
 !easure"ent too#s and tec$ni%ues

` hen the only tool you have is a hammer, every problem begins to resemble a nail.'

 !ra"am Mas#o$

The previous chapters have discussed what performance metrics may be useful

for the performance analyst, how to summarize measured data, and how to

understand and quantify the systematic and random errors that affect our

measurements. !ow that we know what to do with our measured values,

this chapter presents several tools and techniques for actually measuring the

values we desire.

The focus of this chapter is on fundamental measurement concepts. The goal is

not to teach you how to use speci"c measurement tools, but, rather, to help you

understand the strengths and limitations of the various measurement techniques.

#y the end of this chapter, you should be able to select an appropriate measure-

ment technique to determine the value of a desired performance metric. $ou also

should have developed some understanding of the trade-offs involved in using

the various types of tools and techniques.

 &' ()ents and "easure"ent strategies

There are many different types of performance metrics that we may wish to

measure. The different strategies for measuring the values of these metrics are

typically based around the idea of an e%ent, where an event is some prede"ned

change in the system state. The precise de"nition of a speci"c event is up to the

performance analyst and depends on the metric being measured. %or instance, an

event may be de"ned to be a memory reference, a disk access, a network com-

munication operation, a change in a processor's internal state, or some pattern or

combination of other subevents.

 !

 &'&' ()ents*t+pe c#assi,cation

The different types of metrics that a performance analyst may wish to measure

can be classi"ed into the following categories based on the type of event or events

that comprise the metric.

&. Event count metrics. (etrics that fall into this category are those that are

simple counts of the number of times a speci"c event occurs.)xamples of

event-count metrics include the number of page faults in a system with

virtual memory, and the number of disk input*output requests made by a

program.

+. Secondary event metrics. These types of metrics record the values of some

secondary parameters whenever a given event occurs. %or instance, to deter-

mine the average number of messages queued in the send buffer of a com-

munication port, we would need to record the number of messages in the

queue each time a message was added to, or removed from, the queue. Thus,

the triggering event is a message-enqueue or -dequeue operation, and the

metrics being recorded are the number of messages in the queue and the total

number of queue operations. e may also wish to record the size /e.g. the

number of bytes0 of each message sent to later determine the average mes-

sage size.

1. Pro!les. A pro"le is an aggregate metric used to characterize the overall

behavior of an application program or of an entire system. Typically, it is

used to identify where the program or system is spending its execution time.

 &'&- !easure"ent strategies

The above event-type classi"cation can be useful in helping the performance

analyst decide on a speci"c strategy for measuring the desired metric, since

different types of measurement tools are appropriate for measuring different

types of events. These different measurement tools can be categorized on the

basis of the fundamental strategy used to determine the actual values of the

metrics being measured. 2ne important concern with any measurement strategy

is how much it pertur!s the system being measured. This aspect of performance

measurement is discussed further in 3ection 4.4.

&. Event driven. An event-driven measurement strategy records the information

necessary to calculate the performance metric whenever the preselected event

or events occur. The simplest type of event-driven measurement tool uses a

simple counter to directly count the number of occurrences of a speci"c event.

%or example, the desired metric may be the number of page faults that occur

during the execution of an application program. To "nd this value, the per-

formance analyst most likely would have to modify the page-fault-handling

"#$ %&ents an' measurement strategies (

routine in the operating system to increment a counter whenever the routine is

entered. At the termination of the program's execution, an additional

mechanism must be provided to dump the contents of the counter.

2ne of the advantages of an event-driven strategy is that the system overhead

required to record the necessary information is incurred only when the event

of interest actually occurs. 5f the event never occurs, or occurs only infre-

quently, the perturbation to the system will be relatively small. This charac-

teristic can also be a disadvantage, however, when the events being monitored

occur very frequently.

 hen recording high-frequency events, a great deal of overhead may be

introduced into a program's execution, which can signi"cantly alter the pro-

gram's execution behavior compared with its uninstrumented execution. As a

result, what the measurement tool measures need not re6ect the typical or

average behavior of the system. %urthermore, the time between measurements

depends entirely on when the measured events occur so that the inter-event

time can be highly variable and completely unpredictable. This can increase

the dif"culty of determining how much the measurement tool actually per-

turbs the executing program.)vent-driven measurement tools are usually

considered most appropriate for low-frequency events.

+. "racing. A tracing strategy is similar to an event-driven strategy, except that,

rather than simply recording that fact that the event has occurred, some

portion of the system state is recorded to uniquely identify the event. %or

example, instead of simply counting the number of page faults, a tracing

strategy may record the addresses that caused each of the page faults. This

strategy obviously requires signi"cantly more storage than would a simple

count of events. Additionally, the time required to save the desired state,

either by storing it within the system's memory or by writing to a disk, for

instance, can signi"cantly alter the execution of the program being measured.

1. Sampling. 5n contrast to an event-driven measurement strategy, a sampling

strategy records at "xed time intervals the portion of the system state neces-

sary to determine the metric of interest. As a result, the overhead due to this

strategy is independent of the number of times a speci"c event occurs. 5t is

instead a function of the sampling frequency, which is determined by the

resolution necessary to capture the events of interest.

The sampling of the state of the system occurs at "xed time intervals that are

independent of the occurrence of speci"c events. Thus, not every occurrence

of the events of interest will be recorded. 7ather, a sampling strategy produces

a statistical summary of the overall behavior of the system. 8onsequently,

events that occur infrequently may be completely missed by this statistical

approach. %urthermore, each run of a sampling-based experiment is likely to

produce a different result since the samples occur asynchronously with respect

Measurement too)s an' tec*ni+ues ,

to a program's execution. !evertheless, while the exact behavior may differ,

the statistical behavior should remain approximately the same.

9. Indirect. An indirect measurement strategy must be used when the metric that

is to be determined is not directly accessible. 5n this case, you must "nd

another metric that can be measured directly, from which you then can

deduce or derive the desired performance metric. :eveloping an appropriate

indirect measurement strategy, and minimizing its overhead, relies almost

completely on the cleverness and creativity of the performance analyst.

The unique characteristics of these measurement strategies make them more or

less appropriate for different situations. ;rogram tracing can provide the most

detailed information about the system being monitored. An event-driven mea-

surement tool, on the other hand, typically provides only a higher-level summary

of the system behavior, such as overall counts or average durations. The infor-

mation supplied both by an event-driven measurement tool and by a tracing tool

is exact, though, such as the precise number of times a certain subroutine is

executed. 5n contrast, the information provided by a sampling strategy is statis-

tical in nature. Thus, repeating the same experiment with an event-driven or

tracing tool will produce the same results each time whereas the results produced

with a sampling tool will vary slightly each time the experiment is performed.

The system resources consumed by the measurement tool itself as it collects

data will strongly affect how much perturbation the tool will cause in the system.

As mentioned above, the overhead of an event-driven measurement tool is

directly proportional to the number of occurrences of the event being measured.

