6.1

82

Measurement tools and techniques

‘When the only tool you have is a hammer, every problem begins to resemble a nail.’
Abraham Maslow

The previous chapters have discussed what performance metrics may be useful
for the performance analyst, how to summarize measured data, and how to
understand and quantify the systematic and random errors that affect our
measurements. Now that we know what to do with our measured values,
this chapter presents several tools and techniques for actually measuring the
values we desire.

The focus of this chapter is on fundamental measurement concepts. The goal is
not to teach you how to use specific measurement tools, but, rather, to help you
understand the strengths and limitations of the various measurement techniques.
By the end of this chapter, you should be able to select an appropriate measure-
ment technique to determine the value of a desired performance metric. You also
should have developed some understanding of the trade-offs involved in using
the various types of tools and techniques.

Events and measurement strategies

There are many different types of performance metrics that we may wish to
measure. The different strategies for measuring the values of these metrics are
typically based around the idea of an event, where an event is some predefined
change in the system state. The precise definition of a specific event is up to the
performance analyst and depends on the metric being measured. For instance, an
event may be defined to be a memory reference, a disk access, a network com-
munication operation, a change in a processor’s internal state, or some pattern or
combination of other subevents.

83

6.1.1

6.1.2

6.1 Events and measurement strategies

Events-type classification

The different types of metrics that a performance analyst may wish to measure
can be classified into the following categories based on the type of event or events
that comprise the metric.

1. Event-count metrics. Metrics that fall into this category are those that are
simple counts of the number of times a specific event occurs. Examples of
event-count metrics include the number of page faults in a system with
virtual memory, and the number of disk input/output requests made by a
program.

2. Secondary-event metrics. These types of metrics record the values of some
secondary parameters whenever a given event occurs. For instance, to deter-
mine the average number of messages queued in the send buffer of a com-
munication port, we would need to record the number of messages in the
queue each time a message was added to, or removed from, the queue. Thus,
the triggering event is a message-enqueue or -dequeue operation, and the
metrics being recorded are the number of messages in the queue and the total
number of queue operations. We may also wish to record the size (e.g. the
number of bytes) of each message sent to later determine the average mes-
sage size.

3. Profiles. A profile is an aggregate metric used to characterize the overall
behavior of an application program or of an entire system. Typically, it is
used to identify where the program or system is spending its execution time.

Measurement strategies

The above event-type classification can be useful in helping the performance
analyst decide on a specific strategy for measuring the desired metric, since
different types of measurement tools are appropriate for measuring different
types of events. These different measurement tools can be categorized on the
basis of the fundamental strategy used to determine the actual values of the
metrics being measured. One important concern with any measurement strategy
is how much it perturbs the system being measured. This aspect of performance
measurement is discussed further in Section 6.6.
1. Event-driven. An event-driven measurement strategy records the information
necessary to calculate the performance metric whenever the preselected event
or events occur. The simplest type of event-driven measurement tool uses a
simple counter to directly count the number of occurrences of a specific event.
For example, the desired metric may be the number of page faults that occur
during the execution of an application program. To find this value, the per-
formance analyst most likely would have to modify the page-fault-handling

84

Measurement tools and techniques

routine in the operating system to increment a counter whenever the routine is
entered. At the termination of the program’s execution, an additional
mechanism must be provided to dump the contents of the counter.

One of the advantages of an event-driven strategy is that the system overhead
required to record the necessary information is incurred only when the event
of interest actually occurs. If the event never occurs, or occurs only infre-
quently, the perturbation to the system will be relatively small. This charac-
teristic can also be a disadvantage, however, when the events being monitored
occur very frequently.

When recording high-frequency events, a great deal of overhead may be
introduced into a program’s execution, which can significantly alter the pro-
gram’s execution behavior compared with its uninstrumented execution. As a
result, what the measurement tool measures need not reflect the typical or
average behavior of the system. Furthermore, the time between measurements
depends entirely on when the measured events occur so that the inter-event
time can be highly variable and completely unpredictable. This can increase
the difficulty of determining how much the measurement tool actually per-
turbs the executing program. Event-driven measurement tools are usually
considered most appropriate for low-frequency events.

. Tracing. A tracing strategy is similar to an event-driven strategy, except that,

rather than simply recording that fact that the event has occurred, some
portion of the system state is recorded to uniquely identify the event. For
example, instead of simply counting the number of page faults, a tracing
strategy may record the addresses that caused each of the page faults. This
strategy obviously requires significantly more storage than would a simple
count of events. Additionally, the time required to save the desired state,
either by storing it within the system’s memory or by writing to a disk, for
instance, can significantly alter the execution of the program being measured.

. Sampling. In contrast to an event-driven measurement strategy, a sampling

strategy records at fixed time intervals the portion of the system state neces-
sary to determine the metric of interest. As a result, the overhead due to this
strategy is independent of the number of times a specific event occurs. It is
instead a function of the sampling frequency, which is determined by the
resolution necessary to capture the events of interest.

The sampling of the state of the system occurs at fixed time intervals that are
independent of the occurrence of specific events. Thus, not every occurrence
of the events of interest will be recorded. Rather, a sampling strategy produces
a statistical summary of the overall behavior of the system. Consequently,
events that occur infrequently may be completely missed by this statistical
approach. Furthermore, each run of a sampling-based experiment is likely to
produce a different result since the samples occur asynchronously with respect

85

6.1 Events and measurement strategies

to a program’s execution. Nevertheless, while the exact behavior may differ,
the statistical behavior should remain approximately the same.

4. Indirect. An indirect measurement strategy must be used when the metric that
is to be determined is not directly accessible. In this case, you must find
another metric that can be measured directly, from which you then can
deduce or derive the desired performance metric. Developing an appropriate
indirect measurement strategy, and minimizing its overhead, relies almost
completely on the cleverness and creativity of the performance analyst.

The unique characteristics of these measurement strategies make them more or
less appropriate for different situations. Program tracing can provide the most
detailed information about the system being monitored. An event-driven mea-
surement tool, on the other hand, typically provides only a higher-level summary
of the system behavior, such as overall counts or average durations. The infor-
mation supplied both by an event-driven measurement tool and by a tracing tool
is exact, though, such as the precise number of times a certain subroutine is
executed. In contrast, the information provided by a sampling strategy is statis-
tical in nature. Thus, repeating the same experiment with an event-driven or
tracing tool will produce the same results each time whereas the results produced
with a sampling tool will vary slightly each time the experiment is performed.

The system resources consumed by the measurement tool itself as it collects
data will strongly affect how much perturbation the tool will cause in the system.
As mentioned above, the overhead of an event-driven measurement tool is
directly proportional to the number of occurrences of the event being measured.
Events that occur frequently may cause this type of tool to produce substantial
perturbation as a byproduct of the measurement process. The overhead of a
sampling-based tool, however, is independent of the number of times any specific
event occurs. The perturbation caused by this type of tool is instead a function of
the sampling interval, which can be controlled by the experimenter or the tool
builder. A trace-based tool consumes the largest amount of system resources,
requiring both processor resources (i.e. time) to record each event and potentially
enormous amounts of storage resources to save each event in the trace. As a
result, tracing tends to produce the largest system perturbation.

