaining the purpose and function of modeling tools
✔ Explaining evaluation criteria for modeling tools
✔ Evaluating UML modeling tools

Y ou have undoubtedly found that working with the UML diagrams by hand can be time-
consuming and difficult. The problem increases in complexity when you attempt to
maintain the integration between the models. You are not alone. Many people in the

industry have come to appreciate the value of the modeling tools but have been hindered by
the sheer magnitude of the task.

Explaining the Purpose and Function of Modeling Tools
This is where modeling tools come in. The idea behind these modeling tools is simply that
you should be able to use the power of the computer to draw the diagrams, store the
information about the diagrams, and use the computer to run the cross checks, maintain
the integrity, keep track of versions, and ultimately generate the code.

Unfortunately, the early attempts at these tools did not go well. The developers tried to
anticipate how you should write your code. In trying to account for every possibility, they
delivered tools that generated bloated, unreadable code. The result was that no one trusted
the code or the tools.

The good news for modeling tools came in the form of object-oriented programming. The
elements of the OO diagrams now map so well to elements of OO code that there is little if
any difference between the diagrams and the code.

So what is a modeling tool? Figure 30-1 shows you a screenshot of a typical modeling
tool interface. This particular tool is System Architect by Popkin Software, the tool used to
generate most of the diagrams in this book.

S E S S I O N

UML Modeling Tools

30

454910-3 Ch30.F 5/31/02 2:19 PM Page 307

Sunday Afternoon308

Take a look at the central elements of the tool:
Main Menu: At the top of Figure 30-1, you see the typical menu. In a modeling tool, you

will also find a menu, often called Tools or something similar, that gives you access to the
code generation features, database schema creation, export and import of models, and links
to related tools like data modeling tools and Integrated Development Environments (IDEs)
or coding environments.

Figure 30-1 Modeling tool interface

Model Navigation: Each tool typically provides a navigation window. Figure 30-1 shows
the navigation window in the left side panel. The upper portion looks a lot like a directory
tree. Notice that it uses packages (folder icons) containing diagrams and definition files.

The lower half of the left side is a detail window that displays the properties of the
currently selected item. Often this is a thumbnail view of a diagram or audit details about a
package or other selected item.

Canvas: The large white area on the right side of Figure 30-1 is the drawing canvas. This
is where you create, view, and maintain all your diagrams. Just above the canvas is a row of
buttons, or a toolbar, for each diagram element. This toolbar may also appear to the imme-
diate left of the canvas or float over the canvas depending on the tool. The contents of the
toolbar change depending upon which diagram you are drawing.

Explaining Evaluation Criteria for Modeling Tools
The next big question is, “How do I choose the right tool for my project?” As with any
decision, you first must decide what your needs are. Modeling tools come in all shapes and

454910-3 Ch30.F 5/31/02 2:19 PM Page 308

Session 30—UML Modeling Tools 309

sizes. Costs range from free to over $5,000. As with any product, you often get what you
pay for. But the fact is that not all of us need the best or the most expensive or the most
popular. Frankly, some of the low-end products are really worth taking a close look at. So
I’ve provided some evaluation criteria to assist you in your discussions with vendors and in
your own evaluations of the products you want to investigate.

The basics
First I cover the features that should pretty much be provided by every modeling tool. The
distinctions come in how they implement them. Modeling tool vendors will usually give you
access to an evaluation copy of their software. Often, it is as simple as downloading it from
their site. I’ll provide you a convenient site to gain access to most of the existing tools at
the end of this session.

Type and version of the UML supported
As of this printing, the current UML version is 1.4. UML 1.5 is due to be completed by OMG
sometime in 2002, with UML 2.0 to follow after that. Since there are generally schedule
delays with updates to the UML spec, UML 2.0 will probably not be official until sometime
in 2003.The real question is whether the tool really supports 1.4. A substantial number of
changes exist between 1.3 and 1.4. Many tools seem to have a blend of both.

Use the diagram notations in this book to help you verify the support. Get an evaluation
copy of the product and create one of each of the diagrams to try out the modeling features
and check out the standard. You can even duplicate the diagrams created in this book as a
benchmark.

Platform support
You need to run the tool on your operating system(s). Verify that the tool is supported on
each platform you require. Beware that the versions for different platforms are not always in
sync. Some of the vendors bypass this problem by writing the tool in Java. Even so, differ-
ences in virtual machines may surprise you.

Printing
One of the primary reasons you will create the UML diagrams is to share your ideas. Check
out the printing capabilities. Some tools require add-ins to get all the features you need.
Many of these diagrams can be very large, so the print features should support either plot-
ters or easy-to-use multi-page layouts. A print preview feature can also be a great time
saver when preparing presentations.

HTML documentation
Most of the time, there will be a limited number of people actually using the tool, but a much
larger number of people who need to see what is being produced. Printed output is good for
meetings but impractical for wide and frequent dissemination. Many of the current tools sup-
port the generation of reports and diagrams in HTML format so that they may be published on
the Web. Again, some tools build this in as a standard feature while others use add-ins.

454910-3 Ch30.F 5/31/02 2:19 PM Page 309

Sunday Afternoon310

Repository
A repository is simply a place to store all the work you do in the tool. Most often the reposi-
tory is a database. In a few tools, the repository is a proprietary format. This means that
you will be limited to the vendor’s own tools to create reports and do queries. The added
software can be a hidden cost.

Some tools use a relational database, which allows you to augment their reporting features
with standard SQL tools.

Still others use an object database. This can provide some significant productivity
advantages with performance and when working with team development. Object-level
locking allows multiple users to view the same diagram and edit individual elements of the
diagram while others observe the changes.

Code generation
Code generation is one of the big selling features of modeling tools. It is also one of the
biggest sources of skepticism. Modeling tools have had a poor history of code generation,
but the advent of object-oriented programming and object-oriented modeling changed the
problem significantly. Now the diagrams and the code line up so well that there is very little
difference between the two.

The list of languages supported in modeling tools is surprisingly long. The most common
languages include Java, C++, and Visual Basic. Many tools are now supporting Microsoft’s C#
programming language. You will also find CORBA IDL, JavaScript, SmallTalk, C, and Ada,
among others.

One key feature of code generation to be aware of is code markers. A code marker is one
line (or sometimes two lines) of code that identifies where the code fits into the model. It is
generated along with the code. The result is a listing that is two and sometimes three times
longer than you expected. The markers can make the code very difficult to work with. The
upside is that the tools that use this method will often provide an editor that hides the
markers. But then again, you have to use that vendor’s editor.

Most tools have avoided the problem of markers. The result is just the code you wanted
and the freedom to use whatever editor you like.

Integrated editor
Speaking of editors, the situation used to be that you worked either with modeling tools
doing the modeling or you worked with an Integrated Development Environment (IDE) writ-
ing and maintaining code. The line between the two products is becoming blurred. Some
modeling tool vendors have literally built the coding features into the modeling product.
Others have formed partnerships with IDE vendors so that the user (you or I) can move
almost seamlessly between the two. Practically speaking, that’s how it really works. There
are some things best done in a modeling tool and some things best accomplished in an IDE.
One very common situation is the need to define operations. A modeling tool only supports
the operation signature. An editor or IDE is required to add the method to the operation.

Version control
Version control is a fact of life on every project and modeling vendors know it. Most
vendors either provide the version control features in the modeling tool itself or they

454910-3 Ch30.F 5/31/02 2:19 PM Page 310

Session 30—UML Modeling Tools 311

provide integration with a tool like Program Version Control Software (PVCS), StarTeam from
Starbase, ClearCase/ClearQuest from Rational, Visual SourceSafe from Microsoft, and others.
The remaining vendors save their projects as an encyclopedia or directory of some sort that
is easily identified and managed by any third-party version control package.

Version control is also especially valuable with object-oriented modeling. The diagrams
are used throughout the development process. The same diagram initially created in the
early phases is continuously changed through analysis and design and finally through
implementation. Without version control, you lose the history of the diagrams that explains
how you arrived at the current image.

Extended features
The rest of the features listed don’t appear in all tools; however, they are very valuable.
These features and how well they are implemented can set a tool apart from the rest. They
can also add substantially to the cost.

Round-trip engineering
Round-trip engineering is a hotly debated subject. It sounds great but can be challenging
to accomplish. The concept involves four types of translation between models and code.
Figure 30-2 provides a visual explanation to reference while you read through the following
definitions:

� Forward engineering: A Class diagram is used to generate code that never existed
before.

� Reverse engineering: Code is used to create a Class diagram that never existed before.

Maintenance involves work in both directions:

� Diagram updates the code: The diagram changes so you need to regenerate the code.
Some tools replace the existing code, while others are smart enough to isolate the
changes and even comment out the replaced or deleted code.

� Code updates the diagram: The code has changed so you need to update the diagram
to keep in sync. This is not as easy as it sounds. Always do it in very small incre-
ments. Also, some diagram concepts, like aggregation and composition, are not
reflected in code. So you will need to modify the diagram to make certain that it
continues to represent your model accurately.

The maintenance phase is one of the reasons that vendors introduced markers. The mark-
ers can represent modeling concepts that do not have code equivalents. Using this tech-
nique, they can preserve the non-code constructs when the code is converted back into a
diagram during reverse engineering and code-to-diagrams updates.

Data modeling integration
Nearly every application requires a database. Most databases nowadays are relational. The
better tools have taken measures to incorporate data modeling options into their product.
Others have partnered with data modeling or database management vendors to provide the
linkage between a Class diagram and a data model.

454910-3 Ch30.F 5/31/02 2:19 PM Page 311

Sunday Afternoon312

Figure 30-2 Round-trip engineering

One simple way to incorporate data modeling is to support code generation in DDL, the
language needed to create tables in a relational database. A problem with this approach is
that the Class diagram is rarely designed for the database or according to database perfor-
mance standards. A better solution is to port the Class diagram to a tool that supports true
data modeling. This solution works equally well whether the data modeling capabilities are
built into the modeling tool or separate.

Customization
Inevitably you will want to change certain things about the tool. Vendors know they can’t
keep everyone happy, so they often provide you with the ability to make the changes your-
self. The modifications are accomplished with a scripting language, usually something com-
mon like Visual Basic. Because much of the code to generate reports and generate code is
written in this scripting language, the vendor allows you to modify the code or create your
own. Some even build in an editor to help you.

It is worth noting that Visual Basic for Applications (VBA) is the industry standard for
Windows-based modeling tools, and as such provides the user with the same language and
IDE (within the modeling tool) offered in Microsoft Word, Excel, and so on. (VBA is a
stripped down version of VB, invented expressly for such purposes.)

XML Metadata Interchange
Just what you need — another acronym! The XMI (XML Metadata Interchange) details are
something that you may never need to know. But XMI is a feature that you should look for
if you expect to use a set of tools from different vendors. Earlier in this chapter, I talk

Class Diagram Code

Diagram updates the Code

Code updates the Diagram

Forward Engineering

Reverse Engineering

454910-3 Ch30.F 5/31/02 2:19 PM Page 312

Session 30—UML Modeling Tools 313

about using your Class diagrams to create data models, perhaps in an entirely different tool.
XMI is one facility that will support the sharing of models created in one product with many
other products. XMI not only supports sharing of Class diagrams, but sharing of all the UML
diagrams.

XMI uses standard XML to describe the diagrams. OMG specifies XMI via a UML.DTD,
which is updated for every revision of the UML specs. Some modeling tools import/export
XML to their own DTD. Because correct XMI support means the tool is supporting the UML
metamodel correctly, correct XMI import/export becomes a ‘kosher stamp’ on whether the
tool is supporting UML well or not.

The fact that XMI uses standard XML means that you can export your diagrams to a
variety of tools that can exploit the information for other purposes like reporting, software
metrics, and project management.

Team development
Many projects require a number of people to contribute to the modeling effort. This implies
that they need to share the same diagrams, each working on different aspects but everyone
sharing each other’s products. Vendors have come up with a variety of techniques to sup-
port such team development. Some require a check-out/check-in method where one person
has exclusive access to the checked out portion of the model. Others provide diagram or
even element-level locking so that many people may have the same diagram or element
open, but only one person may modify the diagram or element until they release it.

Evaluating UML Modeling Tools
Since the release of the UML standard, the modeling tool market has exploded. The best sin-
gle source I’ve found for a list of the current tools is a Web site at www.cetus-links.org.
The Cetus Team is a group of private individuals who support the content of the site. The
site has over 18,000 links to everything you ever wanted to know about object-oriented
anything.

On the first page, you’ll find a section on Architecture and Design. Under that heading,
you’ll see OOAD Tools, which stands for Object-Oriented Analysis and Design Tools (what I
have been calling modeling tools). The list provides everything from university and freeware
projects like ArgoUML to high-end products like System Architect, Together Control Center,
and Rational Rose. Be wary of the free stuff. Most of it is work in progress. But some of the
less expensive products like Poseidon or MagicDraw might be everything you need.

Unfortunately, I’ve never found a single source that contains reviews of all the currently
available products. So you’re on your own. I suggest the following plan of attack:

1. Identify your financial limits. These tools cover a range from $100 to $7,000 fully
configured. Remember to look into site and concurrent user types of licenses. Be
realistic about the number of people you expect to use the tool.

2. Identify the features that are most valuable to you. Look over the list in this ses-
sion and determine what you can’t live without, what would expedite the project,
and what you can live without.

454910-3 Ch30.F 5/31/02 2:19 PM Page 313

Sunday Afternoon314

3. Get an evaluation copy. Nearly all the tools are available either by download or by
contacting the vendor for a CD. Beware that some of the evaluation periods are as
short as 15 days.

4. Create each type of UML diagram to make certain that the tool supports UML 1.4
and that it doesn’t work in some of its own funny ways of doing things.

5. Generate some code. Review the code. See whether the tool uses markers. Find out
why and whether the use of markers will be a benefit or a hindrance. Find out
what types of customization the tool supports for code generation (class headers,
audit trails, and so on).

6. Reverse engineer some code. This is difficult no matter how you do it. But you
may find yourself needing to reverse existing code to gain an understanding of its
structure so that you can make changes with more confidence.

7. Generate all the reports. If you created one of every diagram, then you should get
some meaningful reports. Find out about customizing reports and adding your own.

8. For those features that don’t work the way you like right out of the box, find out
if the vendor supports customization through scripting. Try to change the report
or code generation using the scripting language to find out how easy or difficult it
is to use.

REVIEW

A modeling tool supports the creation and maintenance of UML diagrams, generating code,
reverse engineering code, and interfaces to related tools like data modelers, IDEs, report
generators, and others.

