
Alif Finandhita

Teknik Informatika – Universitas Komputer Indonesia

Class Diagram

UML Diagramming and

Notation
2

Class and Object Diagram

Modelling

UML Diagramming and

Notation
3

Class name

Methods

Class name

Attributes

Methods

Class name

Class name

Attributes

Association

name

aggregation

specialization

This is a

subclass

comments

Aggregate

Component This is a

superclass

Class diagram – basic syntax

UML Diagramming and

Notation
4

Class Diagram: semantics (1)

• A class icon must have a class name. Optionally, it can have

attributes and/or methods.

• Attributes and methods are strings and will not be validated by

the modeling tools.

• Attributes can be specified by their names or by <name : type>

pairs.

• Methods can be specified by their names or with partial

signatures or with complete signatures.

UML Diagramming and

Notation
5

Class Diagram: semantics (2)

• Comments can be included in any diagram with a rectangle folded at

right top corner

 The dotted line from the comment is important to indicate which

portion of the diagram is explained by the comment

• Suggestion

 For validation purposes, when showing aggregation relationship,

the aggregate (the one near the diamond edge) must include an

attribute whose type is the component class

UML Diagramming and

Notation
6

Class

UML Diagramming and

Notation
7

Details of a class icon

Account

- Account number : Integer

- Balance : Real

- Overdraft : Boolean = true

+ GetAccountNumber () : Integer

UpdateBalance (sign :Sign, amt : Integer)

~ ReturnBalance () : Real

- ChangeOverdraft ()

+ public

- private

protected

~ visible within

the package

Initial value

UML Diagramming and

Notation
8

An abstract class

Polygon

{abstract, author = Kasi, last

modified = Oct 2002}

<<constructor>>

+ Polygon(List of Vertex vertices)

<<query>>

#area () : Real

UML Diagramming and

Notation
9

Multiplicity

Multiplicity Explanation

0..1 0 or 1

1 Mandatory 1

0..* 0 or Many

1..* 1 or Many

* Many

UML Diagramming and

Notation
10

Object Diagram

act : Account

Account # = 1256

UserID = 120

Balance = 0

act : Account

Various representations of an account object

: Account

UML Diagramming and

Notation
11

Association –syntax

User
Account

-Account number

-Balance

-Overdraft

+Get accountID ()

+Update balance()

+Return balance()

uses

1
n

Association label
Direction of association

cardinality

Manager

customer

Unary association

Role names

Corporate Account

1

n

{xor}

UML Diagramming and

Notation
12

Association – Semantics (1)

• Every association is expected to be labeled

 UML does not require a name for an association

• Direction of an association, cardinality, role name are all

optional

 For unary associations, it is better to include role names

• Representations of cardinality

 0, 1, * (zero or more), n..m (values in the range between n

and m both inclusive)

UML Diagramming and

Notation
13

Association – Semantics (2)

• A constraint may be [optionally] placed between two associations

 See the example in the previous slide that asserts an

Exclusive OR relationship between the associations

• When a subclass specializes a superclass, it also inherits all

associations between the superclass and other classes

• In the previous example, the association “uses” between “User”

and “Account” is also inherited by the pair “User” and “Corporate

Account”

UML Diagramming and

Notation
14

Association with qualifiers

User
Account

-Account number

-Balance

-Overdraft

+Get accountID ()

+Update balance()

+Return balance()

uses

1 n

Corporate Account

A
cco

u
n
t n

u
m

b
er

Qualifier

Qualifier attribute

UML Diagramming and

Notation
15

Association - Qualifiers

• Qualifiers can be attached to a “one-to-many” association

 It is rectangle attached to the “many” end of the

association

• A qualifier is a collection of variables whose values

uniquely identify an instance at the “many” end of the

association

 In the example, an account number uniquely identifies

an account in a collection of accounts

• Qualifier is part of the association

UML Diagramming and

Notation
16

Association Class

User Account

Transaction

Employee Job

Salary

UML Diagramming and

Notation
17

Association Class - semantics

• A piece of information that belongs to both classes in an association

is put into a separate class called “association class”

– Association class is a dependent class that depends on the other

two classes in the association

– An association class cannot exist independently

– An object of an association class must refer to objects of the

other two classes in the association

• Example: A “Transaction” object depends on a “User” object

and on an “Account” object.