)vents that occur frequently may cause this type of tool to produce substantial

perturbation as a byproduct of the measurement process. The overhead of a

sampling-based tool, however, is independent of the number of times any speci"c

event occurs. The perturbation caused by this type of tool is instead a function of

the sampling interval, which can be controlled by the experimenter or the tool

builder. A trace-based tool consumes the largest amount of system resources,

requiring both processor resources /i.e. time0 to record each event and potentially

enormous amounts of storage resources to save each event in the trace. As a

result, tracing tends to produce the largest system perturbation.

)ach indirect measurement tool must be uniquely adapted to the particular

aspect of the system performance it attempts to measure. Therefore, it is impos-

sible to make any general statements about a measurement tool that makes use

of an indirect strategy. The key to implementing a tool to measure a speci"c

performance metric is to match the characteristics of the desired metric with the

appropriate measurement strategy. 3everal of the fundamental techniques that

have been used for implementing the various measurement strategies are

described in the following sections.

"#$ %&ents an' measurement strategies -

 &- .nter)a# ti"ers

2ne of the most fundamental measuring tools in computer-system performance

analysis is the inter%a# timer. An interval timer is used to measure the execution

time of an entire program or any section of code within a program. 5t can also

provide the time basis for a sampling measurement tool. Although interval

timers are relatively straightforward to use, understanding how an interval

timer is constructed helps the performance analyst determine the limitations

inherent in this type of measurement tool.

5nterval timers are based on the idea of counting the number of clock pulses

that occur between two prede"ned events. These events are typically identi"ed by

inserting calls to a routine that reads the current timer count value into a pro-

gram at the appropriate points, such as shown previously in the example in

%igure +.&. There are two common implementations of interval timers, one

using a hardware counter, and the other based on a software interrupt.

#ard$are timers. The hardware-based interval timer shown in %igure 4.&

simply counts the number of pulses it receives at its clock input from a free-

running clock source. The counter is typically reset to < when the system is "rst

powered up so that the value read from the counter is the number of clock ticks

that have occurred since that time. This value is used within a program by

reading the memory location that has been mapped to this counter by the man-

ufacturer of the system.

Assume that the value read at the start of the interval being measured is & and

the value read at the end of the interval is +. Then the total time that has elapsed

between these two read operations is !e � � + ÿ &�!c, where !c is the period of

the clock input to the counter.

Soft$are timers. The primary difference between a software-interrupt-based

interval timer, shown in %igure 4.+, and a hardware-based timer is that the

counter accessible to an application program in the software-based implementa-

Measurement too)s an' tec*ni+ues

%igure 4.& A hardware-based interval timer uses a free-running clock source to continuously

increment an n-bit counter. This counter can be read directly by the operating system or by

an application program. The period of the clock, !c, determines the resolution of the timer.

 "

tion is not directly incremented by the free-running clock. 5nstead, the hardware

clock is used to generate a processor interrupt at regular intervals. The interrupt-

service routine then increments a counter variable it maintains, which is the value

actually read by an application program. The value of this variable then is a

count of the number of interrupts that have occurred since the count variable

was last initialized. 3ome systems allow an application program to reset this

counter. This feature allows the timer to always start from zero when timing

the duration of an event.

The period of the interrupts in the software-based approach corresponds to

the period of the timer. As before, we denote this period !c so that the total time

elapsed between two readings of the software counter value is again

!e � � + ÿ &�!c. The processor interrupt is typically derived from a free-run-

ning clock source that is divided by m through a prescaling counter, as shown in

%igure 4.+. This prescaler is necessary in order to reduce the frequency of the

interrupt signal fed into the processor. 5nterrupts would occur much too often,

and thus would generate a huge amount of processor overhead, if this prescaling

were not done.

"imer rollover. 2ne important consideration with these types of interval timers

is the number of bits available for counting. This characteristic directly deter-

mines the longest interval that can be measured. /The complementary issue of the

shortest interval that can be measured is discussed in 3ection 4.+.+.0 A binary

counter used in a hardware timer, or the equivalent count variable used in a

software implementation, is said to `roll over' to zero as its count undergoes a

transition from its maximum value of +n ÿ & to the zero value, where n is the

number of bits in the counter.

5f the counter rolls over between the reading of the counter at the start of the

interval being measured and the reading of the counter at the end, the difference

of the count values, + ÿ &, will be a negative number. This negative value is

obviously not a valid measurement of the time interval. Any program that uses

an interval timer must take care to ensure that this type of roll over can never

occur, or it must detect and, possibly, correct the error. !ote that a negative

value that occurs due to a single roll over of the counter can be converted to the

appropriate value by adding the maximum count value, +n, to the negative value

"#! .nter&a) timers

%igure 4.+ A software interrupt-based timer divides down a free-running clock to produce

a processor interrupt with the period !c. The interrupt service routine then maintains a

counter variable in memory that it increments each time the interrupt occurs.

 /

obtained when subtracting & from +. Table 4.& shows the maximum time

between timer roll overs for various counter widths and input clock periods.

 &-&' /i"er o)er$ead

The implementation of an interval timer on a speci"c system determines how the

timer must be used. 5n general, though, we can think of using an interval timer to

measure any portion of a program, much as we would use a stopwatch to time a

runner on a track, for instance. 5n particular, we typically would use an interval

time within a program as follows=

x start = read timer();

!e"ent #ein$ timed%

x end = read timer();

ela&sed time = (x end ' x start) * t cycle;

 hen it is used in this way, we can see that the time we actually measure

includes more than the time required by the event itself. 3peci"cally, accessing

the timer requires a minimum of one memory-read operation. 5n some imple-

mentations, reading the timer may require as much as a call to the operating-

system kernel, which can be very time-consuming. Additionally, the value read

from the timer must be stored somewhere before the event being timed begins.

This requires at least one store operation, and, in some systems, it could

require substantially more. These operations must be performed twice, once

at the start of the event, and once again at the end. Taken altogether, these

operations can add up to a signi"cant amount of time relative to the duration

of the event itself.

To obtain a better understanding of this timer overhead, consider the time

line shown in %igure 4.1. Here, !& is the time required to read the value of the

interval timer's counter. 5t may be as short as a single memory read, or as long

as a call into the operating-system kernel. !ext, !+ is the time required to store

the current time. This time includes any time in the kernel after the counter has

been read, which would include, at a minimum, the execution of the return

instruction. Time !1 is the actual duration of the event we are trying to

measure. %inally, the time from when the event ends until the program actually

reads the counter value again is !9. !ote that reading the counter this second

time involves the same set of operations as the "rst read of the counter so that

!9 � !&.

Assigning these times to each of the components in the timing operation now

allows us to compare the timer overhead with the time of the event itself, which is

what we actually want to know. This event time, !e is time !1 in our time line, so

that !e � !1. hat we measure, however, is !m � !+ � !1 � !9. Thus, our

Measurement too)s an' tec*ni+ues

desired measurement is !e � !m ÿ �!+ � !9� � !m ÿ �!& � !+�, since !9 � !&.

 e call !& � !+ the timer o%er"ea& and denote it !ovhd.