� A typical modeling tool provides an interface that supports navigation through the
work products created by the tool, a drawing canvas and associated toolbar, and
menu options to access the other tools like code generation.

� The most common features of the current modeling tools include, but are not lim-
ited to, support for the current version of the UML, support for various platforms,
printing, HTML documentation, code generation, an integrated editor, and version
control.

� Additional features include data modeling integration, customization using scripting,
XMI (XML Metadata Interchange) import export, and support for team development.

QUIZ YOURSELF

1. What is a modeling tool? (See “Explaining the Purpose and Function of Modeling
Tools.”)

2. What is a repository? (See “Explaining Evaluation Criteria for Modeling Tools.”)
3. What is round-trip engineering? (See “Explaining Evaluation Criteria for Modeling

Tools.”)
4. What is team development? (See “Explaining Evaluation Criteria for Modeling Tools.”)
5. How can you make certain that the tool supports UML 1.4? (See “Type and version

of the UML supported.”)

454910-3 Ch30.F 5/31/02 2:19 PM Page 314

P A R T

#
P A R T

Sunday Afternoon
Part Review

VI

1. Compared to modeling non-Web applications, Web development requires you to
pay more attention to the software and hardware that make up the implementation
environment. What UML diagrams do you use to represent the implementation
environment?

2. What UML diagram(s) could you use to show the process of how your Web
components work together to implement your system?

3. What UML diagram could you use to model the logical business process that you
want to implement in the Web application?

4. During the execution of your application, the objects like the Java Server Pages go
through a number of transformations that affect their behavior. What UML diagram
shows why these changes happen and how the object changes?

5. Is it redundant to use Class, Sequence, Component, and Deployment diagrams to
model your Web application? How does each diagram make a unique contribution
to your model?

6. How would you use the Sequence and Collaboration diagrams in a Web system?
7. How would you use the Deployment diagram in a Web system?
8. How would you use the Statechart diagram in a Web system?
9. How would you use the Activity diagram in a Web system?

10. Session 29 showed how to model an XML data hierarchy as an object hierarchy on
a Class diagram. Could you apply the same strategy to the tag structure of an
HTML document?

11. The Model 2 Architecture is based on a pattern that divides the application design
into three loosely coupled segments. What is the pattern?

12. What tools could you use to model the implementation environment that contains
the Web browser and the Wired Web Controller on a Web-based solution?

13. How would you model the structure of each Web resource and the relationships
between them?

464910-3 PR06.F 5/31/02 2:19 PM Page 315

14. Does the UML allow for any customization, or do you have to use it exactly
as defined in the standard?

15. What are the main features of a modeling tool interface?
16. Why is HTML documentation valuable for a project?
17. Why is version control especially important in an object-oriented project?
18. What are the four types of translation between models and code?
19. What is team development and how does a modeling tool support it?

Part VI — Sunday Afternoon316

464910-3 PR06.F 5/31/02 2:19 PM Page 316

Friday Evening Review Answers

1. The UML is a diagramming notation standard. The UML does not include anything
about how to build software. The UML does not include anything about how to per-
form analysis and design. It only specifies the diagramming models used to capture
the results of these tasks. Finally, the UML is not proprietary.

2. The UML was the merger of most of the current object-oriented methods. Elements
from nearly all the leading methods have been included in the UML. Although
Booch, Rumbaugh, and Jacobson took an aggressive stance to push the development
of the UML and even now play the part of stewards of the documentation, many
others joined them. The OMG is the coordinating standards representative only.

3. The Object-Oriented Analysis and Design Task Force RFP asked for a metamodel for
specifying software solutions. The RFP specifically avoided methodologies. The
visual notation is actually left up to the vendors, whereas the underlying element
definitions (the metamodel) are required to be consistent among vendors.

4. The UML may be extended by using stereotypes to qualify element descriptions.
Stereotypes are defined in the UML and have a suggested notation for their use.
You are not allowed to alter the standard; otherwise, it would not be a standard.
The set of diagrams is part of the specification. To create a new one would be out-
side of the UML standard. Although you’re allowed to choose your own icons for
existing elements, you may not arbitrarily add your own.

5. The metamodel includes definitions of the modeling elements. The UML does not
specify usage at all. The specification defines function and relationships among
elements only. The UML only suggests a visual icon for each element, leaving the
final choice to the vendor. The UML is explicitly independent of any programming
language used to implement the models.

6. The three elements are the process, the notation, and the guidelines and rules. The
process describes how to go about the development effort. The notation defines
the appearance and meaning of the work products. The guidelines and rules define
how you will assess the quality of the work products and the process.

APPENDIX

Answers to Part Reviews

A

474910-3 AppA.F 5/31/02 2:19 PM Page 317

Appendix A318

7. The UML standard is a common notation that may be applied to many different
types of software projects using very different methodologies. The variations
appear in the use of the UML extensions, like stereotypes, and the emphasis
placed on different diagrams for different types of projects.

8. The hallmarks of RUP are the two terms incremental and iterative. The goal of the
methodology is to deliver an executable release of a product, an increment of the
product, for every pass, or iteration, through the process. The motivation for this
approach is to keep delivery times short and deliveries frequent. This prevents the
historical problem of projects that run for months, or even years, before they actu-
ally produce anything. It also supports early review and early problem detection.

9. The Shlaer-Mellor Method is based on an integrated set of models that can be exe-
cuted for verification, and an innovative approach to design that produces a system
design through a translation of the analysis models. The method is built on a set of
well-defined rules for the construction of the models and the translation of those
models from analysis to design and finally to implementation.

10. The CRC card captures the information about one class. The class name is written
on top of the card. The next two lines are reserved for the listing of superclasses
and subclasses. The body of the card is divided in half. The left column or half
lists the responsibilities of the class and the right column or half lists the other
objects that it works with, the collaborators, to fulfill each responsibility.

11. The Use Case view consists of Use Case and Activity diagrams, narratives, and sce-
narios. It is tempting to include policies and procedures, but policies and proce-
dures are captured within a number of the models. Depending on the specific
nature of the procedures or policies, they may be captured in one or more of the
static or dynamic view diagrams or even the physical models (Component and
Deployment).

12. The static view includes the Class and Object diagrams. The Class diagram models
the rules that govern the objects that make up the system. The Object diagram
models facts about the objects that make up the system. The Class diagram is the
source for generating code. The Object diagram is used to model tests and examples.

13. The Activity diagram models processes, conditional logic, and concurrency, much
like the old flowcharts, but with some enhancements suited to object modeling.

14. The Collaboration diagram models the way objects communicate. The Sequence and
Collaboration diagrams are subtly different views of the same concepts, object
communication.

15. The component view defines the bundling of classes and components into a func-
tional unit. The Component diagram is often combined with the Deployment diagram
to represent the implementation environment.

16. Focus on results rather than process.
17. Three categories of requirements are user requirements, resource requirements, and

functionality requirements.
18. Resources can be anything that the users or the system may need to accumulate,

manipulate, create, store, destroy, and retrieve.
19. Assumptions, replicating the existing system, and confusing user preferences with

requirements.

474910-3 AppA.F 5/31/02 2:19 PM Page 318

Answers to Part Reviews 319

20. I assume that the screen design offered by the user has been approved by all the
users who will need to use it. The client assumes that I already know the laws that
govern insurance terms for international shipping.

21. If you replicate the system, you have not fixed the problem that was the justifica-
tion for the project.

Saturday Morning Review Answers

1. A person may function in many roles. A person may perform many different func-
tions and use the system in many different capacities when using a system. There
really is no limitation other than the nature of the problem domain to restrict the
possible number of roles that a person may play. The same person may even use
the same Use Case from different roles.

2. Associations identify interactions between actors and Use Cases. Associations
simply indicate that there is some sort of communication, no matter what that
communication is. To get the details, you need to look at the Use Case narrative or
one of the other models such as the Sequence or Collaboration diagrams. An asso-
ciation has no way of showing the data flowing between the two elements.

3. The dependency stereotype <<include>> indicates delegation of part of a task to
another Use Case. “Used” Use Cases are typically autonomous Use Cases that may
also be referenced much like you would seek help from a friend.

4. The dependency stereotype <<extends>> indicates a conditional reference to a Use
Case. During the execution of one Use Case, a condition may be encountered that
requires access to a feature handled by another Use Case. When that condition is
encountered, the extension is invoked. When the condition is not met, the
extending Use Case is not invoked.

5. Generalization may be used to identify an existing actor or Use Case whose defini-
tion forms the basis for a more specialized actor or Use Case.

6. Few, if any, systems function in a void. Other systems, the business itself, and the
people who use the system all influence how we interpret the role of the system
and its value.

7. Identify the actors that interact with the Use Cases. In order to interact, they have
to be aware of one another. An association defines who knows whom.

8. When the first Use Case must always (unconditionally) call on the second Use Case
for help, model the relationship as a dependency with the <<include>> stereo-
type. Draw the dependency arrow from the first Use Case to the second Use Case.

9. When the first Use Case only calls on the second Use Case for help because it
encounters a pre-defined condition, model the relationship as a dependency with
the <<extend>> stereotype. Draw the dependency arrow from the second Use Case
to the first Use Case.

10. When two or more Use Cases share common properties, the common properties can
be defined in a single Use Case. Then the two specialized Use Cases only have to
define what they add to or override from the generalized Use Case. The same con-
cept may be applied to common properties of actors.

474910-3 AppA.F 5/31/02 2:19 PM Page 319

Appendix A320

11. We need to know how to start the Use Case. Do we simply say “start” as in select-
ing a menu option, or do we trigger an event? Does the Use Case start because of
time or because of a state within the system? Sometimes the starting mechanism
can tell us whether a Use Case should actually be more than one Use Case.

12. Both define conditions that must be true in order for the Use Case to work prop-
erly. But the Use Case takes on the responsibility for testing the condition defined
in the preconditions, where it does not test the conditions defined in the assump-
tions. The Use Case literally assumes that another Use Case has satisfied the
assumption prior to the execution of this Use Case.

13. The dialog is the conversation between the actor/Use Case and the system in the
execution of the Use Case. It describes how they communicate with one another in
order to complete the goal established for the Use Case.

14. They are defined separately mostly for visibility, to make certain that the dialog
has addressed all the possible outcomes. We also define them separately because
some termination options are difficult to describe in textual form (for example,
concurrency options like canceling in the middle of an operation).

15. Typically, you only include what the user would be able to see during his interac-
tion with the system. So you wouldn’t normally see things like saving items to the
database, closing connections, and so on. But there are always exceptions.

16. A Use Case is a single goal that the system is expected to accomplish. A scenario is
one possible way that the Use Case might execute when it attempts to accomplish
the goal.

17. Scenarios help you define all the functional requirements for the execution of the
Use Case. By doing so, they also provide the basis for a test plan to ensure that the
Use Case can and does work exactly as expected.

18. The Use Case narrative and the Activity diagram illustrating the Use Case narrative
can both be used.

19. Avoid redundancy. Isolate the unique segments of the logic into separate paths
rather than repeat the same series of steps in multiple scenarios. Then to describe
a complete scenario, simply combine and/or repeat the execution of individual
test segments.

20. Use the scenarios as a guide to develop test cases. Taken together, the set of scenar-
ios for all Use Cases in the system form the basis for your acceptance-level testing.

21. The Class diagram establishes the rules that govern the creation and use of objects.
The Object diagram represents the facts about actual objects. Consequently, the
Object diagram is a valuable tool for testing the accuracy and correctness of the
Class diagram.

22. A constraint is a rule or set of rules that dictate the values that may be assigned
to the attribute.

23. Constraints on an operation typically specify the logic or rules for the proper
execution of the operation.

24. The name compartment includes the name of the class, optionally a stereotype,
and optionally a set of properties (or constraints).

25. No. The UML allows you to show or hide as much or as little of the class notation
as you need for the current problem you are working on, though typically you
would always show at least the name compartment.

474910-3 AppA.F 5/31/02 2:19 PM Page 320

Answers to Part Reviews 321

26. It should express the purpose of the relationship (that is, why the objects are
working together).

27. Use role names when a verb or verb phrase does not clearly express the relation-
ship. Place the roles at each end of the association next to the type of object that
plays the role.

28. A constraint is a rule that defines the conditions under which an object may
participate in the relationship.

29. You most often spot the need for them in a many-to-many association.
30. Use a qualified association to simplify and to speed up the navigation across

associations with a many-to-many multiplicity.

Saturday Afternoon Review Answers

1. Single point of control: One of the objects in the relationship is the designated
point of control for all communication with the set of objects. Function like a sin-
gle object: The behavior of the set of objects associated by aggregation is coordi-
nated through the aggregate (the single point of control) so the set of objects is
managed and behaves like one big object.

2. Composition is a type of aggregation so it has all the properties of an aggregation
association. It differs from aggregation in that the assembly object controls the
creation and destruction of the member objects. So a member object cannot exist
outside of the assembly. In aggregation, a part may be created outside the assem-
bly and later added to the assembly or even removed and placed into storage or
into another aggregate object. In composition, the part is created and dies within
the assembly.

3. When the multiplicity on the aggregate end of the association is 1..1, it is safe to
assume that the association is a composition type. In fact, some people don’t show
the multiplicity on composition for this very reason. The 1..1 multiplicity means
that the part must be associated with exactly one aggregate. The part object can-
not exist without an associated assembly object. An aggregation relationship
where the aggregate is required by the part defines a composition relationship.

4. Specialization examines the objects in a class to identify what makes them differ-
ent from one another (using the five objective criteria). Generalization looks at
objects in a number of subclasses to see what the objects have in common. The
common properties are then isolated within a superclass.

5. A multiplicity of 0..1 says that the referenced type of object is optional, so the
object on the other end of the association can exist without it. For example, an
order can be placed even if there is no shipment for it. The shipment end of the
association would be set to 0..1. A multiplicity of 1..1 says that the relationship is
required. The object on the other end of the association cannot exist without the
relationship. If the shipment end of the association was set to 1..1, then you
could not place an order until you had a shipment ready.

6. Qualifiers provide the mechanism for reducing the number of objects that have to be
accessed to find the specific desired object. They work much like keys in a database.

474910-3 AppA.F 5/31/02 2:19 PM Page 321

Appendix A322

7. The pattern defines the materials needed to solve the problem and how to make
them work together. But the implementation may be tailored to the specific type
of application and the technology used for the implementation, not to mention
the preferences of the developer for the peculiar needs of the application.

8. The pattern notation would indicate to everyone using the model that you have
chosen to apply a standardized solution rather than a homegrown solution that
would take more time to evaluate and approve because it has not been tested to
the degree that a pattern has been tested.