UML Diagramming and

Notation
18

Shared Aggregation

An aggregation relationship in which the component can be

shared by classes/objects outside the aggregation

Team Person Family

Person object is shared by both Team and Family objects

Shared aggregation is indicated by a hallow diamond

Caution: Changes made to a component object will

affect all the aggregates that include the component.

UML Diagramming and

Notation
19

Composite Aggregation

An aggregation relationship in which the component is an

exclusive part of the aggregate; hence, not shared.

Air Plane

Wing

Engine

1
2

1 2

Composite aggregation is indicated by a filled diamond

UML Diagramming and

Notation
20

Composition VS Aggregation

Bila Universitas ditutup maka Fakultas dan Jurusan akan hilang akan tetapi Dosen

tetap akan ada. Begitupun relasi antar Fakultas dengan Jurusan

Jurusan Dosen

1 1..*

Fakultas Universitas

1

1..*

1..* 1

UML Diagramming and

Notation
21

Association VS Composition VS Aggregation

UML Diagramming and

Notation
22

Advanced Specialization

Person

Boy Girl Swimmer Runner

Gender

{complete, disjoint}

Sports activity

{incomplete, overlapping}

These optional domain words make the relationships easier to understand.

UML Diagramming and

Notation
23

How to find classes? (1)

• Nouns in requirements document or use case descriptions

may provide a good starting point, but often are

inadequate

• Each class should contain a distinct set of operations

relevant to the system under consideration

 Think of a class as an ADT

• Remove vague classes

 Classes that do not adequately describe themselves

• A class that represents the internet

UML Diagramming and

Notation
24

How to find classes? (2)

• Try not to include implementation-oriented classes in the

analysis model

 May be introduced later during design and/or

implementation

 Examples: array, tree, list

 These classes will not only occupy so much space in

the diagram but also tend to divert the focus of

analysis

UML Diagramming and

Notation
25

How to identify associations? (1)

• An association corresponds to a semantic

dependency between classes

 Class A uses a service from class B (client-server)

 Class A has a structural component whose type is

class B (aggregation)

 Class A sends data to or receives data from class

B (communication)

UML Diagramming and

Notation
26

How to identify associations? (2)

• Include only those associations that are relevant to the current model

 Constrained by assumptions, simplifications, system boundary (what

is expected to be provided by the system)

 Three different associations between “Faculty member” and “Course”

• “Faculty member” teaches “Course” in a course registration

system

• “Faculty member” creates “Course” in a curriculum development

system

• “Faculty member” evaluates “Course” in a course

evaluation/inspection system

UML Diagramming and

Notation
27

How to identify associations? (3)

• Eliminate redundant associations

 “Faculty member” teaches “Course”

 “Course” is taught between “Time” to “Time”

 Therefore, “Faculty member” teaches between “Time” to

“Time”

• use transitivity between associations

• Remember that subclasses inherit the associations of a

superclass

UML Diagramming and

Notation
28

How to identify aggregations?

• Aggregations are also associations

• Identify as Association if it is not clear whether it is Association or

Aggregation

 “Mail” has “Address” (aggregation)

 “Mail” uses “Address” for delivery (association)

 “Customer” has “Address” (aggregation)

 “Customer” resides at “Address” (association)

 “TV” includes “Screen” (aggregation)

 “TV” sends information to “Screen” (association)

UML Diagramming and

Notation
29

How to identify specialization?

• Generally, specialization relationships are noticeable in

the application domain

• Top-down approach

 “Student”, “Full-time Student”, “Part-time Student”

 “TV”, “Plasma TV”, “Flat Panel TV”

 “Customer”, “Bank manager”, “Teller”

UML Diagramming and

Notation
30

How to identify specialization (2)

• Some of them are discovered during analysis

• Bottom-up approach

 “Part-time Instructor” derived from “Instructor” and “Student”

while modeling a department

 “User” derived from “Customer”, “Bank Manager” and “Teller”

while modeling an ATM system

 “Material” derived from “Book”, “Journal” and “Magazine” while

modeling a library catalog system

UML Diagramming and

Notation
31

References

1. Roger S. Presmann, Software Engineering, 6th edition.

2. Kendall, System Analysis and Design, 7th edition.

3. Ian Sommerville, Software Engineering, 8th Edition

4. PPT of Roger S. Pressman (chung and zheng)

5. PPT of Kendall

6. Saiful Akbar, Handouts PPL – ITB, 2011

7. Scott W. Embler, Elements of UML Style 2.0

8. Martin Fowler, UML Distilled 3, Third Edition