5f the interval being measured is substantially larger than the timer overhead,

then the timer overhead can simply be ignored. 5f this condition is not satis"ed,

though, then the timer overhead should be carefully measured and subtracted

from the measurement of the event under consideration. 5t is important to

recognize, however, that variations in measurements of the timer overhead itself

can often be quite large relative to variations in the times measured for the event.

As a result, measurements of intervals whose duration is of the same order of

magnitude as the timer overhead should be treated with great suspicion. A good

rule of thumb is that the event duration, !e, should be &<<>&,<<< times larger

than the timer overhead, !ovhd.

"#! .nter&a) timers

0a1)e "#$!e ma"imum time availa#le #efore a #inary interval timer $it! #its and an

input cloc% $it! a period of !c rolls over is !c&

!c

8ounter width, n

&4 +9 1+ 9? 49

&< ns 4@@ s &4? ms 9+.B s 1+.4 days @?.@ centuries

&<< ns 4.@@ ms &.4? s C.&4 min 1+4 days @?@ centuries

& s 4@.@ ms &4.? s &.&B h B.&@ years @,?@< centuries

&< s 4@@ ms +.? min &&.B h ?B.1 years @?,@<< centuries

&<< s 4.@@ s +?.< min 9.BC days ?B1 years @?@,<<< centuries

& ms &.<B min 9.44 h 9B.C days ?B.1 centuries @,?@<,<<< centuries

%igure 4.1 The overhead incurred when using an interval timer to measure the execution

time of any portion of a program can be understood by breaking down the operations

necessary to use the timer into the components shown here.

 2

 &-&- 0uanti1ation errors

The smallest change that can be be detected and displayed by an interval timer is

its reso#ution. This resolution is a single clock tick, which, in terms of time, is the

period of the timer's clock input, !c. This "nite resolution introduces a random

'uanti(ation error into all measurements made using the timer.

%or instance, consider an event whose duration is n ticks of the clock input,

plus a little bit more. That is, !e � n!c � , where n is a positive integer and

< !c. 5f, when one is measuring this event, the timer value is read

shortly after the event has actually begun, as shown in %igure 4.9/a0, the

timer will count n clock ticks before the end of the event. The total execution

time reported then will be n!c. 5f, on the other hand, there is slightly less time

between the actual start of the event and the point at which the timer value is

read, as shown in %igure 4.9/b0, the timer will count n� & clock ticks before

the end of the event is detected. The total time reported in this case will then be

�n� &�!c.

5n general, the actual event time is within the range n!c !e �n� &�!c.

Thus, the fact that events are typically not exactly whole number factors of the

timer's clock period causes the time value reported to be rounded either up or

down by one clock period. This rounding is completely unpredictable and is one

readily identi"able /albeit possibly small0 source of random errors in our mea-

surements /see 3ection 9.+0. Dooking at this quantization effect another way, if we

made ten measurements of the same event, we would expect that approximately

"ve of them would be reported as n!c with the remainder reported as �n� &�!c. 5f

!c is large relative to the event being measured, this quantization effect can make

it impossible to directly measure the duration of the event. 8onsequently, we

typically would like !c to be as small as possible, within the constraints imposed

by the number of bits available in the timer /see Table 4.&0.

Measurement too)s an' tec*ni+ues

%igure 4.9 The "nite resolution of an interval timer causes quantization of the reported

duration of the events measured.

23

 &-&2 3tatistica# "easures o4 s$ort inter)a#s

2wing to the above quantization effect, we cannot directly measure events whose

durations are less than the resolution of the timer. 3imilarly, quantization makes

it dif"cult to accurately measure events with durations that are only a few times

larger than the timer's resolution. e can, however, make many measurements

of a short duration event to obtain a statistical estimate of the event's duration.

8onsider an event whose duration is smaller than the timer's resolution, that

is, !e !c. 5f we measure this interval once, there are two possible outcomes. 5f

we happen to start our measurement such that the event straddles the active edge

of the clock that drives the timer's internal counter, as shown in %igure 4.@/a0, we

will see the clock advance by one tick. 2n the other hand, since !e !c, it is

entirely possible that the event will begin and end within one clock period, as

shown in %igure 4.@/b0. 5n this case, the timer will not advance during this

measurement. Thus, we have a #ernoulli experiment whose outcome is & with

probability ", which corresponds to the timer advancing by one tick while are

measuring the event. 5f the clock does not advance, though, the outcome is < with

probability &ÿ ".

7epeating this measurement n times produces a distribution that approximates

a binomial distribution. /5t is only approximate since, for a true binomial dis-

"#! .nter&a) timers

%igure 4.@ hen one is measuring an event whose duration is less than the resolution of

the interval timer, that is, !e !c, there are two possible outcomes for each measurement.

)ither the event happens to straddle the active edge of the timer's clock, in which case the

counter advances by one tick, or the event begins and completes between two clock edges.

5n the latter case, the interval timer will show the same count value both before and after

the event. (easuring this event multiple times approximates a binomial distribution.

2$

tribution, each of the n measurements must be independent. However, in a real

system it is possible that obtaining an outcome of < in one measurement makes it

more likely that one will obtain a < in the next measurement, for instance.

!evertheless, this approximation appears to work well in practice.0 5f the num-

ber of outcomes that produce & is m, then the ratio m!n should approximate the

ratio of the duration of the event being measured to the clock period, !e!!c.

Thus, we can estimate the average duration of this event to be

!e �
m

n
!c: �4:&�

 e can then use the technique for calculating a con"dence interval for a propor-

tion /see 3ection 9.9.10 to obtain a con"dence interval for this average event

time.&

Example. e wish to measure an event whose duration we suspect is less than

the 9< s resolution of our interval timer. 2ut of n � &<"9?+ measurements of

this event, we "nd that the clock actually advances by one tick during m � ?@+ of

them. %or a B@E con"dence level, we construct the interval for the ratio m!n �

?@+!&<"9?+ as follows=

�#&" #+� �
?@+

&<"9?+
 �&:B4�

����������������������������������

?@+
&<"9?+

&ÿ ?@+
&<"9?+

 !

&<"9?+

"

#

#

$

� �<:<C?4" <:<?9<�: �4:+�

3caling this interval by the timer's clock period gives us the B@E con"dence

interval �1:&9" 1:14� s for the duration of this event. ^

 &2 5rogra" pro,#ing

A pro)#e provides an overall view of the execution behavior of an application

program. (ore speci"cally, it is a measurement of how much time, or the frac-

tion of the total time, the system spends in certain states. A pro"le of a program

can be useful for showing how much time the program spends executing each of

its various subroutines, for instance. This type of information is often used by a

programmer to identify those portions of the program that consume the largest

fraction of the total execution time. 2nce the largest time consumers have been

identi"ed, they can, one assumes, be enhanced to thereby improve performance.

3imilarly, when a pro"le of an entire system multitasking among several dif-

ferent applications is taken, it can be used by a system administrator to "nd

system-level performance bottlenecks. This information can be used in turn to

Measurement too)s an' tec*ni+ues

& The basic idea behind this technique was "rst suggested by ;eter H. :anzig and 3teve (elvin in an
unpublished technical report from the Fniversity of 3outhern 8alifornia.