9. The roles define the behavior of the participating objects much like job description
or task assignments help clarify how members of a team will coordinate their
efforts to finish the project.

10. The Class diagram models rules, but the Object diagram models facts. The facts may
prove or disprove the accuracy of the rules, so the Object diagram is valuable for
determining what the rules should be and whether the existing rules are accurate.

11. The object name may be similar to the name of an object of another type.
Including the class name prevents misinterpretation of the diagram.

12. The Class diagram declares the rules that constrain the values that you can use in
the attribute. The Object diagram records the actual value. The Class diagram
defines all the rules about the information, whereas the Object diagram is used to
model real examples or test cases.

13. An association defines the rules about how objects may be related to one another.
Links identify how objects are related to one another. A link is to an association as
an object is to a class.

14. Operations are only the declared part of behavior. The declaration would be the
same for all objects of the same class, so including them in the Object diagram
would be redundant.

15. Logical processes include workflows, Use Cases, and operations. The workflow
describes when and how people will use the features of the system. The Use Case
logic explains how the actors will interact with the system to accomplish one spe-
cific goal. Each operation describes the logic required to implement the behavior
that the operation offers.

16. The diamond is used for decisions and as a merge point. The bar is used for initiat-
ing multiple threads or processes and for synchronizing multiple threads or
processes.

17. Place a guard condition on the transition using text enclosed in square brackets [].
18. No. You can have multiple transitions out of an activity, each labeled with a guard

condition to show the direction to take based on the outcome of the activity.
19. False. An Activity diagram has one start but may have many end points.
20. There should be one end point for every termination option. But you can use a

single end point for many transitions (that is, you can have many transition
arrows point to the same end point).

21. If the completion of the activity results in criteria needed to make the decision,
then use the activity itself. If the criteria are an explicit decision by the actor, or
the accumulation of information from many previous activities, then use a deci-
sion diamond.

474910-3 AppA.F 5/31/02 2:19 PM Page 322

Answers to Part Reviews 323

22. Draw the logic in sequential fashion using all the activity features needed to rep-
resent the flow properly. When you encounter the need to loop back to a previous
point, insert a diamond merge point symbol at the return point in the logic.

23. The fork bar allows you to show the point in the flow where a number of processes
begin at the same time. Each logical process is modeled independent of the other
until they meet at a synchronization bar. Meeting at the synchronization bar indi-
cates that each process has ended and the original initiating process continues on
its own.

24. Place a guard condition on the transition. The guard is an expression enclosed in
square brackets [] that must test true in order to follow the transition.

25. The objects that participate in the work. The object lifelines that allow you to rep-
resent the order of the events. The events that express what the objects say to one
another.

26. The event is expressed as an operation that is being invoked on the other object,
using the name of the operation, the arguments, and the return type.

27. It uses a self-reference, an event that leaves the object lifelines and loops back to
the same lifeline.

28. The object usually becomes active in response to a message or signal (an event)
that tells it to start performing an operation.

29. The first represents a synchronous message, the invocation of an operation on the
object it is pointing to. The second represents a reply or the return value from
the operation that was invoked.

Saturday Evening Review Answers

1. It’s usually best to use a Use Case scenario because it is a single discrete piece of
logic. But a Sequence diagram can also be used for a single operation or just about
any other discrete piece of logic in the design.

2. Returns are drawn with a dashed line style arrow and the description of the data
being returned.

3. No. You can refer to them in a comment. The goal of the diagram is to identify the
interactions. Once identified, your goal has been achieved. Showing them more
than once is just more work with no value.

4. The activation bar is placed on the object lifeline. The activation bar begins when
an event is sent to the object and ends when the object sends back a response or
finishes the requested operation.

5. The operation signature includes the name, arguments, and return type (optional).
You may also show the sequence number and the operation visibility.

6. The Object diagram represents the structure of the objects and their relationships.
The structure is what makes the interactions possible. Using the structure, the
Collaboration diagram can validate that the messaging is taking place across
existing connections. The Collaboration diagram can also reveal the need for new
connections when an interaction is needed but not currently supported by the
structure.

474910-3 AppA.F 5/31/02 2:19 PM Page 323

Appendix A324

7. The Collaboration diagram numbers the events. The numbering scheme is not stan-
dardized, so care should be taken to decide ahead of time on a consistent technique
for your team.

8. The Sequence diagram can illustrate when an object is created and destroyed. On a
Collaboration diagram, you have to depend on the event names to know that these
things have happened. Also, the Sequence diagram can show activation where a
Collaboration diagram cannot.

9. Use a self-reference. Draw a link that loops out of and back to the object. Place the
event along that loop.

10. There are two types of iteration. Iteration of a single event is modeled with the
iteration qualifier in front of the event name. Iteration through a set of events can
be modeled with a comment, referring to the sequence numbers of the events
involved.

11. Identify the objects that participate in the scenario or operation.
12. Arrange the objects on the diagram with enough space between them to write the

events. They do not have to be lined up across the top as in a Sequence diagram.
13. Use the Class diagram to determine the links that connect the participating

objects. Draw the links between the objects. The link names are not necessary
unless there is more than one valid type of link between the same pair of objects.
Then the name should be shown to distinguish the link that makes the interaction
possible.

14. Each event in the sequence becomes at least one horizontal arrow from the send-
ing object to the receiving object. The type of arrow depends on the type of event.
Regardless of the type, the arrow is placed parallel to the link.

15. For a synchronous event, or procedure call, that requires a reply, place a second
arrow parallel to the link running in the opposite direction. Replies use a dashed
line style arrow. The return is technically optional but strongly recommended.

16. Identify the condition of the object when it is first created. Draw the state. Then
draw a dot and an arrow from the dot to the state. This configuration identifies
the initial state of the object.

17. The state of the object reflects its condition as recorded in the values of one or
more of the attributes. A change to one or more of these values can redefine the
state of the object.

18. The transition itself is modeled as an arrow between two states. The event that
triggers the transition is written along the arrow. Any actions that are triggered by
the event are written after the event with a forward slash between the event and
the action.

19. A final state is a condition from which an object cannot change. You can spot a
final state as a state that has no outgoing arrows. No, a final state is not required
on every Statechart. In fact, they are rather rare.

20. Yes. There may be as many transitions as the problem statement dictates.

474910-3 AppA.F 5/31/02 2:19 PM Page 324

Answers to Part Reviews 325

Sunday Morning Review Answers

1. When all the actions associated with the transitions into a state are the same, you
can model them as a single entry action. Place the description of the action you
want the object to perform whenever it enters the state in the internal transition
compartment of the state.

2. When all the actions associated with the transitions out of a state are the same,
you can model them as a single exit action. Place the description of the action you
want the object to perform whenever it leaves the state in the internal transition
compartment of the state.

3. If an outgoing transition is added that does not require the action, you cannot use
the exit action. An exit action means that the action will always be performed
when the object exits that state.

4. In front of the action expression put the object name; separate the name from the
action with a period. This is often called dot notation.

5. Activities. Activities may be interrupted because they do not alter the state of the
object.

6. A call event is the most common event type. It is basically the invocation of an
operation on the receiving object.

7. A time event evaluates the passage of time as a trigger. It implies that the object
supports some mechanism to monitor the passage of time. Use the keyword after
to specify the time increment to be evaluated.

8. A guard condition controls the response to an event. When an event occurs, the
condition is tested. If the condition tests true, the corresponding transition takes
place along with any and all associated actions; otherwise the event is abandoned.

9. A change event tests for a change in the object or a point in time. Use the key-
word when with the required test.

10. A substate is a state within a state, a lower level of detail within a state. The
substates are placed within the expanded superstate.

11. The state of an object expresses its current condition. The condition is reflected in
the values of the attributes of the object. A change in the attribute values that
define the state redefines the state of the object.

12. A Sequence diagram models a timeline for each object. It also models events
that affect the object. The spaces on the timeline between those events represent
periods of time when the condition of the object does not change. These periods of
time, the gaps on the timeline, represent candidate states.

13. Typically, only the events pointing at the object’s timeline affect a change in the
object. The outgoing arrows represent messages to other objects. (Sending a mes-
sage usually does not change a state unless it causes a wait state until the reply
arrives.)

14. A state describes an object. An object is usually named with some form of noun.
Words that describe nouns are called adjectives. So the object Order may be
described as a Placed Order, a Filled Order, or a Cancelled Order.

474910-3 AppA.F 5/31/02 2:19 PM Page 325

Appendix A326

15. A Sequence diagram only models one scenario. An object may participate in many
scenarios. So you need to use all the Sequence diagrams in which the object par-
ticipates to build one complete Statechart diagram for the object.

16. The Package diagram may be used just like any directory structure, to hold files of
any type including UML diagrams, documentation, and sample documents. The
most common usage is to organize the parts of the system into subsystems and
finally down to the Class diagrams that model the resources of the system.

17. The package stereotype helps to characterize the usage of the package. For
example, the <<subsystem>> stereotype describes a package that will only
contain classes and other packages that describe the makeup of the system. The
<<deliverables>> stereotype characterizes the package as a repository for project
work products.

18. The dependency arrow shows that one or more classes in one package needs to
interact with a class or classes in another package. The direction of the arrow indi-
cates who has the need (the base of the arrow) and who supplies the help (the
head of the arrow).

19. The dependency stereotype describes the nature of the dependency. The
<<import>> stereotype indicates that at run time the dependent package will
bring the class from the other package into itself to use along with its own classes.
The <<access>> stereotype indicates that the dependent package will want to call
on the class or classes at run time without bringing them into itself.

20. A <<subsystem>> package typically only contains other packages, a Class diagram.
But it may contain any of the UML diagrams.

21. Components represent the physical implementations of your software design.
22. Deployment components, which are required to run the system. Work product

components including models, source code, and data files used to create deploy-
ment components. Execution components, components created while running the
application.

23. One way to draw a component interface is to use a class with the stereotype
<<interface>> attached to the component with a realization relationship. A sec-
ond, more common technique, is to use a “lollipop” attached to the component by
a realization relationship, which is shown simply as a solid line when the lollipop
notation is used.

24. Dependencies between components are drawn with the dashed arrow from the
dependent component to the component it needs help from.

25. A component may be built from one or more classes. The interfaces of the classes
in the component make up the interface to the component.

26. A node is a physical object that represents a processing resource. Most often, this
means a computer of some type, but it may also mean a human resource.

27. The connections are modeled as associations. The association is labeled with a
stereotype that describes the type of connection.

28. A node may contain components and objects (that is, only run time resources).
29. An association between nodes represents a physical communication path like a

cable. The dependency between components is a logical communication require-
ment. This is why the mapping of the components onto the nodes is so valuable.

474910-3 AppA.F 5/31/02 2:19 PM Page 326

Answers to Part Reviews 327

It maps the logical need to the physical capability to ensure that the application
can in fact work properly.

30. The node is labeled with a name and a type in the format “name : type.” But actu-
ally both elements are optional, although exercising that option doesn’t make
your diagram very descriptive.

Sunday Afternoon Review Answers

1. The Deployment diagrams illustrate the hardware and the connections that make
communication possible between the devices (nodes). Use Component diagrams
more frequently to show how mixed technologies work together in the Web
application.

2. The Sequence or Collaboration diagrams are ideal for showing how Web components
work together to complete a process.

3. The Activity diagram is used to model any logic process, whether it is business work-
flow, business transactions, computations, or communication. When the objects that
will take responsibility for the process have been identified, the Activity diagram
can be translated to a set of Sequence and/or Collaboration diagrams.

4. The Statechart diagram models the condition of the object at different points in
time and the events or stimuli that cause the changes that redefine the condition
of the object (its state).

5. No, it is not redundant. Component diagrams show a big-picture view of the archi-
tectural solution, whereas Class diagrams show a more detailed view of that solu-
tion. Deployment diagrams contribute a network view of the solution. Sequence
diagrams show the process for how all the classes and components work together
to complete the process. Thus, it is often useful to use all four diagrams together.

6. Use the Sequence and Collaboration diagrams to show how objects in the system
interact to complete a process. Many non-OO technologies may be viewed as
objects for the sake of these diagrams.

7. The Deployment diagram is particularly useful in Web systems, because Web appli-
cations are usually distributed over multiple machines. The Deployment diagram
models how the software is distributed across the various pieces of hardware.

8. You may use Statechart diagrams to show how objects change over time and why.
This would work well for modeling how the user’s session state changes and how
the behavior of the application changes along with it.

9. A Web application is a business process much like any other. Any place in the
development process where you need to model a logic sequence of behaviors and
decisions, the Activity diagram may be applied to help bring greater precision and
visibility to the effort.

10. Sure. Although the rules are less formally enforced in HTML, HTML documents
have a hierarchical structure of tags just like XML. You could make a Class diagram
that represents each tag as a class.

11. The pattern is the Model/View/Controller pattern. The model represents the infor-
mation resources. The view represents the presentation portion. The controller

474910-3 AppA.F 5/31/02 2:19 PM Page 327

Appendix A328

represents the application logic that manipulates the model and feeds information
to the view.

12. The Component diagram shows the dependency between the Web components.
Superimposing the Component diagram on the Deployment diagram provides a
complete picture of where the software resides on the network.

13. The Class diagram supports the description of the structure of each resource as
well as their relationships and dependencies.

14. The UML allows customization through the use of stereotypes and alternative
icons. As a point of further study, you might check out the UML discussion on
profiles, complete schemas for applying the UML modeling standards to more-
diverse domains like business process modeling (see UML 1.4 chapter 4 UML
Example Profiles).

15. The main features of a modeling tool interface are the main menu, which includes
the tools and diagrams selections, the browser navigation area, and the drawing
canvas.

16. Usually there are a limited number of licenses but a large number of project partic-
ipants who need to see the work products created in the tool. The HTML documen-
tation can be created and distributed to a larger audience. The documentation can
also be maintained to keep everyone up to date, again without tying up the tool.

17. Class diagrams are used throughout the development process. The same diagram
initially created in the early phases is continuously changed through analysis and
design and finally through implementation. Without version control, you will lose
the history of the diagrams that explains how you arrived at the current image.

18. The four types of translation between models and code are
1. Forward Engineering: A Class diagram is used to generate code that never

existed before.
2. Reverse Engineering: Code may be used to create a Class diagram that never

existed before.
Maintenance involves work in both directions:

3. Diagram updates the Code: The diagram changes so you need to regenerate
the code. Some tools replace the existing code while others are smart enough
to isolate the changes and even comment out the replaced or deleted code.