Each indirect measurement tool must be uniquely adapted to the particular
aspect of the system performance it attempts to measure. Therefore, it is impos-
sible to make any general statements about a measurement tool that makes use
of an indirect strategy. The key to implementing a tool to measure a specific
performance metric is to match the characteristics of the desired metric with the
appropriate measurement strategy. Several of the fundamental techniques that
have been used for implementing the various measurement strategies are
described in the following sections.

86

6.2

Measurement tools and techniques

Interval timers

One of the most fundamental measuring tools in computer-system performance
analysis is the interval timer. An interval timer is used to measure the execution
time of an entire program or any section of code within a program. It can also
provide the time basis for a sampling measurement tool. Although interval
timers are relatively straightforward to use, understanding how an interval
timer is constructed helps the performance analyst determine the limitations
inherent in this type of measurement tool.

Interval timers are based on the idea of counting the number of clock pulses
that occur between two predefined events. These events are typically identified by
inserting calls to a routine that reads the current timer count value into a pro-
gram at the appropriate points, such as shown previously in the example in
Figure 2.1. There are two common implementations of interval timers, one
using a hardware counter, and the other based on a software interrupt.

Hardware timers. The hardware-based interval timer shown in Figure 6.1
simply counts the number of pulses it receives at its clock input from a free-
running clock source. The counter is typically reset to 0 when the system is first
powered up so that the value read from the counter is the number of clock ticks
that have occurred since that time. This value is used within a program by
reading the memory location that has been mapped to this counter by the man-
ufacturer of the system.

Assume that the value read at the start of the interval being measured is x; and
the value read at the end of the interval is x,. Then the total time that has elapsed
between these two read operations is 7, = (x, — x;)7T,, where T is the period of
the clock input to the counter.

Software timers. The primary difference between a software-interrupt-based
interval timer, shown in Figure 6.2, and a hardware-based timer is that the
counter accessible to an application program in the software-based implementa-

TC
J_I—I_‘— Counter
Clock
o o O To the processor
memory bus
n bits

Figure 6.1 A hardware-based interval timer uses a free-running clock source to continuously
increment an n-bit counter. This counter can be read directly by the operating system or by
an application program. The period of the clock, 7., determines the resolution of the timer.

87

6.2 Interval timers

T¢ T,
Clock LI Prescaler N I I I
oc .
(divide-by-m) To processor's interrupt input

Figure 6.2 A software interrupt-based timer divides down a free-running clock to produce
a processor interrupt with the period 7. The interrupt service routine then maintains a
counter variable in memory that it increments each time the interrupt occurs.

tion is not directly incremented by the free-running clock. Instead, the hardware
clock is used to generate a processor interrupt at regular intervals. The interrupt-
service routine then increments a counter variable it maintains, which is the value
actually read by an application program. The value of this variable then is a
count of the number of interrupts that have occurred since the count variable
was last initialized. Some systems allow an application program to reset this
counter. This feature allows the timer to always start from zero when timing
the duration of an event.

The period of the interrupts in the software-based approach corresponds to
the period of the timer. As before, we denote this period T so that the total time
elapsed between two readings of the software counter value is again
T. = (x — x;)T,. The processor interrupt is typically derived from a free-run-
ning clock source that is divided by m through a prescaling counter, as shown in
Figure 6.2. This prescaler is necessary in order to reduce the frequency of the
interrupt signal fed into the processor. Interrupts would occur much too often,
and thus would generate a huge amount of processor overhead, if this prescaling
were not done.

Timer rollover. One important consideration with these types of interval timers
is the number of bits available for counting. This characteristic directly deter-
mines the longest interval that can be measured. (The complementary issue of the
shortest interval that can be measured is discussed in Section 6.2.2.) A binary
counter used in a hardware timer, or the equivalent count variable used in a
software implementation, is said to ‘roll over’ to zero as its count undergoes a
transition from its maximum value of 2" — 1 to the zero value, where n is the
number of bits in the counter.

If the counter rolls over between the reading of the counter at the start of the
interval being measured and the reading of the counter at the end, the difference
of the count values, x, — x;, will be a negative number. This negative value is
obviously not a valid measurement of the time interval. Any program that uses
an interval timer must take care to ensure that this type of roll over can never
occur, or it must detect and, possibly, correct the error. Note that a negative
value that occurs due to a single roll over of the counter can be converted to the
appropriate value by adding the maximum count value, 2", to the negative value

88

6.2.1

Measurement tools and techniques

obtained when subtracting x; from x,. Table 6.1 shows the maximum time
between timer roll overs for various counter widths and input clock periods.

Timer overhead

The implementation of an interval timer on a specific system determines how the
timer must be used. In general, though, we can think of using an interval timer to
measure any portion of a program, much as we would use a stopwatch to time a
runner on a track, for instance. In particular, we typically would use an interval
time within a program as follows:

x_start = read_timer();
<event being timed>
x_end = read_timer();

elapsed_time = (x_end - x_start) * t_cycle;

When it is used in this way, we can see that the time we actually measure
includes more than the time required by the event itself. Specifically, accessing
the timer requires a minimum of one memory-read operation. In some imple-
mentations, reading the timer may require as much as a call to the operating-
system kernel, which can be very time-consuming. Additionally, the value read
from the timer must be stored somewhere before the event being timed begins.
This requires at least one store operation, and, in some systems, it could
require substantially more. These operations must be performed twice, once
at the start of the event, and once again at the end. Taken altogether, these
operations can add up to a significant amount of time relative to the duration
of the event itself.

To obtain a better understanding of this timer overhead, consider the time
line shown in Figure 6.3. Here, T is the time required to read the value of the
interval timer’s counter. It may be as short as a single memory read, or as long
as a call into the operating-system kernel. Next, 7, is the time required to store
the current time. This time includes any time in the kernel after the counter has
been read, which would include, at a minimum, the execution of the return
instruction. Time 7T is the actual duration of the event we are trying to
measure. Finally, the time from when the event ends until the program actually
reads the counter value again is 7. Note that reading the counter this second
time involves the same set of operations as the first read of the counter so that
T,=T,.