2!

tune the performance of the overall system by adGusting such parameters as

buffer sizes, time-sharing quanta, disk-access policies, and so forth.

There are two distinct techniques for creating a program pro"le > program-

counter /;80 sampling and basic-block counting. 3ampling can also be used to

generate a pro"le of a complete system.

 &2&' 56 sa"p#ing

*amp#ing is a general statistical measurement technique in which a subset /i.e. a

sample0 of the members of a population being examined is selected at random.

The information of interest is then gathered from this subset of the total popula-

tion. 5t is assumed that, since the samples were chosen completely at random, the

characteristics of the overall population will approximately follow the same

proportions as do the characteristics of the subset actually measured. This

assumption allows conclusions about the overall population to be drawn on

the basis of the complete information obtained from a small subset of this

population.

 hile this traditional population sampling selects all of the samples to be

tested at /essentially0 the same time, a slightly different approach is required

when using sampling to generate a pro"le of an executing program. 5nstead of

selecting all of the samples to be measured at once, samples of the executing

program are taken at "xed points in time. 3peci"cally, an external periodic signal

is generated by the system that interrupts the program at "xed intervals.

 henever one of these interrupts is detected, appropriate state information is

recorded by the interrupt-service routine.

%or instance, when one is generating a pro"le for a single executing program,

the interrupt-service routine examines the return-address stack to "nd the

address of the instruction that was executing when the interrupt occurred.

Fsing symbol-table information previously obtained from the compiler or

assembler, this program-instruction address is mapped onto a speci"c subroutine

identi"er, $. The value $ is used to index into a single-dimensional array, %, to

then increment the element %$ by one. 5n this way, the interrupt-service routine

generates a histogram of the number of times each subroutine in the program

was being executed when the interrupt occurred.

The ratio %$!n is the fraction of the program's total execution time that it

spent executing in subroutine $, where n is the total number of interrupts that

occurred during the program's execution. (ultiplying the period of the interrupt

by these ratios provides an estimate of the total time spent executing in each

subroutine.

5t is important to remember that sampling is a statistical process in which the

characteristics of an entire population /in our present situation, the execution

"#(4rogram profi)ing2(

behavior of an entire program or system0 are inferred from a randomly selected

subset of the overall population. The calculated values of these inferences are,

therefore, subGect to random errors. !ot surprisingly, we can calculate a con-

"dence interval for these proportions to obtain a feel for the precision of our

sampling experiment.

Example. 3uppose that we use a sampling tool that interrupts an executing

program every !c � &< ms. 5ncluding the time required to execute the interrupt-

service routine, the program executes for a total of ? s. 5f %I � &+ of the n � ?<<

samples "nd the program counter somewhere in subroutine I when the interrupt

occurred, what is the fraction of the total time the program spends executing this

subroutineJ

3ince there are ?<< samples in total, we conclude that the program spends

&.@E /&+!?<< � <:<&@0 of its time in subroutine I. Fsing the procedure from

3ection 9.9.1, we calculate a BBE con"dence interval for this proportion to be

�#&" #+� � <:<&@ +:@C4

����������������������������������

<:<&@�&ÿ <:<&@�

?<<

%

� �<:<<1B" <:<+4&�: �4:1�

3o, with BBE con"dence, we estimate that the program spends between <.1BE

and +.4E of its time executing subroutine I. (ultiplying by the period of the

interrupt, we estimate that, out of the ? s the program was executing, there is a

BBE chance that it spent between 1& /<:<<1B! ?0 and +&< /<:<+4&! ?0 ms

executing subroutine I. ^

The con"dence interval calculated in the above example produces a rather

large range of times that the program could be spending in subroutine I. ;ut

in other terms, if we were to repeat this experiment several times, we would

expect that, in BBE of the experiments, from three to +& of the ?<< samples

would come from subroutine I. hile this C = & range of possible execution

times appears large, we estimate that subroutine I still accounts for less than

1E of the total execution time. Thus, we most likely would start our program-

tuning efforts on a routine that consumes a much larger fraction of the total

execution time.

This example does demonstrate the importance of having a suf"cient number

of samples in each state to produce reliable information, however. To reduce the

size of the con"dence interval in this example we need more samples of each

event. 2btaining more samples per event requires either sampling for a longer

period of time, or increasing the sampling rate. 5n some situations, we can simply

let the program execute for a longer period of time. This will increase the total

number of samples and, hence, the number of samples obtained for each sub-

routine.

3ome programs have a "xed duration, however, and cannot be forced to

execute for a longer period. 5n this situation, we can run the program multiple

Measurement too)s an' tec*ni+ues2,

times and simply add the samples from each run. The alternative of increasing

the sampling frequency will not always be possible, since the interrupt period is

often "xed by the system or the pro"ling tool itself. %urthermore, increasing the

sampling frequency increases the number of times the interrupt-service routine is

executed, which increases the perturbation to the program. 2f course, each run

of the program must be performed under identical conditions. 2therwise, if the

test conditions are not identical, we are testing two essentially different systems.

8onsequently, in this case, the two sets of samples cannot be simply added

together to form one larger sample set.

5t is also important to note that this sampling procedure implicitly assumes

that the interrupt occurs completely asynchronously with respect to any events in

the program being pro"led. Although the interrupts occur at "xed, prede"ned

intervals, if the program events and the interrupt are asynchronous, the inter-

rupts will occur at random points in the execution of the program being sampled.

Thus, the samples taken at these points are completely independent of each

other. This sample independence is critical to obtaining accurate results with

this technique since any synchronism between the events in the program and

the interrupt will cause some areas of the program to be sampled more often than

they should, given their actual frequency of occurrence.

 &2&- 7asic*8#oc9 counting

The sampling technique described above provides a statistical pro"le of the

behavior of a program. An alternative approach is to produce an exact execution

pro"le by counting the number of times each !asic !#oc+ is executed. A basic

block is a sequence of processor instructions that has no branches into or out of

the sequence, as shown in %igure 4.4. Thus, once the "rst instruction in a block

begins executing, it is assured that all of the remaining instructions in the block

will be executed. The instructions in a basic block can be thought of as a com-

putation that will always be executed as a single unit.

A program's basic-block structure can be exploited to generate a pro"le by

inserting into each basic block additional instructions. These additional instruc-

tions simply count the number of times the block is executed. hen the program

terminates, these values form a histogram of the frequency of the basic-block

executions. Kust like the histogram produced with sampling, this basic-block

histogram shows which portions of the program are executed most frequently.

5n this case, though, the resolution of the information is at the basic-block level

instead of the subroutine level. 3ince a basic block executes as an indivisible unit,

complete instruction-execution-frequency counts can also be obtained from these

basic-block counts.

"#(4rogram profi)ing2-

2ne of the key differences between this basic-block pro"le and a pro"le gen-

erated through sampling is that the basic-block pro"le shows the e,act execution

frequencies of all of the instructions executed by a program. The sampling pro-

"le, on the other hand, is only a statistical estimate of the frequencies. Hence, if a

sampling experiment is run a second time, the precise execution frequences will

most likely be at least slightly different. A basic-block pro"le, however, will

produce exactly the same frequencies whenever the program is executed with

the same inputs.