4. Code updates the Diagram: The code has changed, so you need to update the
diagram to keep in sync. This is not as easy as it sounds. Always do it in very
small increments. Also, some diagram concepts, like aggregation and composi-
tion, are not reflected in code, so you will need to modify the diagram to
make certain that it continues to represent your model accurately.

19. Many projects require a number of people to contribute to the modeling effort.
This implies that they need to share the same models, each working on different
aspects but sharing each other’s products. Vendors have come up with a variety of
techniques to support such team development. Some require a check-out/check-in
method where one person has exclusive access to the checked out portion of the
model. Others provide diagram or even element-level locking so that many people
may have the same diagram or element open but only one person may modify the
diagram or element until they release it.

474910-3 AppA.F 5/31/02 2:19 PM Page 328

This appendix provides you with information on the contents of the CD that accompa-
nies this book. For the latest and greatest information, please refer to the ReadMe file
located at the root of the CD. Here is what you will find:

� System Requirements
� Using the CD with Windows and Macintosh
� What’s on the CD
� Troubleshooting

System Requirements
Make sure that your computer meets the minimum system requirements listed in this sec-
tion. If your computer doesn’t match up to most of these requirements, you may have a
problem using the contents of the CD.

For Windows 2000, Windows NT4 (with SP 4 or later), or Windows XP:

� PC with a Pentium processor running at 200 Mhz or faster
� At least 64 MB of total RAM installed on your computer; for best performance, we

recommend at least 128 MB
� Ethernet network interface card (NIC) or modem with a speed of at least 28,800 bps
� A CD-ROM drive

Using the CD with Windows
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.
2. A window will appear with the following options: Install, Browse, eBook, and Exit.

APPENDIX

What’s on the CD-ROM?

B

484910-3 AppB.F 5/31/02 2:19 PM Page 329

Appendix B330

Install: Gives you the option to install the supplied software and/or the author-created
samples on the CD-ROM.

Browse: Allows you to view the contents of the CD-ROM in its directory structure.
eBook: Allows you to view an electronic version of the book.
Exit: Closes the autorun window.

If you do not have autorun enabled or if the autorun window does not appear, follow the
steps below to access the CD.

1. Click Start ➪ Run.
2. In the dialog box that appears, type d:\setup.exe, where d is the letter of your

CD-ROM drive. This will bring up the autorun window described above.
3. Choose the Install, Browse, eBook, or Exit option from the menu. (See Step 2 in

the preceding list for a description of these options.)

What’s on the CD
This book’s CD-ROM includes some helpful additional information and a copy of the UML
standard PDF files. The CD is divided into the following sections.

Supplements
During the course of my lecturing I have developed some visual aids to illustrate many of
the key concepts explained in the course. Among the illustrations are discussions of abstrac-
tion, cohesion, and coupling; roadmaps for the phases of the development process and how
to apply the diagrams; and cheat sheets on association, aggregation, and composition.

I’ve also added a small piece on swimlanes in the Activity diagram. This topic is not
covered in the book, but I thought that some people might appreciate a brief introduction
to this part of the UML notation.

UML 1.4 Documentation
The CD contains the full text of the UML 1.4 documentation in PDF format. You will want to
focus on the Notation chapter and possibly the Glossary. But if you want to get the back-
ground, you will also find the Preface, Summary, and Semantics chapters interesting.
Chapter 4 covers profiles for the software development process and business modeling.
Chapter 5 covers the XMI, the XML Model Interchange format.

Version 1.5 is due out any time now, but it has only minor changes. The tools currently
on the market typically support the UML 1.4 standard, so you should be able to get a lot of
mileage out of this version. But any time you want to check on the latest developments,
just hop onto the OMG Web site at www.omg.org.

484910-3 AppB.F 5/31/02 2:19 PM Page 330

What’s on the CD-ROM? 331

Trial Software
The CD includes trial versions of two modeling packages, System Architect by Popkin Software,
Inc. (the tool used to generate most of the diagrams in the course, thanks to Lou Varveris),
and Describe Enterprise by Embarcadero Technologies, Inc. I suggest you try them out to draw
the diagrams in the course. But I do caution you that if trying to understand the mechanics
of the tools distracts you from the course, step back and use pencil and paper. After you
understand the topic in the course, go back to the tools and step through the chapters again
using them. Every tool has its idiosyncrasies, but they will get the job done. Overall, I believe
you will be pleasantly surprised with the power of these tools.

Shareware programs are fully functional, trial versions of copyrighted programs. If you
like particular programs, register with their authors for a nominal fee and receive licenses,
enhanced versions, and technical support. Freeware programs are copyrighted games, appli-
cations, and utilities that are free for personal use. Unlike shareware, these programs do not
require a fee or provide technical support. GNU software is governed by its own license,
which is included inside the folder of the GNU product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited either by time or functionality
(such as being unable to save projects). Some trial versions are very sensitive to system date
changes. If you alter your computer’s date, the programs will “time out” and will no longer
be functional.

eBook version of UML Weekend Crash Course™
The CD-ROM also contains the complete text of this book so that you can keep it with you
as a reference and to turn to when you need a refresher. You can read and search through
the file with the Adobe Acrobat Reader (also included on the CD).

Self-Assessment Test
If you want to find out how you stand with your UML knowledge before or after the course,
you can take the self-assessment test. The test consists of about 100 multiple-choice ques-
tions. Each answer is explained to make certain that you understand. The test is divided by
topics, and is self-scoring for your convenience.

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD, try the
following solutions:

� Turn off any anti-virus software that you may have running. Installers some-
times mimic virus activity and can make your computer incorrectly believe that it is
being infected by a virus. (Be sure to turn the anti-virus software back on later.)

� Close all running programs. The more programs you’re running, the less memory is
available to other programs. Installers also typically update files and programs; if
you keep other programs running, installation may not work properly.

484910-3 AppB.F 5/31/02 2:19 PM Page 331

Appendix B332

� Reference the ReadMe: Please refer to the ReadMe file located at the root of the
CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD, please call the Customer Care phone number: (800)
762-2974. Outside the United States, call 1 (317) 572-3994. You can also contact Customer
Service by e-mail at techsupdum@wiley.com. Wiley Publishing, Inc. will provide technical
support only for installation and other general quality control items; for technical support
on the applications themselves, consult the program’s vendor or author.

484910-3 AppB.F 5/31/02 2:19 PM Page 332

�
abstract class
A class that cannot be instantiated because a method (an implementation) has not been
specified for every operation of the class. See also operation and method.

abstract data type
A class created to encapsulate a type of information common to an application. It is often
used for items such as addresses, which contain a number of individual fields combined in a
specific way and edited according to rules unique to that combination. See also encapsulation.

abstraction
A unique representation of a real-world entity. The intent of the representation is not a
comprehensive description, but rather a description that is useful for a specific application
or purpose. For more information see Session 1.

abstract operation
An operation without an associated method (implementation). See also operation and
method.

action
A response to an event in a Statechart diagram, typically part of the transition from one
state to another and typically atomic (cannot be broken into subtasks). See also event and
Statechart.

action state
A condition in an object where it is occupied with the execution of an atomic behavior. An
activity in an Activity diagram represents an action state.

Glossary

494910-3 Gloss.F 5/31/02 2:19 PM Page 333

activation
The execution of an operation on an object, or another call to an object to initiate a behav-
ior on that object. An activation is shown as a thick vertical object lifeline segment on the
Sequence diagram. For more information see Session 16.

active object
An object in control of a thread or process that can initiate control activity. In a Sequence
diagram, this is identified by adding an activation bar to the object lifeline, usually for the
full length of the timeline. In an Object diagram, this is signified by making the object
icon bold.

activity
Processing that an object performs while it is in a specific state. An activity is typically
non-atomic (that is, it may be composed of any number of subtasks). Because an activity
does not cause the object to change states, it may be interrupted. Contrast this with
actions. For more information see Session 14. See also action.

actor
A person, system, or device that interacts with the system in a Use Case diagram. For more
information see Session 6.

aggregation
A type of association in which one object represents a collection, assembly, or configuration
of other objects such that the assembly is greater than the sum of its parts. Aggregation is
characterized by focus of control in the one object representing the “whole,” propagation
from the “whole” object to its parts, and the fact that the entire assembly functions as a
single, coordinated unit. For more information see Session 11. See also composition.

ancestor
Any class that resides higher than the reference class in a generalization hierarchy. See also
superclass, subclass, and generalization.

association
A relationship between classes that specifies the type of links that may be created between
objects of the associated classes. For more information see Session 10. See also link.

association class
Information about an association that has been abstracted into its own class. For more
information see Session 10.

asynchronous event or action
A type of message that does not require a response and does not require the sending object
to wait. For more information see Session 16.

attribute
A class member used to define a unit of information owned by the containing class, includ-
ing such details as type and domain of values. For more information see Session 9.

Glossary334

494910-3 Gloss.F 5/31/02 2:19 PM Page 334

automatic transition
A change in state triggered by the completion or termination of a state activity. See also
transition and activity.

�
balking event
A message type in which the client can pass the message only if the supplier is immediately
ready to accept the message. The client abandons the message if the supplier is not ready.

base class
A class that is further specified by subclasses. Also called a superclass or ancestor class. For
more information see Session 11. See also superclass and subclass.

bound element
A class resulting from the specification of parameters in a template class. See also template
class.

�
class
An abstraction of a set of related information, behaviors, and relationships that describes a
type of entity. A definition used to create objects. For more information see Sessions 1
and 9. See also object.

classification
The process of finding common information, behaviors, and relationships among objects, in
order to create a common definition for the objects. For more information see Session 9. See
also class and object.

class operation
An operation that is specific to a class rather than to objects of the class. As such, it may be
invoked without using an object of the class. For more information see Session 9.

class variable
An attribute that is specific to a class rather than to objects of the class. As such, it may be
referenced within the class without using an object of the class. For more information see
Session 9.

client
An object that initiates a request.

collaboration
An interaction between objects. The term is also used to describe a pattern, a standardized
concept for configuring classes to fulfill a specific function. For more information see
Session 12. See also pattern.

Glossary 335

494910-3 Gloss.F 5/31/02 2:19 PM Page 335

component
A physical unit of software that may reside in memory on a processor and realizes (implements)
a set of interfaces. For more information see Session 25.

component view
A UML presentation dedicated to the description of software implementation units (compo-
nents); may be used in combination with the deployment view. For more information see
Sessions 25 and 26. See also component and deployment view.

composite state
See superstate.

composition
A type of aggregation relationship in which the part object cannot exist separate from the
whole object. The whole object is responsible for the creation and destruction of the part
object. For more information see Session 11.

concrete class
A class that may be instantiated because a method (an implementation) has been specified
for every operation that is inherited or owned by the class. See also abstract class.

concurrency
The simultaneous execution of multiple activities by executing multiple threads or multiple
processes. For more information see Session 14.

constraint
The UML extension of the definition of a model element that allows you to impose restric-
tions on the use of the element (for example, edit rules on an attribute value or limits on
the participation in an association). For more information see Sessions 9 and 10.

context
The set of model elements that defines the frame of reference for the interpretation and
implementation of a particular model element.

contract
An agreement between classes regarding the handling of responsibilities and implementa-
tions in the class definitions. For more information see Session 7.

coupling
A measure of the degree of dependency between model elements. A quantitative assessment
of the communication volume, number of relationships, and the complexity of the commu-
nication that define the relationship. For more information see the Supplements on the CD.
See also dependency.

�
data type
The format of information allowed for an attribute (for example, integer, address, or charac-
ter data). For more information see Session 9.

Glossary336

494910-3 Gloss.F 5/31/02 2:19 PM Page 336

decomposition
Separating an entity or process into smaller functional units.

delegation
Passing responsibility for a task to another entity, typically hiding the implementation of
the task from the requestor.

dependency
A relationship between two model entities in which a change to one (the independent
model element) will affect the other (the dependent model element). For more information
see Sessions 5 and 24.

deployment view
A presentation dedicated to the description of processing architectures; may be used in
combination with the component view. For more information see Sessions 3 and 26. See also
component view and node.

derived association
An association shortcut created by relying on a series of other associations. For example, if
Bill knows Mike, who knows Cathy, who knows Sue, then you could arrange for Mike to
know Sue directly.

derived attribute
An attribute whose value can be determined by applying a rule or calculation using one or
more other attribute values. For more information see Session 9.

domain
A subject area with an associated vocabulary and semantics.

�
element
See model element.

event
A system stimulus, often in the form of a message or signal from one object to another that
can cause the receiving object to respond and/or change state. For more information see
Session 16.

�
generalization
The process of organizing the information in a set of classes according to the similarities
and differences between the classes. The objects of the classes must all share the same
semantic purpose. The criteria for the organization process include operations, methods,
attributes, attribute values, and associations. Also, a class that contains the shared proper-
ties of all the subclasses below it in the inheritance hierarchy. For more information see
Session 11. See also inheritance and specialization.

Glossary 337

494910-3 Gloss.F 5/31/02 2:19 PM Page 337

guard condition
A statement, associated with a state transition, which must test true before the transition
may take place. For more information see Sessions 14 and 16. See also state transition.

�
implementation inheritance
The sharing of both the interface (operation) and the implementation (method). See also
interface inheritance.

import
A dependency stereotype between packages where one package obtains access to the other’s
contents by adding the “imported” package’s contents to its own. For more information see
Session 24.

inheritance
A relationship between a generalized class and a specialized class that allows the specialized
class to incorporate the elements of the generalized class into its own specification. For
more information see Session 11. See also generalization.

instance
The implementation of a class as an object.

instance method
An operation implementation that is only available through an object. Contrast this with a
class method. See also class method.

instance variable
An attribute that is only available within an object. Contrast this with a class attribute. See
also class attribute.

interaction
Communication between objects. For more information see Session 16.

interface
The visible part of a class. Typically used to describe the public signatures of operations in a
class. May be used to refer to a single signature or the sum of all signatures for a class. For
more information see Session 1.

interface inheritance
The sharing of only the signature or declaration of an operation, not the implementation.

iteration
To perform a function or set of functions more than once. The repetition may be based on a
value, a count, time, completion of a task, or any other type of condition. For more infor-
mation see Sessions 16 and 18.