Assigning these times to each of the components in the timing operation now
allows us to compare the timer overhead with the time of the event itself, which is
what we actually want to know. This event time, 7, is time 73 in our time line, so
that 7, = T5. What we measure, however, is T,, = T, + T5 + T4. Thus, our

89

6.2 Interval timers

Table 6.1 The maximum time available before a binary interval timer with n bits and an
input clock with a period of T rolls over is T.2"

Counter width, n

T. 16 24 32 48 64
10 ns 655 ps 168 ms 429 s 32.6 days 58.5 centuries
100 ns 6.55 ms 1.68 s 7.16 min 326 days 585 centuries
1 ps 65.5 ms 16.8 s 1.19 h 9.15 years 5,850 centuries
10 ps 655 ms 2.8 min 119 h 89.3 years 58,500 centuries
100 ps 6.55s 28.0 min 4.97 days 893 years 585,000 centuries
1 ms 1.09 min 4.66 h 49.7 days 89.3 centuries 5,850,000 centuries
T, T, T, T,
| | | | |
\ \ \ \ \
T K 2 S i
2 8 z by g
2 p £ = P
E g 2 = £
= 8 3 =
£ E 5 £
5 : : 5
M >
i}

Figure 6.3 The overhead incurred when using an interval timer to measure the execution
time of any portion of a program can be understood by breaking down the operations
necessary to use the timer into the components shown here.

desired measurement is T, = T, — (T, + Ty) = Ty, — (T} + 1), since T, = Tj.
We call T| + T, the timer overhead and denote it Ty 4.

If the interval being measured is substantially larger than the timer overhead,
then the timer overhead can simply be ignored. If this condition is not satisfied,
though, then the timer overhead should be carefully measured and subtracted
from the measurement of the event under consideration. It is important to
recognize, however, that variations in measurements of the timer overhead itself
can often be quite large relative to variations in the times measured for the event.
As a result, measurements of intervals whose duration is of the same order of
magnitude as the timer overhead should be treated with great suspicion. A good
rule of thumb is that the event duration, T, should be 100-1,000 times larger
than the timer overhead, T 4.

90

6.2.2

Measurement tools and techniques

Quantization errors

The smallest change that can be be detected and displayed by an interval timer is
its resolution. This resolution is a single clock tick, which, in terms of time, is the
period of the timer’s clock input, T,. This finite resolution introduces a random
quantization error into all measurements made using the timer.

For instance, consider an event whose duration is n ticks of the clock input,
plus a little bit more. That is, T, = nT. + A, where n is a positive integer and
0 < A < T.. If, when one is measuring this event, the timer value is read
shortly after the event has actually begun, as shown in Figure 6.4(a), the
timer will count n clock ticks before the end of the event. The total execution
time reported then will be nT,. If, on the other hand, there is slightly less time
between the actual start of the event and the point at which the timer value is
read, as shown in Figure 6.4(b), the timer will count n+ 1 clock ticks before
the end of the event is detected. The total time reported in this case will then be
(n+ DT..

In general, the actual event time is within the range n7, < T, < (n+ 1)T..
Thus, the fact that events are typically not exactly whole number factors of the
timer’s clock period causes the time value reported to be rounded either up or
down by one clock period. This rounding is completely unpredictable and is one
readily identifiable (albeit possibly small) source of random errors in our mea-
surements (see Section 4.2). Looking at this quantization effect another way, if we
made ten measurements of the same event, we would expect that approximately
five of them would be reported as nT, with the remainder reported as (n + 1)T,. If
T, is large relative to the event being measured, this quantization effect can make
it impossible to directly measure the duration of the event. Consequently, we
typically would like T, to be as small as possible, within the constraints imposed
by the number of bits available in the timer (see Table 6.1).

S I S [A I) A N O A
lock
Cocki———T— T T T T 1 T T 1T 1T 1T 1 | |

Event

I S S Y A
Clock
S T A B B B B B

Event

(b) Interval timer reports event duration of n = 14 clock ticks.

Figure 6.4 The finite resolution of an interval timer causes quantization of the reported
duration of the events measured.

91

6.2.3

6.2 Interval timers

Statistical measures of short intervals

Owing to the above quantization effect, we cannot directly measure events whose
durations are less than the resolution of the timer. Similarly, quantization makes
it difficult to accurately measure events with durations that are only a few times
larger than the timer’s resolution. We can, however, make many measurements
of a short duration event to obtain a statistical estimate of the event’s duration.

Consider an event whose duration is smaller than the timer’s resolution, that
is, T, < T,. If we measure this interval once, there are two possible outcomes. If
we happen to start our measurement such that the event straddles the active edge
of the clock that drives the timer’s internal counter, as shown in Figure 6.5(a), we
will see the clock advance by one tick. On the other hand, since 7, < T, it is
entirely possible that the event will begin and end within one clock period, as
shown in Figure 6.5(b). In this case, the timer will not advance during this
measurement. Thus, we have a Bernoulli experiment whose outcome is 1 with
probability p, which corresponds to the timer advancing by one tick while are
measuring the event. If the clock does not advance, though, the outcome is 0 with
probability 1 — p.

Repeating this measurement # times produces a distribution that approximates
a binomial distribution. (It is only approximate since, for a true binomial dis-

(a) Event T, straddles the active edge of the interval timer.

| T |

‘ ‘ ‘

(b) Event T, begins and ends within the resolution of the interval timer.

Figure 6.5 When one is measuring an event whose duration is less than the resolution of
the interval timer, that is, 7, < T, there are two possible outcomes for each measurement.
Either the event happens to straddle the active edge of the timer’s clock, in which case the
counter advances by one tick, or the event begins and completes between two clock edges.
In the latter case, the interval timer will show the same count value both before and after
the event. Measuring this event multiple times approximates a binomial distribution.

92

6.3

Measurement tools and techniques

tribution, each of the n measurements must be independent. However, in a real
system it is possible that obtaining an outcome of 0 in one measurement makes it
more likely that one will obtain a 0 in the next measurement, for instance.
Nevertheless, this approximation appears to work well in practice.) If the num-
ber of outcomes that produce 1 is m, then the ratio m/n should approximate the
ratio of the duration of the event being measured to the clock period, T,/T.,.
Thus, we can estimate the average duration of this event to be

7.="1, (6.1)
n

We can then use the technique for calculating a confidence interval for a propor-
tion (see Section 4.4.3) to obtain a confidence interval for this average event
time.'

Example. We wish to measure an event whose duration we suspect is less than
the 40 ps resolution of our interval timer. Out of n = 10,482 measurements of
this event, we find that the clock actually advances by one tick during m = 852 of
them. For a 95% confidence level, we construct the interval for the ratio m/n =
852/10,482 as follows:

852 10,482 \ ' 7 10,432

(1,) =153g T (1.96) 10,482

852 (852)
= (0.0786, 0.0840). (6.2)

Scaling this interval by the timer’s clock period gives us the 95% confidence
interval (3.14, 3.36)us for the duration of this event. O

Program profiling

A profile provides an overall view of the execution behavior of an application
program. More specifically, it is a measurement of how much time, or the frac-
tion of the total time, the system spends in certain states. A profile of a program
can be useful for showing how much time the program spends executing each of
its various subroutines, for instance. This type of information is often used by a
programmer to identify those portions of the program that consume the largest
fraction of the total execution time. Once the largest time consumers have been
identified, they can, one assumes, be enhanced to thereby improve performance.