Although the repeatability and exact frequencies of basic-block counting

would seem to make it the obvious pro"ling choice over a sampling-based pro-

"le, modifying a program to count its basic-block executions can add a substan-

tial amount of run-time overhead. %or instance, to instrument a program for

basic-block counting would require the addition of at least one instruction to

increment the appropriate counter when the block begins executing to each basic

block. 3ince the counters that need to be incremented must be unique for each

basic block, it is likely that additional instructions to calculate the appropriate

offset for the current block into the array of counters will be necessary.

5n most programs, the number of instructions in a basic block is typically

between three and +<. Thus, the number of instructions executed by the instru-

mented program is likely to increase by at least a few percent and possibly as

much as &<<E compared with the uninstrumented program. These additional

instructions can substantially increase the total running time of the program.

Measurement too)s an' tec*ni+ues

+, -./0 la -123 io#

1, l4 -+23 5(-12)

., addu -63 -+23 '+

7, s4 -63 5(-12)

2, la -83 io#

9, l4 -++3 5(-8)

/, #$e -++3 53 -.8

8, mo"e -73 -8

6, :al fil#uf

+5, mo"e -+/3 -1

++, -.80 la -+13 io#

, , ,

%igure 4.4 A basic block is a sequence of instructions with no branches into or out of the

block. 5n this example, one basic block begins at statement & and ends at statement C. A

second basic block begins at statement ? and ends at statement B. 3tatement &< is a basic

block consisting of only one instruction. 3tatement && begins another basic block since it is

the target of an instruction that branches to label $.8.

2"

%urthermore, the additional memory required to store the counter array, plus the

execution of the additional instructions, can cause other substantial perturba-

tions. %or instance, these changes to the program can signi"cantly alter its

memory behavior.

3o, while basic-block counting provides exact pro"le information, it does so at

the expense of substantial overhead. 3ampling, on the other hand, distributes its

perturbations randomly throughout a program's execution. Also, the total per-

turbation due to sampling can be controlled somewhat by varying the period of

the sampling interrupt interval. !evertheless, basic-block counting can be a

useful tool for precisely characterizing a program's execution pro"le. (any

compilers, in fact, have compile-time 6ags a user can set to automatically insert

appropriate code into a program as it is compiled to generate the desired basic-

block counts when it is subsequently executed.

 &: ()ent tracing

The information captured through a pro"ling tool provides a summary picture

of the overall execution of a program. An often-useful type of information that is

ignored in this type of pro"le summary, however, is the time-ordering of events.

A basic-block-counting pro"le can show the type and frequency of each of the

instructions executed, for instance, but it does not provide any information

about the order in which the instructions were executed. hen this sequencing

information is important to the analysis being performed, a program trace is the

appropriate choice.

A trace of a program is a dynamic list of the events generated by the program

as it executes. The events that comprise a trace can be any events that you can

"nd a way to monitor, such as a time-ordered list of all of the instructions

executed by a program, the sequence of memory addresses accessed by a pro-

gram, the sequence of disk blocks referenced by the "le system, the sizes and

destinations of all messages sent over a network, and so forth. The level of detail

provided in a trace is entirely determined by the performance analyst's ability to

gather the information necessary for the problem at hand.

Traces themselves can be analyzed to characterize the overall behavior of a

program, much as a pro"le characterizes a program's behavior. However, traces

are probably more typically used as the input to drive a simulator. %or instance,

traces of the memory addresses referenced by a program are often used to drive

cache simulators. 3imilarly, traces of the messages sent by an application pro-

gram over a communication network are often used to drive simulators for

evaluating changes to communication protocols.

"#, %&ent tracing2/

 &:&' /race generation

The overall tracing process is shown schematically in %igure 4.C. A tracing

system typically consists of two main components. The "rst is the application

being traced, which is the component that actually generates the trace. The

second main component is the trace consumer. This is the program, such as a

simulator, that actually uses the information being generated. 5n between the

trace generator and the consumer is often a large disk "le on which to store the

trace. 3toring the trace allows the consumer to be run many times against an

unchanging trace to allow comparison experiments without the expense of regen-

erating the trace. 3ince the trace can be quite large, however, it will not always be

possible or desirable to store the trace on an intermediate disk. 5n this case, it is

possible to consume the trace on#ine as it is generated.

A wide range of techniques have been developed for generating traces. 3everal

of these approaches are summarized below.

&. Source code modi!cation. ;erhaps the most straightforward approach for

generating a program trace is to modify the source code of the program to

be traced. %or instance, the programmer may add additional tracing state-

ments to the source code, as shown in %igure 4.?. hen the program is

subsequently compiled and executed, these additional program statements

will be executed, thereby generating the desired trace. 2ne advantage of

this approach is that the programmer can trace only the desired events.

This can help reduce the volume of trace data generated. 2ne maGor dis-

advantage is that inserting trace points is typically a manual process and is,

therefore, very time-consuming and prone to error.

+. Soft$are exceptions. 3ome processors have been constructed with a mode that

forces a software exception Gust before the execution of each instruction. The

Measurement too)s an' tec*ni+ues

%igure 4.C The overall process used to generate, store, and consume a program trace.

2

exception-processing routine can decode the instruction to determine its oper-

ands. The instruction type, address, and operand addresses and values can

then be stored for later use. This approach was implemented using the T-bit in

:igital)quipment 8orporation's LAI processor series and in the (otorola

4?<<< processor family.)xecuting with the trace mode enabled on these

processors slowed down a program's execution by a factor of about &,<<<.

"#, %&ent tracing

sum x = 5,5;

trace(+);

sum xx = 5,5;

trace(1);

for (i = +; i != n; i<<)

trace(.);

>

sum x <= x[i];

trace(7);

sum xx <= (x[i]*x[i]);

trace(2);

?

mean = sum x @ n;

trace(9);

"ar = ((n * sum xx) ' (sum x * sum x)) @ (n * (n'+));

trace(/);

std de" = sArt("ar);

trace(8);

B & = unit normal(+ ' (5,2 * al&Ca));

trace(6);

Calf int = B & * std de" @ sArt(n);

trace(+5);

c+ = mean ' Calf int;

trace(++);

c1 = mean < Calf int;

trace(+1);

/a0 The original source program with calls to the tracing routine inserted.

trace(i)

> &rint(i3time);?

/b0 The trace routine simply prints the statement number, i, and the current time.

%igure 4.? ;rogram tracing can be performed by inserting additional statements into the

source code to call a tracing subroutine at appropriate points.

22

1. Emulation. An emulator is a program that makes the system on which it

executes appear to the outside world as if it were something completely dif-

ferent. %or example, the Kava Lirtual (achine is a program that executes

application programs written in the Kava programming language by emulating

the operation of a processor that implements the Kava byte-code instruction

set. This emulation obviously slows down the execution of the application

program compared with direct execution. 8onceptually, however, it is a

straightforward task to modify the emulator program to trace the execution

of any application program it executes.