Glossary338

494910-3 Gloss.F 5/31/02 2:19 PM Page 338

	
link
A relationship between two objects. For more information see Session 13. See also association.

link attribute
A value that helps to describe a relationship between two objects. See also association class
and link.

logical view
A presentation dedicated to the description of conceptual analysis and design work products
for a software project. For more information see Session 3.

merge of control
To synchronize or coordinate the completion of multiple threads or processes and pass
control to a single thread or process. Merge of control does not require the completion of all
threads or processes. Merge may be conditional on the completion of one or more of a set of
threads, time, or other conditions. For more information see Sessions 14 and 20.

message
Communication between objects, typically an event containing information and/or eliciting
a response. For more information see Sessions 16 and 18.

metamodel
The specification of a language for describing the UML diagrams. Also, a model that describes
the elements and the relationships between those elements that make up a specified domain
(for example, the Class diagram). For more information see Session 1.

method
The implementation of an operation. For more information see Session 9. See also operation.

model
A representation of a view of a physical system, usually designed to simplify and facilitate
understanding of the system. The representations may focus on the logical rules and rela-
tionships that define the system as well as the physical components used to implement the
system. For more information see Session 3.

model element
The smallest unit of semantic definition in a model. The same model element may appear
in multiple diagrams. For example, an event appears in Sequence diagrams, Collaboration
diagrams, and Statechart diagrams. In all three contexts it provides the same semantic
information. For more information see Session 3.

multiplicity
A constraint on the number of objects that may participate in one end of an association. For
more information see Session 9.

Glossary 339

494910-3 Gloss.F 5/31/02 2:19 PM Page 339

�
navigability
A specification of the allowed direction of communication along an association.

node
A physical object that represents a processing unit, typically computing hardware or a
person, capable of owning and performing a system function. For more information see
Session 26. See also deployment view.

�
object
A uniquely identifiable entity composed of information, behaviors, and relationships with
other entities. For more information see Session 1.

object activation
An object in control of a thread or process that can initiate control activity. In a Sequence
diagram, this is identified by adding an activation bar to the object lifeline. In an Object
diagram, this is signified by making the object icon bold. For more information see Ses-
sion 16. See also active object.

object constraint language
A formal language used to express rules that need to be enforced on elements in a UML
diagram (for example, to define which objects may participate in an association).

object lifeline
Used in a Sequence diagram, the timeline is represented as a vertical dashed line drawn
from the owning object downward to the end of the scenario. For more information see
Session 16.

object management group
The standards group currently overseeing the modeling standards related to object-oriented
software development. For more information see Session 1.

object termination
The end of an object’s lifecycle, usually denoting object destruction. Identified by an X at
the bottom of a sequence diagram timeline for the specified object. For more information
see Session 16.

Object-Oriented Analysis and Design Task Force
The group assigned by the OMG to generate and oversee the RFP for a metamodel for object
design. For more information see Session 1.

operation
The declaration of a unit of behavior within a class. See also method and interface. For more
information see Session 9.

Glossary340

494910-3 Gloss.F 5/31/02 2:19 PM Page 340

overloading
Used to describe operations within a class where an operation name is shared but the argu-
ments vary in number and/or type. Contrast this with polymorphism.

package
A general-purpose mechanism for grouping models and model elements, typically by similar
functions or uses within the context of a system. For more information see Session 24.

pattern
A common solution to a common problem, describing a set of cooperating classes, the rules
for their interactions, and consequences of using the pattern. For more information see
Session 12.

polymorphism
Operations where the operation signature is the same but the implementation (method) is
different. See also overloading.

post-condition
A statement that must test true at the completion of the responsible task or Use Case. For
more information see Session 7. See also pre-condition.

pre-condition
A statement that must test true before execution of the responsible task or Use Case. For
more information see Session 7. See also post-condition.

primitive data type
The smallest unit of data definition provided by the implementation environment (for exam-
ple, integer, float, or char). For more information see Session 9. See also abstract data type.

private
A form of visibility constraint that prevents access to a model element from outside of the
owning class. For more information see Session 9. See also public.

process
A “heavyweight” flow of control that can execute concurrently with other processes.

property
A named value describing a characteristic of an element.

protected
A type of model element visibility that allows only subclasses to have access to the protected
model element (for example, an operation or attribute). In some languages, like Java, protected
may also allow access from within the same package. For more information see Session 9.

public
A form of visibility constraint that allows access to a model element by any object outside
the owning class. For more information see Session 9. See also private.

Glossary 341

494910-3 Gloss.F 5/31/02 2:19 PM Page 341

�
qualifier
A modeling element, used on associations, that identifies an attribute or attributes used to
navigate an association. Synonymous in function with keys or indexes in a database or the
data modeling domain. For more information see Session 10.

�
realization
When a class implements an interface specified by another class (or interface class as in
Java).

reflexive association
An association that relates objects within the same class to one another. For more informa-
tion see Session 10. See also association.

reverse engineering
The process of translating code into modeling elements. This typically results in a Class
diagram. But new tools are providing Sequence and Statechart diagrams as well. For more
information see Session 30.

role
Describes how an object participates in an association. For more information see Session 10.

�
scenario
A single logical path through a Use Case, often used as a test case. For more information see
Session 8. See also Use Case view.

send event
A message or signal sent to another object from within a Statechart diagram. For more
information see Session 22.

server
An object that acts only as a respondent in an interaction. Note that the same object may
act as a client in another interaction.

signal
An asynchronous stimulus sent from one object to another.

signature
Synonym for operation and described as the name, the number, type, and order of argu-
ments, and sometimes the return data type (implementation languages vary on their inter-
pretation). For more information see Session 9. See also polymorphism, overloading, and
interface.

Glossary342

494910-3 Gloss.F 5/31/02 2:19 PM Page 342

specialization
The identification and encapsulation of properties that make a type of object unique within
a larger set of objects that share the same purpose (for example, a description of the unique
properties of Granny Smith apples within the larger group of apples). For more information
see Session 11. See also generalization.

split of control
To initiate multiple and simultaneous threads or processes from a single thread or process.
For more information see Sessions 14 and 22.

state
The condition of an object at a point in time, reflected in the values of certain attributes of
the object. A change in the attribute values redefines the condition of the object. For more
information see Session 20.

stereotype
A UML extension that provides a means of further describing or qualifying a model element
without defining its implementation. For more information see Sessions 6, 9, 24, and 26.

subclass
A specialized class connected to a more general class (also known as base class or ancestor
class) in a generalization class hierarchy. This relationship gives it inheritance access to all
the properties of the ancestor class. For more information see Session 11. See specialization,
generalization, and inheritance.

substate
A refinement of the condition of an object from within another state with a broader defini-
tion (composite or superstate). For more information see Session 22. See also superstate and
state.

superclass
A generalized class connected to a more specialized class or child class in a generalization
class hierarchy. The superclass contains properties that are common to all subclasses below it
in the hierarchy. For more information see Session 11. See also subclass and generalization.

superstate
A state defined at a higher level of abstraction that can be broken down into smaller, more
refined state definitions. For more information see Session 22. See also substate and state.

synchronous event
A form of communication that requires a response. For more information see Session 16.

�
tagged value
An extension of the properties of a UML element that allows you to add your own new infor-
mation to an element’s specification in the form of property name and value pairs, that is,
property = last edited date and value = 04/12/02.

Glossary 343

494910-3 Gloss.F 5/31/02 2:19 PM Page 343

template or template class
A parameterized class that serves as a model for building other classes.

time event
An event that specifies an amount of time elapsed since the current state was entered. For
more information see Session 16.

transition
A change from one object state to another object state. For more information see Session 21.
See also state.

�
Use Case view
A presentation dedicated to the description of user requirements. For more information see
Session 3.

�
view
A grouping of diagrams and other work products for a particular function in the overall
process for developing software. For more information see Session 3.

visibility
A constraint on the access to attributes and operations within a class by other classes of
objects. For more information see Session 9. See also public, private, protected, and package.

Glossary344

494910-3 Gloss.F 5/31/02 2:19 PM Page 344

Symbols and Numerics
* (asterisk), 108
{ } (braces), 9, 101, 110
, (commas), 108
<< >> (guillemets), 8–9, 56
- (minus sign), 96
(number sign), 96
. (period), 108
+ (plus sign), 96
/ (slash), 96
[] (square condition brackets), 171, 184, 322
~ (tilde), 96

�
abstract class, 123
abstract data type, 96, 100
abstraction, 28–29
<<access>>stereotype, 248, 251–252, 253
action, 205
Action Semantics, 17
action state, 151
activation, 171–172, 183, 323
activities, internal, 210
Activity diagram

activities notation, 151
benefits of using, 83, 327
concurrency, 154–155
decisions, 152–153
described, 24–25, 318
end point, 154
Fill Order case study, 85
guard condition, 151–152
inventory control system case study,

applying, 157–164

merge point, 153
methods, defining, 150
start point, 154
transitions notation, 151–152
Use Cases, modeling, 149–150

actor, 52
aggregation

composition and, 117–118
elements, 118–119
relationships, 120–121

analysis
constraints, 38
performance, 39
rules, 39
Web development, 290–291

appointments
querying, 300–301
uploading, 299–300
XML (eXtensible Markup Language), 303–305

archive, 206
argument, 98–99
arrows. See also transition

dashed dependency, 247
message, 170, 173
returns, 323
Statechart diagram, 204–209

artifact, 14
assignment operator, 96
association

connections, 326
Deployment diagram, 263–264
described, 52, 94
Use Case relationships, 56
users, defining, 64–65

Index

504910-3 Index.F 5/31/02 2:19 PM Page 345

association class
constraints, 109–110
described, 105
information, encapsulating (association

class), 110–111
name, 106–107
number of participating objects

(multiplicity), 107–108
objects in same class, relations (reflexive

association), 111
qualified, 111–112
roles, 109

assumptions
pitfalls of making, 43, 318
Use Case narrative, 70, 75

asterisk (*), 108
asynchronous event or action, 172, 173, 198
asynchronous message, 191–192
attribute

class compartments, modeling, 101
defined, 94, 95
specification, 97–98
subclasses, identifying, 123
visibility, 96–97
XML (eXtensible Markup Language) document, 304

Auxiliary elements package, 8
availability, 288

�
Beck, Kent (Extreme Programming Explained,

Embrace Change), 20–21
<<becomes>>, 257, 266
behavior, 30
Behavioral Elements package, 8
Booch, Grady, 6, 317
braces ({ }), 9, 101, 110
BridgePoint, 16
bull’s-eye, 154

�
call

Object diagram, modeling, 187, 190
synchronous, 197
time, modeling over, 170, 172

call event, 228–229
cancel events, 77
card, CRC (Class, Responsibilities, and

Collaborators), 18–19, 318
CD-ROM, back-of-the-book

contents, 330–331
system requirements, 329

troubleshooting, 331–332
Windows, using with, 329–330

cellular telephones, 289, 294–295
CGI (Common Gateway Interface) scripts, 281
changing

customer performance status, 208–209
multiple objects to same state, 217–219
transition events, testing in Statechart, 229–230

class
association, 106
attribute, 97
CRC (Class, Responsibilities, and Collaborators)

method, 18–19, 318
generalization relationship, 122
objects in same class, relations

(reflexive association), 111
class compartments, modeling

attribute, 101
described, 100–101
name, 101
operation, 102

class definition
described, 121–122
elements, 122–124
illustrated how-to, 124–126
relationships, 58
Use Cases, evaluating, 53, 67

Class diagram
aggregation, 117–121
associations, 105–112
attributes, modeling, 95–98
building, 130–133
compartments, modeling, 100–102
described, 25–26, 93–95, 318
elements, 95
generalization, 121–126
inventory control system case study,

applying, 129–137
operation, modeling, 98–100
patterns, 133–137
problem statement, 129–130
round-trip engineering, 311–312
Sequence and Collaboration diagram elements,

mapping, 200–201
views, creating different, 102
Web development, 290–291, 302
XML (eXtensible Markup Language) modeling, 303

class operation, 142
classification, 142
classifiers, 56
client

assumptions, fair, 319
XP (extreme programming), 20–21

Index346

504910-3 Index.F 5/31/02 2:19 PM Page 346

code
diagrams, updating, 311
maintenance, 328
pre-conditions, 70

code generation
aggregation, 117–121
associations, 105–112
attributes, modeling, 95–98
building, 130–133
compartments, modeling, 100–102
described, 25–26, 93–95, 318
elements, 95
generalization, 121–126
inventory control system case study,

applying, 129–137
modeling tools, 310
operation, modeling, 98–100
patterns, 133–137
problem statement, 129–130
round-trip engineering, 311–312
Sequence and Collaboration diagram elements,

mapping, 200–201
views, creating different, 102
Web development, 290–291, 302
XML (eXtensible Markup Language) modeling, 303
XP (extreme programming), 20–21

code marker, 310
collaboration, 135
Collaboration diagram

described, 27, 187, 318
inventory control system case study,

applying, 193–201
notation, 189–191
Object diagram versus, 323
Sequence diagram versus, 188–189
Web pages, moving among, 300, 301

commas (,), 108
comments

Collaboration diagram, 191, 199
icon, 9
Sequence diagram, 184

Common Gateway Interface. See CGI scripts
communication

association between nodes, 326–327
inter-object (send event), Statechart

diagram, 219–220
compartments, 100–102
component, 256
Component diagram

described, 255–256, 318
for inventory control system case study, 258–260
logical design, mapping to physical implementation,

260–261

Model 2 Architecture, 298, 328
notation, 256–258

composite state
concurrency, 233–234
defined, 231

composition
aggregation and, 117–118, 321
and aggregation relationships, 120–121
elements, 119–120

computers, diagramming
described, 263–264, 327
dynamic Web content, 281
inventory control system case study,

applying, 266–271
Model 2 Architecture, 299
notation, 264–266
software components, mapping to architecture, 266
static Web page, 279
Visual Basic client, 300

Conallen, Jim, 305
concrete class, 123
concurrency

Activity diagram, 154–155, 163–164
multiple Statecharts, 233–234

conditional (guard condition), 230
conditions

delegate to another Use Case (<<extend>>
dependency notation), 57–58

message, 184
constraint

associations (Class Diagram), 109–110
attributes, 97
defined, 9, 320
inventory control system case study

requirements, 38, 41
notation ({ }), 101

contacts
querying, 300–301
uploading, 299–300

contents, CD-ROM, back-of-the-book, 330–331
context

state design pattern, 136
target system, 62

contract, 38
CORBA standard, 6
Core package, 8
coupling, 71
CRC (Class, Responsibilities, and Collaborators),

18–19, 318
customers

events and activities, defining, 210
performance, changing status, 208–209

customization, modeling tools, 312, 328

Index 347

504910-3 Index.F 5/31/02 2:19 PM Page 347

�
dashed line, 110–111
dashed return arrow, 171
data

component notation, 256
systems, transferring between, 302–303

data model
integration, 311–312
Java Web development, 293, 297

data type
hiding with encapsulation, 33
modeling, 95, 96
operation return values, 99