Similarly, when a profile of an entire system multitasking among several dif-
ferent applications is taken, it can be used by a system administrator to find
system-level performance bottlenecks. This information can be used in turn to

! The basic idea behind this technique was first suggested by Peter H. Danzig and Steve Melvin in an
unpublished technical report from the University of Southern California.

93

6.3.1

6.3 Program profiling

tune the performance of the overall system by adjusting such parameters as
buffer sizes, time-sharing quanta, disk-access policies, and so forth.

There are two distinct techniques for creating a program profile — program-
counter (PC) sampling and basic-block counting. Sampling can also be used to
generate a profile of a complete system.

PC sampling

Sampling is a general statistical measurement technique in which a subset (i.e. a
sample) of the members of a population being examined is selected at random.
The information of interest is then gathered from this subset of the total popula-
tion. It is assumed that, since the samples were chosen completely at random, the
characteristics of the overall population will approximately follow the same
proportions as do the characteristics of the subset actually measured. This
assumption allows conclusions about the overall population to be drawn on
the basis of the complete information obtained from a small subset of this
population.

While this traditional population sampling selects all of the samples to be
tested at (essentially) the same time, a slightly different approach is required
when using sampling to generate a profile of an executing program. Instead of
selecting all of the samples to be measured at once, samples of the executing
program are taken at fixed points in time. Specifically, an external periodic signal
is generated by the system that interrupts the program at fixed intervals.
Whenever one of these interrupts is detected, appropriate state information is
recorded by the interrupt-service routine.

For instance, when one is generating a profile for a single executing program,
the interrupt-service routine examines the return-address stack to find the
address of the instruction that was executing when the interrupt occurred.
Using symbol-table information previously obtained from the compiler or
assembler, this program-instruction address is mapped onto a specific subroutine
identifier, i. The value i is used to index into a single-dimensional array, H, to
then increment the element H; by one. In this way, the interrupt-service routine
generates a histogram of the number of times each subroutine in the program
was being executed when the interrupt occurred.

The ratio H;/n is the fraction of the program’s total execution time that it
spent executing in subroutine i, where n is the total number of interrupts that
occurred during the program’s execution. Multiplying the period of the interrupt
by these ratios provides an estimate of the total time spent executing in each
subroutine.

It is important to remember that sampling is a statistical process in which the
characteristics of an entire population (in our present situation, the execution

94

Measurement tools and techniques

behavior of an entire program or system) are inferred from a randomly selected
subset of the overall population. The calculated values of these inferences are,
therefore, subject to random errors. Not surprisingly, we can calculate a con-
fidence interval for these proportions to obtain a feel for the precision of our
sampling experiment.

Example. Suppose that we use a sampling tool that interrupts an executing
program every T, = 10 ms. Including the time required to execute the interrupt-
service routine, the program executes for a total of 8 s. If Hy = 12 of the n = 800
samples find the program counter somewhere in subroutine X when the interrupt
occurred, what is the fraction of the total time the program spends executing this
subroutine?

Since there are 800 samples in total, we conclude that the program spends
1.5% (12/800 = 0.015) of its time in subroutine X. Using the procedure from
Section 4.4.3, we calculate a 99% confidence interval for this proportion to be

0.015(1 —0.015)
800

(c1,¢2) = 0.015 F 2.576\/ = (0.0039, 0.0261). (6.3)

So, with 99% confidence, we estimate that the program spends between 0.39%
and 2.6% of its time executing subroutine X. Multiplying by the period of the
interrupt, we estimate that, out of the 8 s the program was executing, there is a
99% chance that it spent between 31 (0.0039 x 8) and 210 (0.0261 x 8) ms
executing subroutine X. &

The confidence interval calculated in the above example produces a rather
large range of times that the program could be spending in subroutine X. Put
in other terms, if we were to repeat this experiment several times, we would
expect that, in 99% of the experiments, from three to 21 of the 800 samples
would come from subroutine X. While this 7 : 1 range of possible execution
times appears large, we estimate that subroutine X still accounts for less than
3% of the total execution time. Thus, we most likely would start our program-
tuning efforts on a routine that consumes a much larger fraction of the total
execution time.

This example does demonstrate the importance of having a sufficient number
of samples in each state to produce reliable information, however. To reduce the
size of the confidence interval in this example we need more samples of each
event. Obtaining more samples per event requires either sampling for a longer
period of time, or increasing the sampling rate. In some situations, we can simply
let the program execute for a longer period of time. This will increase the total
number of samples and, hence, the number of samples obtained for each sub-
routine.

Some programs have a fixed duration, however, and cannot be forced to
execute for a longer period. In this situation, we can run the program multiple

95

6.3.2

6.3 Program profiling

times and simply add the samples from each run. The alternative of increasing
the sampling frequency will not always be possible, since the interrupt period is
often fixed by the system or the profiling tool itself. Furthermore, increasing the
sampling frequency increases the number of times the interrupt-service routine is
executed, which increases the perturbation to the program. Of course, each run
of the program must be performed under identical conditions. Otherwise, if the
test conditions are not identical, we are testing two essentially different systems.
Consequently, in this case, the two sets of samples cannot be simply added
together to form one larger sample set.

It is also important to note that this sampling procedure implicitly assumes
that the interrupt occurs completely asynchronously with respect to any events in
the program being profiled. Although the interrupts occur at fixed, predefined
intervals, if the program events and the interrupt are asynchronous, the inter-
rupts will occur at random points in the execution of the program being sampled.
Thus, the samples taken at these points are completely independent of each
other. This sample independence is critical to obtaining accurate results with
this technique since any synchronism between the events in the program and
the interrupt will cause some areas of the program to be sampled more often than
they should, given their actual frequency of occurrence.

Basic-block counting

The sampling technique described above provides a statistical profile of the
behavior of a program. An alternative approach is to produce an exact execution
profile by counting the number of times each basic block is executed. A basic
block is a sequence of processor instructions that has no branches into or out of
the sequence, as shown in Figure 6.6. Thus, once the first instruction in a block
begins executing, it is assured that all of the remaining instructions in the block
will be executed. The instructions in a basic block can be thought of as a com-
putation that will always be executed as a single unit.

A program’s basic-block structure can be exploited to generate a profile by
inserting into each basic block additional instructions. These additional instruc-
tions simply count the number of times the block is executed. When the program
terminates, these values form a histogram of the frequency of the basic-block
executions. Just like the histogram produced with sampling, this basic-block
histogram shows which portions of the program are executed most frequently.
In this case, though, the resolution of the information is at the basic-block level
instead of the subroutine level. Since a basic block executes as an indivisible unit,
complete instruction-execution-frequency counts can also be obtained from these
basic-block counts.

