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Class Diagram: semantics (1) 

• A class icon must have a class name. Optionally, it can have 

attributes and/or methods. 

• Attributes and methods are strings and will not be validated by 

the modeling tools. 

• Attributes can be specified by their names or by <name : type> 

pairs. 

• Methods can be specified by their names or with partial 

signatures or with complete signatures. 
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Class Diagram: semantics (2) 

• Comments can be included in any diagram with a rectangle folded at 

right top corner 

 The dotted line from the comment is important to indicate which 

portion of the diagram is explained by the comment  

• Suggestion  

 For validation purposes, when showing aggregation relationship, 

the aggregate (the one near the diamond edge) must include an 

attribute whose type is the component class 
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Class 
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Details of a class icon 

Account 

- Account number : Integer  

- Balance : Real 

- Overdraft : Boolean = true 

+ GetAccountNumber () : Integer 

# UpdateBalance (sign :Sign, amt : Integer) 

~ ReturnBalance () : Real 

- ChangeOverdraft () 

+ public 

- private 

# protected  

~ visible within       

the package 

Initial value 
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An abstract class 

Polygon 

{abstract, author = Kasi, last 

modified = Oct 2002} 

<<constructor>> 

+ Polygon(List of Vertex  vertices) 

<<query>> 

#area () : Real 
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Multiplicity 

Multiplicity Explanation 

0..1 0 or 1 

1 Mandatory 1 

0..* 0 or Many 

1..* 1 or Many 

* Many 
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Object Diagram 

act : Account 

Account # = 1256 

UserID = 120 

Balance = 0 

act : Account 

Various representations of an account object 

: Account 
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Association –syntax 

User 
Account 

-Account number 

-Balance 

-Overdraft  

+Get accountID () 

+Update balance() 

+Return balance() 

uses 

1 
n 

Association label 
Direction of association 

cardinality 

Manager  

customer 

Unary association 

Role names 

Corporate Account 

1 

n 

{xor} 
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Association – Semantics (1) 

• Every association is expected to be labeled 

 UML does not require a name for an association 

• Direction of an association, cardinality, role name are all 

optional 

 For unary associations, it is better to include role names 

• Representations of cardinality 

 0, 1, * (zero or more), n..m (values in the range between n 

and m both inclusive) 
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Association – Semantics (2) 

• A constraint may be [optionally] placed between two associations 

 See the example in the previous slide that asserts an 

Exclusive OR relationship between the associations 

• When a subclass specializes a superclass, it also inherits all 

associations between the superclass and other classes 

• In the previous example, the association “uses” between “User” 

and “Account” is also inherited by the pair “User” and “Corporate 

Account” 
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Association with qualifiers 

User 
Account 

-Account number 

-Balance 

-Overdraft  

+Get accountID () 

+Update balance() 

+Return balance() 

uses 

1 n 

Corporate Account 

A
cco

u
n
t n

u
m

b
er 

Qualifier  

Qualifier attribute 
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Association - Qualifiers 

• Qualifiers can be attached to a “one-to-many” association 

 It is rectangle attached to the “many” end of the 

association 

• A qualifier is a collection of variables whose values 

uniquely identify an instance at the “many” end of the 

association 

 In the example, an account number uniquely identifies 

an account in a collection of accounts 

• Qualifier is part of the association 
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Association Class 

User Account 

Transaction 

Employee Job 

Salary 
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Association Class - semantics 

• A piece of information that belongs to both classes in an association 

is put into a separate class called “association class” 

– Association class is a dependent class that depends on the other 

two classes in the association 

– An association class cannot exist independently 

– An object of an association class must refer to objects of the 

other two classes in the association 

• Example: A “Transaction” object depends on a “User” object 

and on an “Account” object.  
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Shared Aggregation 

An aggregation relationship in which the component can be 

shared by classes/objects outside the aggregation 

Team Person Family 

Person object is shared by both Team and Family objects 

Shared aggregation is indicated by a hallow diamond 

Caution: Changes made to a component object will 

affect all the aggregates that include the component. 
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Composite Aggregation 

An aggregation relationship in which the component is an 

exclusive part of the aggregate; hence, not shared. 

Air Plane 

Wing 

Engine 

1 
2 

1 2 

Composite aggregation is indicated by a filled diamond 
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Composition VS Aggregation 

Bila Universitas ditutup maka Fakultas dan Jurusan akan hilang akan tetapi Dosen 

tetap akan ada. Begitupun relasi antar Fakultas dengan Jurusan 

Jurusan Dosen

1                                             1..*

Fakultas Universitas

1

1..*

1..* 1
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Association VS Composition VS Aggregation 
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Advanced Specialization 

Person 

Boy Girl Swimmer Runner 

Gender 

{complete, disjoint} 

Sports activity 

{incomplete, overlapping} 

These optional domain words make the relationships easier to understand. 
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How to find classes? (1) 

• Nouns in requirements document or use case descriptions 

may provide a good starting point, but often are 

inadequate 

• Each class should contain a distinct set of operations 

relevant to the system under consideration 

 Think of a class as an ADT 

• Remove vague classes 

 Classes that do not adequately describe themselves 

• A class that represents the internet 
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How to find classes? (2) 

• Try not to include implementation-oriented classes in the 

analysis model 

 May be introduced later during design and/or 

implementation  

 Examples: array, tree, list 

 These classes will not only occupy so much space in 

the diagram but also tend to divert the focus of 

analysis 
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How to identify associations? (1) 

• An association corresponds to a semantic 

dependency between classes 

 Class A uses a service from class B (client-server) 

 Class A has a structural component whose type is 

class B (aggregation) 

 Class A sends data to or receives data from class 

B (communication) 
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How to identify associations? (2) 

• Include only those associations that are relevant to the current model 

 Constrained by assumptions, simplifications, system boundary (what 

is expected to be provided by the system) 

 Three different associations between “Faculty member” and “Course” 

• “Faculty member” teaches “Course” in a course registration 

system 

• “Faculty member” creates “Course” in a curriculum development 

system 

• “Faculty member” evaluates “Course” in a course 

evaluation/inspection system 
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How to identify associations? (3) 

• Eliminate redundant associations 

 “Faculty member” teaches “Course” 

 “Course” is taught between “Time” to “Time” 

 Therefore, “Faculty member” teaches between “Time” to 

“Time” 

• use transitivity between associations 

• Remember that subclasses inherit the associations of a 

superclass 
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How to identify aggregations? 

• Aggregations are also associations 

• Identify as Association if it is not clear whether it is Association or 

Aggregation 

 “Mail” has “Address” (aggregation) 

 “Mail” uses “Address” for delivery (association) 

 “Customer” has “Address” (aggregation) 

 “Customer” resides at “Address” (association) 

 “TV” includes “Screen” (aggregation) 

 “TV” sends information to “Screen” (association) 



UML Diagramming and 

Notation 
29 

How to identify specialization? 

• Generally, specialization relationships are noticeable in 

the application domain 

• Top-down approach 

 “Student”, “Full-time Student”, “Part-time Student” 

 “TV”, “Plasma TV”, “Flat Panel TV” 

 “Customer”, “Bank manager”, “Teller” 
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How to identify specialization (2) 

• Some of them are discovered during analysis 

• Bottom-up approach 

 “Part-time Instructor” derived from “Instructor” and “Student” 

while modeling a department 

 “User” derived from “Customer”, “Bank Manager” and “Teller” 

while modeling an ATM system 

 “Material” derived from “Book”, “Journal” and “Magazine” while 

modeling a library catalog system 
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