Data Types package, 8
database

accessing, 256, 268–269
integrating, 311–312
object, 310

dead-end segments, 83
decisions

Activity diagram, 152–153, 160, 322
Fill Order case study, 86

definitions, set of
described, 6–7, 317
diagrams, 9
organization, 7–8

delegation
conditional Use Case to another (<<extend>>

dependency notation), 57–58
Use Case to another (<<include>> dependency

notation), 56–57
deleted data, 205–206
dependency

notation, component diagram, 57–58, 66–67,
257–258, 319, 326

package notation, 326
Use Case diagram, 53, 57, 319

Deployment diagram
described, 263–264, 327
dynamic Web content, 281
inventory control system case study,

applying, 266–271
Model 2 Architecture, 299
notation, 264–266
software components, mapping to architecture, 266
static Web page, 279
Visual Basic client, 300

derived attribute, 96
design

constraints, 38
performance, 39
Web development, 291–295

devices, trading information, 53–54
diagrams, collections of

benefits of using, 27–28
Class diagram, creating different, 102
defined, 23–24
Dynamic View, 26–27
Functional View, 24–25
Static View, 25–26

diagrams, packages of
described, 7–8, 245–246
inventory control system case study, 250–253
namespace, 246
notation, 247–249
visibility, 96, 99

diagrams, working together
Collaboration diagram, 187–191
described, 26–27, 167
Sequence diagram, 168–173
Statechart diagram, 203–210

dialog, Use Case narrative, 71–72, 76, 320
diamond icon

Activity diagram, 152–153, 160, 322
aggregation, 118
composition, 119

direction, reading association, 106–107
directory, package, 246
discriminator, 123, 125
document

component notation, 256
XML (eXtensible Markup Language), 302–303

domain, 16–17
dot notation, 204, 325
dynamic content, 280–284
Dynamic view

Collaboration diagram, 187–191
described, 26–27, 167
Sequence diagram, 168–173
Statechart diagram, 203–210

�
eBook version of book, 331
editor, modeling tools, 310
element

aggregation, 118–119
Class diagram, 95
composition, 119–120
descriptions, extending, 317
generalization, 122–124
model, 249
operation, modeling, 98–99

Index348

504910-3 Index.F 5/31/02 2:19 PM Page 348

encapsulation
association class information, 110–111
implementation, 31–33
interface, 30–31, 32–33

end point, 154, 322
engineering, round-trip, 311–312, 328
entry actions, 217–219, 325
evaluating

criteria for modeling tools, 308–313
modeling tools, 313–314
users, 65–66

event
action, associating, 205
defined, 203
identifying, 206, 210
multiple changing object to same state, 217–219
order of, Statechart diagram, 220
transition, 227–231, 323

executable, resources referenced, 256, 258, 266
exit actions, 219, 325
<<extend>> dependency, 57–58, 66–67, 319
eXtensible Markup Language. See XML
Extension Mechanisms package, 8
Extreme Programming Explained,

Embrace Change, 20–21

�
features, defining, 54–55
features needed to perform jobs. See relationships
<<file>>, 256
Fill Order case study

flowchart and scenarios, 194
Sequence diagram, 179–185
Use Case diagram, 74–78
Use Case scenarios, 84–90

finding
interface, 185
Use Case scenarios, 83–90

flowchart
activities notation, 151
benefits of using, 83, 327
concurrency, 154–155
decisions, 152–153
described, 24–25, 318
end point, 154
Fill Order case study, 85
inventory control system case study,

applying, 157–164
merge point, 153
methods, defining, 150
start point, 154
transitions notation, 151–152
Use Cases, modeling, 149–150

folder icon. See package
fork bar, 323
forward engineering, 311–312, 328
Foundation package, 8
Friendly Reminder case study

appointment XML (eXtensible Markup
Language), 303–305

MVC (Model View Controller) design
pattern, 294–295

Web development, 287–288
Functional view

Activity diagram, 149–155
described, 24–25

�
generalization

described, 121–122
elements, 122–124
illustrated how-to, 124–126
relationships, 58
Use Cases, evaluating, 53, 67

goals, defining, 54–55
guard condition

Activity diagram, 151–152, 160
notation, 322
transition events (Statechart), 230–231, 323

guidelines, 317
guillemets (<< >>), 8–9, 56

�
handheld devices, 289, 294–295
hardware

architecture, modeling, 263–264, 327
concurrency, allowing, 154–155
dynamic Web content, 281
inventory control system case study,

applying, 266–271
Model 2 Architecture, 299
notation, 264–266
software components, mapping to architecture, 266
static Web page, 279
Visual Basic client, 300

hierarchies
drawing, 124–126
expressing, 111

HTML (HyperText Markup Language)
Class diagram, 302
described, 278, 328
dynamic pages, 284
Java servlet, generating, 282

Continued

Index 349

504910-3 Index.F 5/31/02 2:19 PM Page 349

HTML (HyperText Markup Language) (continued)
modeling tools, 309
in MVC (Model View Controller), 292, 294
static Web page, 279
tag structure, 327
template pages, 283

HTTP (HyperText Transfer Protocol)
described, 279
Java servlet, generating response, 282
Sequence diagram, 280
Visual Basic, communicating, 299
WAP, translating, 295

�
IDE (Integrated Development Environment), 310
identifier, 111–112
identifying

requirements for inventory control system
case study, 40–42

use case, 63–64
users, 62–63

implementation
Class diagram for Web application, 302–305
constraints, 38
defined, 31–32
hiding in encapsulation, 33
replicating existing, 43

<<import>> stereotype, 248, 252, 326
<<include>> dependency, 56–57, 66
incremental, 14, 318
index cards. See CRC
information

encapsulating (association class), 110–111
object-oriented information, 29

inheritance, 58, 94, 121
initial state, 227
inner class construct, 120
instance, 81
Integrated Development Environment.

See IDE interaction
on Dynamic View, 26–27
mapping to objects in Sequence diagram, 168–169

interface
Activity diagram, 150
defined, 30–31
finding and validating, 185
modeling tools, 328
notation, component diagram, 257, 326
prototypes, 82–83
publishing pre-conditions, 70–71
querying appointments and contacts, 294

internal events and activities, 210
Internet address

dynamic Web content, 281
HTTP (HyperText Transfer Protocol),

Sequence diagram, 280
inventory control system case study

Activity diagram, 157–164
Class Diagram, 129–137
Collaboration diagram, 193–201
Component diagram, 258–260
Deployment diagram, 266–271
functionality, 42
notation, package, 250–253
pitfalls, avoiding, 43–43
problem statement, 35–36
requirements, identifying, 36–42
Sequence diagram, 179–185
Statechart diagram, 217–224, 237–243
Use Case diagram, building, 61–67
Use Case scenarios, finding, 84–90

“is a” relationship. See generalization
iterative approach, 14–15, 318, 324

�
Jacobson, Ivar, 6, 49, 317
Java

<<extend>> dependency, confusion over, 120
inner class construct, 120
JavaScript versus, 283

Java servlets
Class diagram, 302
JSPs (Java Server Pages), 284
Web development, 281–282

Java Web development, 297–299
JavaBeans, 293, 297
JavaScript

Class diagram, 302
Java versus, 283

Jones, Capers, 82
JSPs (Java Server Pages)

Class diagram, 302
JavaBeans, moving content, 292–293
Model 2 Architecture, 297–298
MVC (Model View Controller) design pattern, 294
template, 283–284

�
kind of. See generalization

Index350

504910-3 Index.F 5/31/02 2:19 PM Page 350

	
languages, programming

dynamic Web pages, 281
modeling tools, 310
UML (Unified Modeling Language)

independence, 317
Web applications, 278

library component, 259
<<library>>, 256
lifeline, object, 323
link

Collaboration diagram notation, 195
defined, 140, 322
requirement, showing, 189
self-reference, 190, 201, 324

link attribute
logging in, 289
logical design, mapping, 260–261, 322–323
lollipop notation, 257, 259–260
look ups

prompting, 182
scenario, 199
using attributes, 111–112, 131

loop
Activity diagram, 160, 161, 323
Use Case scenarios, 90, 184

mapping

interaction to objects in Sequence
diagram, 168–169

logical design, mapping to physical implementation
in Component diagram, 260–261

Sequence and Collaboration diagram elements
to Class diagram, 200–201

software components to architecture in Deployment
diagram, 266

merge of control, 204
merge point, 153, 322
message

Object diagram, modeling, 187, 190
synchronous, 197
time, modeling over, 170, 172

metametamodel, 7
metamodel

described, 6–7, 317
diagrams, 9
organization, 7–8

method, 150
methodology

CRC (Class, Responsibilities, and Collaborators), 18–19
defined, 13

Object-Oriented Analysis and Design Task Force, 317
RUP (Rational Unified Process), 14–16
Shlaer-Mellor Method, 16–17
XP (Extreme Programming), 20–21

Meyer, Bertrand, 70
minus sign (-), 96
model, 7, 246
Model 2 Architecture, 297–299
model element, 249
Model Management package, 8
modeling tools

code generation, 310
customization, 312
data modeling integration, 311–312
described, 307–308, 328
editor, integrated, 310
evaluating, 313–314
evaluation criteria, 308–313
HTML (HyperText Markup Language)

documentation, 309
packages, 249
platform support, 309
printing, 309
repository, 310
round-trip engineering, 311–312
team development, 313
translating through Shlaer-Mellor Method, 16
trial software, back-of-the-book CD-ROM, 331
types and versions of UML (Unified Modeling

Language) supported, 309
version control, 310–311
XMI (XML Metadata Interchange), 312–313

multiplicity
aggregation, assigning, 118, 321
composition, 119
described, 107–108
limiting, 112

MVC (Model View Controller) design pattern
described, 291–292, 327
Friendly Reminder case study, 294–295
Model 2 Architecture, 297–299

�
name

action, 325
associations (Class Diagram), 106–107
attribute, 96
class compartments, modeling, 95, 101, 210, 320
nodes, 327
objects in Collaboration diagram, 190
operation, 98
package namespaces, 246
state, choosing, 240

Index 351

504910-3 Index.F 5/31/02 2:19 PM Page 351

node, 263, 264–265, 268, 326
notation

Activity diagram, 151–155
Collaboration diagram, 189–191
defined, 317
Deployment diagram, 264–266
hiding, 320
Object diagram, 140–142
packages, 247–249
Statechart diagram, 204–206

notation, Component diagram
dependencies, 257–258
interfaces, 257
stereotypes, 256

notation, package
constructing for inventory control system

case study, 250–253
dependency, 247–248
dependency stereotypes, 248
model elements, 249
pattern, 322
stereotypes, 247

notation, Sequence diagram
basic, 169–171
extended, 171–173

number
defaulting to zero, 96–97
events, Collaboration diagram, 324
objects, counting, 108
participating objects (multiplicity) in associations

on Class Diagram, 107–108, 112
sequence, 171, 190

number sign (#), 96

�
object

aggregation and, 117–118, 321
and aggregation relationships, 120–121
assemblies of, 117–121
defined, 28
elements, 119–120
mapping, Sequence diagram, 168–169
notation, 189–191
Object diagram versus, 323
in same class, relations (reflexive association), 111
Sequence diagram versus, 188–189
Statechart diagram, 221–224
viewing, 27, 187, 193–201, 318
Web pages, moving among, 300, 301

object activation, 171
object combinations

aggregation, assigning, 118, 321
composition, 119

described, 107–108
limiting, 112

Object diagram
applying to test case diagrams, 142–146
Collaboration diagram versus, 323
described, 25–26, 95, 139, 318
notations, comparing, 140–142
XML (eXtensible Markup Language) schema, 304

object interactions
communicating with others (send event) on

Statechart diagram, 219–220
connections, 326
Deployment diagram, 263–264
described, 52, 94
Use Case relationships, 56
users, defining, 64–65

object lifeline, 169–170, 171, 173
Object Management Group. See OMG
Object Model

Class diagram, 94–95
described, 93
Object diagram, 95

object termination, 171
Object-Oriented Analysis and Design Task Force, 6, 317
object-oriented information

absence in Web applications, 278
abstraction, 28–29
behavior, 30
encapsulation, 30–33
information, 29

observer design pattern, 134
OMG (Object Management Group), 6, 10, 303, 317
operation

behavior, declared, 322
defined, 94

operation, modeling
Activity diagram, 150
class compartments, 95, 102
elements, 98–99
specification, creating, 99–100

order fulfillment
inventory control system case study, 36
packaging, 252

order of events, Statechart diagram, 220
orders, customer placing

Class Diagram, 129–137
problem statement, 35–36

overdrawn, 203–204

package

described, 7–8, 245–246
inventory control system case study, 250–253

Index352

504910-3 Index.F 5/31/02 2:19 PM Page 352

namespace, 246
notation, 247–249
visibility, 96, 99

parameter, 98
path. See also scenario

incomplete, revealing, 83
merge point, 153

pattern, 133–137, 322
people. See user
performance

customer, triggering events, 208
inventory control system case study

requirements, 39, 41
system requirements, 289

period (.), 108
phases, project lifecycle, 14–15
physical implementation, 260–261
platform support, modeling tools, 309
plus sign (+), 96
post-condition

Activity diagram, 160
Use Case narrative, 72–73, 77–78

pre-condition, 70–71, 75
primitive data type, 95
printing, 309
private, 96, 99
problem domain, 38
problem statement

Class Diagram, 129–130
inventory control system case study, 35–36
Statechart diagram, 206, 221

procedure call, 190, 324
process, 6, 9
processors, identifying. See Deployment diagram
product object, constructing, 221–224
profile, 9, 328
programmers

assumptions, making, 43
cooperation, XP (extreme programming), 19–21
MVC (Model View Controller) method,

advantages, 292
object-oriented methods, teaching, 18–19
portraying code to other, 137
roadmap, creating, 300
Web development, 283–284

“programming by contract”, 70
properties, shared. See superclass
property, 94, 101
protected, 96, 99, 122
prototypes, 82–83
public, 96, 99
purchase order

initial entry, 221–222
tracking, 222–223

purpose
object encapsulation, 32
Sequence diagram, 168

�
qualified associations, 111–112
qualifier, 56, 321
quality-assurance, 82
query, database

code, writing, 281–282, 292
interface, 294
Use Case diagram, 289–290
Web application design, 300–301

�
range, indicating, 108
Rational Software, 305
realization, 257
real-time systems, 16–17
receiving