96 Measurement tools and techniques

1. $37: la $25, __iob
2. 1w $15, 0($25)
3. addu $9, $15, -1
4. sW $9, 0($25)
5. la $8, __iob

6. 1w $11, 0($8)
7. bge $11, 0, $38
8. move $4, $8

9. jal __filbuf

10. move $17, $2

11. $38: la $12, __iob

Figure 6.6 A basic block is a sequence of instructions with no branches into or out of the
block. In this example, one basic block begins at statement 1 and ends at statement 7. A
second basic block begins at statement 8 and ends at statement 9. Statement 10 is a basic
block consisting of only one instruction. Statement 11 begins another basic block since it is
the target of an instruction that branches to label $38.

One of the key differences between this basic-block profile and a profile gen-
erated through sampling is that the basic-block profile shows the exact execution
frequencies of all of the instructions executed by a program. The sampling pro-
file, on the other hand, is only a statistical estimate of the frequencies. Hence, if a
sampling experiment is run a second time, the precise execution frequences will
most likely be at least slightly different. A basic-block profile, however, will
produce exactly the same frequencies whenever the program is executed with
the same inputs.

Although the repeatability and exact frequencies of basic-block counting
would seem to make it the obvious profiling choice over a sampling-based pro-
file, modifying a program to count its basic-block executions can add a substan-
tial amount of run-time overhead. For instance, to instrument a program for
basic-block counting would require the addition of at least one instruction to
increment the appropriate counter when the block begins executing to each basic
block. Since the counters that need to be incremented must be unique for each
basic block, it is likely that additional instructions to calculate the appropriate
offset for the current block into the array of counters will be necessary.

In most programs, the number of instructions in a basic block is typically
between three and 20. Thus, the number of instructions executed by the instru-
mented program is likely to increase by at least a few percent and possibly as
much as 100% compared with the uninstrumented program. These additional
instructions can substantially increase the total running time of the program.

97

6.4

6.4 Event tracing

Furthermore, the additional memory required to store the counter array, plus the
execution of the additional instructions, can cause other substantial perturba-
tions. For instance, these changes to the program can significantly alter its
memory behavior.

So, while basic-block counting provides exact profile information, it does so at
the expense of substantial overhead. Sampling, on the other hand, distributes its
perturbations randomly throughout a program’s execution. Also, the total per-
turbation due to sampling can be controlled somewhat by varying the period of
the sampling interrupt interval. Nevertheless, basic-block counting can be a
useful tool for precisely characterizing a program’s execution profile. Many
compilers, in fact, have compile-time flags a user can set to automatically insert
appropriate code into a program as it is compiled to generate the desired basic-
block counts when it is subsequently executed.

Event tracing

The information captured through a profiling tool provides a summary picture
of the overall execution of a program. An often-useful type of information that is
ignored in this type of profile summary, however, is the time-ordering of events.
A basic-block-counting profile can show the type and frequency of each of the
instructions executed, for instance, but it does not provide any information
about the order in which the instructions were executed. When this sequencing
information is important to the analysis being performed, a program trace is the
appropriate choice.

A trace of a program is a dynamic list of the events generated by the program
as it executes. The events that comprise a trace can be any events that you can
find a way to monitor, such as a time-ordered list of all of the instructions
executed by a program, the sequence of memory addresses accessed by a pro-
gram, the sequence of disk blocks referenced by the file system, the sizes and
destinations of all messages sent over a network, and so forth. The level of detail
provided in a trace is entirely determined by the performance analyst’s ability to
gather the information necessary for the problem at hand.

Traces themselves can be analyzed to characterize the overall behavior of a
program, much as a profile characterizes a program’s behavior. However, traces
are probably more typically used as the input to drive a simulator. For instance,
traces of the memory addresses referenced by a program are often used to drive
cache simulators. Similarly, traces of the messages sent by an application pro-
gram over a communication network are often used to drive simulators for
evaluating changes to communication protocols.

98

6.4.1

Measurement tools and techniques

Trace generation

The overall tracing process is shown schematically in Figure 6.7. A tracing
system typically consists of two main components. The first is the application
being traced, which is the component that actually generates the trace. The
second main component is the trace consumer. This is the program, such as a
simulator, that actually uses the information being generated. In between the
trace generator and the consumer is often a large disk file on which to store the
trace. Storing the trace allows the consumer to be run many times against an
unchanging trace to allow comparison experiments without the expense of regen-
erating the trace. Since the trace can be quite large, however, it will not always be
possible or desirable to store the trace on an intermediate disk. In this case, it is
possible to consume the trace online as it is generated.

A wide range of techniques have been developed for generating traces. Several
of these approaches are summarized below.

1. Source-code modification. Perhaps the most straightforward approach for
generating a program trace is to modify the source code of the program to
be traced. For instance, the programmer may add additional tracing state-
ments to the source code, as shown in Figure 6.8. When the program is
subsequently compiled and executed, these additional program statements
will be executed, thereby generating the desired trace. One advantage of
this approach is that the programmer can trace only the desired events.
This can help reduce the volume of trace data generated. One major dis-
advantage is that inserting trace points is typically a manual process and is,
therefore, very time-consuming and prone to error.

2. Software exceptions. Some processors have been constructed with a mode that
forces a software exception just before the execution of each instruction. The

Disk
(TTTTTTTTE \ (T T \
. . 1 1
Application i | i i Trace
> Compress r i Uncompress ——
Program ! ! ! ! Consumer
N ~ | 7/ | / ,’
N .

Online trace consumption.

Modified to generate a trace.

Figure 6.7 The overall process used to generate, store, and consume a program trace.

99 6.4 Event tracing

sum_x = 0.0;
trace(1);
sum_xx = 0.0;
trace(2);
for (i = 1; i <= n; i++)
trace(3);
{
sum_x += x[i];
trace(4);
sum_xx += (x[il*x[i]);
trace(5);
¥
mean = sum_x / n;
trace(6);
var = ((n * sum_xx) - (sum_x * sum_x)) / (n * (n-1));
trace(7);
std_dev = sqrt(var);
trace(8);
z_p = unit_normal(l - (0.5 * alpha));
trace(9);
half_int = z_p * std_dev / sqrt(n);
trace(10);
cl = mean - half_int;
trace(11);
c2 = mean + half_int;
trace(12);
(a) The original source program with calls to the tracing routine inserted.

trace(i)
{ print(i,time);}

(b) The trace routine simply prints the statement number, i, and the current time.

Figure 6.8 Program tracing can be performed by inserting additional statements into the
source code to call a tracing subroutine at appropriate points.

exception-processing routine can decode the instruction to determine its oper-
ands. The instruction type, address, and operand addresses and values can
then be stored for later use. This approach was implemented using the T-bit in
Digital Equipment Corporation’s VAX processor series and in the Motorola
68000 processor family. Executing with the trace mode enabled on these
processors slowed down a program’s execution by a factor of about 1,000.