9. %icrocode modi!cation. 5n the days when processors executed microcode to

execute their instruction sets through interpretation, it was possible to modify

the microcode to generate a trace of each instruction executed. 2ne important

advantage of this approach was that it traced every instruction executed on

the processor, including operating-system code. This feature was especially

useful for tracing entire systems, including the interaction between the appli-

cation programs and the operating system. The lack of microcode on current

processors severely limits the applicability of this approach today.

@. Compiler modi!cation. Another approach for generating traces is to modify

the executable code produced by the compiler. 3imilar to what must be done

for generating basic-block counts, extra instructions are added at the start of

each basic block to record when the block is entered and which basic block is

being executed then. :etails about the contents of the basic blocks can be

obtained from the compiler and correlated to the dynamic basic-block trace to

produce a complete trace of all of the instructions executed by the application

program. 5t is possible to add this type of tracing facility as a compilation

option, or to write a post-compilation software tool that modi"es the execu-

table program generated by the compiler.

These trace-generation techniques are by no means the only ways in which

traces can be produced. 7ather, they are intended to give you a 6avor of the

types of approaches that have been used successfully in other trace-generation

systems. 5ndeed, new techniques are limited only by the imagination and crea-

tivity of the performance analyst.

 &:&- /race co"pression

2ne obvious concern when generating a trace is the execution-time slowdown

and other program perturbations caused by the execution of the additional tra-

cing instructions. Another concern is the volume of data that can be produced in

a very short time. %or example, say we wish to trace every instruction executed

by a processor that executes at an average rate of &<? instructions per second. 5f

Measurement too)s an' tec*ni+ues$33

each item in the trace requires &4 bits to encode the necessary information, our

tracing will produce more than &B< (bytes of data per uninstrumented second of

execution time, or more than && Mbytes per minuteN 5n addition to obtaining the

disks necessary to store this amount of data, the input*output operations

required to move this large volume of data from the traced program to the

disks create additional perturbations. Thus, it is desirable to reduce the amount

of information that must be stored.

&.'.(.) *nline trace consumption

2ne approach for dealing with these large data volumes is to consume the trace

on#ine. That is, instead of storing the trace for later use, the program that will be

driven by the trace is run simultaneously with the application program being

traced. 5n this way, the trace is consumed as it is generated so that it never needs

to be stored on disk at all.

A potential problem with online trace consumption in a multitasked /i.e. time-

shared0 system is the potential interdeterminate behavior of the program being

traced. 3ince system events occur asynchronously with respect to the traced

program, there is no assurance that the next time the program is traced the

exact same sequence of events will occur in the same relative time order. This

is a particular concern for programs that must respond to real-time events, such

as system interrupts and user inputs.

This potential lack of repeatability in generating the trace is a concern when

performing one-to-one comparison experiments. 5n this situation, the trace-con-

sumption program is driven once with the trace and its output values are

recorded. 5t is then modi"ed in some way and then driven again with the same

trace. 5f the identical input trace is used both times, it is reasonable to conclude

that any change in performance observed is due to the change made to the trace-

consumption program. However, if it cannot be guaranteed that the trace is

identical from one run to the next, it is not possible to determine whether any

change in performance observed is due to the change made, or whether it is due

to a difference in the input trace itself.

&.'.(.(Compression of data

A trace written to intermediate storage, such as a disk, can be viewed Gust like

any other type of data "le. 8onsequently, it is quite reasonable to apply a data-

compression algorithm to the trace data as it is written to the disk. %or example,

any one of the large number of compression programs based on the popular

Dempel>Oiv algorithm is often able to reduce the size of a trace "le by +<>C<E.

2f course, the tradeoff for this data compression is the additional time required

to execute the compression routine when the trace is generated and the time

required to uncompress the trace when it is consumed.

"#, %&ent tracing3

&.'.(.+ ,bstract execution

An interesting variation of the basic trace-compression idea takes advantage of

the semantic information within a program to reduce the amount of informa-

tion that must be stored for a trace. This approach, called a!stract e,ecution,

separates the tracing process into two steps. The "rst step performs a compiler-

style analysis of the program to be traced. This analysis identi"es a small subset

of the entire trace that is suf"cient to later reproduce the full trace. 2nly this

smaller subset is actually stored. Dater, the trace-consumption program must

execute some special trace-regeneration routines to convert this partial trace

information into the full trace. These regeneration routines are automatically

generated by the tracing tool when it performs the initial analysis of the

program.

The data about the full trace that are actually stored when using the abstract-

execution model consist of information describing only those transitions that

may change during run-time. %or example, consider the code fragment extracted

from a program to be traced shown in %igure 4.B. The compiler-style analysis

that would be performed on this code fragment would produce the control 6ow

graph shown in %igure 4.&<. %rom this control 6ow graph, the trace-generation

tool can determine that statement & always precedes both statements + and 1.

%urthermore, statement 9 always follows both statements + and 1. hen this

program is executed, the trace through this sequence of statements will be either

&>+>9, or &>1>9. Thus, the only information that needs to be recorded during

run-time is which of statements + and 1 actually occurred. The trace-regeneration

routine is then able to later reconstruct the full trace using the previously

recorded control 6ow graph.

(easurements of the effectiveness of this tracing technique have shown that it

slows down the execution of the program being traced by a factor of typically +>

&<. This slowdown factor is comparable to, or slightly better than, those of most

other tracing techniques. (ore important, however, may be that, by recording

information only about the changes that actually occur during run-time, this

technique is able to reduce the size of the stored traces by a factor of ten to

several hundred.

Measurement too)s an' tec*ni+ues

+, if (i % 2)

1, tCen a = a < i;

., else # = # < +;

7, i = i < +;

%igure 4.B A code fragment to be processed using the abstract execution tracing technique..

$3!

&.'.(.' "race sampling

-race samp#ing is another approach that has been suggested for reducing the

amount of information that must be collected and stored when tracing a pro-

gram. The basic idea is to save only relatively small sequences of events from

locations scattered throughout the trace. The expectation is that these small

samples will be statistically representative of the entire program's trace when

they are used. %or instance, using these samples to drive a simulation should

produce overall results that are similar to what would be produced if the simula-

tion were to be driven with the entire trace.

8onsider the sequence of events from a trace shown in %igure 4.&&.)ach

sample from this trace consists of & consecutive events. The number of events

between the starts of consecutive samples is the samp#ing inter%a#, denoted by '.

3ince only the samples from the trace are actually recorded, the total amount of

storage required for the trace can be reduced substantially compared with storing

the entire raw trace.

"#, %&ent tracing

%igure 4.&< The control 6ow graph corresponding to the program fragment shown in

%igure 4.B.

%igure 4.&& 5n trace sampling, & consecutive events comprise one sample of the trace. A

new sample is taken every ' events /' is called the sampling interval0.