Deployment diagram, 267
objects, 200
package diagram, 250–251
requirements, analyzing, 36

reflexive association, 111
relational database

accessing, 256, 268–269
integrating, 311–312
Java Web development, 293, 297
object, 310

relationships
aggregation and composition, 120–121
association notation, 56
conditionally delegating to another Use Case

(<<extend>> dependency notation), 57–58
defined, 55–56
delegating to another Use Case (<<include>>

dependency notation), 56–57
generalization, 58
objects in same class (reflexive association), 111
purpose, displaying, 321
stereotype notation, 56
Use Case diagram, 55–58

relationships, software modules
aggregation, 117–121
associations, 105–112
attributes, modeling, 95–98
building, 130–133
compartments, modeling, 100–102
described, 25–26, 93–95, 255–256, 318

Continued

Index 353

504910-3 Index.F 5/31/02 2:19 PM Page 353

relationships, software modules (continued)
elements, 95
generalization, 121–126
for inventory control system case study,

129–137, 258–260
logical design, mapping to physical implementation,

260–261
Model 2 Architecture, 298, 328
notation, 256–258
operation, modeling, 98–100
patterns, 133–137
problem statement, 129–130
round-trip engineering, 311–312
Sequence and Collaboration diagram elements,

mapping, 200–201
views, creating different, 102
Web development, 290–291, 302
XML (eXtensible Markup Language) modeling, 303

reliability, 288
repository, modeling tools, 310
requirements

categories, 318
features, defining (Use Cases), 54–55
inventory control system case study, gathering,

36–39, 40–42
link, showing, 189
misunderstandings, avoiding, 82
preferences, confusing, 43, 318
Web development, gathering, 288–291

resources. See also Class diagram
inventory control system case study

requirements, 41–42
referenced by executable during runtime, 256
Use Case model, 50, 51–52

response
Object diagram, modeling, 187, 190
synchronous, 197
time, modeling over, 170, 172

returns, 223, 242, 323
reverse engineering, 311–312, 328
review process, speeding, 137
role

associations (Class Diagram), 109
behavior, defining, 322
names, when to use, 321
Use Case system, 54

rule. See also aggregation; composition
attributes, 97
constraint, 9, 320
defined, 317
inventory control system case study requirements,

38–39, 41
Rumbaugh, James, 6, 317
RUP (Rational Unified Process), 14–16, 318

�
saving orders, 78
scalability, 289
scenario

defined, 81, 320
execution, CRC, 18–19
Sequence diagram, building, 179–185, 326
XP (extreme programming), 20–21

screen flow, displaying, 73
security

checking, Fill Order case study, 75
requirements, 289

self-assessment test, back-of-the-book CD-ROM, 331
self-reference, 190, 201, 324
send event

defining (Statechart), 219–220
transition events (Statechart), 231

Sequence diagram
appointments, querying, 301
basic notation, defining, 169–171
Collaboration diagram versus, 188–189, 327
described, 27, 325
extended notation, defining, 171–173
HTTP (HyperText Transfer Protocol), 280
interactions, mapping to objects, 168–169
inventory control system case study,

applying, 179–185
Model 2 Architecture, 298
purpose, 168, 324
Statechart, deriving, 237–243

server. See Deployment diagram
shareware programs, 331
shipping

inventory control system case study, 36, 242
pack for event, 223
package diagram, 250, 253

Shlaer-Mellor Method, 16–17, 318
signal, 170
signature, 98, 102, 323
slash (/), 96
software

components, mapping to architecture (Deployment
diagram), 266

design patterns, 133–137
litigation of misunderstood requirements, 82
trial, 331

software modules
for inventory control system case study, 258–260
logical design, mapping to physical implementation,

260–261
Model 2 Architecture, 298, 328
modeling, described, 255–256, 318
notation, 256–258

Index354

504910-3 Index.F 5/31/02 2:19 PM Page 354

source code notation, 256
specialization, 121, 124–126, 321
specification

attribute, 97–98
operation, 99–100

split of control, 232–233
square condition brackets ([]), 171, 184, 322
start point

Activity diagram, 154, 322
Use Case narrative, 71, 75

state
assumptions, 70
defined, 29, 324
at end, 72–73, 77–78
modeling, 16–17
object, describing, 325
pre-conditions, 70–71
specific behavior, modeling, 135–137

Statechart diagram
building, 206–209
deriving from sequence diagrams, 237–243
described, 27, 203–204, 327
entry and exit actions, 217–219
fundamental notation, 204–206
improvements planned, 17
internal events and activities, defining, 210
inventory control system case study, applying,

217–224, 237–243
objects communicating with others (send event),

219–220
order of events, 220
problem statement, 221
product object, constructing, 221–224
superstates and substates, modeling, 231–234
transition events, modeling, 227–231

static content, Web, 278–280
Static view

Class diagram, 93–103
Component diagram, 255–261
Deployment diagram, 263–271
described, 25–26, 318
Object diagram, 139–146

step-by-step description (dialog), 71–72, 76
stereotype

dependency notation, 248, 319
Deployment diagram, 266
described, 8–9, 94, 317
notation, component diagram, 256
package, 326
relationships among Use Cases, 56
timed event, 172

stocking requirement, 36

subclass
defined, 123
protected visibility, 122

substate
concurrency in, 233–234
defined, 232, 325
split of control, 232–233

subsystem, package, 246, 326
Sun Microsystems, 297
superclass, 122
superstate

concurrency, 233–234
defined, 231

supplements, back-of-the-book CD-ROM, 330
synchronous event, 190, 197, 323, 324
system

behavior, describing, 24–25, 149–155
Class diagram, 93–103
Component diagram, 255–261
Deployment diagram, 263–271
described, 25–26, 318
icon, Use Case diagram, 53
Object diagram, 139–146
requirements for back-of-the-book CD-ROM, 329
trading information (users), 53–54, 320
Use Case diagram, 52, 53

System Architect (Popkin Software), 331

�
<<table>>, 256
tagged value, 9
target system, 62
team development

design patterns, 137
modeling tools, 313, 328
XP (extreme programming), 20–21

template
HTML (HyperText Markup Language), 283
JSPs (Java Server Pages), 283–284

termination
Activity diagram, 160
Sequence diagram, 171–172
Use Case narrative, 72, 77, 320

testing
Class diagrams, 142–146
software, 82
transition events for change, 229–230

thermostat example
concurrency, 233–234
split of control, 232–233
substates, 232

Index 355

504910-3 Index.F 5/31/02 2:19 PM Page 355

tilde (~), 96
time event, 172, 229, 325
timeline

appointments, querying, 301
basic notation, defining, 169–171
Collaboration diagram versus, 188–189, 327
described, 27, 325
extended notation, defining, 171–173
HTTP (HyperText Transfer Protocol), 280
interactions, mapping to objects, 168–169
inventory control system case study,

applying, 179–185
Model 2 Architecture, 298
purpose, 168, 324
Statechart, deriving, 237–243

timeouts, 77, 172, 191
transition

call event, 228–229
conditional (guard condition), 230
entry and exit actions, defining, 217–219, 325
events, 206–207
illustrated, 227–228
notation, Activity diagram, 151–152, 324
send event, 231
testing for change (change event), 229–230
time events, 229
triggering (guard condition), 231

triggering, 231, 325
troubleshooting, back-of-the-book CD-ROM, 331–332
types, UML (Unified Modeling Language)-supported

modeling tools, 309

�
UML Revision Task Force (RTF), 9
UML (Unified Modeling Language)

defined, 5–6, 317
extension mechanisms, 8–9
refinement and expansion, continuing, 10

UML (Unified Modeling Language) 1.4
documentation, 330

UML (Unified Modeling Language) modeling tools
code generation, 310
customization, 312
data modeling integration, 311–312
described, 307–308, 328
editor, integrated, 310
evaluating, 308–314
HTML (HyperText Markup Language)

documentation, 309
packages, 249

platform support, 309
printing, 309
repository, 310
round-trip engineering, 311–312
team development, 313
translating through Shlaer-Mellor Method, 16
trial software, back-of-the-book CD-ROM, 331
types and versions of UML (Unified Modeling

Language) supported, 309
version control, 310–311
XMI (XML Metadata Interchange), 312–313

URL (Uniform Resource Locator)
dynamic Web content, 281
HTTP (HyperText Transfer Protocol), Sequence

diagram, 280
Use Case diagram

described, 24–25
elements, 52–53, 319–320
inventory control system case study, 61–67
people, systems, or devices trading information,

53–54, 319
relationships, 55–58
rules, capturing, 39
system, 53
Web development, 289–290

Use Case narrative
assumptions, 70, 75
elements, listed, 69–70
inventory control system case study, writing, 74–78
pre-conditions, 70–71, 75
start point (initiation), 71, 75
states at end (post-conditions), 72–73, 77–78
step-by-step description (dialog), 71–72, 76
termination, 72, 77

Use Case scenarios
applying, 90–91
describing, 81–82
Fill Order, 180
finding, 83–90
importance, 82–83, 323

Use Cases
conditionally delegating to another (<<extend>>

dependency notation), 57–58, 66–67
defined, 54–55, 64–65, 318
delegating to another (<<include>> dependency

notation), 56–57, 66
described, 49
generalization, evaluating, 67
identifying, 63–64
modeling, Activity diagram, 149–150
purpose, 50–51

Index356

504910-3 Index.F 5/31/02 2:19 PM Page 356

resources, 50, 51–52
Use Case diagram, 52–58

user
associations, defining, 64–65
conversation with Use Case (dialog), 71–72
evaluating, 65–66
features, associating (relationships), 55–58
generalization, evaluating, 67
identifying, 62–63
inventory control system case study

requirements, 40–41
Use Case diagram, 53–54

user expectations, defining
described, 24–25
elements, 52–53, 319–320
inventory control system case study, 61–67
people, systems, or devices trading information,

53–54, 319
relationships, 55–58
required features, defining (Use Cases), 54–55
rules, capturing, 39
system, 53
Use Case model, 52–58
Web development, 289–290

user expectations, describing
assumptions, 70, 75
elements, listed, 69–70
inventory control system case study, writing, 74–78
pre-conditions, 70–71, 75
start point (initiation), 71, 75
states at end (post-conditions), 72–73, 77–78
step-by-step description (dialog), 71–72, 76
termination, 72, 77

user interface, 259–260
user objects, 7

�
value, default, 96–97
Varveris, Lou, 331
verifiable output, 14
verification, Shlaer-Mellor Method, 16, 318
version

control in modeling tools, 310–311
UML (Unified Modeling Language)-supported

modeling tools, 309
view

benefits of using, 27–28
Class diagram, creating different, 102
defined, 23–24
Dynamic View, 26–27

Functional View, 24–25
Static View, 25–26

visibility
attribute, modeling, 96–97
operation, 99
protected, 122

Visual Basic
client, Deployment diagram, 300
data, transferring via XML (eXtensible Markup

Language), 303
HTTP (HyperText Transfer Protocol),

communicating, 299
Visual Basic for Applications (VBA), 312
visual description of process. See Activity diagram

�
WAE (Web Application Extension), 305
WAP protocol, 294–295
weather Web site, 281
Web application

Activity diagram, displaying, 327
appointments and contacts, uploading, 299–300
implementation Class diagram, 302–305
Model 2 Architecture, 297–299
querying appointments and contacts, 300–301
UML (Unified Modeling Language) extension, 305

Web development
basic architecture and static content, 278–280
Class diagram representing business problem

(analysis phase), 290–291
design phase, 291–295
dynamic content, 280–284
Friendly Reminder case study, 287–288, 294–295
Java servlets, 281–282
JSPs (JavaServer Pages), 283–284, 292–293
MVC (Model View Controller) design pattern,

291–292, 294–295
requirements, gatering, 288–291
template pages, 283
Use Case diagram, 289–290
value of UML (Unified Modeling Language), 277–278

Web page
component notation, 256
moving among, 300, 301

Web sites, addresses listed
methodologies, 21
modeling tools, 16, 313
UML Revision Task Force (RTF), 9
WAE (Web Application Extension), 305

Windows, using back-of-the-book CD-ROM, 329–330

Index 357

504910-3 Index.F 5/31/02 2:19 PM Page 357

wireless devices, 289, 294–295
WML (Wireless Markup Language), 294, 295
workflow

activities notation, 151
Activity diagram, benefits of using, 83, 318, 327
concurrency, 154–155
decisions, 152–153
end point, 154
Fill Order case study, 85
guard condition, 151–152
inventory control system case study, 157–164
merge point, 153
methods, defining, 150
requirements, 73
RUP (Rational Unified Process), 14–15
sample, 328
start point, 154
transitions notation, 151–152
Use Cases, modeling, 149–150

�
XML (eXtensible Markup Language)

described, 278
Friendly Reminder case study, 303–305
modeling tool, XMI (XML Metadata

Interchange), 312–313
Visual Basic, communicating, 299

XP (Extreme Programming), 20–21

�
zero, 108

Index358

504910-3 Index.F 5/31/02 2:19 PM Page 358

Wiley Publishing, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the software
packet(s) included with this book (“Book”). This is a license agreement (“Agreement”) between you
and Wiley Publishing, Inc. (“Wiley”). By opening the accompanying software packet(s), you acknowl-
edge that you have read and accept the following terms and conditions. If you do not agree and do
not want to be bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. Wiley grants to you (either an individual or entity) a nonexclusive license to
use one copy of the enclosed software program(s) (collectively, the “Software”) solely for your
own personal or business purposes on a single computer (whether a standard computer or a
workstation component of a multi-user network). The Software is in use on a computer when it
is loaded into temporary memory (RAM) or installed into permanent memory (hard disk, CD-
ROM, or other storage device). Wiley reserves all rights not expressly granted herein.

2. Ownership. Wiley is the owner of all right, title, and interest, including copyright, in and to the
compilation of the Software recorded on the disk(s) or CD-ROM (“Software Media”). Copyright to
the individual programs recorded on the Software Media is owned by the author or other autho-
rized copyright owner of each program. Ownership of the Software and all proprietary rights
relating thereto remain with Wiley and its licensers.

3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for backup or archival purposes, or (ii)

transfer the Software to a single hard disk, provided that you keep the original for backup
or archival purposes. You may not (i) rent or lease the Software, (ii) copy or reproduce the
Software through a LAN or other network system or through any computer subscriber sys-
tem or bulletin-board system, or (iii) modify, adapt, or create derivative works based on
the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may transfer
the Software and user documentation on a permanent basis, provided that the transferee
agrees to accept the terms and conditions of this Agreement and you retain no copies. If
the Software is an update or has been updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual requirements and
restrictions detailed for each individual program in Appendix B of this Book. These limitations
are also contained in the individual license agreements recorded on the Software Media. These
limitations may include a requirement that after using the program for a specified period of time,
the user must pay a registration fee or discontinue use. By opening the Software packet(s), you
will be agreeing to abide by the licenses and restrictions for these individual programs that are
detailed in Appendix B and on the Software Media. None of the material on this Software Media
or listed in this Book may ever be redistributed, in original or modified form, for commercial
purposes.