100

6.4.2

Measurement tools and techniques

3. Emulation. An emulator is a program that makes the system on which it
executes appear to the outside world as if it were something completely dif-
ferent. For example, the Java Virtual Machine is a program that executes
application programs written in the Java programming language by emulating
the operation of a processor that implements the Java byte-code instruction
set. This emulation obviously slows down the execution of the application
program compared with direct execution. Conceptually, however, it is a
straightforward task to modify the emulator program to trace the execution
of any application program it executes.

4. Microcode modification. In the days when processors executed microcode to
execute their instruction sets through interpretation, it was possible to modify
the microcode to generate a trace of each instruction executed. One important
advantage of this approach was that it traced every instruction executed on
the processor, including operating-system code. This feature was especially
useful for tracing entire systems, including the interaction between the appli-
cation programs and the operating system. The lack of microcode on current
processors severely limits the applicability of this approach today.

5. Compiler modification. Another approach for generating traces is to modify
the executable code produced by the compiler. Similar to what must be done
for generating basic-block counts, extra instructions are added at the start of
each basic block to record when the block is entered and which basic block is
being executed then. Details about the contents of the basic blocks can be
obtained from the compiler and correlated to the dynamic basic-block trace to
produce a complete trace of all of the instructions executed by the application
program. It is possible to add this type of tracing facility as a compilation
option, or to write a post-compilation software tool that modifies the execu-
table program generated by the compiler.

These trace-generation techniques are by no means the only ways in which
traces can be produced. Rather, they are intended to give you a flavor of the
types of approaches that have been used successfully in other trace-generation
systems. Indeed, new techniques are limited only by the imagination and crea-
tivity of the performance analyst.

Trace compression

One obvious concern when generating a trace is the execution-time slowdown
and other program perturbations caused by the execution of the additional tra-
cing instructions. Another concern is the volume of data that can be produced in
a very short time. For example, say we wish to trace every instruction executed
by a processor that executes at an average rate of 10° instructions per second. If

101

6.4.2.1

6.4.2.2

6.4 Event tracing

each item in the trace requires 16 bits to encode the necessary information, our
tracing will produce more than 190 Mbytes of data per uninstrumented second of
execution time, or more than 11 Gbytes per minute! In addition to obtaining the
disks necessary to store this amount of data, the input/output operations
required to move this large volume of data from the traced program to the
disks create additional perturbations. Thus, it is desirable to reduce the amount
of information that must be stored.

Online trace consumption

One approach for dealing with these large data volumes is to consume the trace
online. That is, instead of storing the trace for later use, the program that will be
driven by the trace is run simultaneously with the application program being
traced. In this way, the trace is consumed as it is generated so that it never needs
to be stored on disk at all.

A potential problem with online trace consumption in a multitasked (i.e. time-
shared) system is the potential interdeterminate behavior of the program being
traced. Since system events occur asynchronously with respect to the traced
program, there is no assurance that the next time the program is traced the
exact same sequence of events will occur in the same relative time order. This
is a particular concern for programs that must respond to real-time events, such
as system interrupts and user inputs.

This potential lack of repeatability in generating the trace is a concern when
performing one-to-one comparison experiments. In this situation, the trace-con-
sumption program is driven once with the trace and its output values are
recorded. It is then modified in some way and then driven again with the same
trace. If the identical input trace is used both times, it is reasonable to conclude
that any change in performance observed is due to the change made to the trace-
consumption program. However, if it cannot be guaranteed that the trace is
identical from one run to the next, it is not possible to determine whether any
change in performance observed is due to the change made, or whether it is due
to a difference in the input trace itself.

Compression of data

A trace written to intermediate storage, such as a disk, can be viewed just like
any other type of data file. Consequently, it is quite reasonable to apply a data-
compression algorithm to the trace data as it is written to the disk. For example,
any one of the large number of compression programs based on the popular
Lempel-Ziv algorithm is often able to reduce the size of a trace file by 20-70%.
Of course, the tradeoff for this data compression is the additional time required
to execute the compression routine when the trace is generated and the time
required to uncompress the trace when it is consumed.

102

6.4.2.3

Measurement tools and techniques

Abstract execution

An interesting variation of the basic trace-compression idea takes advantage of
the semantic information within a program to reduce the amount of informa-
tion that must be stored for a trace. This approach, called abstract execution,
separates the tracing process into two steps. The first step performs a compiler-
style analysis of the program to be traced. This analysis identifies a small subset
of the entire trace that is sufficient to later reproduce the full trace. Only this
smaller subset is actually stored. Later, the trace-consumption program must
execute some special trace-regeneration routines to convert this partial trace
information into the full trace. These regeneration routines are automatically
generated by the tracing tool when it performs the initial analysis of the
program.

The data about the full trace that are actually stored when using the abstract-
execution model consist of information describing only those transitions that
may change during run-time. For example, consider the code fragment extracted
from a program to be traced shown in Figure 6.9. The compiler-style analysis
that would be performed on this code fragment would produce the control flow
graph shown in Figure 6.10. From this control flow graph, the trace-generation
tool can determine that statement 1 always precedes both statements 2 and 3.
Furthermore, statement 4 always follows both statements 2 and 3. When this
program is executed, the trace through this sequence of statements will be either
1-2-4, or 1-3-4. Thus, the only information that needs to be recorded during
run-time is which of statements 2 and 3 actually occurred. The trace-regeneration
routine is then able to later reconstruct the full trace using the previously
recorded control flow graph.

Measurements of the effectiveness of this tracing technique have shown that it
slows down the execution of the program being traced by a factor of typically 2—
10. This slowdown factor is comparable to, or slightly better than, those of most
other tracing techniques. More important, however, may be that, by recording
information only about the changes that actually occur during run-time, this
technique is able to reduce the size of the stored traces by a factor of ten to
several hundred.

1. if (1 > 5)
2 then a = a + 1ij;
3. else b = b + 1;
4. i = i + 1;

Figure 6.9 A code fragment to be processed using the abstract execution tracing technique..

103

6.4 Event tracing

1.i>5

.

2.a=a+i 3.b=b+1

\/

4.i=i+1

l

Figure 6.10 The control flow graph corresponding to the program fragment shown in
Figure 6.9.

6.4.2.4 Trace sampling

Trace sampling is another approach that has been suggested for reducing the
amount of information that must be collected and stored when tracing a pro-
gram. The basic idea is to save only relatively small sequences of events from
locations scattered throughout the trace. The expectation is that these small
samples will be statistically representative of the entire program’s trace when
they are used. For instance, using these samples to drive a simulation should
produce overall results that are similar to what would be produced if the simula-
tion were to be driven with the entire trace.

Consider the sequence of events from a trace shown in Figure 6.11. Each
sample from this trace consists of k& consecutive events. The number of events
between the starts of consecutive samples is the sampling interval, denoted by P.
Since only the samples from the trace are actually recorded, the total amount of
storage required for the trace can be reduced substantially compared with storing
the entire raw trace.