$3(

Fnfortunately, there is no solid theoretical basis to help the experimenter

determine how many events should be stored for each sample /&0, or how large

the sampling interval /'0 should be. The best choices for & and ' typically must be

determined empirically /i.e. through experimentation0. %urthermore, the choice

of these parameters seems to be dependent on how the traces will be used. 5f the

traces are used to drive a simulation of a cache to estimate cache-miss ratios, for

instance, it has been suggested /see Daha et a#. /&B??00 that, in a trace of tens of

millions of memory references, it is adequate to have several thousand events per

sample. The corresponding sampling interval then should be chosen to provide

enough samples such that @>&<E of the entire trace is recorded. These results,

however, appear to be somewhat dependent on the size of the cache being simu-

lated. The bottom line is that, while trace sampling appears to be a reasonable

technique for reducing the size of the trace that must be stored, a solid theoretical

basis still needs to be developed before it can be considered `standard practice.'

 &; .ndirect and ad $oc "easure"ents

3ometimes the performance metric we need is dif"cult, if not impossible, to

measure directly. 5n this case, we have to rely on our ingenuity to develop an

a& "oc technique to somehow derive the information indirectly. %or instance,

perhaps we are not able to directly measure the desired quantity, but we may be

able to measure another related value directly. e may then be able to deduce

the desired value from these other measured values.

%or example, suppose that we wish to determine how much load a particular

application program puts on a system when it is executed. e then may want to

make changes to the program to see how they affect the system load. The "rst

question we need to confront in this experiment is that of establishing a de"ni-

tion for the `system load.'

There are many possible de"nitions of the system load, such as the number of

Gobs on the run queue waiting to be executed, to name but one. 5n our case,

however, we are interested in how much of the processor's available time is spent

executing our application program. Thus, we decide to de"ne the average system

load to be the fraction of time that the processor is busy executing users' appli-

cation programs.

5f we had access to the source code of the operating system, we could directly

measure this time by modifying the process scheduler. However, it is unlikely

that we will have access to this code. An alternative approach is to directly

measure how much time the processor spends executing an `idle' process that

we create. e then use this direct measurement of idle time to deduce how much

Measurement too)s an' tec*ni+ues$3,

time the processor must have been busy executing real application programs

during the given measurement interval.

3peci"cally, consider an `idle' program that simply counts up from zero for a

"xed period of time. 5f this program is the only application running on a single

processor of a time-shared system, the "nal count value at the end of the mea-

surement interval is the value that indirectly corresponds to an unloaded pro-

cessor. 5f two applications are executed simultaneously and evenly share the

processor, however, the processor will run our idle measurement program half

as often as when it was the only application running. 8onsequently, if we allow

both programs to run for the same time interval as when we ran the idle program

by itself, its total count value at the end of the interval should be half of the value

observed when only a single copy was executed.

3imilarly, if three applications are executed simultaneously and equally share

the processor for the same measurement interval, the "nal count value in our idle

program should be one-third of the value observed when it was executed by

itself. This line of thought can be further extended to n application programs

simultaneously sharing the processor. After calibrating the counter process by

running it by itself on an otherwise unloaded system, it can be used to indirectly

measure the system load.

Example. 5n a time-shared system, the operating system will share a single

processor evenly among all of the Gobs executing in the system.)ach available

Gob is allowed to run for the time s#ice !s. After this interval, the currently

executing Gob is temporarily put to sleep, and the next ready Gob is switched in

to run. 5ndirect load monitoring takes advantage of this behavior to estimate the

system load. 5nitially, the load-monitor program is calibrated by allowing it to

run by itself for a time ! , as shown in %igure 4.&+/a0. At the end of this time, its

counter value, n, is recorded. 5f the load monitor and another application are run

simultaneously so that in total two Gobs are sharing the processor, as shown in

%igure 4.&+/b0, each Gob would be expected to be executing for half of the total

time available. Thus, if the load monitor is again allowed to run for time ! , we

would expect its "nal count value to be n!+. 3imilarly, running the load monitor

with two other applications for time ! would result in a "nal count value of n!1,

as shown in %igure 4.&+/c0. 8onsequently, knowing the value of the count after

running the load monitor for time ! allows us to deduce what the average load

during the measurement interval must have been ^

 & 5ertur8ations due to "easuring

2ne of the curious /and certainly most annoyingN0 aspects of developing tools to

measure computer-systems performance is that instrumenting a system or pro-

"#" 4ertur1ations 'ue to measuring$3-

gram changes what we are trying to measure. 2btaining more information, or

obtaining higher resolution measurements, for instance, requires more instru-

mentation points in a program. However, more instrumentation causes there

to be more perturbations in the program than there are in its uninstrumented

execution behavior. These additional perturbations due to the additional instru-

mentation then make the data we collect less reliable. As a result, we are almost

always forced to use insuf"cient data to infer the behavior of the system in which

we are interested.

To further confound the situation, performance perturbations due to instru-

mentation are nonlinear and nonadditive. They are nonlinear in the sense that

doubling the amount of instrumentation in a program will not necessarily double

its impact on performance, for instance. 3imilarly, instrumentation perturbation

is nonadditive in the sense that adding more instrumentation can cancel out the

perturbation effects of other instrumentation. 2r, in some situations, additional

instrumentation can multiplicatively increase the perturbations.

%or example, adding code to an application program to generate an instruc-

tion trace can signi"cantly change the spatial and temporal patterns of its mem-

ory accesses. The trace-generation code will cause a large number of extra store

instructions to be executed, for instance, which can cause the cache to be effec-

tively 6ushed at each trace point. These frequent cache 6ushes will then increase

the number of caches missed, which will substantially impact the overall perfor-

mance. 5f additional instrumentation is added, however, it may be possible that

Measurement too)s an' tec*ni+ues

%igure 4.&+ An example of using an indirect measurement technique to estimate the

average system load in a time-shared system. The solid lines indicate when each application

is running.

$3"

the additional memory locations necessary for the instrumentation could change

the pattern of con6ict misses in the cache in such a way as to actually improve

the cache performance perceived by the application. The bottom line is that

the effects of adding instrumentation to a system being tested are entirely

unpredictable.

#esides these direct changes to a program's performance, instrumenting a

program can cause more subtle indirect perturbations. %or example, an instru-

mented program will take longer to execute than will the uninstrumented pro-

gram. This increase in execution time will then cause it to experience more

context switches than it would have experienced if it had not been instrumented.

These additional context switches can substantially alter the program's paging

behavior, for instance, making the instrumented program behave substantially

differently than the uninstrumented program.

 &< 3u""ar+

)vent-driven measurement tools record information about the system being

tested whenever some prede"ned event occurs, such as a page fault or a network

operation, for instance. The information recorded may be a simple count of the

number of times the event occurred, or it may be a portion of the system's state

at the time the event occurred. A time-ordered list of this recorded state infor-

mation is called a trace. hile event-driven tools record all occurrences of the

de"ned events, sampling tools query some aspect of the system's state at "xed

time intervals. 3ince this sampling approach will not record every event, it pro-

vides a statistical view of the system. 5ndirect measurement tools are used to

deduce some aspect of a system's performance that it is dif"cult or impossible to

measure directly.