5. Limited Warranty.
(a) Wiley warrants that the Software and Software Media are free from defects in materials

and workmanship under normal use for a period of sixty (60) days from the date of pur-
chase of this Book. If Wiley receives notification within the warranty period of defects in
materials or workmanship, Wiley will replace the defective Software Media.

514910-3 EULA.F 5/31/02 2:20 PM Page 359

(b) WILEY AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES, EXPRESS
OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, WITH RESPECT TO THE
SOFTWARE, THE PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. WILEY DOES NOT WARRANT THAT THE FUNC-
TIONS CONTAINED IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other rights that
vary from jurisdiction to jurisdiction.

6. Remedies.
(a) Wiley’s entire liability and your exclusive remedy for defects in materials and workmanship

shall be limited to replacement of the Software Media, which may be returned to Wiley
with a copy of your receipt at the following address: Software Media Fulfillment
Department, Attn.: UML Weekend Crash Course, Wiley Publishing, Inc., 10475 Crosspoint
Blvd., Indianapolis, IN 46256, or call 1-800-762-2974. Please allow four to six weeks for
delivery. This Limited Warranty is void if failure of the Software Media has resulted from
accident, abuse, or misapplication. Any replacement Software Media will be warranted for
the remainder of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall WILEY or the author be liable for any damages whatsoever (including with-
out limitation damages for loss of business profits, business interruption, loss of business
information, or any other pecuniary loss) arising from the use of or inability to use the Book
or the Software, even if WILEY has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability for conse-
quential or incidental damages, the above limitation or exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the Software for or on
behalf of the United States of America, its agencies and/or instrumentalities (the “U.S.
Government”) is subject to restrictions as stated in paragraph (c)(1)(ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, or subparagraphs (c) (1)
and (2) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19, and
in similar clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and revokes and
supersedes all prior agreements, oral or written, between them and may not be modified or
amended except in a writing signed by both parties hereto that specifically refers to this
Agreement. This Agreement shall take precedence over any other documents that may be in
conflict herewith. If any one or more provisions contained in this Agreement are held by any
court or tribunal to be invalid, illegal, or otherwise unenforceable, each and every other
provision shall remain in full force and effect.

514910-3 EULA.F 5/31/02 2:20 PM Page 360

524910-3 BOB.F 5/31/02 2:20 PM Page 361

524910-3 BOB.F 5/31/02 2:20 PM Page 362

	UML Weekend Crash Course™
	Front Matter
	About the Author
	Preface
	Who Should Read This Book
	What You Need To Have
	What Results Can You Expect?
	Weekend Crash Course Layout and Features
	Part I: Friday Evening
	Part II: Saturday Morning
	Part III: Saturday Afternoon
	Part IV: Saturday Evening
	Part V: Sunday Morning
	Part VI: Sunday Afternoon
	Features

	Accompanying CD-ROM
	Reach Out

	Contents at a Glance
	Contents

	FRIDAY
	PART I: Friday Evening
	Session 1: What Is the UML?
	Establishing Standards
	Some History behind the UML
	What is and is not included in the UML Specification
	The UML metamodel
	The organization of the metamodel

	UML Extension Mechanisms
	Ten Diagrams
	The Continuing Refinement and Expansion of the UML
	REVIEW
	QUIZ YOURSELF

	Session 2: UML and Development Methodologies
	Some Current Methodologies
	The Rational Unified Process
	Strengths of the RUP
	Weaknesses of the RUP

	Shlaer-Mellor Method
	Strengths of Shlaer-Mellor
	Weaknesses of Shlaer-Mellor

	CRC
	Strengths of CRC
	Weaknesses of CRC

	Extreme Programming
	Strengths of XP
	Weaknesses of XP

	Resources
	REVIEW
	QUIZ YOURSELF

	Session 3: How to Approach the UML
	Views
	Functional View
	Static View
	Dynamic View
	Three views

	Object-Oriented Principles
	Abstraction
	What an object knows
	Information
	Behavior

	Encapsulation
	To use the object
	To make the object work properly
	Giving an object purpose
	Encapsulation summary

	REVIEW
	QUIZ YOURSELF

	Session 4: Defining Requirements for the Case Study
	The Case Study Problem Statement
	Receiving
	Stocking
	Order fulfillment
	Shipping

	Types of Requirements
	Business process
	Constraints
	Rules
	Performance

	An Inventory Control System
	Identifying requirements
	Users
	Resources
	Functionality
	Avoiding early pitfalls
	Pitfall #1: Making assumptions
	Pitfall #2: Replicating existing implementations
	Pitfall #3: Mistaking preferences for requirements

	REVIEW
	QUIZ YOURSELF

	Friday Evening Part Review

	SATURDAY
	PART II: Saturday Morning
	Session 5: Understanding the Use Case Model
	The Purpose of the Use Case Model
	The Resources of the Use Case Model
	Use Case diagram
	Use Case narrative
	Use Case scenarios

	Defining the Elements of the Use Case Diagram
	Use Case system
	Use Case actors
	Use Cases
	Use Case relationships
	Association notation
	Stereotype notation
	<<include>> dependency notation
	<<extend>> dependency notation
	Generalization

	REVIEW
	QUIZ YOURSELF

	Session 6: Building the Use Case Diagram
	Building the Use Case Diagram for the Case Study
	Step 1: Set the context of the target system
	Step 2: Identify the actors
	Step 3: Identify the Use Cases
	Step 4: Define the associations between actors and Use Cases
	Step 5: Evaluate the actors and Use Cases to find opportunities for refinement
	Step 6: Evaluate the Use Cases for <<include>> dependencies
	Step 7: Evaluate the Use Cases for <<extend>> dependencies
	Step 8: Evaluate the actors and Use Cases for generalization

	REVIEW
	QUIZ YOURSELF

	Session 7: Building the Use Case Narrative
	Elements of a Use Case Narrative
	Assumptions
	Pre-conditions
	Use Case initiation
	Dialog
	Use Case termination
	Post-conditions
	Additional narrative elements

	Workflow Requirements
	Writing a Use Case Narrative for the Case Study
	Assumptions in the case study narrative
	Pre-conditions in the case study narrative
	Use Case initiation in the case study narrative
	Use Case dialog in the case study narrative
	Use Case termination in the case study narrative
	Post-conditions in the case study narrative

	REVIEW
	QUIZ YOURSELF

	Session 8: Identifying the Use Case Scenarios
	Describing Use Case Scenarios
	Why you should care about Use Case scenarios
	How to find Use Case scenarios
	Finding Use Case scenarios for the case study
	Applying Use Case scenarios

	REVIEW
	QUIZ YOURSELF

	Session 9: Modeling the Static View: The Class Diagram
	The Object Model
	The Class diagram
	The Object diagram

	Elements of the Class Definition
	Modeling an Attribute
	Attribute visibility
	Creating an attribute specification

	Modeling an Operation
	Elements of an operation specification
	Creating an operation specification

	Modeling the Class Compartments
	Name compartment
	Attribute compartment
	Operation compartment

	Creating Different Views of a Class
	REVIEW
	QUIZ YOURSELF

	Session 10: The Class Diagram: Associations
	Modeling Basic Association Notations
	Association name
	Association multiplicity
	Association roles
	Association constraints

	Modeling Extended Association Notations
	Association class
	Reflexive association
	Qualified association

	REVIEW
	QUIZ YOURSELF

	Saturday Morning Part Review

	PART III: Saturday Afternoon
	Session 11: The Class Diagram: Aggregation and Generalization
	Modeling Aggregation and Composition
	Elements of aggregation
	Elements of composition
	Creating aggregation and composition relationships

	Modeling Generalization
	Elements of generalization
	An illustration: How to model generalization

	REVIEW
	QUIZ YOURSELF

	Session 12: Applying the Class Diagram to the Case Study
	Modeling the Inventory Control System for the Case Study
	Problem statement: for the inventory control system
	Building the Class diagram

	Understanding UML Notation for Design Patterns
	Using Design Patterns in the Class Diagram
	REVIEW
	QUIZ YOURSELF

	Session 13: Modeling the Static View: The Object Diagram
	Understanding the Object Diagram
	Introducing Elements of the Object Diagram Notation
	Comparing the Object Diagram and the Class Diagram Notations
	Applying Object Diagrams to Test Class Diagrams
	Test case 1
	Test case 2
	Test case 3
	Test case 4

	REVIEW
	QUIZ YOURSELF

	Session 14: Modeling the Functional View: The Activity Diagram
	Introducing the Activity Diagram
	Modeling workflow and Use Cases
	Defining methods

	Taking a Look at Activity Diagram Notation
	Activities and transitions
	Guard condition
	Decisions
	Merge point
	Start and end
	Concurrency

	REVIEW
	QUIZ YOURSELF

	Session 15: Applying the Activity Diagram to the Case Study
	Building an Activity Diagram for the Case Study
	REVIEW
	QUIZ YOURSELF

	Session 16: Modeling the Dynamic View: The Sequence Diagram
	Understanding the Dynamic View
	Knowing the purpose of Sequence and Collaboration diagrams
	Mapping interactions to objects
	Defining the basic notation of the Sequence diagram
	Defining the extended notation for the Sequence diagram

	REVIEW
	QUIZ YOURSELF

	Saturday Afternoon Part Review

	PART IV: Saturday Evening
	Session 17: Applying the Sequence Diagram to the Case Study
	Building a Sequence Diagram from a Scenario
	REVIEW
	QUIZ YOURSELF

	Session 18: Modeling the Dynamic View: The Collaboration Diagram
	The Collaboration Diagram
	Diagram similarities
	Diagram differences

	Collaboration Diagram Notation
	REVIEW
	QUIZ YOURSELF

	Session 19: Applying the Collaboration Diagram to the Case Study
	Building a Collaboration Diagram from a Scenario
	Mapping the Sequence and Collaboration Diagram Elements to the Class Diagram
	REVIEW
	QUIZ YOURSELF

	Session 20: Modeling the Dynamic View: The Statechart Diagram
	Describing the Purpose and Function of the Statechart Diagram
	Defining the Fundamental Notation for a Statechart Diagram
	Building a Statechart Diagram
	Defining Internal Events and Activities
	REVIEW
	QUIZ YOURSELF

	Saturday Evening Part Review

	SUNDAY
	PART V: Sunday Morning
	Session 21: Applying the Basic Statechart to the Case Study
	Defining Entry and Exit Actions
	Defining Send Events
	Order of Events
	Applying the Basic Statechart Diagram Notation to the Case Study
	Inventory control: Problem statement
	Constructing the Statechart diagram for the product object

	REVIEW
	QUIZ YOURSELF

	Session 22: Modeling the Extended Features of the Statechart
	Modeling Transition Events
	Call event
	Time event
	Change event
	Making events conditional
	Send event
	Guard conditions as events

	Modeling Superstates and Substates
	Split of control
	Concurrency

	REVIEW
	QUIZ YOURSELF

	Session 23: Applying the Extended Statechart Features to the Case Study
	Deriving a Statechart from Sequence Diagrams
	REVIEW
	QUIZ YOURSELF

	Session 24: Modeling the Development Environment
	Describing the Purpose and Function of Packages
	Packages Provide a Namespace
	Defining the Notation for Packages and Package Diagrams
	Package stereotypes
	Package dependency
	Dependency stereotypes
	Model elements in a package

	Constructing a Package Diagram for the Case Study
	REVIEW
	QUIZ YOURSELF

	Session 25: Modeling the Static View: The Component Diagram
	Explaining the Component Diagram
	Defining the Notation for Components and Component Dependencies
	Component stereotypes
	Component interfaces
	Component dependencies

	Building a Component Diagram for the Case Study
	Mapping the Logical Design to the Physical Implementation
	REVIEW
	QUIZ YOURSELF

	Session 26: Modeling the Static View: The Deployment Diagram
	Describing the Purpose and Function of the Deployment Diagram
	Defining the Notation for the Deployment Diagram
	Mapping Software Components to an Architecture
	Applying the Combined Diagrams to the Case Study
	REVIEW
	QUIZ YOURSELF

	Sunday Morning Part Review

	PART VI: Sunday Afternoon
	Session 27: Introduction to Web Development with Java
	The Value of UML in Web Development
	Issues in Using the UML in Web Development
	Basic Web Architecture and Static Web Content
	Dynamic Web Content
	Java servlets
	Template pages
	JavaServer Pages

	REVIEW
	QUIZ YOURSELF

	Session 28: Analysis and Architectural Design of a Web Application
	The Friendly Reminder Case Study
	Requirements Gathering
	Creating the Use Case diagram
	Analysis

	Architectural Design
	Model View Controller
	JavaBeans
	MVC pattern in the case study

	REVIEW
	QUIZ YOURSELF

	Session 29: Design of a Web Application
	Model 2 Architecture
	Uploading Appointments and Contacts
	Detailed Design
	Querying appointments and contacts
	Web technologies on an implementation Class diagram
	XML
	UML modeling of XML
	Appointment XML in the case study

	Web Application Extension
	REVIEW
	QUIZ YOURSELF

	Session 30: UML Modeling Tools
	Explaining the Purpose and Function of Modeling Tools
	Explaining Evaluation Criteria for Modeling Tools
	The basics
	Type and version of the UML supported
	Platform support
	Printing
	HTML documentation
	Repository
	Code generation
	Integrated editor
	Version control

	Extended features
	Round-trip engineering
	Data modeling integration
	Customization
	XML Metadata Interchange
	Team development

	Evaluating UML Modeling Tools
	REVIEW
	QUIZ YOURSELF

	Sunday Afternoon Part Review

	Appendix A: Answers to Part Reviews
	Friday Evening Review Answers
	Saturday Morning Review Answers
	Saturday Afternoon Review Answers
	Saturday Evening Review Answers
	Sunday Morning Review Answers
	Sunday Afternoon Review Answers

	Appendix B: What’s on the CD-ROM?
	System Requirements
	Using the CD with Windows
	What’s on the CD
	Supplements
	UML 1.4 Documentation
	Trial Software
	eBook version of
	Self-Assessment Test

	Troubleshooting

	Glossary
	Index
	Wiley Publishing, Inc. End-User License Agreement