XXX XXXXXXXX e o o XX XX XXXXXXX e o o

k | k |

-P-

Figure 6.11 In trace sampling, k consecutive events comprise one sample of the trace. A
new sample is taken every P events (P is called the sampling interval).

104

6.5

Measurement tools and techniques

Unfortunately, there is no solid theoretical basis to help the experimenter
determine how many events should be stored for each sample (k), or how large
the sampling interval (P) should be. The best choices for k and P typically must be
determined empirically (i.e. through experimentation). Furthermore, the choice
of these parameters seems to be dependent on how the traces will be used. If the
traces are used to drive a simulation of a cache to estimate cache-miss ratios, for
instance, it has been suggested (see Laha ez al. (1988)) that, in a trace of tens of
millions of memory references, it is adequate to have several thousand events per
sample. The corresponding sampling interval then should be chosen to provide
enough samples such that 5-10% of the entire trace is recorded. These results,
however, appear to be somewhat dependent on the size of the cache being simu-
lated. The bottom line is that, while trace sampling appears to be a reasonable
technique for reducing the size of the trace that must be stored, a solid theoretical
basis still needs to be developed before it can be considered ‘standard practice.’

Indirect and ad hoc measurements

Sometimes the performance metric we need is difficult, if not impossible, to
measure directly. In this case, we have to rely on our ingenuity to develop an
ad hoc technique to somehow derive the information indirectly. For instance,
perhaps we are not able to directly measure the desired quantity, but we may be
able to measure another related value directly. We may then be able to deduce
the desired value from these other measured values.

For example, suppose that we wish to determine how much load a particular
application program puts on a system when it is executed. We then may want to
make changes to the program to see how they affect the system load. The first
question we need to confront in this experiment is that of establishing a defini-
tion for the ‘system load.’

There are many possible definitions of the system load, such as the number of
jobs on the run queue waiting to be executed, to name but one. In our case,
however, we are interested in how much of the processor’s available time is spent
executing our application program. Thus, we decide to define the average system
load to be the fraction of time that the processor is busy executing users’ appli-
cation programs.

If we had access to the source code of the operating system, we could directly
measure this time by modifying the process scheduler. However, it is unlikely
that we will have access to this code. An alternative approach is to directly
measure how much time the processor spends executing an ‘idle’ process that
we create. We then use this direct measurement of idle time to deduce how much

105

6.6

6.6 Perturbations due to measuring

time the processor must have been busy executing real application programs
during the given measurement interval.

Specifically, consider an ‘idle’ program that simply counts up from zero for a
fixed period of time. If this program is the only application running on a single
processor of a time-shared system, the final count value at the end of the mea-
surement interval is the value that indirectly corresponds to an unloaded pro-
cessor. If two applications are executed simultaneously and evenly share the
processor, however, the processor will run our idle measurement program half
as often as when it was the only application running. Consequently, if we allow
both programs to run for the same time interval as when we ran the idle program
by itself, its total count value at the end of the interval should be half of the value
observed when only a single copy was executed.

Similarly, if three applications are executed simultaneously and equally share
the processor for the same measurement interval, the final count value in our idle
program should be one-third of the value observed when it was executed by
itself. This line of thought can be further extended to n application programs
simultaneously sharing the processor. After calibrating the counter process by
running it by itself on an otherwise unloaded system, it can be used to indirectly
measure the system load.

Example. In a time-shared system, the operating system will share a single
processor evenly among all of the jobs executing in the system. Each available
job is allowed to run for the time slice T,. After this interval, the currently
executing job is temporarily put to sleep, and the next ready job is switched in
to run. Indirect load monitoring takes advantage of this behavior to estimate the
system load. Initially, the load-monitor program is calibrated by allowing it to
run by itself for a time 7', as shown in Figure 6.12(a). At the end of this time, its
counter value, n, is recorded. If the load monitor and another application are run
simultaneously so that in total two jobs are sharing the processor, as shown in
Figure 6.12(b), each job would be expected to be executing for half of the total
time available. Thus, if the load monitor is again allowed to run for time 7', we
would expect its final count value to be /2. Similarly, running the load monitor
with two other applications for time 7 would result in a final count value of n/3,
as shown in Figure 6.12(c). Consequently, knowing the value of the count after
running the load monitor for time 7" allows us to deduce what the average load
during the measurement interval must have been O

Perturbations due to measuring

One of the curious (and certainly most annoying!) aspects of developing tools to
measure computer-systems performance is that instrumenting a system or pro-

106

Measurement tools and techniques

T

(a) Load monitor Count=n

(b) Load monitor —5_______%_______% _______ Count = 1/2
Application 1 F------- -—- _______ a—.. _______

(¢) Load monitor f—— i Lo b Count = n/3
Application 1 |------- - Fm————— —_—————-
Application 2 F======="------- b

: S : :

Figure 6.12 An example of using an indirect measurement technique to estimate the
average system load in a time-shared system. The solid lines indicate when each application
is running.

gram changes what we are trying to measure. Obtaining more information, or
obtaining higher resolution measurements, for instance, requires more instru-
mentation points in a program. However, more instrumentation causes there
to be more perturbations in the program than there are in its uninstrumented
execution behavior. These additional perturbations due to the additional instru-
mentation then make the data we collect less reliable. As a result, we are almost
always forced to use insufficient data to infer the behavior of the system in which
we are interested.

To further confound the situation, performance perturbations due to instru-
mentation are nonlinear and nonadditive. They are nonlinear in the sense that
doubling the amount of instrumentation in a program will not necessarily double
its impact on performance, for instance. Similarly, instrumentation perturbation
is nonadditive in the sense that adding more instrumentation can cancel out the
perturbation effects of other instrumentation. Or, in some situations, additional
instrumentation can multiplicatively increase the perturbations.

For example, adding code to an application program to generate an instruc-
tion trace can significantly change the spatial and temporal patterns of its mem-
ory accesses. The trace-generation code will cause a large number of extra store
instructions to be executed, for instance, which can cause the cache to be effec-
tively flushed at each trace point. These frequent cache flushes will then increase
the number of caches missed, which will substantially impact the overall perfor-
mance. If additional instrumentation is added, however, it may be possible that

107

6.7

6.7 Summary

the additional memory locations necessary for the instrumentation could change
the pattern of conflict misses in the cache in such a way as to actually improve
the cache performance perceived by the application. The bottom line is that
the effects of adding instrumentation to a system being tested are entirely
unpredictable.

Besides these direct changes to a program’s performance, instrumenting a
program can cause more subtle indirect perturbations. For example, an instru-
mented program will take longer to execute than will the uninstrumented pro-
gram. This increase in execution time will then cause it to experience more
context switches than it would have experienced if it had not been instrumented.
These additional context switches can substantially alter the program’s paging
behavior, for instance, making the instrumented program behave substantially
differently than the uninstrumented program.