3ome perturbation of a system's behavior due to instrumentation is unavoid-

able. %urthermore, and more dif"cult to compensate for, perhaps, is the unpre-

dictable relationship between the instrumentation and its impact on

performance. Through experience and creative use of measurement techniques,

the performance analyst can try to minimize the impact of these perturbations, or

can sometimes compensate for their effects.

5t is important to bear in mind, though, that measuring a system alters it.

 hile you would like to measure a completely uninstrumented program, what

you actually end up measuring is the instrumented system. 8onsequently, you

must always remain alert to how these perturbations may bias your measure-

ments and, ultimately, the conclusions you are able to draw from your

experiments.

"#/ 5ummar6$3/

 &= >or 4urt$er reading

There is an extensive body of literature dealing with program tracing and a very

large variety of tools has been developed. Although the following references only

begin to scratch the surface of this "eld, they should provide you with some

useful starting points.

. The Dempel>Oiv data-compression algorithm, on which many data compres-

sion programs have been based, is described in

Terry A. elch, `A Technique for High ;erformance :ata 8ompression,'

./// 0omputer, Lol. &C, !o. 4, Kune &B?9, pp. ?>&B.

. The abstract-execution idea, which was developed by Kames Darus, is

described in the following papers, along with some related ideas. These papers

also provide a good summary of the program-tracing process in general.

Kames 7. Darus, `)f"cient ;rogram Tracing,' ./// 0omputer, Lol. +4, !o. @,

(ay &BB1, pp. @+>4&.

Kames 7. Darus, `Abstract)xecution= A Technique for)f"ciently Tracing

;rograms,' *oft$are 1ractices an& /,perience2 Lol. +<, !o. &+, :ecember

&BB<, pp &+9&>&+@?.

Thomas #all and Kames 7. Darus, `2ptimally ;ro"ling and Tracing

;rograms,' 0M *.314 56*.3 0- 1rincip#es of 1rogramming

4anguages 718149, Kanuary &BB+, pp. @B>C<.

. This paper talks about some of the problems encountered when trying to trace

applications running on multiprocessor systems, and describes the various

types of perturbations that can occur due to tracing.

Allen :. (alony and :aniel A. 7eed, `;erformance (easurement 5ntrusion

and ;erturbation Analysis,' ./// -ransactions on 1ara##e# :istri!ute&

*;stems, Lol. 1, !o. 9, Kuly &BB+, pp. 911>9@<.

. ;aradyn is an interesting set of performance tools for parallel- and distribu-

ted-computing systems. The following paper provides a good overview of

these tools=

#arton ;. (iller, (ark :. 8allaghan, Konathan (. 8argille, Keffrey P.

Hollingsworth, 7. #ruce 5rvin, Paren D. Paravanic, Prishna

Punchithapadam, and Tia !ewhall. `The ;aradyn ;arallel ;erformance

(easurement Tools,' ./// 0omputer, Lol. +?, !o. &&, !ovember &BB@,

pp. 1C>94.

. The idea behind the indirect-load-measurement technique was presented in

)dward :. Dazowska, Kohn OahorGan, :avid 7. 8heriton, and illy

Owaenepoel, `%ile Access ;erformance of :iskless orkstations,' .///

-ransactions on *oft$are /ngineering, Lol. 9, !o. 1, August &B?4, pp.

+1?>+4?.

Measurement too)s an' tec*ni+ues$3

. The 3im23 tool, described in the following paper, is an interesting example of

how to trace an entire computer system, including both the application pro-

gram and the operating system=

(endel 7osenblum, 3tephen A. Herrod,)mmett itchel, and Anoop Mupta,

`8omplete 8omputer 3imulation= The 3im23 Approach,' ./// 1ara##e#

an& :istri!ute& -ec"no#og;, %all &BB@.

. The idea of sampling traces to reduce the amount of trace information that

must be collected and stored is described in

3ubhasis Daha, Kanak H. ;atel, and 7avishankar P. 5yer, `Accurate Dow-

8ost (ethods for ;erformance)valuation of 8ache (emory 3ystems,'

./// -ransactions on 0omputers, Lol. 1C, !o. &&, !ovember &BB?, pp.

&1+@>&114.

 &? (@ercises

&. :etermine the maximum time between rollovers for the interval timer avail-

able on your system.

+. hat are the most important differences between tracing and basic-block

countingJ

1. :evelop a technique for measuring the time a processor spends waiting for

input*output requests.

9. :evelop a technique for determining the associativity of a cache.

@. (easure the overhead of the interval timer on your system.

4. How would you measure the average number of Gobs running on a time-

shared systemJ

C. hat interrupt period is needed to ensure that each of the &+ subroutines of

a program that runs for 1< s has a BBE chance of having at least ten

samplesJ Assume that each subroutine executes for at least @E of the

total time.

?. Fse a program counter-sampling tool to compare the differences in perfor-

mance between two versions of some appropriate benchmark program.

7epeat your comparisons using a basic-block-counting tool. 8ompare and

contrast the results you obtain when using these two different types of tools

to pro"le the execution of this program. %or instance, what are the funda-

mental differences between the techniques used by the basic-block-counting

tool and those used by the sampling toolJ How do the differences between

these two tools affect your comparisons of the two versions of the bench-

mark programJ

B. 8ompare the time penalties and the storage requirements of the various

trace-compression techniques.

"#2 %7ercises$32

&<. Are there any pathological situations in which these trace compression tech-

niques can back"re and actually expand the input data setJ

&&. :evise an experiment to determine the following parameters of a computer

system with a data cache=

/a0 the memory delay observed by the processor on a data-cache hit, and

/b0 the memory delay observed by the processor on a data-cache miss.

Then

/c0 construct a simple model of the average memory delay observed by a

program, given its hit-or-miss ratio. Fse the parameters you measured

above.

&+. rite a test program that you can use to control the miss-ratio obtained in a

system with a data cache. Fse this program to validate the model of the

average memory delay developed above. That is, measure the execution time

of your test program and compare it with the time predicted by your model.

 hat simpli"cations and approximations are you implicitly makingJ How

could you improve your model or your test programJ <int= think about

measuring the time required to scan through a large array with a "xed stride

/the stride is the number of elements between successive references to the

array > a stride of one accesses every element sequentially, a stride of two

accesses every second element, a stride of three accesses every third element,

and so on0. #y varying the stride, you should be able to determine the cache-

block size. Then, knowing the block size, you can determine the miss ratio.

&1. 3ection 4.@ discussed a technique for indirectly measuring the system load.

/a0 rite a program to perform this counting process.

/b0 8alibrate your counter by running two copies of it simultaneously. 3how

the results of your calibration with appropriate con"dence intervals.

/c0 Fse your counter process to determine how the load on a system varies

over the course of day on a large time-shared system. %or instance, you

might try measuring the system load for & min every hour on each of

several different days. ;lot this system load as a function of time. 5nclude

appropriate error bars for each of the data points on your plot to give an

indication of the variance in your measurements. /These error bars are

simply the end-points of the con"dence interval for each measured data

point. !ote that you must repeat the experiment several times to obtain

enough independent measurements to generate a con"dence interval.0

Measurement too)s an' tec*ni+ues$$3