Summary

Event-driven measurement tools record information about the system being
tested whenever some predefined event occurs, such as a page fault or a network
operation, for instance. The information recorded may be a simple count of the
number of times the event occurred, or it may be a portion of the system’s state
at the time the event occurred. A time-ordered list of this recorded state infor-
mation is called a trace. While event-driven tools record all occurrences of the
defined events, sampling tools query some aspect of the system’s state at fixed
time intervals. Since this sampling approach will not record every event, it pro-
vides a statistical view of the system. Indirect measurement tools are used to
deduce some aspect of a system’s performance that it is difficult or impossible to
measure directly.

Some perturbation of a system’s behavior due to instrumentation is unavoid-
able. Furthermore, and more difficult to compensate for, perhaps, is the unpre-
dictable relationship between the instrumentation and its impact on
performance. Through experience and creative use of measurement techniques,
the performance analyst can try to minimize the impact of these perturbations, or
can sometimes compensate for their effects.

It is important to bear in mind, though, that measuring a system alters it.
While you would like to measure a completely uninstrumented program, what
you actually end up measuring is the instrumented system. Consequently, you
must always remain alert to how these perturbations may bias your measure-
ments and, ultimately, the conclusions you are able to draw from your
experiments.

108

6.8

Measurement tools and techniques

For further reading

There is an extensive body of literature dealing with program tracing and a very

large variety of tools has been developed. Although the following references only

begin to scratch the surface of this field, they should provide you with some
useful starting points.

e The Lempel-Ziv data-compression algorithm, on which many data compres-
sion programs have been based, is described in
Terry A. Welch, ‘A Technique for High Performance Data Compression,’

IEEE Computer, Vol. 17, No. 6, June 1984, pp. 8-19.

e The abstract-execution idea, which was developed by James Larus, is
described in the following papers, along with some related ideas. These papers
also provide a good summary of the program-tracing process in general.
James R. Larus, ‘Efficient Program Tracing,” IEEE Computer, Vol. 26, No. 5,

May 1993, pp. 52-61.

James R. Larus, ‘Abstract Execution: A Technique for Efficiently Tracing
Programs,” Software Practices and Experience, Vol. 20, No. 12, December
1990, pp 1241-1258.

Thomas Ball and James R. Larus, ‘Optimally Profiling and Tracing
Programs,” ACM SIGPLAN-SIGACT Principles of Programming
Languages (POPL), January 1992, pp. 59-70.

e This paper talks about some of the problems encountered when trying to trace
applications running on multiprocessor systems, and describes the various
types of perturbations that can occur due to tracing.

Allen D. Malony and Daniel A. Reed, ‘Performance Measurement Intrusion
and Perturbation Analysis,” IEEE Transactions on Parallel Distributed
Systems, Vol. 3, No. 4, July 1992, pp. 433-450.

e Paradyn is an interesting set of performance tools for parallel- and distribu-
ted-computing systems. The following paper provides a good overview of
these tools:

Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna
Kunchithapadam, and Tia Newhall. ‘The Paradyn Parallel Performance
Measurement Tools,” IEEE Computer, Vol. 28, No. 11, November 1995,
pp. 37-46.

o The idea behind the indirect-load-measurement technique was presented in
Edward D. Lazowska, John Zahorjan, David R. Cheriton, and Willy

Zwaenepoel, ‘File Access Performance of Diskless Workstations,” IEEE
Transactions on Software Engineering, Vol. 4, No. 3, August 1986, pp.
238-268.

109

6.9

6.9 Exercises

The SimOS tool, described in the following paper, is an interesting example of
how to trace an entire computer system, including both the application pro-
gram and the operating system:

Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta,
‘Complete Computer Simulation: The SimOS Approach,” IEEE Parallel
and Distributed Technology, Fall 1995.

The idea of sampling traces to reduce the amount of trace information that

must be collected and stored is described in

Subhasis Laha, Janak H. Patel, and Ravishankar K. Iyer, ‘Accurate Low-
Cost Methods for Performance Evaluation of Cache Memory Systems,’
IEEE Transactions on Computers, Vol. 37, No. 11, November 1998, pp.
1325-1336.

Exercises

. Determine the maximum time between rollovers for the interval timer avail-

able on your system.

What are the most important differences between tracing and basic-block
counting?

Develop a technique for measuring the time a processor spends waiting for
input/output requests.

4. Develop a technique for determining the associativity of a cache.

()]

Measure the overhead of the interval timer on your system.

How would you measure the average number of jobs running on a time-
shared system?

What interrupt period is needed to ensure that each of the 12 subroutines of
a program that runs for 30 s has a 99% chance of having at least ten
samples? Assume that each subroutine executes for at least 5% of the
total time.

. Use a program counter-sampling tool to compare the differences in perfor-

mance between two versions of some appropriate benchmark program.
Repeat your comparisons using a basic-block-counting tool. Compare and
contrast the results you obtain when using these two different types of tools
to profile the execution of this program. For instance, what are the funda-
mental differences between the techniques used by the basic-block-counting
tool and those used by the sampling tool? How do the differences between
these two tools affect your comparisons of the two versions of the bench-
mark program?

Compare the time penalties and the storage requirements of the various
trace-compression techniques.

110

Measurement tools and techniques

10.

11.

12.

13.

Are there any pathological situations in which these trace compression tech-
niques can backfire and actually expand the input data set?
Devise an experiment to determine the following parameters of a computer
system with a data cache:
(a) the memory delay observed by the processor on a data-cache hit, and
(b) the memory delay observed by the processor on a data-cache miss.
Then
(c) construct a simple model of the average memory delay observed by a
program, given its hit-or-miss ratio. Use the parameters you measured
above.
Write a test program that you can use to control the miss-ratio obtained in a
system with a data cache. Use this program to validate the model of the
average memory delay developed above. That is, measure the execution time
of your test program and compare it with the time predicted by your model.
What simplifications and approximations are you implicitly making? How
could you improve your model or your test program? Hint: think about
measuring the time required to scan through a large array with a fixed stride
(the stride is the number of elements between successive references to the
array — a stride of one accesses every element sequentially, a stride of two
accesses every second element, a stride of three accesses every third element,
and so on). By varying the stride, you should be able to determine the cache-
block size. Then, knowing the block size, you can determine the miss ratio.
Section 6.5 discussed a technique for indirectly measuring the system load.
(a) Write a program to perform this counting process.
(b) Calibrate your counter by running two copies of it simultaneously. Show
the results of your calibration with appropriate confidence intervals.
(c) Use your counter process to determine how the load on a system varies
over the course of day on a large time-shared system. For instance, you
might try measuring the system load for 1 min every hour on each of
several different days. Plot this system load as a function of time. Include
appropriate error bars for each of the data points on your plot to give an
indication of the variance in your measurements. (These error bars are
simply the end-points of the confidence interval for each measured data
point. Note that you must repeat the experiment several times to obtain
enough independent measurements to generate a confidence interval.)

